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ERROR BOUNDS FOR DYNAMIC RESPONSES IN FORCED VIBRATION
PROBLEMS*

CHRISTIAN CABOSt

Abstract. When using mode superposition in large applications, generally only relatively few approximate
eigenmodes are linearly combined. Block Lanczos iteration is an efficient method of determining such modes. In
this paper new a posteriori bounds are developed that estimate the error when approximating the exact result of mode
superposition with a linear combination of the output vectors of block Lanczos iteration. Mode superposition can be
regarded as a way of computing g(S)f, a function g of a selfadjoint matrix S applied to a vector. One formula is
developed that estimates the norm of the unknown error vector. A second inequality gives a bound for the error when
computing linear functionals (v, g(S)f) of the response. The error bounds require that f and possibly v are contained
in the Lanczos starting block and that all Ritz vectors are used to compute the result. No gaps in the spectrum of S
need to be known. The bounds can be evaluated at a small cost compared to the eigenpair extraction in large systems.
In a forced response calculation for a container ship with 38,000 degrees of freedom the error is overestimated by
two to four orders of magnitude.
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1. Introduction. Certain systems of linear ordinary differential equations with constant
coefficients can be decoupled by the method of mode superposition. The equations of motion
for a linear system in structural dynamics are one example where the method has proven
particularly useful when the system is large. The reason is that often only few eigenmodes
need to be superposed to approximate the response to a dynamic load. The block Lanczos
algorithm has been applied in this context [9] because it can efficiently determine few modes
near some specified frequency. In this paper a posteriori bounds are developed that estimate the
error when approximating the exact result of mode superposition with a linear combination of
the output vectors of block Lanczos iteration. The term eigenmodes will be used as a synonym
for eigenvectors.

Suppose that mode superposition is carried out with the input vector f representing
an external load. Then since the exact calculation consists in amplifying each eigenvector
component of f by some function g of the respective eigenvalue i, the whole process can be
regarded as computing u g(S)f, a matrix function applied to a vector. S is the selfadjoint
system matrix with eigenvalues )i, 1 n. The exact vector u, called response in the
following, will be approximated by the vector t7 obtained by superposing few approximate
eigenmodes.

Setting g(x) l/x, for example, u s-if is computed. In [15], among other func-
tions, s-if and exp(S)f are approximated in this way. In [4] the functions exp(-tS)f,
exp(-tS’5) f, and cos(tS’5)f arising in partial differential equations are examined and a pri-
ori bounds are given for these functions. The number is a parameter. An expansion for the
error vector when approximating exp(S)f is derived in [12] and a posteriori norm estimates
are found by truncating this expansion. All these articles refer to iterations with blocksize
one.

The function g(x) with complex ct and F leads to the evaluation of the modallya+yx
damped response to a harmonic load in structural dynamics. A common procedure in the
field of forced vibrations consists in superposing only those modes that have been obtained
with a given accuracy. In 1982, Wilson, Yuan, and Dickens [16] suggested not using only
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these "exact" eigenvectors of the structural system. Rather, they superposed all so-called Ritz
vectors generated by the Lanczos algorithm with starting vector f, where f represents the
static displacement due to the spatial distribution of the dynamic load. Numerical experiments
showed that the error in calculating shear and moments at specific points was significantly
smaller when using Ritz vectors instead ofthe same number ofexact eigenvectors. Application
of this idea to the dynamic analysis of large structures (more than 105 degrees of freedom)
showed a factor 2-3 improvement in throughput time ]. In [9] the idea is extended to the
block Lanczos method. The error bounds given below rely on the fact that all Ritz vectors are
superposed.

Since the determination of eigenmodes is very expensive when the systems are large,
error bounds can provide such useful information as when to stop the Lanczos iteration. As
stated in [2], in the context of forcedvibrations there is no justifiable error estimate showing
how many Lanczos vectors are needed to approximate the response to a given accuracy. The
stopping criterion used in [8] and [9] is based on participation factors E-F of the dynamic
load Feit. Here Ek is the kth Lanczos block obtained and co is the circular frequency of the
dynamic load. The Lanczos iteration is stopped after step r if the norm of Er+1F falls below
a specified limit. However, the relation between the participation factors and the error in the
response is not clear [2]. In [7] the participation of the last Lanczos vector in the approximate
solution of heat conduction problems is used for an error criterion.

This paper is organized as follows. After introducing notation, a formula for the norm
of the error in the calculated response is given. This is a measure for the (mean square)
overall accuracy of the result. However, in engineering applications a common task is the

evaluationof the response at a specific degree of freedom or a linear combination thereof (e.g.,
element stresses). This can be described as calculating linear functionals of the response. A
second bound is developed for estimating the error in evaluating such linear functionals of the
response.

An important application is the computation of forced vibrations in structural dynamics.
Evaluation ofthe error bounds can be simplified in case ofRayleigh’s damping. As a numerical
example the forced vibrations of a container ship are examined with respect to their accuracy.
The finite element model used contains approximately 38,000 degrees of freedom.

2. Overview ofblock Lanczos method. To introduce some notation, the basic equations
for the block Lanczos method will be given. For a more detailed description of this algorithm
see, e.g., [5] and the references therein. The scalar product used below may be of generalized
form (a, b) := a*Mb where M is a Hermitian positive definite matrix and * denotes the
complex conjugate transpose. (., .) will also be used if a and b have more than one column.
In this case (a, b) is a matrix. The norm induced will be called Ilall, := (a, a) to distinguish
it from the euclidean norm Ilbll. Orthonormality and selfadjointness always refer to this
generalized scalar product if vectors or systems of dimension n are involved.

Assume that E1 is the n x b orthonormal starting block for the Lanczos algorithm with
selfadjoint n x n iteration matrix S. The integer b is called the blocksize. By a combination of
iteration and orthogonalization the Lanczos method generates blocks of vectors E1 Er.
These are used as input vectors for the Ritz method. The Lanczos algorithm enforces the
following recursion among successive blocks"

(1) Er+lBr+l SEt Er4r E-IBr
Here r denotes the total number of Lanczos steps so far and E (El, E2 Er) is the
matrix of the first m b r Lanczos vectors. Typical values of n, m, and b used in this
paper are n 40,000, rn 200, b 10. The columns of E are mutually orthonormal
and span the block Krylov space g span(E). The b b block coefficients Ai and Bi
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can be assembled to form the symmetric block tridiagonal matrix

(2) T (E, SE).

The A are the diagonal blocks; B/q- and Bi are on the sub- and superdiagonal, respectively.
An eigendecomposition T Q Q/ of T with/ diag(i, 1 m) produces Ritz
values .i, which approximate the exact eigenvalues .j, j 1 n of S. The Ritz vectors

" EQ are approximations of the exact eigenvectors X. They also span g.
It is of particular importance for the error bounds given below that in the absence of

roundoff errors one has access to the exact size of the residual vector (S k)Xk for each k.
If Qrk denotes the b last elements of column k of Q (i.e., its rth block row), then with

(4) (S-)k)"k Er+l/3k.

This can be derived by multiplying the Lanczos recursion SE ET + (0 O, O,
Er+lBr+l) by Q from the right. The b-dimensional vector/3k can be computed during
the Lanczos iteration at negligible cost once Q has been found.

3. The error in the response. In this section the overall error in approximating the
response g(S)f is examined. That is, an estimate is sought for the norm of the error vector

(5) u t7 g(S)f- (g(fi,)((, f).

Approximate mode superposition is a three-step process:
project f onto the Ritz vectors k,
multiply by functions g(k) of the Ritz values k, and
linearly combine the Ritz vectors to obtain ti.

One possibility would therefore be to develop bounds that estimate the errors in each of these
steps. These quantities must be combined to produce the final result. As a basis, bounds on the
Ritz values and Ritz vectors would have to be used. One major disadvantage of this technique
is that to find bounds on the Ritz vectors, gaps in the spectrum of S must be known (see [6] or
11]). Another drawback is that since all Ritz vectors should be included in the calculation,

large intermediate error quantities appear. The technique developed below combines all steps
of mode superposition into a single estimate thereby avoiding the above disadvantages.

For a differentiable function g, define Ag by

g(x)-g(y) if X # y,
(6) Ag(x, y)"= x-y

g’(x) if x y.

THEOREM 3.1. Suppose that r steps of the Lanczos iteration with selfadjoint system
matrix S and blocksize b produce the Ritz values/ diag(k) and Ritz vectors ( ((),
k 1 m. Let f be completely represented in the space ofRitz vectors, f , and g be
a differentiablefunction on the real axis. Both f and g may be real or complex valued. Then
the norm of the error when approximating u g(S)f by Xg(A)(X, f) is bounded by

(7) Ilu tTl[ 2 < b mnax Ag(Zj, k)/3rkJ
M j=l

k=l

we have

(3) irk Br+ Qrk,
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where fk :-- f(k, f). The numbers kj, j 1 n, are the exact eigenvalues of S, and t3rk
is given by (3).

Proof. Expand f in terms of the Ritz vectors

m

(8) u ff Z(g(S) g(.))f(f.
k=l

The norm of this error vector will be calculated by summing up the squares of its Xj-
components. The Xj-component of the kth summand above has the form

(9) (Xj, (g(S) g(.k))f(kf) (g(Xj) g(k))(Xj,

This can be seen using the definition g(S) "= Zi=I Xig(.i)(Xi, .). If )j , then a factor
(S LD/()j .t) can be added with similar reasoning

(10) (g(Lj) g(.k))(Xj, f(kfk) g(’J) g(’k)- (Xj, (S- .k)(kfk).
)j )k

In case Lj k, the left-hand side of (10) is zero and so is (Xj, (S ,)(kf) (Oj
.)Xj, (f). Therefore, for .j k the difference quotient in (10) can be replaced by any
finite number, particularly g’(.k). Taking advantage of the definition of Ag, we combine (9)
and (10) to obtain

(11)

which is valid for all ;kj and all values of )k.
From the Lanczos recursion (see (4)) we know that (S- ,kk)Xk Er+lflrk. The Xj-

component of the sum over k hence becomes

(12)
m m

Z(Xj, (g(S) g(k))kA) (Xj, Er+l) Z Ag(j, k)irkA.
k=l k=l

The norm of the error can be found by summing up the squares of the absolute values over j

(13)

where the Cauchy-Schwarz inequality has been applied. (Xj, Er+l) is a b-dimensional row
vector. Taking the maximum over j in (13) we get the desired result since.__ (Xj, Er+l)II 2 b. q

In case we have no additional information about the spectrum of S, we must evaluate

< sup(14) Ilu 711
m

E Ag(, .k)flrkf
k=l

Each maximization step in (14) produces the cost of O(bm) flops, the sum represents a b-
dimensional column vector. The maximum can, of course, be restricted to known subsets of
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I containing the whole spectrum of S. For example, all exact eigenvalues are nonnegative if
one calculates forced vibrations.

In Fig. 1 a typical shape of the function h() := Ekm-1 Ag(, k)irkfkl[, which is
maximized in (14), is shown (dashed line). The drawn lines correspond to the example given
in 7.2 with 6 Hz and are plotted against eigenfrequency. Frequency v canbe transformed
to by (2zrv)2.
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FIG. 1. Typical shapes of Igl, h, and e plotted against eigenfrequency.

To insure that f g, the vector f should be included in the starting block of the Lanczos
iteration. The fastest way ofcomputing the response vector u is to combine the Lanczos vectors
E without ever forming Ritz vectors. This also has the advantage that no additional cost of
order n is introduced when all Ritz components are used. Ignoring some of the computed Ritz
vectors, e.g., using only exact eigenvectors, therefore means no significant time savings but
less accurate results as shown in the examples.

Now assume that a vector f+/- that is orthogonal to g is added to f. As long as we do not
know about gaps in the spectrum, we must always assume that f+/- is parallel to an eigenvector
Xp and that g attains its maximum at p. So, in this case, the term f+/- I1 supe Ig()l would
have to be added to (14).

4. The error in evaluating functionals of the response. The response vector is evalu-
ated at a single point or at a linear combination of points by applying a linear functional v to
it. The error in the result is

(15) (v, u) (v,

If f is contained in but v possibly is not, this error can be estimated using the Cauchy-
Schwarz inequality

(16) [(v, u) (v, t)[ <_ [[v[[ M [[g(S)f- :g(/) (’, f)l[M.
Now the results of the last section can be applied to the second factor. [(v, u) (v, ti)[ can be
regarded as a seminorm of the error vector u t7. As an abbreviation of the names Cauchy
and Schwarz, inequality (16) will be called CS seminorm error boundin the sequel.
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If, apart from f, v is also completely represented in , the actual error is generally smaller
and better bounds can be given. To take advantage of this improvement, f and v should be
included in the starting block of the Lanczos iteration. Similar to the last section, we define
for a twice differentiable function g

(17)

,a#x,z)-,a:(y,z) if x # y,(x-y)

A2g(x y, z) := g(y)-A$(y,z) if X y and x # z,(y-z)

g"(x)/2 ifx y z.

THEOREM 4.1. Apart from the assumptions in Theorem 3.1 let v also be completely
represented in the space ofRitz vectors, v . The vector v may be real or complex valued
and define vg := (Xg, v). Thefunction g shall be twice differentiable. Then the absolute value
ofthe error in approximating (v, u) is bounded by

n
(18) I(v, u) (v, a)l -< b-max

j=l

m m

Y lflrlA2g(j, fVl, fk)Trkfk
/=1 k=l

Proof. Both v and f are expanded in terms of Ritz vectors

(19)
m m

/=1 k=l

Using the orthogonality among Lanczos blocks and relation (4), one can see that (S
is orthogonal to for all k. Consequently, each scalar product can be modified

(20) {(v,, (g(S) g(f))(f) ((tv,, (g(S) g(fg) b,,,(S-

with arbitrary numbers bt,g. Choose bt,k as

(21) b,k := zXg(.t, .k).

Without adding this term, the difference quotient in (23) would be unbounded near Ritz values.
This in turn would make it impossible to find a sensible bound for the error.

The scalar product will be evaluated by summing up Xj-coordinates. Observe that if

Lj 6 l and )Lj 6 k,

(22)

If )vj f.t or .j )7.k, one of the scalar products in (23) is zero and so is (22). Therefore, the
difference quotient can be replaced by an arbitrary number in these cases. Using the definition
of A2g, (22) now equals

(24)

for all Xj, t, and
At this point information from the Lanczos method (4) is introduced:

(25) (Xj, (S- fk)ff(kfk) (Xj, Er+l)flrkfk fkflrTk(Er+l, Xj)
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and the same can be done with ((S- .t)(tvt, Xj). Summing up (23) over l, k, and j, we get

(26)

m m_(I), U) (I), ) ZE <Xj, Er+l)lirlA2g()j, I, k)iTrkfk<Er+l, Xj’)
l=1 k=l j=l

(Xj, Er+l) lflrlA2g(’j, I, k)flrTkfk (Er+l, Xj).
j=l t=l k=l

Note that up to now we have equality. Each summand of the outer sum can be estimated by
taking norms

(27) I<v, u> <v, 7>1 <

_
II(Er+l, Sj>ll 2

j=l

m m

EZ l[3rlA2g()J’ Jl, Jk)[3rkfk
l=1 k=l

More exactly, the norm of the double sum could be replaced by the radius of the numerical
nrange of this matrix. Because Y]j=I <Sj, E/,> 2 b, we can take the maximum over the

right factors to obtain the desired result. ]

Inequality (18) will be calledfull seminorm error bound in the sequel. Again, if we have
no additional information about the spectrum of S

(28) I<v, u> (v, ti>l < b.sup
mm

EE IIrlA2g(,2I, T

/=1 k=l

As in the last section one should, of course, take advantage of any such information, e.g., about
gaps in the spectrum. Figure 1 shows the typical shape of the norm e() of the double sum
(dotted line) which is maximized in (28). Reference is again made to the numerical example
given in 7.2. The double sum in (28) represents a b x b matrix. Instead of the euclidean
matrix norm, the Frobenius norm is used in all calculations in this paper.

Care must be taken for calculating the differential quotients Ag and A2g. Cancellation
can occur. In case the numerator and the denominator approach zero, the quotient must be
substituted by the appropriate derivative.

The factor A2g(, )l, )k) can be regarded as an rn x rn matrix with indices and k.
Therefore, the function that must be maximized in (28) produces the cost of O(bm2) operations
per evaluation. Since for : )l we have

(29) A2g(, l, k) 1
(mg(, k) Ag(21, )k)),

the matrix multiplication can be economized. The matrix product

m

(30) E Ag(2l’ k)iTrkfk
k=l

must be found and stored once. Factorizing the rest of the computation into a k- and an l-part,
only O(bm) operations remain for any subsequent in the maximization process.

5. Application to the calculation of forced vibrations. Calculating forced vibrations
leads to evaluating functions of a matrix S applied to the load vector. Suppose that the dynamic
behaviour of a structural system is described by the linear second-order differential equation

(31) M//(t) + Cfi(t) + Ku(t) Feit,
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where M, C, and K are symmetric mass, damping, and stiffness matrix, respectively. The
vector F represents the time-independent spatial distribution of the load and 09 is its circular
frequency. The solution u(t) ueiwt is the time-dependent vector of nodal displacements and
represents time. A dot above a symbol denotes differentiation with respect to t. The damping

matrix C shall be diagonalizable simultaneously with M and K. That is, modal damping will
be applied. Formally C is a function of M and K, C Mc(M-1K). Rayleigh’s damping is
obtained by setting c(x) al + a2x with constants al and a2. C is never formed explicitly
but is rather applied for each mode.

Equation (31) can be solved by obtaining a complete generalized eigendecomposition
KXj tzjMXj, j 1,..., n, of the matrix pencil (K, M). One may assume that the
eigenvectors Sj form a complete orthonormal set. The scalar product used is (a, b) := a*Mb.
In eigenvector coordinates, (31) decouples and the solution u(t) can be given explicitly (see,
e.g., [3])

(32) u(t) X
j=l llJ q- i0)c(tj) 0)2XFeit

or when applying an arbitrary shift r,

(33)
j=l

tzj r
(Xj (K rM)- F)eit

lZj + i0)c(tzj) 0)2

When solving the generalized eigenproblem the Lanczos method is usually applied in
"shift and invert mode" [13], [10], that is, S := (K rM)-M is chosen as iteration matrix.
Then S is selfadjoint with respect to (., .) and convergence to eigenpairs is best for/x . r.
The eigenvalues of the transformed system S are )j ! (/zj or) and the eigenvectors Xj
remain the same. Therefore, the solution of (31) can be written as

(34) u(t) gx,,o(S)(K-aM)-1Feit with gx,o,f) :=
1 +)(cr-0)2+i0)c(1/L+r))

For r 0 this function g/,o is called "dynamic amplification factor." Alternatively,

(35) u(t) gM,o(S)M-1Feit with gM,o()) :-- kg/,o(k),

which has the disadvantage that M- must be applied to generate the starting vector M- F.
The input vector f will be defined either by f (K rM)-1F or by f M- F, whichever
method as given above is applied. The index 0) will frequently be dropped.

For viscous nonmodal damping the response u generally cannot be expressed in the form
g(S)f for some function g. Hence the theory of the previous sections does not apply.

ifcrisnotThe functions g given by (34) and (35) exhibit a sharp peak for )

near to 0)2. A semilogarithmic graph of Igl for the example in 7.2 and 6 Hz is
given in Fig. 1 (solid line). Note that Igl is plotted over eigenfrequency v. Plotted against
) 1/((2rv)2 -or), the peak is narrower still. On one hand, this shape of g makes it possible
to obtain good approximations of the response with relatively few eigenmodes corresponding
to values around 0)2. On the other hand, finding good error bounds is difficult in this case if
they rely on the approximation of g by a polynomial of degree r as in [4].

6. Rayleigh’s damping. In the case of Rayleigh’s damping, the expressions Ag(, )
and A2g(, t, .) can be written as a product and closed error formulas can be found. Set
c(/z) := al + a2/z with constants a and a2 then gM has the form gM(.) Here the
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numbers ct and /are defined by ct := 1 + iwae and , := cr oe + io(al + a2tr). Now the
identities

(36) AgM(x, y)
(ct + ,x)(ct + ,y)

and

(37) A2gM(x, y, z)
(or + gx)(ot + ,y)(ot + ’z)

can be derived easily. By pulling the -dependent part out of inequalities (14) and (28) and
by explicitly calculating the maximum of I, one obtains the formulas

(38) Ilu zll

and

(39) I(v, u) (v, t7)l _< b

Both bounds are valid under the assumptions of Theorems 3.1 and 4.1 with g gM. For
g g:, the right-hand sides must be multiplied by a factor I I. The symbol denotes the
imaginary part of a complex number. Both expressions can be evaluated with a small multiple
of bm flops.

7. Numerical examples. The above methods have been applied to a forced response
calculation for a container ship. The ship’s finite element model contained 38,292 degrees
of freedom (a hidden line plot is given in Fig. 2). The stiffness matrix K was a band matrix
with a mean bandwidth of 400. The main point of investigation was the response to moments
produced by gas forces in the engine. Three different spatial load distributions have been
included in the calculation. The response was evaluated at 9 degrees of freedom. To include
all these vectors, the blocksize was chosen to be 12. Twenty iterations have been performed
and the shift tr was chosen corresponding to a frequency of 9 Hz. The implementation of the
Lanczos algorithm contained "partial reorthogonalization" as described in 14].

FIG. 2. Finite element model ofcontainer ship.

A lumped (diagonal) mass matrix was used. Therefore, M-1 could be applied and the
method chosen was the one defined by gu in (35). Numerical experience with different
examples shows that the error bounds become slightly better when using the method given
by gK in (34). This improvement is achieved by one additional (expensive) application of S.
The error bounds are, of course, equally applicable to the case of a nondiagonal mass matrix.
Then evaluation of M-1 should be avoided and hence the gK-method would have to be used.

All graphs in this section are plotted against frequency of excitation; that is, the parameter
w is varying in gu,o()).
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7.1. Rayleigh’s damping. The critical damping ratio was chosen to be linear in fre-
quency, 0% at 0 Hz and 3% at 10 Hz. Figure 3 shows the relative norm errors after various
numbers of iteration steps. More precisely, the lines show Ilu ll/llll,, the error bound
as given by (38) divided by the norm of the calculated response. As expected the results are
most accurate around the shift (.

10

10

10

10-3

I0-

I0-

lOd2

lO-tS
0

frequency of excitation [Hz]

FIG. 3. Relative norm error bounds after various numbers ofiteration steps.

For the comparisons in Figs. 4-6, the response was evaluated at a particular degree of
freedom on the ship’s bridge. The solid lines in Fig. 4 show the relative errors found using
(39) after 8, 14, and 20 iteration steps. The CS seminorm error bounds are given by the dashed
lines. Clearly, it is advisable to include the vectors v of measurement degrees of freedom
(which define the evaluation functionals) in the starting block to be able to prove additional
accuracy in the results.

In Fig. 5 the full seminorm error bounds (solid lines) are compared to the actual error
(dashed lines). The term actual error will be used for the difference to the response after 20
steps (plus its error estimate) in the following. The error bound after 20 steps is given for
reference. Between 6 and 16 Hz the error is overestimated by two to three orders ofmagnitude.
Due to finite precision (about 16 decimals), the actual error does not fall below a certain limit
(here 10-14 although the error bounds predict better approximation.

Figure 6 shows the effect of ignoring bad Ritz vectors. In these examples, the term
bad will be used for those Ritz pairs with negative values and with values above 30 Hz.
Conventionally, such Ritz pairs would not be included in a forced response calculation with
the given frequencies of excitation. According to the relative error bound I111/1-1 (see
11, p. 69]) all mentioned Ritz values had been found with a relative precision less than 70%.
The solid lines give the actual errors if all Ritz vectors are used for calculating the response.
Omitting bad Ritz pairs leads to the errors shown by the dashed lines. One can say that
including inexact eigenvectors leads to more accurate results at those points where a modest
degree of accuracy has already been achieved.

7.2. Quadratic damping below 10 I-Iz. Here the critical damping ratio was chosen to
be a quadratic function of frequency, 0.5% at 0 Hz, 0.9% at 4 Hz, and 3% at 10 Hz. Above
10 Hz the same damping function as in the previous section was used. Force vector f and
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FIG. 4. Comparison oferror boundsfor the evaluation ofthe response at a specific degree offreedom. Dashed
line: CS seminorm error bounds. Solid line: Full seminorm error bounds.
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FIG. 5. Comparison full seminorm error bound---actual error. Dashed line: Actual error. Solid line: Full
seminorm error bound.

measurement vector v were the same as above. The maximum in the error bounds was
taken over all of ,+. After 20 steps all eigenvalues between 0 and 9 Hz had been found.
Consequently, gaps in this interval could be excluded from the maximum in this case.

Figure 7 shows that the norm error is higher than for Rayleigh’s damping. More steps
are needed to obtain a given accuracy. In Fig. 8 the full seminorm error bound after 16 steps
(solid line) is compared to the actual error (dashed line) as explained in the previous example.
The response error after 20 steps is again given for reference. Between 6 and 13 Hz the error
is overestimated by about four orders of magnitude. The dashed-dotted line gives the actual
errors when ignoring bad Ritz vectors in the same way as in the previous example.
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FIG. 6. Comparison ofactual errors with and without ignoring badRitz vectors. Solid line: Actual error. Dashed
line: Actual error, bad vectors ignored.
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FIG. 7. Relative norm error bounds after various numbers ofiteration steps.

7.3. Reduced number of relevant eigenmode components in the input vectors. This
example shows that the error bounds can also provide useful information in a frequency range
where several eigenpairs have not yet been found. S was chosen to be diagonal and M was set
to the identity matrix. With other words, the canonical scalar product has been used. System
dimension was n 1000. The first 320 entries of the diagonal of S were set to the eigenvalues
below 25 Hz of the container ship above. Six hundred and eighty eigenvalues higher than
25 Hz have been chosen at random with roughly the same spacing as the first 320 values.
Diagonal test matrices in connection with the Lanczos algorithm have, for example, been used
in 15]. Since the Lanczos algorithm only applies to a given system, it does not take advantage
of the special form of S.
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FiG. 8. Comparisonfull seminorm error bound--actual errors with and without ignoring bad Ritz vectors.

The vectors f and v were chosen at random such that about 350 of the entries of f and
220 of those of v had absolute values between 10-1 and 10-5. The other entries had absolute
values around 10-8. Since f was complex and v was real, the blocksize was chosen to be
b 3. The starting block contained v and the real and imaginary parts of f. Lanczos iteration
was stopped after ten steps and damping was chosen as in 7.1.

In Fig. 9 the exact eigenvalues are shown by a plus (+) sign. An x marks an eigen
value found by the Lanczos iteration. Its vertical position represents the estimate II/rll/l’l
for its relative accuracy (see above). Between 12 and 15 Hz only 14 out of 29 eigen-
values and -vectors have been approximated. Nevertheless, the error bounds show that the
calculated response has a relative error less than 10% in this interval. This is true for the
norm (dashed line) as well as for the functional of the response (solid line, full seminorm error
bound).

The described effect can become useful if the structure under consideration contains a
large number of eigenmodes that are not relevant near the points of excitation and evaluation,
but correspond to eigenvalues near o2. In particular this refers to vibrating subsystems. The
error bounds can predict good approximation ofthe response even ifthese modes have not been
found. As a result, the Lanczos iteration can be stopped earlier as when using a conventional
stopping criterion like "calculate all modes in the desired frequency range."

8. Conclusions. Using the formulas developed above, it is possible to obtain a posteriori
error bounds for the process of mode superposition. The bound for the norm error gives the
overall error of the approximate solution if the input vector is included in the starting block
of the Lanczos algorithm. In case the response is evaluated at a single degree of freedom or
at a linear combination thereof, the second bound gives more favourable results. Then the
functional for this evaluation should also be included in the starting block.

The error estimates do not make use of bounds on the Ritz vectors. They directly measure
the accuracy of the whole process of approximating the response. This is in contrast to
the approach of dividing it into the three usual steps of mode superposition. No specific
information (e.g., gaps) about the spectrum of the system matrix needs to be known.
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The error bounds can be included in an implementation of the Lanczos method. There
they provide a stopping criterion for the iteration that reflects the quality of the overall result
instead of measuring intermediate quantities. It might well be that the response is predicted
with satisfactory precision although the Ritz vectors would not be regarded as sufficiently
accurate. In the case of forced vibrations it is possible that they predict good approximation
in a frequency range where some modes have not yet been found by the Lanczos iteration.
These missing modes would be those with a very small component in the starting block. In
other words, the iteration can be stopped at an early stage, thereby reducing computational
cost when contrasted to a conventional stopping criterion such as "calculate all modes in the
desired frequency range."

The effect of improving results by including all Ritz vectors in the calculation has already
been stated in the literature. The numerical examples given show that the improvement mainly
occurs at points where a moderately accurate result has already been achieved. In case Lanczos
vectors are combined directly to find the response, ignoring some of the Ritz vectors means
no significant time savings but less accurate calculations.

Numerical examples show that if the bounds predict good approximation, the error is
overestimated by about two to four orders ofmagnitude in large-scale engineering applications.
The cost for their calculation is O(bm) floating-point operations in the case of norm errors
where m is the number of Ritz values found and b is the blocksize. The cost for bounding
seminorms of the error is dominated by a small multiple of bmz flops. If Rayleigh’s damping
is applied, all bounds can be evaluated with a small multiple of bm flops.

It is straightforward to apply the results to different matrix functions such as the matrix
exponential.

Acknowledgments. The author would like to thank Dr. H. G. Matthies for many valuable
discussions and Dr. R. Ansorge and Dr. H. VoB for their advice and support.
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GLOBAL OPTIMIZATION DECOMPOSITION METHODS FOR BOUNDED
PARAMETER MINIMAX RISK EVALUATION*

ERIC GOURDINr, BRIGITTE JAUMARDt, AriD BRENDA MACGIBBON

Abstract. There has been much recent statistical research in the area of inference under constraints. The
problem considered here is that of bounded parameter estimation, in particular that of normal and Poisson means,
using minimaxity as the criterion of evaluation. Because of the ease of calculation of linear minimax rules, the ratio
of these risks to the nonlinear minimax risks for these problems is also studied. To find the minimax solution, the
dual problem of finding the least favorable prior distribution is often considered. On bounded parameter spaces the
least favorable prior is often discrete, so the finding of the minimax estimator and its risk is equivalent to a global
optimization problem with constraints. Previously published numerical specifications of the priors have used iterative
(often heuristic) procedures. Two global optimization procedures are proposed. The first is based on multivariate
Lipschitz optimization and makes use of bounds on the first-order derivatives. The second is a decomposition
procedure that utilizes the partial concavity of the Bayes risk function. Both procedures are compared, and the
decomposition method appears to be much more efficient. It is shown that the Ibragimov-Hasminskii constant, the
maximum of the ratio of linear to nonlinear minimax risks, is different for the Poisson and normal problems.

Key words, decomposition, Ibragimov-Hasminskii constant, bounded parameter, minimax, discrete least favor-
able prior

AMS subject classifications. 90C26, 62-04, 62F10

1. Introduction. In the framework of statistical decision theory, many interesting prob-
lems can be resolved by finding minimax procedures. These problems include the areas of
estimation, hypothesis testing, experimental design, and robust statistics, among others. Re-
cently, the problem of estimating the mean of a standard Gaussian shift experiment, when it is
known to be in an infinite-dimensional bounded convex subspace, has been studied by Pinsker
[27] in the ellipsoid case, and by Donoho, Liu, and MacGibbon [7] for more general bodies.

More precisely, it is supposed that

X =Oi’-’ei, =0,1,2

where the i are independent identically distributed N(0, or2), r2 known and 0 unknown, but
known to lie in an orthosymmetric quadratically convex ep (p > 2) body (R). An estimator 6*
of 0 is minimax with respect to quadratic loss if

sup E ifsup E (i Oi
0(R) 0 0(R)

The estimator * is linear minimax if it is linear and satisfies the above equation with
the infimum over 0 referring only to linear procedures. The resulting risk is called the linear
minimax risk. The fact that linear procedures are much easier to calculate raises interest in
the study of the ratio of linear to nonlinear minimax risk. Donoho, Liu, and MacGibbon [7]
showed that this ratio for the orthosymmetric quadratically convex ep body problem (p > 2)
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could be bounded by the ratio for the hardest one-dimensional subproblem. Thus the problem
is reduced to studying the ratio/zs(m) of linear minimax risk to nonlinear minimax risk for
the estimation of a bounded normal mean; that is, estimating the mean of a normal population
N(0, 1) given that 101 _< m, on the basis of one observation X x. It is well known that the
minimax linear risk is m2/m2+ 1, and if rs(m) denotes the minimax risk among all estimators,
then the ratio of interest/zs(m) is defined by

m2

/zs(m)
(1 + mZ)rs(m)

Let /Zv SUPm tzN(m). This constant, the worst-case ratio, is referred to as the
Ibragimov-Hasminskii constant 17], since they were the first to study the behaviour of/zs(m)
and to prove that/Zv is finite.

Casella and Strawderman [6] were the first to provide analytic and numerical results for
the minimax risk rs(m) for the onerdimensional normal mean problem. To find the minimax
solution, the dual problem of finding the least favorable prior distribution for the corresponding
Bayes problem is often considered. The duality theory ensures that, if there exist solutions to
both problems, then the Bayes procedure with respect to the least favorable prior distribution
will be minimax (see Wald [33], Ferguson [11], Berger [3], Kempthorne [20], Brown [5]).

For many of these problems, particularly for constrained inference (see, e.g., Ghosh
[13]), the least favorable prior distribution is a discrete measure with finite support. Thus,
the finding of a minimax solution becomes a global optimization of a nonlinear, nonconvex
function. Kempthorne [20] was the first to describe a convergent iterative procedure for
the numerical specification of such priors. Donoho, Liu, and MacGibbon [7] used Brown’s
identity (see Bickel [4]) involving the Bayes risk and Fisher information to approximate an
upper bound for the minimax risk rs(m) in the bounded normal mean problem, thus reducing
the optimization to that of minimizing a convex functional subject to convex constraints. The
numerical specification was achieved using the optimization system NPSOL of Gill, Murray,
Saunders, and Wright [12]. Within four-digit accuracy, Donoho, Liu, and MacGibbon [7]
showed that the Ibragimov-Hasminskii constant was bounded by 1.2497. A more recent
numerical study by Feldman and Brown [10] suggests that the constant is approximately
1.2465.

Johnstone and MacGibbon 18] studied the problem of estimating a bounded Poisson pa-
rameter under normalized quadratic loss. Using an iterative procedure similar to Kempthorne’s
algorithm involving local optimization techniques (see Kempthorne [20]), they calculated the
minimax risk and obtained an upper bound of 1.251 for the ratio ofnonlinear to linear minimax
risk for this Poisson problem.

An interesting question now becomes whether or not this ratio is the same for the normal
and Poisson problems. Since the specification of the minimax solution is a global optimization
problem, it seems essential to develop such techniques with sufficient accuracy to resolve this
issue.

We first designed a new Lipschitz algorithm concerned with the following global opti-
mization problem

maximize f(x),
(P) subject to" gi(x) < O, 1, 2 m,

X n,

where the functions f and gi (i 1, 2 m) satisfy a Lipschitz condition, but are not
necessarily either concave or linear.
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Such problems are very difficult to solve in practice. Most often, they are solved heuristi-
cally, using nonlinear optimization algorithms that only yield a local optimum or an unproved
global optimum. However, more efficient algorithms can be designed if specific properties are
taken into account, e.g., polynomial expressions of the constraints (see, e.g., Duffin, Peterson,
and Zener [8], Ecker [9]) or convexity/linearity of the constraints functions (see, e.g., Horst
and Tuy 16], Rosen [31]). The multivariate Lipschitz algorithm we propose, although exact
and theoretically convergent, did not allow us to reach highly precise results in a reasonable
amount of computing time. Therefore, we considered a second algorithm.

The Bayes risk function involved in the minimax estimation problem presents an inter-
esting property of partial concavity (see Kempthorne [20], Johnstone and MacGibbon 18]).
To take advantage of this property, we improved our first algorithm, using decomposition
techniques.

The second algorithm deals with the following partially concave global optimization
problem:

maximize f(x, y),

(/5) subject to" gi (x, y) < O, 1, 2 m,

X ]tnx y ]1ny

where the functions f and gi (i 1, 2 m) satisfy a Lipschitz condition with respect to
x, and are continuous and concave with respect to y.

Both algorithms are applied to the evaluation of the minimax risk for a bounded Poisson
mean with a suitably normalized quadratic loss function. The second algorithm appears to be
much more efficient than the first one.

The paper is organized as follows. The next section is devoted to the two algorithms. First,
we introduce the Lipschitz optimization theory (2.1); then we explain our new multivariate
Lipschitz optimization algorithm (2.2). Finally, we present the decomposition algorithm
(2.3). Section 3 will be devoted to the minimax estimation of bounded Poisson and normal
means and the calculation of the Ibragimov-Hasminskii constants for these problems. Com-
putational experiences, including some on the minimax risk evaluation for the bounded normal
and Poisson mean problems, are reported in 4. Conclusions are drawn in 5.

2. Global optimization methods.

2.1. Introduction to Lipschitz optimization. Piyavskii’s algorithm [28], [29] (see also
Shubert [32]) is one of the most classical algorithms of univariate Lipschitz optimization. It
addresses the problem ofmaximizing a continuous univariate function f over an interval [a,b],
assuming it satisfies a Lipschitz condition

Yx, y a__ [a, b], f(x) f(y) 1<_ L Ix y 1,

where L is a constant.
The algorithm generates a sampling sequence ofpoints x , x2 xk, where the function

f is evaluated, and builds a piecewise linear upper bounding function, also called a sawtooth
cover due to its shape, and consists of the lower envelope of functions Fi (x) f(xi) + L
x-x [for/=1,2 k.

Although it is not a best possible algorithm, it can be modified so that it becomes nearly
optimal; see Hansen, Jaumard, and Lu 15].

Piyavskii’s algorithm can be generalized (see Piyavskii [29], Mladineo [26]) to handle
the problem of maximizing a continuous multivariate function f(x), x

_
In, over an n-cube

C {x 6 " a _< x _< b}, assuming f satisfies a Lipschitz condition
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x, y C f(x) f(y) I< L x y II,

where L is a constant and defines the Euclidean norm. Other algorithms, using different
partitioning techniques, have been proposed, see, e.g., Meewela and Mayne [23], [24].

The graph of the upper bounding function generalizing the univariate sawtooth cover
to the multidimensional case, is made up of several intersecting cones that approximate the
graph of f. In using Piyavskii’s sampling rule for computations, one must find the peaks of the
approximating surface, which are cone intersections, and, of those, the one that is the highest.
This is rather difficult in practice, as it reduces to a system of n + equations (n linear and
one quadratic).

Indeed, it is easier to build a piecewise constant upper bounding function, where each
cone.is approximated by its cover. This new algorithm is described in the next section.

2.2. A multivariate Lipschitz optimization algorithm (MLip). The algorithm describ-
ed in this section is designed for multivariate Lipschitz optimization problems:

maximize f(x),
subject to" x C [a l, bl] x [a2, b2] x... x [an, bn],

where f satisfies a Lipschitz property with a constant L.

2.2.1. Description of the algorithm. The algorithm subdivides the initial n-cube into
an increasing number of n-rectangular cells and approximates the objective function by a
constant in each cell.

More precisely, suppose that at a given stage of the algorithm, the original n-cube C is
already subdivided in k cells C Ca Ck, such that

k

C--Uci
i=1

i C {x [n a <_ x <_ bi}.

Also suppose that a constant upper bound F of function f has been computed in each cell
C We call each pair (F Ci) a subproblem of the original problem, and we denote it by pi.

The algorithm finds the subproblem pr (F, Cr) of highest upper bound

F max Fi.
i=1 k

This value is also the current best overestimation of f* (the maximum of f over C):

k+l =Fpt

The corresponding cell C is sliced along its longest edge in p equal subcells Cr Cr2 Crp.

In practice, p 3 performed better than p 2, odd values were better than even ones, and
large values tended to increase the memory requirements. It was decided that the choice of
p 3 is a good compromise. The midpoint xrj of each subcell crj is found and f(x) is
computed. The value of the f(xr) for j 1, 2 p, is used to update fopt, the current best
underestimation of f*:

pt <----- max max fo/pt f(xrl ), f(xr) f(xr’)
i=1,2 k
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The size DrJ, i.e., the length of the diagonal of each subcell, is also computed, and a new
constant upper bound is found in each subcell, according to

1
FrJ f(xr) + -LDr.

Note that each Fr, j 1, 2 p, improves strictly on Fr. Subproblem Pr (F, Cr) is
then replaced, in the list/ of all subproblems, by the p subproblems

pr FrJ cry), j=l,2 p.

Before considering a new cell, the algorithm discards from the list all subproblems with an
upper bound smaller than fopt, as they cannot contain a vector x* of optimal value f(x*) f*.
The process is carried out until Fop fopt becomes less than a chosen tolerance e.

AlthOugh the upper bounding function built by this algorithm is less precise than the
sawtooth cover considered in the multidimensional Lipschitz algorithm introduced in the
previous section, experiments show that this does not affect the efficiency of the method in
practice, both in terms of computing time and in terms of function evaluations. In most of the
cases, it even leads to better results.

2.2.2. Algorithm MLip. The details of the algorithm are given below.

Notations:

L is a Lipschitz constant for f over C,
is the list of active (that is, not yet discarded) subproblems.

At the current iteration, a subproblem pk (Fk; Ck) is characterized by:
Ck, the cell [a, b] x [a2k, b2k] x...x [ank, bn],
Fk, an upper bound of f in cell Ck,
e/ b/ a/, the length of the th edge of the cell Ck,

/(e)2 + (e2)2 +... + (gn)2, the size of cellDk Ck

Initialization

C +--- [al, bl] [a2, b2] ... [an, bn];

Xl al+l, a2+2 an+gn

Xopt XI"
fopt +--- f(Xopt)

F f(x 1) + -LD1;
Fop <------- El;
p1 (El; C1);
/ +..__ {p1};
p +--- 3;

Upper bounding cover

While Fop --fopt > E do
Let pr be the subproblem of with the largest upper bound F:

pr (Fr cr);
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.r +___ max
to i=1,2 n

D + io

i=1 --Remove pr from
For j 1 tough p do

A (a j-1
a2, aio-1 P

L g g g_,
1x Ar + L;

If fopt < f(x

aio+l an

fopt f(xr);
Xopt +-’- Xrj

Endif;
Add the subproblem pr (Fr cry) to E

EndFor;
Discard from E all subproblems with an upper bound smaller than Lpt

EndWhile.

The last step, which consists in discarding subproblems from E, is not necessary for
the convergence of the algorithm. Its aim is only to improve the practical efficiency of the
algorithm. Moreover, a max-min heap (see Atkinson et al. 1 ]) can also be used to improve
the efficiency. It corresponds to the merging of a max-heap and a min-heap containing all the
subproblems of E ranked, respectively, in decreasing order and in increasing order, by their
upper bound.

2.2.3. The constrained case. Consider now the constrained optimization problem

maximize

subject to

f(x),
gi(x) <0 i-- 1,2 m,

x 6 C [a, b] x [a2, b2] x... x [an, bn],

where both the objective f andthe constraint functions gi, (i 1, 2 m) satisfy a Lipschitz
property with respective constants L and Li, (i 1, 2 m).

The algorithm of 2.2.2 can be used to handle constrained optimization with the following
modifications and new tests.

Updating the incumbent value. The incumbent value fopt should now be updated when-
ever a better value of the objective function has been found, but with the restriction that the
corresponding point is feasible with respect to the constraints.

Checking redundant constraints. As the constraint functions are Lipschitz, piecewise
constant upper bounding functions G/j gi (xrj) + LiDrj can’be built in each cell Cry. Then

the constraints gi are such that /r < 0 are redundant and therefore can be omitted.
Infeasibility. Piecewise constant lower bounding functions G gi (xr) ELiDrj can

also be similarly built in each cell cry,. Then the subproblem can be discarded whenever it
contains a constraint gi such that QT > 0.
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2.3. A decomposition-based algorithm (Dec). Consider again the problem

maximize f(x, y),
(/7,) subject to" gi (x, y) < O,

X En

i=1,2 m,

Y xp-n

in which the functions are partially concave.
For any given value xk, we define the restriction of problem (/3) to variable y,

maximize f(x, y),
(/3(x)) subject to" gi(x, y) < O,

y ]1p-n
1,2 m,

and we denote by 7(x) its opti,rnal value.
This last problem can be easily solved.
Apply the constrained Lipschitz optimization algorithm of 2.2.3 with objective function

7. The evaluation of this new objective function at the successive points xrj is the result of a
constrained concave maximization with respect to variable y. Efficient algorithms can then
be applied; see, e.g., Avriel [2], Minoux [25], Wolfe [34]. The algorithm converges to the
(global) maximum f* as the sequence Fokpt converges to f*.

3. The statistical problem.

3.1. General theory of minimax estimation. Let us consider the classical statistical
problem of making an inference about an unknown parameter ., in particular, the estimation
of ., given an observation ofX X, where Xis a random variable whose distribution depends
on the parameter. A, the parameter space. A solution consists ofa nonrandomized estimator
or decision procedure 8, which is a measurable function from the sample space X -- A. Let
4 denote the space of all possible estimates. It will henceforth be assumed that Jt is convex.
A risk function R (8, .) characterizes the performance of a decision procedure for each value
of the parameter .. The risk function is usually defined in terms of an underlying loss function
L(, .). A loss function maps ,4 x A -- + t_J {0} (where I+ is the positive real line) and
defines the cost of estimating when . is the true value of the parameter. To be able to confine
our attention to nonrandomized estimators, it will be assumed that the loss function is convex
in and that 4 and A are also convex (see, e.g., Lehmann [22]). The loss function will usually
be assumed to equal (8 .)2; that is, the quadratic loss function or a normalized version of this
function. The risk of an estimator 8 when ) is true, R(8, )), is then the average loss incurred
from using 8; that is,

(1) R(6, .) EzL(3(X), )).

An estimator 8" is minimax for the above problem, if

(2) sup R(3*, Z) < sup R(8, ) for all 3eD.
.A 2.A

Minimax problems are often solved by considering the corresponding Bayes problems.
A distribution or prior probability measure rr is specified on the parameter space A, and a
measure of the performance of a procedure is given by its Bayes risk

(3) 7^ (ti, zr) fA R(8, ))r(d)).
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3 is called the Bayes procedure with respect to the prior probability measure yr if 3,r minimizes
the Bayes risk. The minimum Bayes risk r of a distribution or prior probability measure, yr on
A is defined as

(4) r^ (yr) Y (3, yr).

Henceforth, r^ (yr) will be called the Bayes risk of yr. A distribution or prior probability
measure yr* is "least favorable" if its Bayes risk is greater than or equal to that of any other
distribution; that is,

(5) ra (yr*) > r^ (yr) for any distribution yr on A.

Subject to the decision problem satisfying sufficient regularity conditions, a least favorable
prior distribution exists and the corresponding Bayes procedure is minimax (see Wald [33],
Kempthorne [20], or Brown [5]).

3.2. The bounded Poisson and normal mean problems. One of the problems con-
sidered here is that of estimating the mean of a Poisson distribution under the additional
assumption that the true mean lies in a bounded interval of the form [0, rn for rn > 0. The
Bayes risk r^ (yr) for a probability measure yr on A [0, rn will be denoted by rm (yr).

Let X be a random Poisson variable with mean ); that is, the probability that X x
denoted by P(X x) e-ZOX/x!) forx 0, 1, 2 and 0 otherwise. The normalized
quadratic loss function used is defined by

( z)2
(6) L(a, Z)

For R (3, 0) to be finite, it follows that a minimax estimator must satisfy

(7) (o) o.

Henceforth, we shall only consider estimators satisfying (7). The risk of such an estimator
can be written as

(8)
c )x-1

ExL(6(X), ,k) Ze-x + (3(x)-))2e-X.
x!

x--1

Now, considering the dual Bayes problem, it follows from Ghosh’s results 13] that a least
favorable prior on [0, rn A will put mass on at most a finite number of points.

More precisely, as shown by Johnstone and MacGibbon 18], the "least favorable" prior
yr*(d.) is of the form Y/k=l aiS{b,m} (k < cx), where the Dirac measure

(9)

e{bim}(X if x bi,

e{bim (X) 0 otherwise,
k

Z ai ai >_with 0
i=1

for0<bl <...<bk=l,

for all k.

The Bayes risk of yr* is defined as

(10)
k

re(m) rm(yr*) aiR(6r., bim).
i=1
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Thus the statistical problem is reduced to the following global optimization problem.
Maximize rm (rr*) where zr* consists of a sequence of points bim with weights ai. Since

the global unconstrained minimax risk on [0, +cxz[ is one (see Lehmann [22]), then rm (zr*) < 1
for each m.

The general mathematical problem can be expressed as follows:
k

Maximize O(a, b) _, aigi(a, b)
i=1

subject to:

k

,ai 1,
i=1

O<ai <_ 1,

050<1,

O<bi < 1,

i=1,2 k,

i=1,2 k,

where

gi(a, b) bime-bim + Z(bim zr(x) )2
x=l

(bim)x-1

xe-bim

for/= 1,2 k;

k, ai(bim)Xe-bim
i=1(x) , x -0,_, ai(bim)x-le-bim

i=1

and 3r (0) 0, a (al, a2 ak), b (bl, b2 bk).
As shown in Johnstone and MacGibbon 18], the ratio of nonlinear to linear risk for this

problem is

(11) tzp(m)
(1 + m)rp(m)’

where rp(m) is the optimum value of rm (zr*) in the above optimization problem for fixed rn
and the Ibragimov-Hasminskii constant is

(12) /Zp sup Izp(m).
tn

Since the optimization problem is nonconvex and nonlinear, global optimization tech-
niques must be used to solve it exactly. However, due mainly to the difficulty of estimating the
Lipschitz constants and the massive numerical calculations involved for this problem, global
Lipschitz optimization algorithms seem to be practical only for a small number of variables.
So as a first step, we will restrict ourselves to the solution of the problem when k 3.

Johnstone andMacGibbon 18] gave upperbounds on rp (m); in particular, rp (m) < 1.249
for all rn > 2.7. The arguments they used to show that the two point prior is least favorable
on [0, m] for all rn 6 (m0, m 1] with m0 ----- .57 and m 1.27 can be extended to show that
on [0, m] for all rn 6 (m!, m2] with m2 2.7, the least favorable prior is supported on three
points. On the interval [0, m] with rn 6 [0, 2.7], the minimax risk rp(m) will be calculated
solving the following maximization problem.



GLOBAL OPTIMIZATION DECOMPOSITION METHODS 25

For fixed m, find a2, a3, and b satisfying 0 < a2 < 1, 0 < a3 _< 1, 0 < a2 + a3 _< 1,
and 0 < b < 1, such that re* (1 a a3)e{0} + a2e{bm} + a3e{m} is least favorable; that is,
rm (zr*) is a global maximum over all prior probability measures rr on [0, m]. (We can restrict
our attention to measures of the form (9).) The problem can be expressed as follows.

Maximize O(a2, a3, b) (1 a a3)gl(ag., a3, b) + ag2(a2, a3, b) + a3g3(a, a3, b),
where

gl(a,a3b)=8(1)e ifl-a-a3 >0,

0 if not,

(13)

g2(a2, a3, b) bm2-bm + E (bm 6(x))2 e(bm)X-1-bm
x=l

g3(a:z, a3, b) me-m + E (m 8(x))2 x!
e-m

x’-I

a2bxe-bm .q_ a3e-m
8(x) rn if x 0, 1,

a2bx-le-bm -+- a3e-m

8(1) =m

(o) o,

a2be-bin + a3e-m
a2e-bm + a3e-m + 1 a2 a3’

subject to

0<a2 < 1,

0<_a3 _< 1,

0<b<l,

a2 + a3 _< 1.

This problem was solved using both the multivariate Lipschitz optimization algorithm
(MLip) and the global optimization decomposition method (Dec) described in 2. This latter
possibility arises from the fact that the objective function is concave with respect to the variables
a l, a2, and a3. This can be deduced from the strict concavity of rm as a function of r (see
Johnstone and MacGibbon 18]); that is

rm(otyr + (1 c)zr’) > arm(r) + (1 a)rmOr’) for all zr, yr’ and 0 < < 1.

An analogous theory also holds for the normal bounded mean estimation problem on the
interval [-m, rn under quadratic loss, where the least favorable prior distribution re is now of
the form

E aiS{bim} + E ai{-bim} + -2 ai t{0},
i=1 i=1 i=1

where

(14) 0_<bi_< 1, i=1,2 k-l, bk=l,

O<_ai < 1, 1, 2 k,
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and

k

0_< 1-2Z ai <_ 1.
i=1

The problem is to maximize the Bayes risk of zr on [-m, m denoted by

rm(Tr) Z aiR(, bim) + Z aiR(, -bim) + 2 ai R(, O)
i=l i=l i=l

2. aiR(, bim) + 1-2 ai R(8, O),
i=1 i--1

where

g(, 0)
1 O)2e-1/2(x-)z dx

and

(15) 3r (x)

k k
ai(bim)e-1/2(x-bim)2 +, ai(-bim)e-1/2(x+bim)2

i=l i=l

k
1/2x

k
1/2(x_bim) (x+bim)21- 2 , ai e- + , aie- + _, aie-

i=1 i=1 i=1

If we let rN(m) maXr rm (zr) denote the nonlinear minimax risk, then both rN(m) and
the ratio of linear to nonlinear risk,/ZN (m), as defined in the Introduction will be calculated.
For this problem we shall take advantage of the calculations of Donoho, Liu, and MacGibbon
[7]; i.e., that for rn > 2,/xv(m) < 1.242 with four-digit accuracy and the fact that for rn < 2
a three-point prior suffices (see Casella and Strawderman [6]). Thus our problem is reduced
to the maximization problem for k 1 on this interval. For this univariate problem, the fact
that rm (r) is a concave function of a follows from the concavity of rm as a function of zr (see
Bickel [4]); thus Fibonacci’s method can be used to solve it.

4. Numerical results. We now present the numerical results obtained when applying
both algorithms (MLip) and (Dec) of 2 to minimax risk evaluation for a bounded Poisson
mean. The algorithms were implemented in Fortran77 and run on a Sun Sparc 4/330-32
(16 mips). The results are first interpreted in terms of computational efficiency leading to a
comparison of the two algorithms. Answers are then provided in terms of the evaluation of
the minimax risk for a bounded Poisson mean.

4.1. Comparison between the two algorithms. The evaluation of the performance of
both algorithms are based on the following parameters:

iter for the number of function evaluations,
cpu for the. computation time in seconds,
memo for the virtual memory size in Kbytes, and
e for the tolerance required on the value of the objective function.

The performances ofboth algorithms, in terms ofcomputing time (cpu) and number offunction
evaluations (iter), for a tolerance of e 10-2, are compared in Table 1.

As foreseen, the number ofevaluations iter and the cpu processing time are closely related,
which seems to indicate that iter is an accurate indicator ofthe algorithm performance. A single
evaluation costs less in algorithm (MLip) (" 1/30 s) than in algorithm (Dec) (" 1/10 s), which
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TABLE
Comparison ofalgorithm (MLip) and algorithm (Dec)for the minimax risk rp (m ofa bounded Poisson mean

on [0, m under normalized loss.

Algorithm (MLip): with precision e 10-2

m iter cpu

1.0 506826 1999 .16790

1.1 473495 1869 .18336

1.2 457899 1825 .19497

1.3 457113 1832 .00161

1.4 404959 1625 .00354

1.5 320025 1302 .00161

1.6 251943 1029 .00161

1.7 199425 823 .00161

1.8 157098 651 .00159

1.9 131882 544 .00160

2.0 116641 489 .00160

3.0 146148 621 .05188

4.0 244964 1040 .09055

al a2 a3 b rp(m)

.01193

.01193

.01193

.20529

.23236

.26330

.28650

.30584

.32131

.34451

.35998

.42185

.46149

.82017

.80471

.79310

.79310

.76410

.73509

.71189

.69255

.67710

.65389

.63842

.52627

.44796

.99807

.99807

.99810

.01387

.05254

.08348

.10668

.12215

.12988

.14535

.15308

.23043

.27974

.41454

.43151

.44658

.45977

.47190

.48336

.49424

.50462

.51450

.52396

.53298

.60253

.65019

Algorithm (Dec): with precision e 10-2

m

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

3.0

4.0

iter cpu

3505 3

4515 4

4567 4

8769 7

21969 17

21337 17

20619 17

17897 15

15853 13

15613 13

16299 13

12031 10

10863 9

al a2 a3 b rp(m)

.16906

.18333

.19331

.19979

.01640

.00043

.00000

.00000

.00000

.00000

.00000

.05186

.09144

.00000

.00000

.00000

.00014

.22832

.25951

.28659

.30479

.32503

.34078

.35605

.42218

.46112

.83094

.81666

.80669

.80007

.75528

.74005

.71341

.69521

.67497

.65922

.64394

.52596

.44744

.10281

.06414

.19562

.04867

.07187

.07961

.10281

.11828

.13375

.14148

.14922

.23043

.28070

.41454

.43151

.44659

.45972

.47178

.48336

.49426

.50463

.51453

.52397

.53299

.60253

.65019
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is easily explained by the relative complexity of algorithm (Dec), but the convergence (iter) is
faster in the case of algorithm (Dec). It follows that algorithm (Dec) finds the solution faster.
Indeed the speedup (i.e., the ratio of the cpu needed by algorithm (MLip) to the cpu needed
by algorithm (Dec) to obtain results with the same tolerance e) varies from 650 for rn 1.0
to 50 for rn 3.0 with an average value of 200.

The second improvement due to the decomposition method used in algorithm (Dec), is
the small amount of memory it needs, whatever tolerance is asked, (memo

_
200 Kbytes);

whereas in algorithm (MLip), the amount of memory increases drastically with the tolerance
(memo

_
400 Kbytes for e 10-1, memo

___
7000 Kbytes for e 10-2).

4.2. Results of the minimax risk evaluation. The algorithm was run for several values
of the parameter tn. The variables a2, a3, b are bounded by [e, where e 10-2. When one
ofthose variables is near to e, we assume it is zero. This occurs for a2 from m to m 1.27,
where it was already known theoretically that the two-point prior is sufficient (see Johnstone
and MacGibbon 18]). It is confirmed by the algorithm that yields very small values of a2.
Hence the variable b is not reall3/significant until rn

_
1.3 or more, where the three-point prior

clearly appears as a2 starts to increase away from zero. At this stage of the study, we cannot
be sure of the largest value of m for which the three-point prior suffices. Other computational
methods suggest that this value is near 4.5 (see, e.g., Johnstone and MacGibbon 18]).

The infinite sum for the risk in (8) was limited to ten terms. This gave a bound of 10-9 on
the remaining terms for the range of parameters considered. (See Appendix 1.) The method
of calculating the Lipschitz constants is also given there.

The numerical results yielding a precision of 10-4 for the bounded Poisson mean
problem using the decomposition method are presented in Table 2.

The numerical results in Table 2, combined with/zp (tn) _< 1.249 for m > 2.7, indicate a
largest value/zp(2.05) 1.250826. From (13) we deduce

dtxp (m -m
0.

drp(m) (1 + m)rp(m)

This implies a precision on/Zp,

m
Arp,A/Zp

(1 + m)rZp(m)

where Arp e 10-4 is the precision for rp. For rn 2.05, this yields a value of A/zp
0.510-4. Finally, as /ze is a decreasing function of rp, our evaluation of the Ibragimov-
Hasminskii constant/z for the Poisson problem on [0, rn ], is

(16) /Zp(2.05)- A/zp < /Zp < /Zp(2.05).

1.250776 1.250826

The optimization problem for the bounded normal mean on [-m, rn is one of concave
maximization and hence the Fibonacci method was used.

The error analysis was carried out as follows. (See Appendix 2 for details.)
Setting k in (16) and (17) and letting ot 2a, our aim is to maximize

r(c) (1 ot)R(6o,(x), m) 4- otR(6,(x), 0),

where
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TABLE 2
Minimax risk (rp(m)) and ratio of linear to nonlinear minimax risk (/ze(m))for the Poisson mean on [0, m]

under normalized loss with precision e 10-4.

Decomposition method: with precision e 10-4

m ir cpu al a2 a3 b r(m) e(m)

0.2 14014 9 .00000 .25000 .75000 .99976 .16374 1.01787

0.4 14798 11 .00000 .25000 .75000 .99976 .26812 1.06562

0.6 34898 26 .02411 .00000 .97589 .13375 .32965 1.13757

0.8 94362 72 .12086 .00000 .87914 .16082 .37525 1.18439

1.0 91895 70 .16909 .00000 .83091 .14535 .41454 1.20616

1.1 106574 82 .18336 .00000 .81664 .40059 .43151 1.21390

1.2 111454 85 .19332 .00000 .80668 .06027 .44659 1.22138

1.3 439674 335 .00000 .20793 .79270 .01387 .45978 1.22932

1.4 1670234 1271 .03320 .20632 .76047 .06819 .47183 1.23632

1.5 985418 759 .00000 .26201 .73799 .08039 .48337 1.24128

1.6 716662 546 .00000 .28603 .71397 .10239 .49426 1.24506

1.7 572398 440 .00000 .30777 .69223 .11943 .50464 1.24768

1.8 479898 368 .00000 .32728 .67272 .13272 .51454 1.24938

1.9 413114 319 .00000 .34470 .65529 .14318 .52399 1.25035

2.0 369834 286 .00000 .36054 .63946 .15188 .53300 1.25078

2.01 366131 284 .00000 .36179 .63820 .15236 .53388 1.250794

2.02 363967 283 .00000 .36324 .63677 .15308 .53475 1.250816

2.03 360987 280 .00000 .36468 .63532 .15381 .53563 1.250802

2.04 353707 279 .00000 .36631 .63369 .15478 .53649 1.250820

2.05 353175 275 .00000 .36473 .63527 .15496 .53735 1.250826

2.06 348887 279 .00000 .36984 .63016 .15707 .53821 1.250818

2.07 343111 275 .00000 .37031 .62969 .15659 .53906 1.250820

2.08 340619 270 .00000 .37172 .62827 .15731 .53991 1.250810

2.09 339463 267 .00000 .37295 .62705 .15780 .54076 1.250787

2.1 334555 265 .00000 .37426 .62574 .15840 .54160 1.25077

2.2 310811 250 .00000 .38482 .61518 .16402 .54978 1.25050

2.3 260371 212 .00000 .39653 .60347 .16873 .55757 1.25001

2.4 307003 246 .00000 .40708 .59292 .17278 .56495 1.24946

2.5 330391 264 .00000 .41659 .58341 .17632 .57195 1.24886

2.6 415323 333 .00000 .42578 .57422 .17946 .57856 1.24831
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(x)
(1 ot)m tanh(mx)

(1 c) -t- aeT cosh(mx)

R(3,(x), rn) f(x)dx Io,

R(d,(x),O) g(x)dx d,

with

f(x) [3a(x) m]2e-1/2(x-m)2 and g(x) [3o(X)12e-1/2x2.

The errors due to the approximation of I, by o (1 ot/x/zr) f_MM f(x)dx and J by

Io (1 ot/x/zr) f_MM g(x)dx can be bounded by

(M-m)

(17) 9m2(1 c)e -’b otm2e-M2/4

as
Integrating and ,,, by the trapezoid rule with n subdivisions, the errors can be expressed

M3 (1 c) M3

sup If’(x)l + sup Ig’(x)l.(18)
3n2

Ixl<M /yl" [xl<M

With M 10, the first error given by (17)
_

2 x 10-1. With n 100, 000, the second
error given by (18) yielded a maximum value of 2 x 10-4 for the values of rn of interest. The
error arising from the use of the Fibonacci method is of order 10-1.

Table 3, combined with the upper bound of ZN(m) < 1.242 for rn > 2 obtained by
Donoho, Liu, and MacGibbon [7], shows a highest value/ZN(1.6) 1.246609. A reasoning
similar to that for/z, yields an Ibragimov-Hasminskii constant bounded by

(19) /ZN(1.6) A//.,N "< l/,V .< /ZN(1.6).

1.246509 1.246609

This agrees with the previous upper bound of Donoho, Liu, and MacGibbon [7] for
of 1.2497 and the approximation of Feldman and Brown 10] of 1.2465.

Clearly, (16) and (19) lead us to conclude that the Ibragimov-Hasminskii constants for
the normal and the Poisson problems are different.

5. Conclusion. The experimental results of the previous section show that minimax risk
evaluation problems on bounded parameter spaces of small size can be solved optimally using
multivariate global optimization techniques, and that this, combined with upper bounds for
larger values of m, suffices for the calculation of Ibragimov-Hasminskii constants. However,
one should seek heuristics to solve problems for larger values of m.

The success of the decomposition method in improving the efficiency of global opti-
mization algorithms leads us to believe that this technique could be applied to many other
optimization problems in statistics. In particular, it could be extremely useful in maximum
likelihood estimation in multiparameter families where the problem could be decomposed into
two parts: for some.parameters, standard convex optimization methods would suffice, while
for others, a global optimization method would be necessary.
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TABLE 3
Minimax risk (rN(m)) and ratio of linear to nonlinear minimax risk (lzN(m)) for a bounded normal mean on

[-m, m] under quadratic loss.

Fibonacci method: with 100, 000 iterations

m e cpu a rN(m) N(m))

1.0 10-5 1802 .000000 .449599 1.112100

1.1 4 X 10-5 1803 .049675 .471455 1.161323

1.2 8 x 10-5 1804 .143335 .492132 1.199199

1.3 10-4 1805 .214465 .513398 1.223714

1.4 10-4 1806 .269197 .534880 1.237963

1.5 10-4 1806 .311714 .556172 1.244776

1.55 2 x 10-4 1818 .329346 .566614 1.246173

1.56 2 x 10-4 1835 .332621 .568679 1.246329

1.57 2 x 10-4 1827 .335818 .570735 1.246449

1.58 2 10-4 1839 .338938 .572782 1.246534

1.59 2 10-4 1831 .341983 .574819 1.246586

1.60 2 10-4 1808 .344955 .576847 1.246609

1.61 2 10-4 1807 .347857 .578863 1.246602

1.62 2 10-4 1807 .350689 .580869 1.246569

1.63 2 10-4 1807 .353453 .582863 1.246511

1.64 2 10-4 1807 .356152 .584846 1.246429

1.65 2 10-4 1807 .358786 .586816 1.246327

1.7 2 10-4 1836 .371047 .596466 1.245553

1.8 2 10-4 1873 .391568 .614601 1.243328

1.9 2 10-4 1916 .407716 .630838 1.241333

2.0 2 10-4 1830 .420415 .644801 1.240693

In the particular problem of bounded parameter minimax risk evaluation, we have been
able to conclude here that the Ibragimov-Hasminskii constants are different for the normal
problem under quadratic loss and the Poisson problem under normalized quadratic loss. This
exact minimax result should be contrasted with the asymptotic minimax result obtained by
Johnstone and MacGibbon 19], where by means ofthe polydisc transform, an equivalence was
obtained between the problems of Poisson estimation on bounded 2p-dimensional domains
under information normalized quadratic loss and 2p-dimensional normal estimation under
quadratic loss. More work is indicated both in the calculation of Ibragimov-Hasminskii
constants for different bounded parameter estimation problems and in asymptotic minimax
theory to truly understand the relationship between these problems.

Appendix 1. Specification of the Lipschitz constant for the Poisson estimation prob-
lem. After some calculations, the objective function 0 used in problem (15) can be reformulated
as follows:
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O(a2, a3, b) (a2be-bin -k- a3e-m)m(1 3(1)) -+- m2(a2b2e-bm -k- a3e-m)
oo a2a3(1 b)2 bx-lmx+l

"+- e-bin

x=2 a3 + a2bx-le(1-b)m x!
(a27a3 ,b

Considering a rectangular domain of ]R3 defined as [a2, ’2] X [a3, 3] X [b__, ], a Lipschitz
constant L for the function 0 can easily be deduced from the variations of 0. Some analytical
computations provide the following bounds on the partial derivatives of 0"

00

O0

<_ m2-2e -m -+- m2
(d2 e-gin r- -d3e-m)

oo O
(t "+- "d2e-bm -+- ’3e-m)2 M1 -1- E 2a2 (a2, a3, b),

x=2

< m2e_m + m2 (-2)e-[m nt- ’d3e-m) O0

( .2e_bm q- .3e_m)2 M2 -+- a2 (2, a3, b),
x--2

< m-d2e-b--msup{(1 bm -t- 2bin2 bZm)} -F m2 (2/e-/; + e-m)
(a + ge-- + ge-m) M3

-1-Z ’2’3x-2 1 b__)mx_+l e-b_m
x=2 (a-.3 + a2)x-le(l-b)m)x!

where

b min{b, b, 1 / rn },

a’i min{O, 2 a3 },

M1 max{a3e-m (1 e-’m) + 2e-’’n Ezbe-’’n (1 e--’n)
+2a3/e-’n (1 e-m a3e-m (1 e-b-m) },

M2 max{a2/e-m (1 -e-m) + 2e-m 2aze-m (1 -e-6--m) -a3e-m (1 -e-m),

2-dze-m (1 e-bin) "+" -d3e-m (1 e-m) 2e-m

M3 max{2(1 a2 a3 + a2e-b--m -t-. a3e-m) -Jr- m(-d2)e-’m -t-- -d3e-m)
mb__(a-1 -+- -d2e-b--m + -d3e-m), m(1 a2 a + a2e-bm -F a3e-m)
2(aq + -d2e-b-m -{- ’d3e-m) ma3e-m},

M4 max{E3(x q-- 1)(1 b__) a3(m(1 )b + b__ + 1) 2a2b__X+le(1-b)m,
3(m(1 b) + + 1) -k- 2-d2-X+le(1-b--)m a3(x q- 1)(1 )}

Appendix 2. Normal bounded mean estimation. Considering the case k 1, using (14)
(i.e., bl 1) and letting c 1 2al, the Bayes risk can be rewritten in the following way:

rmOr)

4-oo +oo_
f(x) dx + g(x) dx,

where

[ ]2e-1/2(x-m)2 [ot(X 2e-1 2.f(x a, (x rn and let g(x )] x

Since 7r now depends only on c, we will henceforth denote the Bayes risk by r(ot).
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Step 1. First approximation. Approximate I,, by

M

o (1 or) f
_

f(x) dx
-M

and J by

M

g(x) dx.

-M

Let aT/i Ior iu and aT/s J,, be the errors due to this approximation.
We obtain the following bounds on these errors:

(M-m)-I <-- 9(1 ot)m2e
2Ia < otmXe

Step 2. Second approximation. Approximate now and ), respectively, by ] and ),
where

[ n-il( 2Mt)]?c---- (1-or) __M f(M)+ f(-M)+2 f -M+
n n. (1-oO __Mn g(M) + g(-M) + 2 .= g -M + in

Let

M
f,,

(1 -or)
sup (x)l x]’/I II,, 1 3n2

-M<x<M

M3

sup Ig"(x)l/Qrj I)c )o
3n2

-M<x<M

be the errors due to this approximation. We then have

sup f’(x)l -<
-M<x<M

sup Ig"(x)[ <
-M<x<M

m

(A + B)2
max 2Am, 2Am

A + Bcosh(mM) |
IAcosh(mM) + B

+ (M + m)(A + B)]
2

+ 2m2Asinh(mM)lB- AI

+ Am max {2Am, 2Am A+Bcosh(mM)}]Acosh(mM)+B
+A+B

(A + B)2
max 2m, 2m

+ 2m2sinh(mM)
(A + B)

+ m cosh(mM) max { 2m, 2m

A + Bcosh(mM) }Acosh(mM) + B + Msinh2(mM)

A + Bcosh(mM) }Acosh(mM) + B + sinh2(mM)
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where A 1 -ct and B --orem2/2.
Step 3. Maximizing 6 6 + ]6 by the Fibonacci method and letting rN(m) denote the

errorless optimum, that is, the errorless minimax risk at m, we have an approximation of the
optimum with an error e, i.e.,

max (6) rN(m)] < e.

Let

rmax- max
0<6<1

Step 4. The cumulative error can be bounded as follows; we have

Since r(ot) 16 + J6, then Ir(ct) tz(ct)l < 37/i + 37/j /,3/i +/l/j, where ]fI, J’/J, ]’/I, and
/j are functions of a and the relation holds true for all a, particularly for the amax obtained
by the Fibonacci method (with an e6 error, i.e., ICtmax ct*l < e6). Hence Ir(otmax) rmaxl <
/l/I(Ctmax) -4- /l/j(0tmax) A- /l/I(0tmax) d- /l/j(Ctmax), which implies that Ir(otmax) rmaxl <

MI(amax) + Mj(otmax) -4- MI(Ctmax) + Mj(otmax) + e.

Note. Details of the computations outlined in the Appendices can be found in E. Gourdin,
B. Jaumard, and B. MacGibbon, Global optimization decomposition methods for bounded
parameterminimax risk evaluation, Cahiers duGERAD G90-48 (ISSN 0711-2440), Montr6al,
1990 (revised version 1992).
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SMALL-SAMPLE STATISTICAL CONDITION ESTIMATES
FOR GENERAL MATRIX FUNCTIONS*

C. S. KENNEY AID A. J. LAUBf

Abstract. A new condition estimation procedure for general matrix functions is presented that accurately gauges
sensitivity by measuring the effect of random perturbations at the point of evaluation. In this procedure the number
of extra function evaluations used to evaluate the condition estimate determines the order of the estimate. That is,
the probability that the estimate is off by a given factor is inversely proportional to the factor raised to the order of
the method. The "transpose-free" nature of this new method allows it to be applied to a broad range of problems
in which the function maps between spaces of different dimensions. This is in sharp contrast to the more common
power method condition estimation procedure that is limited, in the usual case where the Fr6chet derivative is known
only implicitly, to maps between spaces of equal dimension. A group of examples illustrates the flexibility of the
new estimation procedure in handling a variety of problems and types of sensitivity estimates, such as mixed and
componentwise condition estimates.

Key words, conditioning, matrix fttnctions

AMS subject classifications. 65F35, 65F30, 15A12

1. Introduction. If a scalar real-valued function f has a large derivative at x , then
the relationship

f(x + 3) f(x) + f’(x)3 + 0(32)

shows that small perturbations in x can lead to relatively large changes in f. The idea that
the magnitude of the derivative provides a measure of the sensitivity or conditioning of f
carries over to higher-dimensional maps [5], [23], [30], [31], [34], [35], [40], [45]. For
example, if f maps n into , the gradient of f at x e n is the row vector Vf(x)
(Of(x)/OXl f(x)/Xn), and the Taylor expansion of f has the form

(1) f(x + 3z) f(x) + 3Vf(x)z + O((2),

where [[z[[ 1 with I[" denoting the vector 2-norm defined by Ilzll 2 E Izi 12. For notational
convenience in the sequel, we use vr to denote the gradient

(2) vr =_ Vf(x).

it can be seen from (1) that the norm of the gradient (llVf(x)ll Ilvll) is an appropriate
measure of the local sensitivity of f. Nonlocal sensitivity in the sense of a Lipschitz-type
condition measure is much harder to deal with. Demmel [8] has shown that for some problems,
local condition information gives upper and lower bounds on nonlocal sensitivity. However,
the depth of this subject is beyond the scope of this paper, and we are concerned only with the
issue of estimating local sensitivity. For simplicity of exposition, we also assume throughout
this paper that all functions considered are at least twice continuously differentiable.

Somewhat surprisingly, rigorous probability arguments show that only a few function
evaluations are needed to obtain estimates of the norm of v that are accurate and reliable in a
sense described below. These results are then applied to the problem of condition estimation
for more general matrix functions such as the matrix exponential map X t- ex and the map
(A, F, G) X, where X satisfies an algebraic Riccati equation

*Received by the editors February 18, 1992; accepted for publication (in revised form) January 27, 1993. This
research was supported in part by the National Science Foundation grant ECS-9120643, the Air Force Office of
Scientific Research grant AFOSR-91-0240, and the Office of Naval Research grant N00014-92-J-1706.

Department ofElectrical and Computer Engineering, University of California, Santa Barbara, California 93106-
9560 (laub@ece. ucsb. edu).
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(3) 0 G + ArX+ XA XFX.

This is illustrated in 4 with many other examples. This section also compares the small-
sample statistical method with the more traditional power method of condition estimation.
Sections 2 and 3 develop the theoretical basis for the small-sample methods.

The central idea of this method is that the norm of the gradient can be estimated if we can
afford another function evaluation beyond f(x), say, at x + 3z. If z has unit norm, then the
Newton difference defined by

(4) dz f(x + 3z) f(x)

satisfies

(5) dz vrz + 0(3).

If z is selected uniformly and randomly from the unit sphere Sn-1 in n dimensions, then (see
Theorem 2.1) the expected value of Ivr zl is given by

(6) E(lwz[) IlvllEn,

where E1 1, and for n >

1 3.5... (n 2)
(7) En

2.4.6...(n-I)
fornodd,

2 2.4.6...(n-2)
(8) En for n even.

n" 1.3.5...(n-1)

We will use the standard symbol !! to indicate the "skip" factorial 1], 18], so that 7!! 1.3.5.7
and 6!! 2.4.6 with 0!! 1. Thus En (n 2)!!/(n 1)!! when n is odd, etc. Since
the expected value function En plays such a central role in statistical condition estimation, a
short discussion of its evaluation for large values of n is given in the Appendix.

By (5)-(6), the condition estimator Idzl/En has expected value equal to the true condition
number w plus a term of order 3. Typically, we can take 3 sufficiently small (say, less than
10-1z), so that for the purposes of estimating Ilvll the expected value of Idzl/En is more than
adequate. To avoid having to add terms of order 3 to all of our results, we will now make
the simplifying assumption that for any given vector z 6 Sn-1 we are able to evaluate vrz
with the understanding that in real life we are merely able to evaluate dz as in (4). This is
reasonable when we remember that for most sensitivity estimates, we only need to know the
true condition number to within a factor of 10 or so, and we can often tolerate errors in the
estimate up to a factor of 100.

The important question then becomes, what is the probability that the estimator

-= Ivrzl/En

lies within a given factor w of Ilvll? In 2 we derive an exact formula (see Theorem 2.3) for
this probability, and we show that for w > 1

(9) Pr < _< wllvll _> a- + O
7t’W

Thus is a linear or first-order condition estimate in the sense that the chance of a catastroph-
ically low or high estimate is inversely proportional to the size of the error. For example,
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Pr(llvll/100 "
_

100llvll)

_
0.9936, so that the chance of being off by more than a factor

of 100 is less than in 100.
While this is good, there are some situations in which we need more reliability. One way

to achieve this is to use more function evaluations to get different values .(1), (2) ((m)
corresponding to independently randomly generated vectors z(1), z(2) z(m) in Sn-1 and
then to take the average

(10) (m) ------ (1) _]_.... + (m)
m

(As a matter of notation, we use subscripts to denote particular entries in a vector and super-
scripts in parentheses to distinguish between different vectors.)

This is the standard Monte Carlo method [22], [44], [51] for finding the expected value,
and we can show that for w > 1

(11) Pr(llvll <(m)<w{lv[’) > m!--I (2m) + 0 ( 1
m+l

with asymptotic equality as w --+ +oo or m +oo. Thus ((m) is an mth-order condition
estimator. That is, the probability that the estimator is offby more than a factor of w is less than
a constant times w-m. For example, with m 3, which corresponds to three extra function
evaluations, we have Pr(llvll/100 _< (3) _< 10011vii) _> 0.99999884, so that the chance of
being off by a factor of 100 or more is approximately one in a million. Hence very reliable
condition estimates can be obtained with only a few extra function evaluations. Note that this
is in contrast to most Monte Carlo applications that usually involve thousands of population
samples to estimate the expected value. Thus the method given above could be described as a
"small-sample Monte Carlo method." However, to avoid the usual large-sample connotations
of this phrase, we use instead the alternative description "averaged small-sample statistical
method."

Remark 1. From (4) and (5) we can get the true value of Ilvll at a price of m n extra
function evaluations by simply setting z(i) e(i) and actually forming the gradient vector.
(Here e(i) denotes the unit vector with a one in the ith position.) In general, however, this is
much too costly because n may be in the hundreds or thousands.

Although the method of averaging is entirely adequate, we can obtain sharper estimates
that are more easily analyzedby exploiting the geometry ofthe situation. For example, suppose
that we know uT2(1) and vrz(2). From this information we can find the projection of v onto
the span of 2(1) and z(). If 2(1) and 2(2) are orthogonal vectors in Sn-1, then the norm of this
projection is given by

(IvT2(1)}2 -t-IvTz(2)I2)I/2.
If we further assume that z(1) and 2(2) are chosen so that their span is uniformly and randomly
selected from the space of all two-dimensional subspaces of n, then the expected value of
the norm of the projection is given by (see Theorem 3.1)

( ) en
(12) E V/IvTz(1)I2 + IvZz(2)12 IIvlI,

where En and E2 are defined by (7) and (8). (Selecting z(1) and z(2) so that the above as-
sumptions are satisfied is not difficult; from the work in [43] and [47] we may select z(1) and
z(2) randomly and uniformly from Sn-1 and then find an orthonormal basis for their span by
using, say, a Gram-Schmidt procedure or a QR decomposition 16]. A similar procedure can
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be used to randomly generate higher-dimensional subspaces and is described in more detail
in 4.)

We see from (12) that the condition estimator defined by

E2(13) v V/Ivrzl)l2 / IvTz(2I2
En

has expected value equal to Ilvll. It can be shown (see Theorem 3.3) that for w > 1,

( )((2t) ((Enll)2
(n-2)/2

(14) Pr Ilvll < v < wllvll 1 En 2 (n-2)/2

-w 1- ---2]-

(15) 1
4w2’

which is slightly better than the coesponding estimme (11) for (2).
This estimmion method, which we refer to as the "subspace stmistical method," can easily

be extended: let z(1) Z(m) be an ohonoal basis for a subspace of dimension m thin has
been randomly and unifoly selected from the space of M1 m-dimensional subspaces of
(As above, this c be done by choosing m random vectors and then ohogonalizing.) Then

(]vTz(1) ]2 +... + juTz(m)]2) 1/2 is thenoofthe projection of v onto the span ofZ(1) Z(m)

and the expected vMue of this no is (see Theorem 3.1)

(16) E ([uTz(1)[2 +... + [uTz(m)[2) En

Thus the subspace condition estimator defined by

Em TZ(1) 2 12(17) v v(m) [v +... + [wTz(m)

has expected value Ilwll. These condition estimators give better results than the averaged
statistical estimators and are analytically ve tractable. For example, the kth moment of v(m)
is given by the foula (see Theorem 3.1)

EnEn+l’"En+k (llllNm)
k

(18) E(ut(m))
EE+ E+ E

Additionally, a simple recursionc be deved (see Theorem 3.3) that gives exact values for
the probability that v(m) lies within a factor of w of v 1. Let us denote this probability by
P(wl:

w

Table 1 gives lower bounds (independent of n) for P (w) for the first few values of m and for
a range of values of w.

Section 2 develops the theow of the averaged estimator (m). Then in 3 results e
presented for the subspace estimator v (m).

.l. Nt. It is convenient to begin this section with a review of some definitions
from probability theow [13]. Let be a random viable and let d(s; ) denote the value at s
of the probability density function associated with . That is, for all R,
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TABLE
Lower bounds on the probability that v(m) equals Ilvll to within afactor of w.

3
5
10
102
103

Lower bound Lower bound Lower bound Lower bound
for Pl(W) for P2(w) for P3(w) for P4(w)
0.7736 0.9156 0.9632 0.9831
0.8732 0.9691 0.9916 0.9976
0.9364 0.9922 0.9989 0.9998
0.9936 0.9999 10-5 10-7

0.9994 1- 10-6 1- 10-8 1- 10-11

(20) Pr(tp < t) d(s; dp)ds.

Similarly, if Pl tm are random variables, let d(Sl sin; tl tm) denote the value
at (Sl, Sm) of the joint probability density function associated with tl tm. That is,
for all (tl tm) Im

(21) Pr(bl < tl m < tin) d(s1 Sm )1 )m)dsm ds1.

If g is a measurable function from" to, and A is a measurable set in, then the probability
that the random variable g(bl tm) takes on a value in A is given by

(22) Pr(g(tPl m) A)- I d(s1, Sm; 1 qbm)dsm ds1,
ag

where the notation g A denotes the set of points (Sl Sm) such that g(sl sin) A.
The expected value of g(bl bm) is defined to be

(23)

E(g(bl tm)) g(sl sm)d(Sl Sm; tl qbm)dsm dSl.

If tPl, tP2 tm are independent, then

(24) d(Sl Sm; tl tm d(sl; 1)""" d(sm; m).

Because of the multiple integrals involved in higher dimensions, it is occasionally useful
to switch from Cartesian coordinates to polar coordinates 11]

Xl r COS 01,

x2 r sin 01 cos 02,

Xm-1 r sin 01 sin 02... sin Ore-2 cos On-l,
Xm r sin 01 sin 02"" sin On-2 sin On-1.

The Jacobian of the transformation from Xl, x2 Xm to r, 01, 02 On-1 is given by

j
OXl Xm

rm-1 sinm-2 01 sinm-3 02..-sin On_2.
Or, 01 On--1

2.2. Inner product distributions on S,-1. Since inner products of the form vVz are
invariant under an orthogonal rotation of v and z, we may select a coordinate system in
which the vector v is just a scalar multiple of the vector e1) (1, 0 0). This means
that Ivrzl Ilvll IZll, where z (Zl,..., Zn). Because of this, our concern is with the
distribution of ]Zll when z is uniformly and randomly distributed over the unit sphere Sn-1 in
n. For simplicity we assume that n _> 3 throughout the rest of this paper.
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The density function for Zl is given by [42]

d(S1; Zl) C (1 S) (n-3)/2 for -1 _< s _< 1,
(25)

0 otherwise,

where c is a normalization constant given by

(26) C--(fl (1--s21)(n-3)/2dSl)
-1

The density function for Izll is thus seen to be

a(sl; Iz111 2c(1 S)
(n-3)/2"" for0 < sl < 1,

(27)
0 otherwise.

The probability that [Zll is less than or equal to a given nonnegative value is

(28) Pr(Izl < ) 2c (1 Sl2) n-31/ dsl,

and the expected value of Izl I, which we denote by En, is

2C
(29) En =-- E(Izll)- 2c Isll (1- $211 (n-3)/2 ds1

n- 1

In the following we use the symbol !! to denote the "skip" factorial defined in 1.
THEOREM 2.1. The expected valuefunction En is given by

(n 2)!!
(30) En (n 1)!! for n odd,

2 (n 2)!!
(31) En for n even.

zr (n- 1)l!

(See also the Appendix.)
Proof. Use the change of variables S1 COS (9 and the recursion formula 18, p. 369]

r/2 j- 1 f/2sinj OdO sinj-20dO
do j do

in (29).
To discuss the probability that Izll is less than or equal to a given value 6, it is convenient

to introduce the function gn gn(e) defined as follows" gn(e) 0 if e < 0 and gn(e) 1 if
e> 1. Ifnisoddand0<e < 1, then

1 2) 1.3 52)2(321 gn(.) 6 1 + (1 + --(1 +... + (n -4)!! )(n3)--.(1 2)(n-3)/2

If n is even and 0 < < 1, then

(33)
2 /arcsin e 2

(1 213/2+ (1 ;2)1/z + - <n(n -- 4)!!31!! (1 :2)(n-3)/2)
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LEMMA 2.2. For n > 3,

(34) Pr(Izll _< e) g, (e).

Proof. Let e sin and define Pr(Izll _< e) Qn(). Direct evaluation shows that
2Q2() g arcsin e and Q3() e. Standard results from [18] show that

sin() cosn-1 ()
Qn+2(8) Qn(3) + pzr/2

(n 1) / sinn-2 (0)d0
do

When combined with cosd (1 -e2)1/2, the desired result is obtained by induction
on n. [:]

Our principal concern is with the properties of

(35) Ivrzl
En

as a condition estimator, since the right-hand side of (35) can be evaluated numerically (see
the Appendix).

THEOREM 2.3. The expected value of is v II, andfor w > 1

(36) Pr(- <" <wllvll)--gn(wEn)-gn(-).
Proof. Using Lemma 2.2 and Izll Ivzl/llvll, we find that

Pr( Ivrzl ) (< wllvll Pr Ivrzl < wEnE Ilvll

--Pr(lzl <_ wE,)

=gn(WEn).

Replacing w with gives Pr(Ivrzl/En < Ilwll/w) gn(E,/w). Taken together these
expressions give (36). The fact that E() v follows from a similar argument or by noting
that

E()=E(lVrz[) E(lvrz[) E(llvlllzl[)
En E, E(Izal)

Ilvll. [3

Although (36) is exact, it is a little hard to work with. The next few results deal with the
averaged variables (m) and show that (36) can be replaced, for rn 1, by the simple bound

(-) 2 4-w2/4(37) Pr _< _< wllvll >_ 1 e for n > 4.
7t’w w

As in the discussion in the Introduction, if we can afford to make rn extra function
evaluations, then one way of increasing the reliability and accuracy of our condition estimates
is to use the averaged estimator

IvTz(1) +... + IvTz(m)
(38) ’(m)

mEn
where z(1), z(m) are independently, randomly, and uniformly chosen vectors from the unit
sphere in n dimensions.
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2.3. Underestimation. The following theorem bounds the probability that (m) under-
estimates v by a factor to > 1.

THEOREM 2.4. Let (m) be given by (38). Then

( ) (2m)
m 1

(39) Pr (m) < Ilvll
to zrw m!

Proof. Let z(i) denote the first component of z(i for 1 < < m. The independence
assumption together with (27) implies that the joint density function for Izl
satisfies

(40) d (Sl,..., Sm; Izll)l IzIm)[) =d (s1; IZI)I) .d (Sm; Izm)I)
(41) (2c)m (1 s)(n-3)/2 (1 Sm

2 )(n-3)/2

(42) < (2)m

for 0 < S 1 and 1 < < m; otherwise the density is zero.
To establish (39), write

Pr ((m) < l) Pr ( Ivrz(1)l + +
n- <_ __llvll

=Pr
Ivrz(ll

+...-t-
Ivrz(ml

Ilvll Ilvll to

( men)Pr Izl +... + Izlml <_
to

fr a(Sl Sm; Iz}l Iz}ml am ...a,

where T denotes the triangular wedge Z, si < rn En/w, si > O. Standard calculus techniques
suffice to show that this wedge has volume equal to (m En/w)m/rn!. Combining this with the
bound on the density function shows that

m,

2However, 2CEn (n 1)En2 < g by (29) and Lemma 6.1 in the Appendix. This completes
the proof of (39).

Remark 2. Slightly more analysis shows that the bound (39) is asymptotically an equality
as w -- +o.2.4. Overestimation. The probability that (m) overestimates v turns out to be rather
insignificant. First, we need the following technical lemma.

LEMMA 2.5. For rn > 1 and r0 > /2(m 1)

(43) rm-1 e-r2/2dr <_ 2rg-2e-4/2.
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Proof. Use the standard methods of [7]. V1

THEOREM 2.6. Let z(1) Z(m) be independently, randomly, and uniformly chosenfrom
Sn-1 and define (m) by (38). Thenfor n > 5, w > 4, and 2 < rn < n 3, the probability
that (m) overestimates w by afactor ofw is bounded by

6 ( tO e_mW2/8(44) Pr((m) >_ wllvll) <
(m- 2)!!

Proof. As in the proof of Theorem 2.4,

Pr((m) > wllvll) Pr Iz I+"" + IZlm)l > mwEn

fo d(s1 Sm; Izll)l [zlm)[) dSm’" .ds1,

where O denotes the outer triangular wedge Esi > rn wEn, Si O. However, the region O is
2 2contained in the outer annular wedge W defined by 2s > m tO En because

(mwEn)2 < si < rn
i=1 i=1

by the Cauchy-Schwarz inequality.
We also need an upper bound on the density function; this can be obtained by using a

clever trick from [42]. Since 1 x < e-x for all x, we have (1 S2i) (n-3)/2 <_ e-(n-3)s2/2 and

(45) ( (1) m))d SI,...,Sm;[ZI [Z (2c)me-(n-3)/2(s+’’’+sm)

Altogether this gives

(46)

Pr((m) > wllvll) .]: d(s Sm; [zll)[ dsm

< fg: (2c)me-(n-3) (S2+’"+S2m)/2 dSm’’" dsl

lZm(2C)m pm-le-(n-3)p2/2dp
wEn

where the last equality was obtained by switching to polar coordinates in rn dimensions with
2 The term ].zm is given byp2 $21 .. 2f_ Sm"

zt/2
sinm-2(01) sin(Om_:z)dOm_l.., dO,

dO

zr)m/2/(m 2) Now for w > 4 and n > 5, we make the changeand satisfies/Zm _< (g
of variables r /n 3 p above, and then we apply Lemma 2.5 with ro =-- Vw/2 <

vwE./n 3 to get

2 (2C22t’)m/2 (tm-2
W e--row2Pr((m) > wllvll) <

(m- 2)tt n- 3
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Finally, by (29) and Lemma 6.1 in the Appendix,

(47)

(n 1m/:z
< 2\n_3 ]

=2 l+n_ 3

< 2em/(n-3)

< 6,

since rn < n 3 by assumption.
Remark 3. The restrictions w > 4, n > 5, and m > 2 in Theorem 2.6 were selected to

reduce the complexity of the proof. Similar results can be obtained for weaker hypotheses.

3. Subspace statistical condition estimates. Let On denote the set of orthogonal ma-
trices of order n. If U is randomly and uniformly selected from On [43], then Ue1) is
randomly and uniformly distributed over the unit sphere Sn-1 in n dimensions, where e<1)

(1, 0 0) r. In fact, for any fixed unit vector w, the product Uw is randomly and uniformly
distributed over Sn-1. Similarly, by using the methods of [28], the vectors Ue1) Ue(m)

form an orthonormal basis for a subspace of dimension m which is randomly and uniformly
distributed over the set of all subspaces of dimension m in n.

Let Z(i) Ue(i). Then vTz(i) oTUe(i) (urv)Te(i) Ilvll toTe(i), where w
Urv/llwll. The importance of this is that the joint density function of the random variables

toi =-- wTe(i) is known [42]. Specifically, for n > 3 and < m < n,

(48) d(sl sin; Ol //3m) Cl (l r2) (n-m-2)/2 for 0 _< r _< 1,

where r2 s + + Sm2 and c is a normalization constant. For r not in the interval [0, 1 ],
the density is zero. Since

(49) V/(I)Tz(i))2 "" -" (vTz(m))2 Ilvll V/(wTe(1))2 +’’" + (wTe(m))2,

we need to consider the random variable q defined by

(5O) dp b(m) = /(wre(1))2 +... + (wTe(m))2

THEOREM 3.1. The expected value of dp is given by

En(51) E(c (m -m
where En is defined by (7)-(8). More generally, the kth moment ofdp is given by

(52) E(k(m)) En En+l En+k-
Em Em+ Em+k-1

Proof. After changing to polar coordinates in m dimensions and using (48), we find that

(53) E(dpk(m)) I(k,n,m)
I(O,n,m)
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where

(54) I (i, n, m) f01 (1 r2)(n-m-2) rre+i-1 dr.

Equations (51) and (52) can then be proved by using (53) and induction, but the details are
omitted for the sake of brevity. [3

Remark 4. From (52), the variance of 4(m) is given by

Var(4(m)) E (q2(m)) E2(q(m))

En En+ E2n
Em Em+l EZm
m

n Em
2because Ek Ek+l . Since the variance is nonnegative, this gives mEan > nEZn Thus,

for m < n, we have m Ezra >nEn2 > m En2, which gives Em En, i.e., En is decreasing
with n. This is used in the proof of Lemma 6.1 in the Appendix. In fact, from the equality,
En+2 (n-’) En, it is easily seen by induction that E, < 1/Cff.

Theorem 3.1 shows that the subspace estimator v defined by

(55) Em
v v(m) =-- V/lvTz(1)[ 2 +... + [wTz(m)[ 2

has expected value w ll. The significance of this is that v can be calculated in m function
evaluations as in the discussion in the Introduction (see also 4 for more details). Theorem 3.1
also shows that the kth moment of v(m) is given by

(56) E(vk(m)) EnEn+l"’En+k-1 (IIvIIEm) k"Em Em+I Era+k-1 En

Using EkEk+I and Theorem 3.1, the variance and skewness of v(m) can be found:

Var(v(m)) E((v(m) E(v(m)))2)

----(mE2m 1)Ilvll 2,
nEOn

Skew(v(m)) E((v(m)- E(v(m)))3)

n+l n
+ 2 Ilvll 3.

Note that skewness is defined in many statistics texts as the centered third moment divided by
the variance, but, for convenience here, we shall refer to the centered third moment by this
appellation.

We can now also determine the variance and skewness ofthe averaged statistical estimator
(m) because (1) v (1) and
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1
Var(’(m)) Var(’(1))

m

--ml (E2-1)Ilvll2,

1
Skew((m)) Skew(’(1))

__1((2 3) 1 )m2 n+l n 2n2 +2 [Ivl[ 3

For example, the first example in 4 deals with the sensitivity ofthe roots ofthe polynomial
p(t) (t 1)... (t (n 1)) with respect to variation in the n coefficients of p. A
comparison of the variance and skewness of the averaged and subspace statistical estimators
for this problem with n 9 is given in Table 2, which shows that both the variance and
the skewness of the subspace estimator are smaller in absolute value than for the averaged
estimator.

TABLE 2
Variance and skewness comparison ofthe two estimatorsfor n 9.

m Var(’(m)) Var(v(m)) Skew(’(m)) Skew(v(m))

0.4861 Ilvll 0.4861 Ilvll 0.2167 Ilvll 0.2167 Ilvll
2 0.2430 Ilvll 0.2046 Ilvll 0.0542 Ilvll 0.0125 Ilvll
3 0.1620 Ilvll 0.1146 Ilvll 0.0241 Ilvll -0.006 Ilvll

To develop an expression for the probability that v(m) lies within a factor to of v II, we
need some preliminary results. Define

(57) gn,m(6) = Pr(b(m) < 6).

As in the proof of Theorem 3.1, q(1) IZll so that gn,1 gn, where gn is defined by (32)
and (33).

Using polar coordinates and (48) shows that for 0 < 6 < 1,

(58) gn,m (6)
Zn,m(6)
Tn,m(1)

where

(59) Tn,m(6) (1 r2)(n-m-2)/2rm-1 dr.

LEMMA 3.2. For 0 <_ 6 <_ and m 2, we have

(60) gn,2(6) 1 (1 62) (n-2)/2

For rn > 2, the value Ofgn,m(6 can befound by using the values ofgn,l(6) and gn,2(6) with
the recursion

(n 2)!! 6m-2

(61) gn,m(6) g.,m-2(6)
(m 2)!! (n m)!!

(1 62) (n-m)/2 for rn even,

(n 1)!! En 6m-2 62)(n-m)/2
(m 2)!! (n m)!!

(1(62) gn,m_2(6) for rn odd.
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Proof. Use integration by parts with v (1 r2) (n-m)/2/(n m) and u rm-2 in
the definition of Tn,m. For rn 2 this gives (60). For rn > 2, we get

m-2
(63) Tn,m(6)

rn 2Tn,m_205 (1 52)(n-m)
n --m n mm

which, when coupled with the definition of En, yields (61) and (62).
THEOREM 3.3. For w > 1 and v(m) defined by (55),

(64) Pr Ilvl___[Iw < v(m) < wllvll gn,m --m ,]
--gn,m

Em w

Proof. From the above, v(m) Ilvll4)(m)Em/En, so

Pr(v(m) _< wllvll)= Pr Ilvll4(m)--n _< wllvll

Pr q(m) <

tgn,m
Em

by (57) with e wEn/E,n. Replacing w by gives Pr(v(m) < Ilvll/w) gn.m(En/(E,nw)).
Taken together these expressions give (64).

As an example, for rn 2 with to > and toEn /E2 < 1,

(65)

(66)

Pr < v(2) < wllvll 1- E--
Using the above and some lengthy but standard expansions, we find

Pr( [[vl[
<v(1)<w wllvl[) 1

(n-2)/2

(67) Pr(Ilwllv(2)w wllvll) 1 4w2

(68) Pr(Ilvllu(3)<w-wllvll) 1 32

37r2W3

(69) Pr(Ilvllv(4)w wllvll) 1 817r2

512to4"

These estimates are generally very accurate for w > 10. To handle the case of smaller
values of to, we use the fact that the probability that v(m) is within a factor of v decreases
toward a nonzero constant as n increases to infinity [20]. These lower bounds can be calculated
by applying the Richardson extrapolation [3], [29] to the exact probability expressions given
by Theorem 3.3 above for large values of n. For example, in calculating the lower bounds
given in Table 1, we used n 10000 and n 20000.

Before turning to some numerical examples, we list here for reference the key estimators
defined above:
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" averaged statistical estimate,

(m) averaged statistical estimate with m samples,
v subspace statistical estimate,

v(m) subspace statistical estimate with m samples.

4. Numerical examples.

4.1. Generating random vectors. Let 1 n be normally distributed independent
random variables with mean zero and variance one. Then the vector z /I111 is uniformly
and randomly distributed over Sn-1 [47] where (1 n)r. Because of this, the sum of
the squares of the first m components of z, which is equal to the subspace statistical variable

n (see 26.5 in 1 ]). That is, for42 as in 3, will have a Beta distribution with a and b
0<x_<l,

B(a,b,x)
(70) Pr(42 < x)

B(a,b, 1)’

where

(71)
X

B(a, b, x) a-1 (1 t)b-1 dt.

This means that the theory of 3 could have been developed by using

Pr(q2 _< x) Pr(4 _< /)

B(a, b,
B(a,b, 1)

As in the discussion at the beginning of 3, to get a basis for a subspace of dimension m
that is selected uniformly and randomly from the set of all subspaces of dimension m in n, it
is sufficient to generate m independent vectors z(1) z(m) uniformly and randomly on Sn-1
as above and then find an orthonormal basis for these vectors by using, say, a Gram-Schmidt
procedure or a QR decomposition [16].

Remark 5. It is worth mentioning that independent normally distributed random variables
can be generated by the following procedure: let rl and r2 be independent random variables
with uniform distribution in (0,1) and define s /21n(1/rl) and 0 27rr2. Then 1
s cos(0) and 2 S sin(0) are independent normally distributed random variables with mean
zero and variance one.

4.2. Scalar examples. Example 1. Suppose that p is a polynomial of degree n 1"
p(t) Po + pit + + Pn-ltn-l, with roots tl tn-1. If p is perturbed to the form
p, -= p + eq where q(t) qo / qlt / / qn-ltn-l, then the roots become functions of e.
From the theory of algebraic functions 17], a root of multiplicity k at e 0 gives rise to k
roots that are analytic functions of e 1/k in a neighborhood of e 0. Thus, an isolated root,
say tl, will be differentiable at e 0, and we may differentiate the relation

0 p(tl (e)) + eq(tl

to get

dtl(O) q(tl(O))
Vtl z,

de p’ (tl (0))
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where z (q0, ql qn_l)T and

(Otl)( 1 tl(0)
Vtl \q/ -p’(tl(0))’-p’(h(0))

n_i )t (0)
p’(tl (0))

See [48] for more details. We may apply the statistical method to this problem by considering
the n polynomial coefficients as the input variables x (P0 Pn- 1) and the scalar function

f f(x) to be the value of the root tl. The sensitivity of the root is then the norm of the
gradient of f at x: v Vtlr. The above equation shows that the exact value of Ilvll is given
by

t2(n- 1)1
1 + tl(O) +... + "1 (0).

[p’(tl (0))

For example, consider the polynomial

p(t) (t 1)(t 2)... (t 8)

40320 109584t+ 118124t2 67284t3-1-22449t4 4536t5 +546t6 36t7 +t8,

and suppose that we are interested in the sensitivity of the root 6. This root is moderately
sensitive with Ilvll 7097.7. Sample estimates of Ilvll are given in Table 3 for three different
runs (all results are rounded to integer values). Of course, three runs is too small a number
to be statistically meaningful, but Table 3 does give some feel for how the estimates perform.
From Table 2, we see that the variance of v(m) is smaller than the variance of (m) for rn 2
and rn 3; this is illustrated by the greater spread in the values of the averaged statistical
estimator in Table 3.

TABLE 3
Comparison ofthe two estimatorsfor Example 1.

Run (m) v(m) Exact value
number of w

20883 20883 7098
2 3372 3372 7098
3 2130 2130 7098

2 6673 10047 7098
2 2 7374 9743 7098
2 3 2588 10726 7098

3 3147 9642 7098
3 2 11632 10183 7098
3 3 1609 6398 7098

Example 2. This example has an unexpected twist to it since it focuses on a problem in
which we want to know when the condition number is near zero. More specifically, a pair of
matrices (.4, B) has an uncontrollable eigenvalue at . if . is an eigenvalue of .4 / BF for any
compatibly dimensioned matrix F [50]. In general, however, it is not easy to test numerically
for uncontrollability [12], [39]. Because of this, it is more common to use the distance to
uncontrollability [33], which we denote by pc(A, B):

(72) pc(A, B) =_ min [[(AA, AB)[[ (A + AA, B + AB) is uncontrollable}.
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It seems reasonable to expect that if (.4, B) has an eigenvalue ) that is nearly uncontrol-
lable, then the sensitivity ofthe map f defined by x )(.4 + BF), where x vec(F), should
be nearly zero. Here we use the symbol vec(F) to denote the vector formed by stacking the
columns of F 19]. In fact, if we assume that ) is an isolated eigenvalue of .4, then by using
standard perturbation arguments [49] it can be shown that the norm of the gradient of f gives
an upper bound on Pc(.4, B). As an example, let .4 be a 10 x 10 matrix with main diagonal
entries ai,i and ones on the first superdiagonal ai,i+l 1 and zeros elsewhere. If we let
B diag (1, 10-1 10-9), then the feedback matrix F is 10 x 10 and the number of input
parameters is n 100. The matrix B for this problem offers decreasing control authority for
the higher states; in fact, the norm of the gradient of the eigenvalue . 10 is 1.5 x 10-9. That
is, Z 10 is nearly uncontrollable. Table 4 shows that this insensitivity is easily detected.

TABLE 4
Comparison ofthe two estimatorsfor Example 2.

m Run (m) v(m) Exact value
number of v

1.6 x 10-9 1.6 x 10-9 1.5 x 10-9

2 4.4 x 10-10 4.4 x 10-10 1.5 x 10-9

3 2.7 x 10-9 2.7 x 10-9 1.5 x 10-9

2 2.6 x 10-9 2.3 x 10-9 1.5 x 10-9

2 2 1.2 x 10-9 2.8 x 10-9 1.5 x 10-9

2 3 7.8x 10-9 1.1 x 10-9 1.5x 10-9

3 5.2 x 10-1 1.3 x 10-9 1.5 10-9

3 2 6.7 x 10-l 1.6 10-9 1.5 10-9

3 3 1.3x 10-9 3.1 x 10-9 1.5x 10-9

4.3. Matrix examples. The preceding sensitivity theory of scalar functions can be ex-
tended to differentiable vector-valued functions. By using the vec operator 19], which maps
matrices into vectors by stacking the columns, the set ofvector-valued functions can be viewed
as including the class of functions that map matrices into matrices. For example, the expo-
nential map X ex is equivalent to x f(x), where x vec(X) and f(x) vec(eX).

If f is a twice continuously differentiable function that takes n into ]q, then the Taylor
expansion about x e n has the form

(73) f(x + z) f(x) + ,Lz + 0(,:),
where L is a matrix of size q x n. The classical approach [40] to measuring the sensitivity of
f at x is to use the norm of L to bound the perturbations in f:
(74) IIf(x / ,z) f(x)ll < llZll / O(t2),
where we assume that z has unit norm.

For the matrix 2-norm, the norm of L can be estimated by using the power method to
approximate the largest eigenvalue ofLrL. This method was used in [6] for linear systems and
subsequently extended to a variety of other problems [4], [5], [15], [31], [34], [35]. Related
estimation methods for other matrix norms can be found in [21], [26], and [27]. The idea
behind these methods is that the matrix L is usually not known explicitly (or is too expensive
to evaluate directly), but it is possible to evaluate w Lz for a given vector z either by
solving an associated linear system or by using difference approximations. The same applies
to L r, although, in some cases such as problems associated with differential equations [31 ],
the computation of the transpose vectors Lrw is harder than the computation of Lz (see
Example 4).
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The transpose step ofthe power method also runs into difficulty when the function fmaps
between spaces of different dimensions, i.e., when L is not a square matrix. For example, if f
maps ]Rn into , then L is 1 x n and Lz can be evaluated by using a finite difference. However,
the transpose step involves forming L :r w, as described below, and since Lr is n x 1, this cannot
be evaluated without knowing all the entries of L:r! Thus the power method is impractical
for this problem because finding the entries of L (and hence Lr) via finite differences would
require n extra function evaluations. In fact, it was this difficulty that originally inspired the
research in this paper.

In general, if the Fr6chet derivative of f is known only implicitly (i.e., if we can evaluate
Lz but we do not know L explicitly) then the power method is limited to estimating the
condition number of maps between spaces of the same dimension, although it is sometimes
possible to get around this by working with restricted maps. For example, in considering the
effect of perturbations in the coefficient matrices (A, F, G) for a solution X of an algebraic
Riccati equation

0 G + ArX+ XA XFX,

Byers [5], and subsequently Kenney and Hewer [31 ], found it convenient to consider separately
the three equal-dimensional maps A - X, F - X, and G - X, rather than to work with the
complete map (A, F, G) X. Power method estimates from the three equal-dimensional
maps can then be combined to get upper and lower bounds on the condition of the complete
map (see [31 ]).

The power method estimation of IlL starts with an initial vector z(1) and then forms
z(2) LTLz(1) via two steps: W(1) Lz(1) and Z(2) LTw(1) The norm of L is then
estimated by v/[[z(2) [[/[[z(1) [[, and better estimates can be obtained by repeating the power
iteration with z(1 replaced by z(2. The quality of the estimation is affected by the choice of
the initial vector, and most schemes rely on either a "look-ahead" procedure for selecting z(1)

(for example, [4], [6]) or use randomly generated initial vectors [31 ]. In general, the power
method gives very good estimates of L (usually within a factor of 10 or so) with only a few
power iterations. Probabilistic results conceming the power method can be found in 10] and
[36]. However, for brevity we omit a detailed discussion of these results, which are based on
bounds derived from the Beta distribution.

One of the strengths of the power method is that for many problems the formation of
w Lz is much cheaper than the initial evaluation of f. For example, in solving linear
systems, the initial factorization needed to find f(x) can be used in forming w Lz with
considerable savings (see Example 3). Similarly, for any problem in which f(x) is the solution
to a problem that can be computed via a Newton method, the evaluation of f(x + 6z) is cheap
in comparison to the effort needed to evaluate f(x), because we can use f(x) as a starting
value in solving for f(x + 3z). For example, this is the case in solving for the roots of
polynomials or more generalized problems such as solving an algebraic Riccati equation [32].
Since the matrix statistical methods described in this paper are also based on vectors of the
form w Lz, they inherit the efficiency of the power method estimators. Moreover, because
the statistical methods do not require the domain and codomain (i.e., the space into which a
function maps) spaces to be of equal dimension, they are more broadly applicable than the
power method.

The 2-norm approach to conditioning is convenient because all of the sensitivity infor-
mation about f at x is compressed into the scalar value L [[. However, we do pay a penalty
for this compression since a large value of L can disguise the fact that some of the entries
of f may be insensitive to perturbations while others are not. For this reason, it makes sense
to consider separately the sensitivity of each entry of f, especially since this entails no greater
computational effort.
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Close inspection of (73) reveals that the ith entry of f, which we denote by f, satisfies

(75) j(X "+- Z) j(X) "[- I)/Tz -[- 0(32),

where v is the th row of L. In fact, the th row of L is simply the gradient of the scalar
function f. Because of this, we may apply the preceding results for scalar functions to the
problem of estimating the norm of v/ for 1 < < q.

For example, to find the averaged statistical condition estimate for f at x, we need to
evaluate f at x + 3z, where z is selected uniformly and randomly from Sn-1. Next, form the
Newton difference vector

(76) w f(x + 6z) f(x)

for 3 small and positive. Then the absolute value of the th entry of w divided by En is the
averaged statistical condition estimate for the gradient of f"

(77) i
Iwil
En

Repeating this procedure m times and then averaging the results gives the mth-order averaged
statistical condition estimates.

Similarly, to form the subspace statistical estimates for m > 1, let z1) zm) be
orthonormal vectors chosen so that their span is uniformly and randomly selected from the
space of all m-dimensional subspaces of n, as described at the beginning of this section.
Then evaluate f(x + 3zi)) and form the Newton difference vectors

(78) w(i) f(x + Z(i)) f(x)

for 1 < < m. The subspace condition estimator for f is then given by

(79) 1)i(m) -I-- --I-- (to’m)) 2

Remark 6. If it is easier to form Lz directly rather than the Newton differences, then (76)
should be replaced by to Lz and (78) should be replaced by wi Lz(i). This is illustrated
in the following example.

Example 3. Consider the problem of solving a linear system of the form Af x, where
A and x are known and we want to find the vector f f(x). Since f(x) A-ix and
f(x + 3z) f(x) + 3A-lz, we see that L A-1 in (73). This means that the Newton
difference approximation vectors wi) in (76) and (78) can be found by solving

(80) Aw(i) z(i)

The importance ofthis is that if the initial solution to Af x is carried out by using, say, an LU
factorization, then the vector wi can be found in O(n2) flops. Since the LU factorization of
A requires O(n3) flops, the condition estimation vectors wi) can be computed very efficiently
relative to the initial function evaluation. Similar remarks apply to the standard power method
condition estimates that require the solution of Aw(1) z(1) followed by Arz(2) w().

To illustrate this, let A be an Ostrowski matrix of order n [38]. That is, A is an upper
triangular matrix with -1 on the main diagonal and all of the upper entries equal to 1. Even
though all of the eigenvalues of A are equal to -1, this matrix is nearly singular if n is large,



54 C.S. KENNEY AND A. J. LAUB

with smallest singular value on the order of 2-n+l If we take n 30, then the sensitivity of
the first entry of the solution vector f is 7aq 3.1 108. The sensitivity of the remaining
entries decreases by a factor of about two per entry down to v’0 1.0. Both the averaged
and subspace statistical condition estimators perform well on this problem. For example, out
of 100 runs for the subspace estimation method with m 2, the greatest overestimation was
2.76 times the corresponding true condition number, and the worst underestimation was 0.057
for all 30 entries of the solution vector. For m 3 the maximum overestimation out of 100
runs was a factor of 1.74 and the worst underestimation was a factor of 0.297.

Example 4. Although it simplifies the presentation of the underlying theory, it is not
necessary to use the vec operator formulation to calculate the condition estimates. Forexample,
consider the problem of estimating the sensitivity of the matrix exponential map X ex

where X is of order n l. The number of input variables is then n n21
The basic idea is to perturb the entries of X, find the exponential of the perturbed X,

and then subtract the unperturbed exponential and divide by En. The result is a matrix each
of whose entries mirrors the sensitivity of the corresponding entry of ex. For m > 1, this
is repeated m times and the entries are combined to get the sensitivity estimate, either by
averaging the absolute values of the entries in the case of the averaged statistical method, or
by taking Em times the square root of the sum of the squares of the entries in the case of the
subspace statistical method.

More specifically, let z1), z,m) be orthonormal vectors of length n nl
2 such that

their span is uniformly and randomly selected from the space of all m-dimensional subspaces
of IRn, as described at the beginning of this section. Now form the n n matrices Z,i

unvec(zi) by "unstacking" the vectors zi. That is, z,i vec(Z(i)). The matrix version
/r(i) unvec(wi)) of the difference vectors w,i in (78) is given by

(81) W(i) (ex+z(‘) eX)/8.

We then define the subspace condition estimators for each entry of ex by

Em (w/l))2 (W/(jm)2(82) 1)ij(m) =-- --I-’’’-’l--

which is the matrix analog of (79). The averaged statistical estimators can be found by using
the matrix analog of (77).

As a specific example, let

-131 19 18

-390 56 54

-387 57 52

which is Test Case 3 from [46]. This example showed that the exponential condition estimator
in [46] can give conservative estimates that may be off by many orders of magnitude. For
this problem, the estimator in [46] indicated that the computed exponential was accurate to at
least four digits, whereas the actual number of accurate digits was 12. The conditioning of
this problem was subsequently treated by a finite difference power method described in [34]
that gave an accurate condition estimate at the cost of two extra exponential evaluations.

To see how well the statistical condition estimators work on this problem, let us first
compute the exact answer for comparison. Let IVeXl denote the matrix whose (i, j) entry is
equal to the sensitivity of the (i, j) entry of ex as measured by the norm of the gradient of the
map X t- (ex)ij. This matrix can be computed using finite differences
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39.9 8.4 5.2

IVeX[-- 146 30.8 18.9

136 28.7 17.5

The matrix exponential is thus seen to be rather well conditioned for this example with the
most sensitivity in the (2,1) position and the least sensitivity in the (1,3) position.

Using one extra function evaluation (m 1) with the averaged statistical method gives
the following estimate of IVeXl:

25.0 4.7 3.7

[VeXlest 96.7 18.4 14.2

79.8 14.9 12.0

While this result is generally representative of the first-order estimates for this problem, it is
probably better from a reliability standpoint to use more functions evaluations. For example,
in 1000 runs using the subspace method with rn 2, we found that the ratio of estimated to
true condition numbers ranged from a low of 0.011 to a high of 2.2. For rn 3, this range
was 0.10 to 1.8.

The computational effort needed for the exponential condition estimates can actually be
reduced by about half by using some results from [34]. In that work, it was shown that for a
given initial matrix Z, the corresponding value of the matrix W in (81) is given by the integral
representation of the exponential Fr6chet derivative

fO(83) W e(1-)XZeXds + 0().

This integral can then be accurately approximated via the trapezoidal method by setting

(84) fao (eX/2"Z + Zex/2,) /2p+I

and for j p, p 1 1,

(85) ap+l_j (eX/2’ ap_j -Jr- ap-jeX/2’)
Here p is the number of squarings used in the "scaling and squaring" method of evaluating
ex [46], and we assume that liex/ III < X to ensure that p is equal to W to within a
relative accuracy of95% (see [34] for more details). In the scaling and squaring method, ex/:zp

is approximated by using, say, a Pad6 approximation and the result is then squared p times to
get ex. This means that the matrices ex/Ej for j p, p 1 0 are available sequentially,
and the matrices f2p+l_j in (85) can be evaluated in step with the squaring. If we write

(86) )2 eX/2(J_l)’p+l-j ( (eX/2’ + ’"p-j )/’ + 0(’),

then we can evaluate f20 p in p + 1 matrix multiplies. (The correspondence between
(85) and (86) was discovered by noting that (85) is simply the Fr6chet derivative of the matrix
squaring map.) If we wish, we may evaluate as many matrices W(il as we like in parallel
with the squaring steps. Thus to get a subspace condition estimate of order rn requires about
rn (p + 1) matrix multiplies. On the other hand, the effort to evaluate ex is about 8 + p matrix
multiplies. As noted in [34], a typical value of p is 6, in which case the subspace condition
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rn function evaluations. Hence, theestimate of order m requires about the same effort as -above procedure, which might be called a trapezoid-subspace method, is twice as efficient as
the finite difference methoddescribed in [34]. The trapezoid-subspace method is also about
twice as fast as the trapezoid-power method of [34] because of the sequential nature of the
power method. The reason for this is that the power method iterates on the series in (85), and
after the first pass through (85), which corresponds to the step w Lz described above in the
vec formulation, the matrices ex/2j must be regenerated on each pass through (85). Thus the
trapezoid-power method uses p + 1 matrix multiplies on the first pass through (85) and then
2p + matrix multiplies on each subsequent pass. Here we assume that due to the variable
nature of the number of squarings, a general purpose evaluator of ex will not be set up to store
all the matrices ex/2p ex/2p- ex. If these matrices are stored, then the cost of the power
method is the same as the subspace method.

We end this example by noting that Mathias [37] has shown that the trapezoidal approxi-
mation to the exponential Fr6chet derivative can be extended to higher-order approximations,
such as Simpson’s rule, and that, except for the definition of f20, the result is the same as (85).
This means that these higher-order methods can also be combined with the subspace statistical
method with the same efficiency as the trapezoid-subspace method.

Remark 7. So far we have been concerned with absolute rather than relative sensitivity,
since the corresponding relative condition numbers can be obtained by dividing by IIf(x)ll
for overall relative sensitivity or by j5 (x)l for the relative sensitivity of the individual entries
of f. However, there is some justification for considering other approaches. For example,
suppose that we are interested in measuring the sensitivity of a function that takes two variables
(x1, x2) into two values (A, J): f(xl, x2) (J (Xl, X2), J(X1, X2)), at the point Xl 2
and x 100. If we select a random perturbation on the unit circle of the form (cos 0, sin 0),
then the perturbed values (x + cos 0, x + sin 0) can show up to 50% variation in the first
component and only 1% variation in the second component. To correct this imbalance we
can rescale the independent variables by defining new variables yl Xl/Xl and y x2/x.
We then work with the rescaled function g(y) f(x), i.e., gi(Yl, Y2) =-- fi(ylxO1, y2X02) for

1, 2. Then g(1, 1) f(xl, x2) and random perturbations of y about (1, 1) affect each
component with the same level of variation. Using the chain rule we see that the Fr6chet
derivative of g at (1, 1), which we denote by Lg, is equal to the Fr6chet derivative Lf of f at
(x, x) multiplied by the diagonal scaling matrix D diag(xl, x)
(87) Lg Lf D.

These ideas extend to higher dimensions and lead to what is usually called the mixed condition
number [2], [9], [14], [25], [41]:

(88) m(f, x) liLy DII
IIf(x)ll

Similarly, if we wish to get relative sensitivity estimates for the individual entries of f, we can
rescale g to form h where hi (y) gi (y)/fi (x). This double scaling gives h (1, 1 1)
(1, 1 1) and the Fr6chet derivative of h at (1, 1 1) is

(89) Lh F-1 Lf D,

where F diag(jq (x), j(x) ). Taking the norm of Lh gives what is called the compo-
nentwise condition number of f at x"
(90) c(f, x) F-1 Lf DII.
For a nice discussion of these concepts for linear systems see [24].
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At least from the point of view of statistical condition estimates, we may work directly
with the functions g or h using finite differences to approximate the absolute values of the
entries of the Fr6chet derivative matrices Lg or Lh, respectively. The only difference between
this and the earlier statistical condition estimation is that we first scale the variables x-to get
g and scale both x and f to get h.

Example 5. Let V (x) be the Vandermonde matrix associated with the vectorx: Vij x- 1.
Ifwe want to measure the mixed sensitivity at x, then we work with the scaled matrix function
G(y) where Gij (yjx)i-1 and measure the sensitivity of G about y0 (1, 1 1). That
is, we perturb y0, evaluate G at the perturbed point, and then take the divided differences with
the unperturbed matrix G (y0), as described above. This gives us a matrix whose entries are
estimates of the corresponding 2-norms of the rows of Lg in (87). The results for the case
x (1, 2, 3, 4, 5, 6) are given in Table 5 which shows the lowest ratios of the estimated
versus the exact mixed condition numbers taken over all of the entries of the matrix. (All of
the high ratios were less than 3.0.) The low ratios for v(1) reflect the fact that these ratios
are taken over all 36 entries of G; ih effect we are doing 36 scalar condition estimates. If
this were a Bernoulli experiment with the number of trials equal to 36 times the number
of runs, say 36r, with a success being that the estimate is within a factor w of the true
condition number, then by (66) the expected number of failures Ef(t) for v(1) in trials would
be approximately

(91) El(t)

For example, if we take w 3125 1/(3.2 x 10-4) as in the second column of Table 5 with
r 100 runs, then the left-hand side of (91) gives the the expected number of failures as 0.73.

TABLE 5
Lowest ratios ofestimated to exact mixed condition numbers.

Number of runs Lowest ratios Lowest ratios Lowest ratios
for v(1) for v(2) for v(3)

10 5.7 x 10-3 0.0617 0.1699
100 3.2 x 10-4 0.0209 0.0686
1000 6.8 x 10-5 0.0097 0.0377

This heuristic argument points to an important conclusion: if we want the condition
estimates of each entry of a matrix function to have a high probability of being near its
respective true value, then we should use higher-order methods. The important question is
then, how high an order do we need? While the Bernoulli trials reasoning used above has some
drawbacks, a good argument can be given that it represents a worst-case scenario. If so, then
the expected number of failures in r runs of a system with function values is approximately
bounded by Ef(t, v (i)), where r and

2
(92) Ef(t, v(1))

(93) Ef(t, v(2)) 4w2’
32

(94) Ef(t, v(3))
37r2to3
81zr

(95) Ef(t, v(4)) ,
512w4"
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More research is needed on this question, but for problems with a very large number of
function values, we are usually interested in the sensitivity of some specific entries, in which
case the above is not a problem, or in an overall estimate of conditioning, in which case an
estimate ofthe norm of the Fr6chet derivative is appropriate. In the latter case, the usual power
method can be used, or the Frobenius norm of the Fr6chet derivative can be estimated from the
Frobenius norm of the individual sensitivity estimates [20]. This is illustrated in Table 6 for
the mixed condition number estimates in the Vandermonde example. Here the norm estimates
are remarkably accurate even for a large number of runs.

TABLE 6
Lowest ratios ofestimated to exact Frchet derivative Frobenius norm.

Number Lowest ratios Lowest ratios Lowest ratios
of for v(1) for v(2) for v(3)

runs Frob. norm est. Frob. norm est. Frob. norm est.

10 0.5560 0.6874 0.7448
100 0.3569 0.5235 0.6103
1000 0.2471 0.3838 0.4485

5. Conclusion. An analysis has been given of a new condition estimation method for
differentiable matrix functions that is based on measuring the effect of random perturbations
on the argument of the function. By using rn such function evaluations, a condition estimate
of order rn is obtained, i.e., the probability that the estimate is off by a factor w is less than
a constant times 1!wm For example, using three function evaluations gives an estimate that
has a chance of less than 1 in 7402 of being off by more than a factor of 20. Moreover, the
"transpose-free" nature of this new method allows it to be applied to a broad range ofproblems
in which the dimension of the domain and codomain spaces may be different. This is in sharp
contrast to the more common power method condition estimation procedure, which is only
applicable to maps between spaces of equal dimension. Illustrative examples have been given
for a variety of problems including the classical problem of estimating the condition number
of the matrix exponential map, as well as for problems involving mixed and componentwise
condition estimation.

6. Appendix. This appendix gives a short discussion of the expected value function En
and its evaluation for large n. For small n the value of En can be computed easily via (7)
or (8). However, for larger values of n it is not convenient to use these formulas, and we
would like to have simple approximations to En. There are at least two ways to obtain such
approximations.

The first uses the relation

2
(96) En En+l --,zrn
which follows directly from (7) and (8). As noted previously (see the remark following
Theorem 3.1), En decreases with n, i.e.,

(97) En > En+l.

Together (96) and (97) imply the following.
LEMMA 6.1. For En defined by (7) and (8),

(98) -n < En <
zr n 1)
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and

(99)
2

-3/2)En= re(n-1/2) +O(n

Proof. By (96) and (97),

2
-’EnEn+l <E2nn

Taking square roots of both sides gives

Similarly, by replacing n with n in (96), we find

2
En-1 En > E2n,

r(n 1)

which completes the proof of (98). Standard arguments then give (99) from (98).
The approximation

2
(100) En "
is usually adequate for the purposes of condition estimation. Higher-order asymptotic approx-
imations can be derived by using a multiplicative correction to the right-hand side of (100) of
the form

(n)- (ain-i) -1/2.

The coefficients can then be chosen to satisfy the relationship (96) up to a given order of 1
n

and to possibly improve the fit for small values of n as well. For example, a fourth-order
approximation of this type is given by

2 184n4
(101) En " zr(n 1/2) 1 + 23n + 23n2 + 184n4

which has a relative error of less than 10-5 for n > 2.
A second method of approximation involves writing E, in terms of the gamma function

1 ], where I" (n) (n 1) for positive integers n

r(n)
(102) En 2n_1 I2 ()n+l
The right-hand side is then approximated by using

V( 139 571)(103) l-’(n) , e-nnn 1 + ln -t
288n2 51840n3 2488320n4

(This approximation, which is almost universally referred to as "Stirling’s approximation," is
apparently (see p. 2 in [7]) due to Laplace insteadl) Using (103) in (102) gives an approximation
to En with about the same accuracy as (101).
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Abstract. This paper deals with the Davidson method that computes a few of the extreme eigenvalues of a
symmetric matrix and corresponding eigenvectors. A general convergence result for methods based on projection
techniques is given and can be applied to the Lanczos method as well. The efficiency of the preconditioner involved
in the method is discussed. Finally, by means of numerical experiments, the Lanczos and Davidson methods are
compared and a procedure for a dynamic restarting process is described.
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1. Introduction. To compute a few of the extreme eigenvalues and the corresponding
eigenvectors of a large, sparse, and symmetric matrix, two classes of iterative methods are
usually considered. Their common characteristic is to build a sequence of subspaces that
contains, in the limit, the desired eigenvectors. The subspaces of the first class are of constant
dimension; this class includes simultaneous iteration and the trace minimization method
11 ]. In the second class of methods, the sequence is increasing, at least piecewise, since there

often exists a restarting process that limits the dimension of the subspaces to a feasible size;
the class includes the well-known Lanczos method which is based on Krylov subspaces [6].
This paper deals with another method of the same class, namely, the Davidson method.

Davidson published his algorithm in the quantum chemistry field [2] as an efficient way
to compute the lowest energy levels and the corresponding wave functions of the Schr6dinger
operator. The original algorithm that computes the largest (or the smallest) eigenvalue of the
matrix A can be expressed by the following algorithm where D stands for the diagonal of the
matrix A.

Choose an initial unit vector Vl; V1 :-- [Vl];
for k 1 do

Compute the interaction matrix Hk := VA Vk;
Compute the largest (or the smallest) eigenpair (/z, y) of H;
Compute the corresponding Ritz vector xl := Vkyi;
Compute the residual r := (lzI A)x;
if convergence then exit;
Compute the new direction to be incorporated tk+l := (/zI D)-lr;
Orthogonalize the system [Vk; tk+l] into Vk+l;

end for

This algorithm looks like an algorithm of the Lanczos type with a diagonal preconditioning.
When the dimension of the basis V becomes too large, the process restarts with the last Ritz
vector as initial vector. In this paper we consider a more general method in the sense that
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several eigenpairs are sought at the same time;
several vectors are incorporated in the basis at every step, leading to a block implemen-

tation;
a general preconditioner is considered.

The block adaptation is important with supercomputers since it allows parallelism and efficient
use of local memory.

Before analyzing the Davidson method, we formulate, in 2, a general convergence result
for methods based on projection techniques; it can be applied to the Lanczos process as
well. Consequences for the Davidson method are described in 3. Section 4 is devoted to a
discussion on selecting the preconditioner and on the class of matrices on which the algorithm
is the method of choice. In 5, numerical experiments illustrate the study and an improvement
for the restarting process is proposed.

Notations and general assumptions. A (aij)l<i, j<n is a symmetric matrix supposedly
large and sparse; )1 > > .n are its eigenvalues and U un a corresponding set of
eigenvectors such that uituj 3ij (Kronecker’s symbol) for 1 _< i, j _< n. The goal consists
in computing the (l << n) largest (or smallest) eigenpairs of A.

Throughout this paper, the symbol denotes the Euclidean norm and MGS stands for
the modified Gram- Schmidt procedure. The orthogonal complement of the subspace spanned
by the vectors Xl Xk is denoted by {Xl Xk}l

(x) xtAx/llxll 2 is the Rayleigh quotient of the vector x 0 and R(Xl, Xk)
maxxespanx x) p(x) is the maximum of the Rayleigh quotient over the space spanned by
the vectors X xk.

{Vk} is a sequence of subspaces of Rn of dimension nk >_ and Vk is a matrix whose
column set is an orthonormal basis of Vk. The matrix Hk V[A Vg is called the Rayleigh
or interaction matrix; it is of order nk and its largest eigenvalues are ;kk, _> >_ .k,t
with the corresponding eigenvectors yk,1 yk,1, which constitute an orthonormal set of
vectors in Rn. The corresponding Ritz vectors xk,1, xk,t are defined by xk,i Vkyk, for

1 l. The reals ,kk,1 k,t are called the Ritz values of A over ;k.

2. Proof of convergence.
THEOREM 2.1. Under the assumption

Xk, - )’)k+l for 1 and k N,

the sequences {.k,i }ker are nondecreasing and convergent.
Moreover, if, in addition, (i) for any 1 the set of matrices {Ck,i}ker satisfies

thefollowing assumption: there exist K1, K2 > 0 such thatfor any k N andfor any vector

v V-" K1 v z _< utfk,i U < g211 v 2.

(ii)for any 1 and k N, the vector (I VkV)Ck,i(A ,k,iI)xk,i belongs to

)2+1, then the limit/Z limk .k,i is an eigenvalue of A and the accumulation points of
{xk,i }ker are corresponding eigenvectors.

Proof. The first statement is a straight application of the well-known Courant-Fischer
theorem [6] that characterizes the eigenvalues of a symmetric operator.

Let us prove the second statement. Let rk, (,kk, I A)Xk,i and wk, (I-
VkV)Ck,irk, i. Since the Ritz vectors are unit vectors and since rk,i -(I VkV)AXk,i,
the residuals rk,i belong to V- and are uniformly bounded by 11-4 II; hence the vectors wk, are
uniformly bounded as well. Moreover, since

(1) ll)tk,i 4Xk, _rk,it Ck,i rk,

and since the matrix C,i is assumed to be positive definite on V-, we may ensure that w,i 0
if and only if r,i O.
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When Wk, 0, let us denote l)k, Wk,i/ wk, and Flk [Xk, Xk, l)k,i]. I’Ik
is an n x (i + 1) matrix whose columns are orthonormal. Consequently, the matrix 1-Ikl-I
corresponds to the orthogonal projection onto a subspace of Vk+l.

The matrix 7-/,i FIA l-Ik has the following pattern:

ILk, Ok,

ILk,i Olk,i

Otk Olk [k

X jA for j 1, and flk v A l)k,where crk, j k, l)k,i k,i
Let .,1 > .,2 >’" > )k,i > .,i+1 be the eigenvalues of 7-/k,i. Cauchy’s interlace

theorem and the optimality of the Rayleigh-Ritz procedure [6] ensure that

ILk, j < ,k,j < ILk+l,j, j=l i.

The Frobenius norm of the matrix ’[k,i is

2 2E,j’-)k,i+l 2ZOk,j-]-/k2--’ZIL2
;k,j

j=l j=l j=l

therefore

Olk,J E ()k,j ILk,j)()k,j -- ILk,j) "- (’k,i+l flk)()k,i+l - ilk).
j=l j--1

the trace of the matrix 7-/k,; by =1 ILk,j +/k A-.,j=I ;k,j, we obtainEvaluating

2E%,J E ()k,J ILk,j)Ok,j + ILk,j ,k,i+l k)
j=l j=l

< 4 A Y (k,j ILk,j),
j=l

which implies

2 < 2 A (ILk+l,j ILk,j) for p 1 i.Olk,p
j=l

This last bound proves that limk.o cr,,p 0 for p i. Therefore, since from (1), we
have the relation

Ftk,i Ck,i Fk,i Wk, Olk,

so that limk__,o F, Ck,iFk, 0. From the assumption of uniform positive definiteness of Ck,
over 4+/-, and since rk, "14+/-, we may conclude that limk.o rk, O.

Let xi be an accumulation point of the sequence {xk,i}; then xi 1. From the
definition of rk,i, we obtain by continuity that ILixi Axi O. []

A straightforward application ofthe theorem may be obtained for a well-known version of
the Lanczos method, namely, the block version with restarting process as defined in [8]. From
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an initial block S of vectors that constitute an orthonormal set, the matrix Vk is recursively
built in such a way that its columns form an orthonormal basis of the Krylov space which is
spanned by the columns of S, AS Ak-iS; this is done while kl < m, where m is a fixed
maximum dimension. The Rayleigh matrix Hk, which is built from V, is a block tridiagonal
matrix. When kl is larger than m, the process restarts with a new block S that corresponds to
the Ritz vectors found with the last matrix V. Then, we claim the following corollary.

COROLLARY 2.2. The block version of the Lanczos algorithm, used with restarting,
converges.

Proof. The Lanczos method corresponds to the situation where C,i is the identity matrix
and where )2 is the Krylov subspace generated from the block V1. Therefore Theorem 2.1
may be applied. [3

3. The generalized Davidson method.

3.1. Algorithm. The following algorithm computes the largest (or smallest) eigenpairs
of the matrix A; m is a given integer that limits the dimension of the basis.

Choose an initial orthonormal matrix V1 := [Vl, vt] Rnxl"

for k do
1. Compute the matrix Wk := A Vk;
2. Compute the Rayleigh matrix Hk "= V Wk;
3. Compute the largest (or smallest) eigenpairs (,kk,i, Yk,i) <i <t of Hk;
4. Compute the Ritz vectors xk, :-- Vkyk,i for 1 l;
5. Compute the residuals rk, :-" i.k,iXk,i WkYk,i for 1 l;

if convergence then exit;
6. Compute the new directions tk, := Ck,irk,i for 1 l;
7. if dim(V) _< m

then V+I "= MGS(Vk, t,l t,t);
else V+I := MGS(x,I xk,t, tk,1 tk,l)’,
end if

end for

Steps (1)-(5) correspond to the classical Rayleigh-Ritz procedure [6]. We point out that
only the last columns of W and H have to be computed at iteration k. At each iteration,
the vectors t,i are incorporated into the previous subspace. Unlike the Lanczos method, the
Rayleigh matrix is dense.

The block size can be greater than l, and this may give faster convergence [3]. Since
orthogonalization is performed at every iteration, too large a dimension for the basis implies
prohibitive complexity. This is the reason for setting a maximum size for the basis. In 6,
a dynamic choice for the restart point is described based on an index of efficiency for the
iteration.

The selection of efficient preconditioners C,i is studied in 4. As remarked in Corollary
2.2, the method becomes equivalent to the Lanczos method when the matrices Ck, are pro-
portional to the identity matrix I. However, since in the Davidson method it is necessary to
compute the Ritz vectors explicitly at every iteration, this version of the Lanczos algorithm
has a much more expensive complexity than the regular version.

In the classical Davidson method, the preconditioners are built from the diagonal D of
the matrix A: C,i (.,i I D)-1, which exists when Z,i is not a diagonal entry of A.
This choice is efficient when D is a good approximation of the matrix A in the sense that
the matrix of eigenvectors of A is close to the identity matrix. More general preconditioners
Ck, ()k,iJ[ M)-1 have already been studied [5]; as for any preconditioning process,
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the tradeoff consists in finding a matrix M that speeds up the convergence and keeps the
complexity of the preconditioning step at a reasonable level. Finally, we mention that a block
version of the Davidson method has already been introduced in [4].

Remark It can be proved [10] that the accumulation points H of the sequence {H,} are
of the form

O1 0

Ol
0 E

where 01 > > Ot are the largest eigenvalues of H. Therefore, under the assumption
that none of the Oi, 1 is an eigenvalue of the matrix E, the components of the
corresponding eigenvectors of //are zero along the second block. As pointed out by Davidson
[2], this fact can be used in practice to measure the convergence.

3.2. Convergence. In this section we assume that a diagonal preconditioner is used, i.e.,
Ck,i ()k,i D)-1 for 1 1, where D is the diagonal of A. We assume also that we
require the largest eigenpair of A. The situation is analyzed in two different ways depending
on the number of eigenpairs needed. The end of the section is devoted to an example of
nonconvergence when the hypotheses of Theorem 2.1 are not satisfied.

3.2.1. Classical algorithm (l 1). Theorem 2.1 ensures the convergence ofthe Davidson
method when (4,,1 D)-1 is positive definite. Since the sequence {.,1 is nondecreasing, it
is sufficient to start with a vector Vl such that (/Zl,1 D)-1 is positive definite. This can be
ensured in the following way:

Let io be the index of the largest diagonal entry of D. If the problem is not reducible
into two smaller problems, there exists an index jo such that aio,jo O.
Let 1/’1 be the system [eio, ejo] built from the corresponding canonical vectors.

Since the matrix H1 V[A V1 is the matrix

aio,jo ajo,jo

we have/Zl,1 > aio,io maxl<i<n ai,i. In conclusion, the following bounds are obtained:

1
IlC,l _<

J’ 1,1 aio,io
1

1) Ck, 11) O v 2 with ot

Hence Theorem 2.1 can be applied.

maxl<i<n(/Zl,1 ai,i)

3.2.2. Block version (1 - 1). The technique defined in the previous case can be used here
to ensure that (9,,1 D)-1 is positive definite; therefore the convergence is certain for the
first eigenpair, but not for the others. However, it is possible to define another preconditioner
C,,i diag(/zt,,i,1 lz,,i,n) by/z,i,j min(l.,i aj,1-1, M), where M is some large
constant. With this preconditioning procedure, convergence is guaranteed for any initial
system V1.

Remark. The above choice ofM is made only for the sake of the completion of the proof.
In practice, the algorithm works regardless of this assumption.
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3.2.3. Example of possible nonconvergence. The following example shows the im-
portance of the assumption of positive definiteness for the preconditioning matrices. Let us
assume that we look for the two largest eigenpairs (1 2) of the matrix

4 0 0 0 0

0 -4 0 0 0

0 0 0

0 0 0 -1 0

0 0 0 0

and that the process is initialized by V1 [Vl, v2], where

Vl--( -, f, 0, 0, 0 ) t,

We use diagonal preconditioner, i.e., Ck, (.k, D)-1 and restart if m > 4. A straight-
forward computation shows that ()k,1, xk,1) (3, Vl) and (/z,2, x,2) (, v2) for all k,
although neither 3 nor are eigenvalues of A. Of course, it is clear that the assumption of
positive definiteness of the preconditioning matrices is violated.

Remarks. 1. Convergence of the Davidson method is automatic if restarting is not used,
because eventually the subspace Vk fills up. The significance of Theorem 2.1 is that it proves
convergence even when restarting is used.

2. Even when the sequence {r,i of the residuals converges to zero, it is not clear that
the limit b/,i limko ),i is the ith eigenvalue of A, since we may create situations where
the subspaces V remain orthogonal to a required eigenvector. However, it can be proved 10]
that this situation would be unstable and is unlikely to happen in finite arithmetic; it may only
increase the number of iterations significantly.

4. Quality of the preconditioner. In this section, we restrict the study to the case 1.
We assume also that C,i C()k,i), where C(/z) satisfies a Lipschitz condition in a neigh-
bourhood of the first eigenvalue of A. This is the situation when C(/x) (/xI M)-1 with
M symmetric with eigenvalues smaller than the largest eigenvalue of A.

Since 1 we replace the index (k, 1) by k in the algorithm. To simplify the notations,
we denote by ), ;(, and ,min the first, second, and last eigenvalue of A, respectively. Let x be
the eigenvector corresponding to . (Z >/z > )’ is assumed). Let 0 be the angle Z(x, x).
We may write x akx +/Yk, where a cos(0), 1 sin(0), and where yk is a unit
vector orthogonal to x. The first lemma relates the convergence of the sequences {/z}, {0 },
and {llr II}.

LEMMA 4.1. Thefollowing relations are true:

)-/z
_< sin(0)l _<

),,(2)
.min

2 I1 I1< sin(0)l <(3)
v/(Z ,min) //,k

Proof. The proof is based on the sin (R) theorem [6].
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Lemma 4.2 provides an estimate for the effect of the preconditioning process within one
iteration. We may define a unit vector zk such that the system (x, Yk, zk) is orthonormal and
such that tk ,kx / 3kYk / crkzk for some scalars ’k, 6k, and Crk.

LEMMA 4.2. The preconditioning process implies that

(4) tk kC()Q()I- A)yk + uk where Ilull O(/)
and

(5) 0_<X-/zk+ <_ K(X-

(6) sin 0k+l <_ KI sin

where

(7) K1

(8) K2

()2 X Xmin

Proof. Since tk C(tzk)(tzkI A)xk, we may write

tk Otk(lZk X)C(lZk)X + kC(btk)(lZkI A)yk,

and therefore (2) and the Lipschitz condition on C(.) imply (4).
By definition,/zk+l -= p(xk+l) R(Vl vk, tk). Let us consider the vector sk

xk (flk/3k)tk, which belongs to the subspace spanned by Vk+l. From the optimality of the
Rayleigh-Ritz procedure, we have the bounds

(9) P(Xk+l) > R(xk, tk) > p(sk).

Since

fl’ x(10) sk otk
3k 6k

we obtain from (9)

p(x+) >_

which implies

fl/,tr/ 2

(0k )2 _[_ ()2
(" )min),

2Z-/Zk+l < flk KI(L- L ).

z + y/Ayk, we also haveSince p(xk) tk
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The relation (5) with (7) is obtained from the last two bounds.
From (2) and (5), we obtain

-/Zk+l
sin20k+l <__ . .’

_< KI. ,k’

’ min< K1 sin2 0k,

which proves the relation (6) with (8). [3

The best situation, which cannot be obtained in practice, would be to find a COO that
admits x as an eigenvector and therefore {x +/- as an invariant subspace. If we assume

(c())()I- A) I)Ixl+/- < 1,

then

which implies

o(/( + )),

r o(f(/ + )),

a =/ + o(/(/ + )),

and therefore

O(ft + ),

O(/ + ).

From (7) and (8), we obtain the estimate

O’k " ,min
K1 kk ,- X’ (1 + O(/k(/k + ))),

min)) ),
(1 + O(/3k(/3k + ))).

Note that if 0, convergence is obtained after one step, since in this case crk 0 and thus
x belongs to the subspace spanned by (xk, tk).

The usual way to define the preconditioning matrix is to consider a matrix M that approx-
imates A and hence the matrix COO 0I M)-1. Let us consider two extreme situations:
M I or M A. In the former case, the method becomes equivalent to the Lanczos
method as has been pointed out, while in the latter case, the method fails since tk xk and
wk (I Vk V)tk 0. Therefore M has to be an approximation of A, but with its largest
eigenvalue smaller than . to ensure the positive definiteness of the matrix (/xkI M)-1 as
discussed in Theorem 2.1. With such a matrix we have

(11)

(12)
tk (/xkI- M)-l(/zkI- A)xk

ak(lzk ,k)(lzkI M)-lx -4- flk(lzkI M)-1 (lzkI A)yk
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and

(13) xk-tk tk (I (tzk Z)(txkI M)-I) x+/k (I (/zkI M)-l(/zkI A)) yk.

Expressions (12) and (13) show that when the Ritz pair (/xk, xk) starts to approximate the
solution 0, x), then, provided (/zkI-M)-1 is bounded and (I (/zkI M)-I (/xkI A)) Itxl
is small in comparison with (I (/zk .)(/xkI M)-1) x, the components of tk in the di-
rection of x are small, whereas the other components of tk remain about the same as those of
xk. Therefore the vector xk tk has small components except those in the direction of x, and
hence constitutes an improvement over xk. We expect to have an efficient preconditioner when
the angle/(x, zk) is smaller than the angle Z(x, xk), where zk xk tk. Table 2 illustrates
this point in the context of Example 5.1.

To have an easy-to-invert matrix, the appropriate choice for M may be the main diagonal
of A or its tridiagonal part, when A is strongly diagonally dominant in the sense that its
eigenvectors are close to the vectors of the canonical basis.

5. Experimental results and implementation.

5.1. Efficiency ofthe preconditioner. The usual experience is to consider that the better
the preconditioner approximates the matrix, the faster is the convergence. The diagonal
preconditioner is the easiest to use, but often a larger part of the matrix, as, for example, the
tddiagonal part brings a better efficiency. The following example illustrates an extreme case
of the benefit that may be obtained from a good preconditioner.

Example 5. I..4 is the matrix of order n 1000 such that

ai,j

if j,

0.5 if j=i+l or j=i-1,

0.5 if (i, j) {(1, n), (n, 1)},
0 otherwise.

Table displays the sequence of the residuals corresponding to the largest eigenvalue for the
Lanczos and Davidson methods with diagonal and tridiagonal preconditioning, where multA
is the number of matrix-vector multiplications. The algorithm is started as discussed in 3.2.1,
which means here that V1 [en, el] is used as starting vectors for the Davidson method, and
Vl VlYl where yl is the eigenvector corresponding to the largest eigenvalue of the matrix

V1vA V1 is the starting vector for the Lanczos method.
Table 2 shows, as claimed in 4, that the efficient preconditioner approximates much

better zk xk tk to x than does xk. The vectors xk, tk, and x have been defined in (12) and
(13) in 4.

Unfortunately, this rule of thumb may fail when the evaluation of the quality of a pre-
conditioner is limited to only the consideration of the norm of its difference with the original
matrix. It is well known that when two matrices are close, their spectrum are also close, but
not necessarily their eigenvectors. Example 5.2 illustrates such a situation.

Example 5.2. A is the matrix of order n 1000 such that

4 if

-1 if
ai,j

-1 if

0 otherwise.

j,

j=i+l or j=i-1,

j=i+2 or j=i-2,
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TABLE
Sequence ofresiduals depending on the preconditioner (Example 5.1).

Davidson
multA Lanczos diagonal

0.5000000e+00 0.5000000e+00
2 0.2702456e+00 0.1913128e+00
3 0.2697534e+00 0.4586425e-01
4 0.6456297e-01 0.7378828e-02
5 0.6436916e-01 0.8900376e-03
6 0.1032884e-01 0.8615493e-04
7 0.1028572e-01 0.6973576e-05
8 0.1236296e-02 0.4852756e-06
9 0.1229767e-02 0.2962304e-07
10 0.1185097e-03 0.1610810e-08
11 0.1177558e-03 0.7897330e-10
12 0.9479829e-05 0.3541615e-ll

Davidson
tridiagonal

0.5000000e+00
0.2056694e+00
0.8539853e-04
0.3830080e- 12

TABLE 2
Example ofefficient preconditioner (Example 5.1).

iter sin Z(xk, x)
(tridiagonal)

0.4202633e+00
2 0.1176235e-01
3 0.7440150e-06
4 0.1116130e-12

sin/(zk, x)
(tridiagonal)

0.4526842e+00
0.7403736e-03
0.2458322e- 10
0.2096840e- 12

The diagonal preconditioner is not considered since, as already stated, a constant diagonal is
equivalent to no preconditioning, and therefore the Lanczos and Davidson methods become
equivalent. Figure 1 plots the behaviour ofthe residuals corresponding to the largest eigenvalue
for the Lanczos and Davidson methods with tridiagonal preconditioning. Both methods have
poor convergence. For the Lanczos method, this may be explained by the smallness of the
gap ratio of )1 [6]" 1 2/,2 n ’ 2.33 10-8, whereas for the Davidson method, the
poor performance of the preconditioner may be explained by the near orthogonality of the
eigenvectors corresponding to the largest eigenvalue of A and the largest eigenvalue of its
tridiagonal part (angle ).

Example 5.3. We consider the matrix LAP30 from the Harwell-Boeing test collection.
This matrix is of order 900, symmetric with 4322 nonzero elements in its lower part. It is
originated from a nine-point discretisation of the Laplacian on the unit square with Dirichlet
boundary conditions. The eigenvalues as computed by EISPACK are 1 2 11.9590598 >
,3 ,4 11.9286959 > .5 6 11.8784356 > > 900 0.0614628.

The diagonal of this matrix is constant. So the Davidson method with diagonal precon-
ditioning is equivalent to no preconditioning. We computed its four largest eigenpairs using
the Davidson method with tridiagonal preconditioning. In this version of Davidson’s algo-
rithm, we decided to restart whenever the maximum size of the basis reaches 40. And once an
eigenvector is converged, we put it at the beginning of the basis so that all vectors are orthog-
onalized against it and continue with a reduced block size. Since eigenvalues/eigenvectors
seldom converge at the same time, this strategy can prevent harm and additional work in the
most slowly converging eigenvectors. The stopping criterion was satisfied when the residual
norm of the sought eigenpair is less than 10-7.

We also computed the four largest eigenpairs of LAP30 by the Lanczos method. The ver-
sion ofthe Lanczos methodused here is the Lanczos algorithm with selective orthogonalization
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FIG. 1. Example ofa nonef-ficient preconditioner (Example 5.2).

LASO2, developed by Parlett and Scott [8]. The blocksize, NBLOCK, for Lanczos was taken
equal to four, and the number of decimal digits of accuracy desired in the eigenvalues, NFIG,
was chosen equal to seven. The computations were carried out on one processor of a Cray 2
and the results are reported in Table 3. The error in eigenvalues and eigenvectors as given by
Lanczos (LASO2) are also reported. Unfortunately, we do not have similar estimations for
Davidson. But the residual norms and the execution times reveal that the Davidson method
with tridiagonal preconditioning performs better on this example.

TABLE 3
Eigenpairs ofthe matrix LAP30 by the Lanczos (LASO2) and Davidson methods. (Example 5.3).

Method Matrix-vector Time(sec) Max residual Max error in Max error in
products norms eigenvalues eigenvectors

Lanczos 884 12.534 2.57 E-04 1.13 E-06 4.74 E-03

JDavidson,, 607 11.487 9.36 E’08

Example 5.4. In Table 4, we compare the Davidson method using diagonal precondi-
tioning with the Lanczos method. (The version used is, again, the Lanczos algorithm with
selective orthogonalization LASO2.) The matrix dealt with is of order 1000 and is generated
randomly by setting its density of nonzero elements at 0.01. The nonzero off-diagonal entries
are in the range [-1, + 1 ]; the full diagonal entries are in the range [0, diagscal], where di-
agscal is a diagonal scaling factor to be varied. The four smallest eigenpairs are sought. The
version of Davidson’s algorithm uses the same technique concerning converged eigenvectors
as described in Example 5.3. The stopping criterion was satisfied when the residual norm of
the sought eigenpair is less than 10-7. For the Lanczos algorithm, we chose the block size
NBLOCK 4, and the number of decimal digits of accuracy desired in the eigenvalues NFIG

7. Experiments were run on a Cray 2. As expected the Davidson method becomes more
efficient when the relative importance of the main diagonal increases. The efficiency of the
Lanczos method is spectrum-dependent and is not sensitive to the dominance of the matrix.
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TABLE 4
Davidson and Lanczos run time comparison (Example 5.4).

Diagonal
factor

20

40

60

80

100

Time(sec)
Davidson Lanczos
5.481 4.131

1.091 5.1531

0.844 11.574

0.657 9.959

0.537 16.062

0.400 11.171

5.2. Effect of the maximum size for the basis on the convergence. The easiest imple-
mentation for the restarting process consists in defining a fixed maximum size for the basis.
The selection of an efficient value for m is difficult: too small a value increases the number
of steps needed for convergence, whereas too large a value increases complexity and causes
numerical problems.

Example 5.5 and Fig. 2 illustrate that the larger m is, the lower is the number of steps
necessary to reach convergence.

Example 5.5. A is the matrix of order n 5000 such that

ifi=j ra_ ndom in [-10, +10],

[ with probability c random in [- 1, +1],ai,j
if j

ith probability (1 or) 0,

where c 2 x 10-3. There is an average of 11 nonzero entries per row. The eight largest
eigenvalues (1 8), that are sought, lie in the range [10.89, 11.57]. Convergence is obtained
when the maximum of the L norm of the residuals is smaller than 5. 10-10. Experiments
were run on an Alliant FX/80.

However, the value of m needs to be limited for three reasons.
1. The memory requirement is roughly proportional to nm, and this introduces a limit on

m for large matrices.
2. The orthogonality of Vk is poorly maintained when the number of vectors in Vk is high

(a loss of orthogonality plagues the convergence).
3. The complexity of the computation that is involved in one iteration increases with the

number of vectors in Vk; therefore it may become too high compared to the benefit obtained
from the decrease of the residual norms.

Actually, to be efficient, it is necessary to decide dynamically when to restart the process.
The first reason implies a maximum for the size of the basis, but it can be more useful to restart
before that limit. The second reason concerns a loss of orthogonality that is detected by an
increasing sequence of the norms of the residuals; this may signal a necessary restarting. Let
us now consider the detail of the computation involved in one iteration to define some index
of efficiency that should indicate when it is worthwhile to restart.

The kth step since the last restart involves multiplications by A and applications of the
preconditioning process that are of constant complexity. It involves also for the

computation of Hk"
diagonalization of Hk:
computation of the Ritz vectors:

computation of the residuals:

orthogonalization process:

kl2n flops;

O(k313) flops;
klan flops;
klan flops;
2k12n flops.
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FIG. 2. Influence ofrn on the convergence (Example 5.5).

The diagonalization may be estimated as involving approximately 2k313 flops. Let us
denote by C(k) the complexity involved at each iteration and by r, Rk ! R_]11 the local
rate of convergence, where Rk stands for the matrix [r,,1 r,,t]. The index of efficiency
may be defined as

1

Cr"
By incorporating within the code a procedure that checks the variation of gk, the process can
be restarted as soon as the index decreases significantly.

Example 5.6. The matrix under consideration is the same as in Example 5.5, where
its eight largest eigenvalues and their corresponding eigenvectors are sought. Figure 3 plots
the variation of the maximum of the residuals with respect to the number of iterations using
dynamic restarting. We note in Fig. 3 that the convergence is reached within 140 iterations
and 13 irregular restarts, while in Fig. 2 the same convergence with restarting at exactly every
20th step is reached within 500 iterations. This may be explained by the fact that dynamic
restarting allows the algorithm to restart in due time, taking into account the quality of the
basis for approximating the eigenvectors and the complexity involved during the iterations.
The ratio zk Rk ! R,_I also measures the changes in rate of convergence. In Table 5,
the run with this dynamic restarting procedure is compared to the runs with a static restarting
procedure for six values of the maximum block size (20, 40, 60, 80, 100, 120).

The efficiency of the dynamic restarting process is clearly seen in this example, since it
corresponds to obtaining the optimum size of the basis automatically.

6. Conclusion. The Davidson method can be regarded as a preconditioned version of the
Lanczos method. It appears to be the preferred method for some special classes of matrices,
especially those where the matrix of eigenvectors is close to the identity. Although when
used with a poor preconditioner it converges slowly, the Davidson method may overcome the
Lanczos method tremendously.
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y=-log(residual)

*: restarting point
,_....M

,-

-20 20 40 60 80 100 10 10
Matrix-vector operations

FIG. 3. Dynamic restarting profile (Example 5.6).

160

TABLE 5
Comparing static and dynamic restarting procedure (Examples 5.5 and 5.6).

Running times(s) with fixed
with dynamic restarting

restarting m Times(s)
20 1015.94
40 549.09

277.64 60 334.07
80 345.13
100 277.83
120 287.70
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PRECONDITIONING CAPACITANCE MATRIX PROBLEMS IN DOMAIN
IMBEDDING*

WLODEK PROSKUROWSKI AND PANAYOT S. VASSILEVSKIt

Abstract. Various preconditioners for the capacitance matrix problems in domain imbedding (DI) are studied.
Such preconditioners can be viewed as inverses of the preconditioners for the Schur complement domain decomposi-
tion (DD) methods. Preconditioning techniques based on the hierarchical basis (HB), the square root of-d2/ds2, and
on the vector probing for solving the capacitance matrix problems using preconditioned conjugate gradient iterations
are analyzed and tested numerically.

Key words, capacitance matrix, domain imbedding, domain decomposition, hierarchical basis, vector-probing,
second order elliptic equation, finite elements
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1. Introduction. We consider second order elliptic problems in polygonal planar do-
mains f2 with Dirichlet boundary conditions. Polygonal domain f2 is imbedded in a rectangle
R on which a fast separable elliptic solver can be used. Hence we assume that the coefficients
of the elliptic operator allow separation of variables. We study various preconditioners for
the capacitance matrix in domain imbedding (DI). The purpose of the DI technique is that
problems on irregular regions can be solved by minor modification of the software available
for standard problems (i.e., on rectangular domains) thus avoiding more complicated data
structure needed for the irregular domains.

This technique was proposed by Buzbee, Dorr, George, and Golub 10] as a direct pro-
cedure and studied later as an iterative process by Proskurowski and Widlund [26], [27],
O’Leary and Widlund [23], Astrakhantsev [1], [2], Dryja [14], B6rgers and Widlund [7],
Nepomnyaschikh [22], and others. In B6rgers and Widlund [7] a detailed study of the deriva-
tion and comparison of various capacitance matrix techniques and their practical performance
was presented.

Similar approaches, namely to avoid complicated data structure and to take advantage
of already available software for problems on standard domains, have been used in deriving
efficient preconditioning techniques for elliptic problems on grids with local refinement, cf.
McCormick and Thomas [20], McCormick [21], Bramble, Ewing, Pasciak, and Schatz [8],
Ewing, Lazarov, and Vassilevski 17].

The essence ofthe capacitance matrix technique is that the solution to the original problem
can be obtained as a low order modification to the problem on the imbedding rectangle. Domain
decomposition (DD) and DI are usually complementary. DI is most efficient when a domain
is a small perturbation of a larger separable region, while DD is more appropriate when a
domain is a union of several separable regions. In DD, one is willing to repetitively solve
subdomain problems. Not so in DI because the subdomains may be irregular. Instead, one is
willing to repetitively solve a larger regular problem.

One can observe a duality between the capacitance matrix technique in DI and the Schur
complement methods in DD. More precisely, the preconditioners in the first method can be
viewed as the inverses of the preconditioners in the second one. Thus the DI technique can
be seen from a new perspective that comes from DD: using the well-developed theory of the
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preconditioners in DDwe have immediate candidate preconditioners for the capacitance matrix
problem that are straightforward to analyze. In the present paper we consider preconditioning
techniques originally proposed for the DD Schur complement problems based on the square
root of the one-dimensional Laplacian, on the hierarchical basis (HB), on the vector probing
technique proposed by Keyes and Gropp 18] and Axelsson and Polman [3], as well as on the
smoothing-correction technique proposed by Wittum [35], and apply them in the DI context.

The outline ofthe paper is as follows. In 2we state the problem and derive the capacitance
matrix equation following an earlier presentation by Dryja [14]. In 3 the preconditioners
for the capacitance matrix are presented. Section 4 contains the numerical results for the
model problem, as well as problems with anisotropic and discontinuous diffusion coefficients.
Finally, in 5 some conclusions are drawn.

2. Problem formulation. Consider the following second order elliptic boundary value
problem.

Given f e L2(f2), find u H (fl) such that

4(u, 4) (f, 40 for all H (f2),

where the open domain f2 is a planar polygon and

(1) 4(u,4) k x -x -x + k y -y -y + X x + ) y u dx dy

The coefficients k, k2 are assumed to be positive in ; and . and .2 are assumed to be
nonnegative in . Let R be a rectangle such that R D f. In our model case shown in Fig. 1, f
differs from the domain in which it is imbedded, R (0, 1)2, only along a connected segment.
Generalization to more complicated domains is straightforward, but its implementation may
be more costly. The case of more general separable operators, nonsymmetric and indefinite,
is treated in the forthcoming paper [25].

We assume that R can be triangulated on a right-angled triangular mesh T such that 0
consists of edges of triangles from T. This imposes some restriction on the polygonal form
of . A treatment of how to construct triangulations for the DI in a more general case was
presented in B6rgers and Widlund [7], see also Nepomnyaschikh [22]. Another possibility is
to use patch local refinement in the neighborhood of the interface boundary across which is
ifnbedded in the rectangle R. Then one can use the efficient iterative elliptic solvers developed
for problems on patched locally refined grids from McCormick and Thomas [20], McCormick
[21], Bramble, Ewing, Pasciak, and Schatz [81, see also Ewing, Lazarov, and Vassilevski 17].
Note that these exploit fast elliptic solvers on the patches that are rectangles. However, at this
point we shall not treat this subject more specifically.

So we assume that the boundary of is aligned with the triangulation T. Let be
the finite element space spanned by piecewise linear functions on T, vanishing on 0R and
continuous in R. The subspace V of g" consists of functions that have support in .

Consider finally the bilinear form

/3 (u, q) kl (x) x -b---X-X + k2 (y) yy if-fly + [1 (X) --1- 2 (Y)] uc/) dx dy.
R

We denote by .4 and B the stiffness matrices computed by the bilinear forms A(., .) and/3(., .)
using the finite element spaces V and W.

We note that problems with the matrix B can be solved very efficiently based on discrete
variants of separation of variables (cf. Buzbee, Golub, and Nielson [9]), or on the odd-even
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(0, 1)-"

o) (1, o)

FIG. 1. Polygon 2 imbedded in rectangle R (0, 1)2.

cyclic reduction (cf. Swarztrauber [29]), or the generalized marching algorithm (cf. Bank and
Rose [5] andBank [6]). The cost is typically O(N log N) or O(h-2 log 1/4), where N O(h-:)
is the number of nodes in 7" and h is the meshsize. A more refined implementation based on
the fact that the right-hand sides of the problems to be solved on the rectangular imbedding
domain are nonzero only on the interface boundary and based on the fact that the solution
is also only needed on the interface will lead to a cost of O(N) O(h-:) operations, cf.
Banegas [4], Kuznetsov [19], and Proskurowski [24].

The capacitance matrix method (CMM) relies on efficient solvers for problems with the
matrix B. Next we derive the CMM in algebraic (i.e., matrix-vector) form following an earlier
presentation of Dryja 14].

The original problem in 2 after discretization takes the form

(2) Axl hi.

After imbedding f2 in R we consider the problem

B
Yl bl ’1,

y. 0 R\= 2,

Yo bo F,

where [’ 0f2 \ OR is the interface boundary across which f2 is imbedded in R. Note that B
admits the following 3 x 3 DD block form

Oil 0 Blo ’1,

0 022 020
O01 Bo2 Boo 1".

Finally, note that Bll ,4. Consider now the following extended matrix

A 0 Bo "1,

0 B2 B2o
0 0 I 1-’.
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The problem AXl bl can be rewritten as

(3) AE
Xl b
0 0

0 0

We seek w0 defined on I’, such that

xE-- B-1
hi
0

bo

+B-1

0

0

is the solution of (3). Then

(4)

Note now that

hi
0 AEXE
0

hi
0 -AE

0

hi
0

bo

+B-1

0

0

I 0 0 Bll 0 Blo
0 I 0 0 B22 B20

BolB] BozB2 S 0 0 I

where

2

S Boo E BiBI Bio
i=1

is the so-called DD Schur complement of B. This shows that

I 0 0

0 I 0

BOlB Bo2B S

Hence

(5) AEB-1
I 0 0

0 I 0

, . S-1

AE
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where ",," here and further, denotes submatrix or subvector that is of no immediate interest.
From (4) and (5) we get

bl I 0 0 bl 0

0 0 I 0 0 0

0 . . S-1 bo / Wo .
Thus, by construction, we have that the first two equations of (4) are satisfied. Hence we need
to choose w0 such that the last equation of (4) is zero; i.e.,

Since

hi
B-1 0

bo

(6) B-1

0

+ B-1 0

wo

0 .
0 .
w0 S-lw0

we obtain the following equation for w0,

S-lw0

Let

hi
0B-1

bo

(7) C S- Boo BoiB1Bi0
i=l

C is called the capacitance matrix. Note that C is symmetric and positive definite and that the
actions of C are readily available since for any given vector v0 on 1-’,

0

Cv0 B-1 0

0 F

Note however that the actions ofSon vectors are not generally readily available. This is because
the computation of Sv0 for a given vector v0 on I" involves the action of B A-1 when
computing the product B01B1B10v0 (see (7)) and A is the stiffness matrix in the irregular, by
assumption, original domain f.

We now present the algorithm for solving problem (2) based on the capacitance matrix
method. For any given vector z we use the decomposition

Zl ’1,

z z2 f2,

zo I’.
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ALGORITHM CMM
(i) Solve the problem

(ii) Iterate for w0

(iii) Solve the problem

(iv) The final solution of (2) is

By
bl 1,

0 f2,

b0 F.

Cwo -Yo"

BY

0

0

Xl Yl + Vl.

3. Preconditioners for C. From now on we focus on step (ii) of Algorithm CMM solved
by the preconditioned conjugate gradient (PCG) iterations and more precisely on finding a
good preconditioner for the capacitance matrix C.

Recalling the relation (7) we see that any available preconditioner MUD for S from the
well-developed DD theory such that its action is readily computable (not necessarily the action
of its inverse) will give a good preconditioner M M3 for C S-1.

We consider the following preconditioners.
1. Dryja’s preconditioner. Let M be the matrix corresponding to the discretization of

d2/ds2, the second derivative along F. Then M1/2 is readily available (based on the discrete
FFT). In terms of preconditioning, M- 1/2 is a preconditioner that is spectrally equivalent to
C. This is the case since M1/2 is spectrally equivalent to S C-1. For details cf. Dryja 15],
[16].

2. Hierarchical Basis (HB). Using the fact that (cf. Smith and Widlund [28] or Vas-
silevski [33])

Cond [JrSa] O(1 + log2 h),

where J is the transformation matrix from the HB to the nodal basis (on 1-’ only), we obtain
that

Cond(j-1S-1j-r) Cond(j-1Cj-r) O(1 + log2 h),

i.e., j-1Cj-r is a much better conditioned matrix than C. Note that the actions of j-1 and
j-r are readily computable, cf., e.g., Yserentant [34].

3. Vectorprobing (A). Ifthe coefficients ofthe bilinear form j[(., .) have strong variation,
then, in practice, a choice of preconditioners based on algebraic vector-probing techniques
might be preferable. For example, we can consider a symmetric tridiagonal matrix T defined

(1) V(O2) thaton F by requiring for two vectors vo

(8) Tv(oi) Cv(oi), 1, 2.
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The choice of T to be tridiagonal is motivated by the fact that away from its main diagonal C
has certain decay rate since S is approximately tridiagonal; for details cf. Keyes and Gropp
[18], Axelsson and Polman [3], Chan and Mathew [11], and Chan, Mathew, and Shao [12].
For decay rates of inverses ofband matrices, cf. Demko, Moss, and Smith 13] and Vassilevski
[31 ]. The existence of such tridiagonal matrix T satisfying (8) is shown in Wittum [35] for a
general choice of the probing vectors and in Axelsson and Polman [3] and Keyes and Gropp
18] for certain particular probing vectors. We consider a preconditioner T that corresponds

to the following vectors proposed in Keyes and Gropp 18],

1 0

0 1

V(1) 1 v(2) 0

0 1

4. Vector probing (B). We also choose the following preconditioner M based on the
smoothing-correction technique proposed by Wittum [35] and defined by

(9) M-1 T1 + T2,

where the symmetric tridiagonal matrices Ts, s 1, 2, are defined by their actions on two
prescribed vectors. Namely, Ts is defined by the equations

V(Or) TsCv(or), r 1, 2,

for the following probing vectors:

(1) [sin(Vsi:r)}
nb

v \nb + 1 i=1’

V(o2) {sin((Vs+l)izr)}"nb+ 1 i=1

Here nb is the number of the interface nodes on F; Vs for s 1, 2 are properly chosen
frequencies corresponding to the so-called smooth and rough components, cf. Wittum [35].
In Wittum [35] it has also been shown that there is a unique symmetric tridiagonal matrix T
that has the same actions on two given vectors as the actions of another symmetric matrix
on those vectors (the vectors should satisfy some linear independence property, however).
We remark that preconditioner (9) is an additive version of the smoothing-correction scheme,
which is a stationary iterative method as proposed in Wittum [35]. We modify it to be used as
a preconditioner in the CG method.

4. Numerical experiments. We report some numerical experiments performed on a
Sparc 2 station in double precision FORTRAN. A double precision version of the subrou-
tines BLKTRI and SINT from the current version of [30] obtained via Netlib were used for
solving separable problems in a rectangle and as a real FFT, respectively.

In all the experiments as the polygonal region f2, we chose the unit square R (0, 1)2
with the comer (x, y) y < x cut off, and )1 0 and 2 0 in (1).

The exact solution was u (x, y) sin x sin y with the corresponding values for the bound-
ary condition and the source function f. We remark that the exact solution u is not actually
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in Hd (f2), but this is not a problem since after the discretization the boundary conditions are
eliminated in the right-hand side bl of the linear algebraic problem (2). The stopping criterion
for the PCG iterations to solve the capacitance matrix equation (step (ii) in Algorithm CMM)
here, and elsewhere in the experiments, was when the energy norm of the preconditioned
residuals decreased by 10-6 from its initial value (with the zero initial guess for the solution
w0). We denote the number of interior meshpoints in each coordinate direction by n and the
number of meshpoints on the separator F, equal tc the dimension of the capacitance matrix,
by nb. By iter we denote the number of PCG iterations. Note that the dominant cost of the
whole algorithm is the cost of the separable solver BLKTRI called (iter + 2) times while the
cost of the preconditioners is negligible.

Recall that the preconditioners, described in detail in 3, are:

(1) square root of the finite difference analog of -(d2/ds) along F,
(2) hierarchical basis,

(3) vector probing (A), ([ 18]),
(4) vector probing (B), ([35] in the form (9)).
The first example corresponded to the model bilinear form (1) with the coefficients chosen

as

(Problem 1) kl (x) ex, k2(y) ey.

n

31

63
127
255

TABLE
Problem and Preconditioner 1.

Ilerrorllmax Ilerrorll2
0.741D-05 0.413D-05

0.185D-05 0.102D-05
0.462D-06 0.253D-06

0.116D-06 0.628D-07

nb iter CPU (in sec)
15 3 0.590

31 4 3.610

63 4 16.650
127 5 95.580

As the results in Table 1 indicate, the rate of convergence of the PCG iterations was
The solution was clearlyessentially independent on the parameter of discretization h

second order accurate, O(h2), here as well as in the remaining experiments; thus we do not

report further on this item.
For comparison in Table 2 we include the results obtained without any preconditioner for

the same problem and for the case with kl (x) k2(y) 1, i.e., for A (the Laplacian).

TABLE 2
Number of iterationsfor Problem and the Laplace operator A without preconditioning.

nb Problem

15 11

31 15

63 20

127 26

A A, u random

7 10

8 12

10 17

11 21

It appears that the convergence rate depends only weakly on rib, particularly for the
Laplacian and smooth solutions. It is known, e.g., Dryja 14], that in general Cond(S) O(1/4),
hence Cond(C) Cond(S-1) O(1/4). This is very clearly seen for the example shown in
the second and fourth columns of Table 2 (the number of iterations increased by about a factor
of as the number of meshpoints was doubled).
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Next we tested anisotropic diffusion functions,

(Problem 2) kl (x) cex, k2(y) ey,

where c 1, 10, 100, and 1000 (because of symmetry results with c := were identical,
here as well as in Tables 4, 5, and 6).

TABLE 3
Problem 2 and Preconditioner 1" number ofiterations in case ofanisotropy.

nb c c 10 c 100 c 1000
15 3 6 10 14

31 4 7 11 18

63 4 7 12 20

127 5 7 12 22

Although the rate of convergence of the PCG iterations (see Table 3) slows down sig-
nificantly with increased anisotropy, its behavior still suggests asymptotic independence for
sufficiently high discretization parameter. (Note that iter < nb.)

Next we proceed with the preconditioner based on a change to the hierarchical basis. The
results (number of iterations) when we varied the anisotropy constant c are shown in Table 4.

TABLE 4
Problem 2 and Preconditioner 2; number ofiterations in case ofanisotropy.

nb c c 10 c 100 c 1000

15 9 12 15 16

31 12 16 21 27
63 15 20 26 39

127 1’8 23 32 47

The results for problems with anisotropy with Preconditioner 3 based on the vector-
probing technique defined by (8) are shown in Table 5. Similarly, the performance of Precon-
ditioner 4 based on Wittum’s smoothing-correction scheme defined by (9) is shown in Table 6.
The specific frequencies Vl, v2 which are used are also shown. These last two preconditioners
showed very robust performance for problems with anisotropy. The preconditioner based on
the two frequencies is not well understood although its performance is very satisfactory for
properly chosen frequencies (so far, these were chosen experimentally). For more details cf.
Wittum [35].

TABLE 5
Problem 2 and Preconditioner 3; number ofiterations in case ofanisotropy.

nb c c 10 c 100 c 1000
15 14 13 11 11
31 18 17 14 13
63 20 20 18 16

127 25 24 22 21
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TABLE 6
Problem 2 and Preconditioner 4; number ofiterations in case ofanisotropy.

nb 1)1, 1)2 C C 10 C 100 C 1000

15 2,4 9 7 6 4

31 3,7 8 8 7 5

63 5, 15 8 9 9 5

127 10, 30 9 11 10 7

The final set of experiments (see Tables 7-10) was carded out for the discontinuous
diffusion function in one direction:

cex forx >0.25,
(Problem 3) kl (x)

ex for x < 0.25,
k2(y) ey.

Note that the line of discontinuity cuts the separator 1-’. To ensure the continuity of the
flux at the line of discontinuity of the diffusion function we chose the exact solution to be
u(x, y) sin(2zrx) sin(2zry). Note also that in the subdomain {(x, y)lx > 0.25}, Problem 3
is anisotropic like Problem 2.

TABLE 7
Problem 3 and Preconditioner 1" number ofiterations in case ofdiscontinuous coefficients.

nb c c 10 c 100 c 1000 c 0.1

15 4 10 12 15 10

31 4 10 14 20 11

63 4 10 15 21 12

127 5 10 15 23 12

c 0.01 c 0.001
12 12

18 20

20 33

21 36

Even in the case ofdiscontinuous coefficients the rate ofconvergence ofthe PCG iterations
is still essentially independent of the parameter of discretization, except for c 0.001. At the
same time, the convergence rate gradually deteriorates with the increased discontinuity.

TABLE 8
Problem 3 and Preconditioner 2; number ofiterations in case ofdiscontinuous coefficients.

nb c-- c= 10 c= 100 c= 1000 c=0.1 c 0.01

15 9 13 15 15 13 13

31 12 17 25 27 17 23

63 15 20 31 42 21 30

127 18 23 36 56 24 36

c 0.001

14

25

42
57

For c= 1, i.e., for continuous coefficients, one can observe the linear increase ofthe number
of iterations with 1og(nb + 1), the number of refinement levels as predicted by the theory. We
saw that the HB preconditioner deteriorated with the anisotropy. This is also the case for
the problem with discontinuous diffusion coefficients. Thus a proper stabilization of the HB-
based preconditioner is worth providing. One possibility would be to use a hybrid multilevel
iteration as proposed in [32].

The "," in Table 10 stands for nonpositive definiteness of Preconditioner 4. This is one
of the difficulties with Wittum’s smoothing-correction scheme when used as a preconditioner;
namely, that the positive definiteness of the matrices constructed by probing is not a priori
guaranteed.
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TABLE 9
Problem 3 and Preconditioner 3; number ofiterations in case ofdiscontinuous coefficients.

nb c c 10 c 100 c 1000 c 0.1

15 14 13 15 15 14"
31 19 19 23 25 22

63 23 28 29 42 32
127 28 42 32 57 49

c 0.01 c 0.001

14 15

21 21

30 31
46 46

TABLE 10
Problem 3 and Preconditioner 4; number ofiterations in case ofdiscontinuous coefficients.

nb Vl, v2 C C 10 C 100 C 1000 C .1 C .01 C .001
15 2,4 9 8 8 8 9 9 9

31 3,7 8 9 9 9 10 11 12

63 5, 15 8 10 10 10 11 12 13
127 10, 30 9 11 11 11 12 15 *

5. Conclusions. Preconditioner 1 is the best for operators with smooth coefficients (c
1 in all tables), but its performance deteriorates gradually with increased anisotropy.

For Preconditioner 2 a similar but even faster deterioration (aggravated by its dependence
on the size of the problem, nb) is observed. This preconditioner needs stabilization of the
growth of the condition number. One possible approach that needs further investigation is to
use more complicated hybrid multilevel iterations as proposed in Vassilevski [32]. This would
require additional solutions with a sequence of matrices {B(k) obtained by discretizations of
the separable elliptic problem in the rectangle R on a sequence of uniformly refined meshes.

In contrast, Preconditioners 3 and 4 based on vector probing exhibit a slightly improved
performance with increased anisotropy. At the same time Preconditioner 3 shows deterioration
in condition number with increasing nb (for fixed coefficients in the operator) and thus cannot
be recommended in this context. On the other hand, Preconditioner 4 shows great promise in
such situations. Its properties must be better understood to allow for automatic optimization
of the smoothing-correcting frequencies, and thus making its performance fully robust.

Acknowledgment. The authors thank the referees for the suggestions and remarks that
led to an improved presentation of the paper.
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A FAMILY OF QUASI-MINIMAL RESIDUAL METHODS FOR NONSYMMETRIC
LINEAR SYSTEMS*
CHARLES H. TONG

Abstract. The quasi-minimal residual (QMR) algorithm by Freund, Gutknecht, and Nachtigal [Research Institute

forAdvanced Computer Science Tech.Report 91.09, NASA Ames Research Center, Moffett Field, CA; Numer. Math.,
60 (1991), pp. 315-339], in addition to its ability to avoid breakdowns, also improves the irregular convergence
behaviorencountered by the biconjugate gradient (BiCG) method through the incorporation of quasi minimization.
This paper studies this quasi-minimal residual approach applied, for simplicity, to the nonlook-ahead version of the
QMR method. In particular, a family of quasi-minimal residual methods is defined where on both ends lie the original
QMR method and a minimal residual method while lying in between are the variants derived here. These variants are
shown to consume a little more computational work per iterations than the original QMR method, but generally give
an even better convergence behavior as well as lower iteration counts. The same idea was also applied to a recently
proposed transpose-free quasi-minimal residual method. In particular, a few quasi-minimal residual variants of the
Van der Vorst BiCGSTAB method are derived. Numerical results are presented comparing the quasi-minimal residual
and transpose-free quasi-minimal residual variants derived in this paper.

Key words. Lanczos method, quasi-minimal residual approach, nonsymmetric linear systems, transpose-free
methods

AMS subject classifications. 65F10, 65N20

1. Introduction. Conjugate gradient-like methods for nonsymmetric problems gener-
ally fall into three classes: orthogonalization methods, e.g., GMRES 14]; biorthogonalization
methods, e.g., biconjugate gradient [6], 11 ]; and methods based on normal equation approach,
e.g., conjugate gradient normal residual (CGNR) 10]. Due to its short recurrences, and thus
lower storage requirements, the class of biorthogonalization methods has been studied exten-
sively in recent years. The earliest algorithm in this class is the biconjugate gradient (BiCG)
algorithm,, which was first proposed by Lanczos 11 ], and then rediscovered by Fletcher [6].
Despite its advantage, BiCG also suffers from a few well-known drawbacks. These drawbacks
are the need for adjoint matrix vector multiplication (A r y), the possibility of breakdowns or
near breakdowns, and its irregular convergence behavior. Subsequently, transpose-free meth-
ods such as conjugate gradient squared (CGS) [16], BiCGSTAB [18], etc., were developed
to alleviate the need for adjoint matrix vector multiplies. To address the breakdown or near-
breakdown problem, Freund, Gutknecht, and Nachtigal [8], [9] proposed the quasi-minimal
residual (QMR) algorithm, which is based on a look-ahead Lanczos procedure to overcome
curable breakdowns. The quasi-minimization step, in addition to curing one of the breakdown
problems, also gives a smoother convergence curve. Such a quasi-minimization step can be
applied to the transpose methods such as CGS and BiCGSTAB, giving rise to the recently
developed algorithms such as Freund’s transpose-free QMR algorithm [7], the transpose-free
QMR method of Chan, De Pillis, and Van der Vorst [3], and QMRCGSTABx algorithms of
Chan et al. [4].

While Faber and Manteuffel [5] proved that generally there exists no conjugate gradient-
type scheme that incorporates both short recurrences and a minimization property, the quasi-
minimal residual approach represents a step toward a compromise between these two conflict-
ing but desirable features. This paper shows that a family of quasi-minimal residual methods
(for simplicity, the nonlook-ahead version is used here) can be defined that is based on the use
of different weight matrices (to be defined later) in the quasi-minimization step. We show that
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when this weight matrix is very sparse (i.e., diagonal), we have a simplified (nonlook-ahead)
version of the Freund, Gutknecht, and Nachtigal quasi-minimal residual method. On the other
hand, if we,allow the weight matrix to be very dense (i.e., upper triangular), we have a minimal
residual method. However, this minimal residual method suffers again from long recurrences.
The variants in this paper are derived by allowing the weight matrices to be other than the
two extremes mentioned above. In particular, we consider weight matrices that are block
diagonal having upper triangular blocks. We show that these QMR (and BiCGSTAB-based
transpose-free QMR) variants generally give smoother convergence curves and lower iteration
counts with increasing block sizes at the expense of little extra computation per iteration.

The outline of this report is as follows. In 2, the basic ideas of the QMR approach are
described and a few QMR variants are then derived. In 3, implementation details of the
QMR variants as well as their computational complexity are given. In 4, numerical results
are presented and discussed. In 5, we consider the transpose-free QMR algorithms and then
derive a few quasi-minimal residual variants of the Van der Vorst BiCGSTAB method 18].
In 6, implementation details of the transpose-free QMR variants are given. In 7, numerical
results are presented and discussed. Finally, in 8, some concluding remarks are made.

2. A family of quasi-minimal residual algorithms.

2.1. The quasi-minimal residual approach. We give a nonsingular and nonsymmetric
N x N matrix A and two initial nonzero vectors Vl Rv and Wl N such that Wl

T
Vl 5 0.

The classical nonsymmetric Lanczos procedure, in exact arithmetic and in the absence of
breakdowns, generates two sequences of vectors

(2.1) Vn {Vl V2 Vn} and Wn={WlWZ Wn},

which satisfy the following two properties. (i) The two sequences span two Krylov subspaces.
That is,

(2.2) span{vl, v2 Vn} span{v1, AVl An-lvl} gn(vl, A),

(2.3) span{wl, w2 wn} span{w1, ArWl (AT)n-lwl} gn(//)l, AT).

(ii) The two sequences satisfy a biorthogonality condition

(2.4) wri vj 3ij,

where 6ij is the Kronecker symbol (that is, ij 1, when j, and 0 otherwise).
The nonsymmetric Lanczos procedure can be written in matrix form as

(2.5) A Vn Vn+ Hen,
where He is a (n + 1) n tridiagonal matrix defined by parameters generated in the Lanczos
process.

This nonsymmetric procedure can be used to find the solution of a linear system Ax b.
In particular, let x0 6 v be any initial guess. The initial residual vector is then ro b Axo.
If we let Vl to r0 and 1/31 be arbitrary with unit 2-norm (for example,//31 1)1), then
the iterate Xn (solution at iteration n) is

(2.6) Xn xo + Vnz, z N.
Moreover, after some manipulations, the residual vector can be written as

-1 H,z)(2.7) rn Vn+ ’n+ (dn ’n+
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where f2n+ is an (n + 1) x (n + 1) diagonal weight matrix (following the Freund and Nachtigal
_(n+l) T )]n+l (n+l)notation [9]), e [1 0 0] p0 --II r0 II, and dn o91P0e

Instead of minimizing the 2-norm of the residual r II, which takes prohibitively large
number of arithmetic operations, the QMR approach minimizes only the Euclidean norm of
the expression (dn f2n+lH,z). The solution of this least squares problem can be computed
by a standard QR decomposition of f2n+lH, giving

(2.8) IRnl2n+lnen QTn
0

where Qn is an orthogonal (n + 1) (n + 1) matrix, and Rn is a nonsingular upper triangular
n n matrix. This gives

min(2.9) z,min dn K2n+lnz IIz--z,"

If we let tn be an n 1 vector consisting of the first n elements of the (n + 1) 1 vector Qndn,
then Zn and the solution Xn are given by

(2.10) zn R tn and xn xo + VnZn

respectively.

2.2. Generalization of the QMR approach. In the simplified (nonlook-ahead) QMR
algorithm, the weight matrix f2n+l was chosen to be a diagonal matrix. In general, f2n+l

-1does not have to be diagonal. In fact, by allowing f2n+ to be upper triangular, it is possible to
-1 is orthonormal. This gives a minimal residual algorithmconstruct an 2n+1 such that V+I f2+

since

(2.11)
minz, r IIz minz, Vn+l -1 .,(n+l)"n+l (P0"2n+le:l "2n+l HenZ) I1

.(n+l) Hegminz, P0n+ll ’2n+l 112

However, since now the matrix "n+l nne is dense upper Hessenberg instead of tridiagonal, the
computation ofz becomes very expensive and takes up a prohibitively large amount of storage.
This algorithm is in fact similar to GMRES except that it is susceptible to breakdowns.

Another alternative is to find a sparse f2n+l (other than diagonal) so that Vn+l -1’n+ be-
comes closer to orthonormal at the expense of requiting to store and use a few more of the

-1 block diagonal where eachprevious direction vectors. A simple variant is to make
block is a 2 2 upper triangular submatrix. This can be accomplished by orthonormalizing
consecutive pairs of vi’s, i.e., orthonormalize v2 against Vl, v4 against v3, and so on. We call
this new weight matrix tn(2) )-1 and then we solve a different least squares problem.’n+l

(2.12) -(2) )-1 e n(2) -1dn (/1 HAzn 112- min dn ’*’n/l) He.z 112,
zR

(//(2)where d, is the same as before (’n+l) aNn dn since all except the first element of dn is

nonzero and ’n+l
R(2) (1, 1) 1). As B,+I is block diagonal with a block size of 2,

will have one more superdiagonal than He. Thus only one additional direction vector needs
to be kept for computing the solution update compared to the QMR method. Also, as will be
shown in later sections, this algorithm takes only one more inner product and one more daxpy
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(y ax + b, where x, y, b are vectors and a is a scalar) operation per iteration compared to
the QMR method. We call this QMR variant BQMR(2) in subsequent sections.

We can further generalize this approach by allowing the weight matrix to be a block
diagonal matrix of block size 3, 4, and so on. In this paper, we implement up to a block size
of 3 (which we call BQMR(3) and the weight matrix for this case is (Bn(3+)1)-1). It becomes

//(n+l) has orthonorrnal columns, and weobvious that when the block size is n 4- 1 Vn+.-.n+
have a minimal residual algorithm similar to GMRES. When the block size is l, we have the
simplified (based on the classical Lanczos procedure) QMR algorithm (to be consistent in the
use of notations, the simplified QMR algorithm will also be called BQMR(1) in subsequent
sections).

2.3. A residual bound for the BQMR(k) algorithms. Freund and Nachtigal [9] have
given a residual bound for the QMR algorithm based on the the following theorem [9].

THEOREM 2.1. Suppose that the m x m matrix Hm generated by m steps of the QMR
algorithm is diagonalizable (m denotes the termination index ofthe look-ahead Lanczos, for
details refer to [9]), and set

(2.13) H f2m_l Hml_i

Then,for n 1, 2 m 1, the residual vectors ofthe QMR algorithm satisfy

(2.14) rn I1_<11 r0 x(H)/n 4- 1 Ln max (o91/coj),
j=l n+l

where

(2.15) x(H) min x II. x- II,
X:X- HXdiagonal

and

(2.16) On min max ]P(k)l.
PEI-In :P(0)=I )E,(A)

This convergence theorem is contingent on the use of a look-ahead Lanczos procedure.
The formulation of BQMR(k) in the last section, however, is based on the classical Lanczos
procedure. Thus this theorem does not hold for BQMR(k), in general, because ofthe possibility
of breakdowns. Nevertheless, suppose that for a given test problem, BQMR(k) does not

Tencounter breakdowns of the type w vn O, Vn O, Wn O. Then we can derive a similar
convergence bound for the BQMR(k) algorithms. Since this bound is rather restricted or not
rigorous, we will state it as a remark instead of a theorem.

Remark. Suppose an N N linear system is given and in exact arithmetic, the BQMR(k)
for some k < N terminates at iteration m

_
N with l)m+l 0 or L0m+I 0 (note

that this index m is different from that defined in [9]), and no breakdown of the type v w,
O, Vn 5 O, Wn 5 0 occurs at iterations 1 through m. Furthermore, suppose the m m matrix

Hm generated by m steps of the BQMR(k) algorithm is diagonalizable, and set

(2.17) H- (S(mk)_l)-l UmS(mk!l
Then, for n 1, 2 m 1, the residual vectors of the BQMR(k) algorithm satisfy

(2.18) r, II]l ro x(H)In+l ]k
On’
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where

(2.19) On min max IP(,k)I.
PEFIn:P(O)=I )EX(A)

Proof. The proof of this remark is similar to that of the Freund and Nachtigal theorem
stated above. In this theorem, the factor /n + 1 arises from bounding gn/ II, A tighter
bound (by a factor of /) can be prescribed by realizing that Vn+lB is k-orthonormal
(columns through k are orthonormal, columns k+ through 2k are orthonormal, etc.). More-
over, since He is tridiagonal and n(k) is block diagonal with upper triangular blocks andUn+l

nonzero diagonal elements, ’,Un+l)t’R(k) -1 "’n/-ire’-’n+l(k) is upper Hessenberg with nonzero subdiagonal.
Using this fact, together with the proof in [9], we obtain the same On as in [9], and thus we
arrive at the above remark. D

The above remark is given to shed some light on the convergence behavior of these QMR
variants. This remark basically implies that the larger the block size (k) used, the tighter are
the residual bounds if no breakdown occurs. In the limit when k n + (or BQMR(oo)) and
in absence of breakdowns, the residual bound is the same as the GMRES residual bound.

3. Implementation and complexity of the BQMR(k) algorithms.

3.1. Implementation details.

3.1.1. TheBQMR(2) algorithm. Considering the BQMR(2) algorithm, solving the least
squares problem

(3.1) dn [//(2) -1 e e
-,n+l, Hnz" Ilz- min dn -(B2+)l)-I H,z 112

basically involves three steps.
.-.(2).Step 1. Update t,+.

rn(2) )_Step 2. Update the relatively sparse matrix , ...,,+ Hne.
Step 3. Perform QR decomposition on He. to get R., and apply the same n to d to get

tn [Z’l Z’n]T.
The solution can then be updated by

(3.2) Xn Xn-1 + VnRI[o 0 n]T.
Since the update processes for the first and second step are different for odd and even

iterations, we shall describe them separately.
At the odd iterations, u(2 and Hne are of the formUn+l

0

(3.3) "-’n+l
3n+l

0 6n+l

Hne_l

0

R(2) hn(3.4) .n+lUn

-(2)., namely, tn+ and ?n+l can be computed by orthonormalizing Vn+lThe new entries in tn+
against Vn.

Let the nth column ofH be denoted by hn [0 fin an Yn+l] r (which has a vector of
length n + 1). Then, at the nth iteration,/_),e,e can be updated by performing a U-solve (solving
a linear system where the matrix is upper triangular), that is, to find a vector Un such that

0 0 J/n+l
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where Un will have the form [0 0 ]Z4 /Z /Z2 /Zl] T.
At the even iterations, the derivation can be carried out similarly. Here no orthonormal-

ization needs to be performed. Also R(2) is in a different form:"n+l

R(2) On(2)
(3.5) "n+

R(2)Again, a U-solve is performed on -n+l Un h., where now the fourth-to-the-last entry (/z4 in
the odd case) in Un is 0.

Step 3 first applies the previous Givens rotations to un’s so that

(3.6) Qn-lUn [0 0 1)4 1)3 1)2 tl 1]T.

Next a new Givens rotation is used to zero out the entry corresponding to/Zl giving

(3.7) Onun [0 0 1)4 1)3 1)2 1)1 0] T,

which is the last column of Rn. The computation of tn Qndn can be performed the same
way as in BQMR(1).

Finally, the expression VnRI[o 0 rn] r needs to be evaluated. This can be achieved
by defining a sequence of vectors Yi where

(3.8) r’. [y 9,2 y.] v.12,
and the solution can be updated by

(3.9) Xn Xn-1 "1" 72n * Yn.

It is straightforward to show that

(3.10) yn Vn 1)2Yn-1 1)3Yn-2 1)4Yn-3)/1)1.

In [9], it was shown that the BQMR(1) residual can be updated by

(3.11) ..BQMR(1) 2 BQMR(1)
tn Sn+lrn_l Cn+l n+l l)n+l.

The BQMR(2) residual can be updated slightly differently by

(3.12) ,BQMR(2) 2 BQMR(2)
n Sn+lrn_ Cn+l ’n+113n+l,

//(2)where 3.+ is the (n + 1)th column of Vn+l ’n+l"
The pseudocode for the BQMR(2) algorithm is presented in the following.

ALGORITHM BQMR(2)
(1) Initialization

(a) ro b Axo; Vl ’0/ II/’0 II; Wl arbitrary
BQMR(2)(b) Y-2 Y-1 Yo v-1 vo w-1 w0 0; r0 ro

(C) fl -II ro II; s-z s-1 so O; c-2 c-1 co -1
(d) 60 1; 3o =/1 J/1 0

(2) For n 1, 2 do
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TArn(a) o/n ton
(b) ln+ A vn ctn vn, -/n 1)n-

(C) Ln+l ATton Onton Ynton-1
(d) r’+l ln+l II;/n+ ton+l~T 1n+l/yn+l
(e) l)n+ n+l//n+l; ton+l l)n+l/n+l;

(3) U-solve to get the modified H matrix
(a) if n is odd

ln+l Vn+l (Vn+lvn)I)n; 13n+l n+l/ Tn+l
n+l 1/ Tn+l II; n+ =--(1)n+ll)n) * Sn+l
111 n+l/6.n+l; lA2 Oln --n+l *//1; ]A3 n/-n-1; ]An --n-1 * 3

(b) else if n is even
//1 n+l; /A2 Oln/Sn; lA3 n n * tA2; IA4 0
/3n+ Un+

(4) Perform quasi minimization
(a) v4 Sn-2 */z4; t3 --Cn-2 * Iz4
(b) v3 -Cn-1 * t3 + Sn-1 */Z3; t2 --Sn-1 * t3 On-1 *
(C) V2 --Cn * t2 + Sn */Z2; tl --Sn * t2 Cn * IZ2
(d) if (I/Zll > [tll) ta -tl//Zl; Sn+l l/V/1 + ta2; Cn+l Cn+l * ta
(e) else ta --/Zl/tl; Cn+l l/v/1 + ta2; Sn+l Cn+l * ta
(f) Vl --Cn+l * tl + Sn+l */Zl; r --Cn+l f; f --Sn+l f
(g) Yn (l)n VZyn-1 1)3Yn-2- V4Yn-3)/Vl

(5) Update solution and residual
(a) Xn Xn_ +

2 ..BQMR(2)(b) rnBQMR(2) Sn+lrn_l Cn+l ft3n+l
(6) End for

3.1.2. The BQMR(3) algorithm. The BQMR(3) algorithm can be derived in a similar
way. The pseudocode for the BQMR(3) algorithm is presented here.

ALGORITHM BQMR(3)
(1) Initialization

(a) ro b Axo; Vl r0/ ro II; w arbitrary
BQMR(3)(b) Y-3 Y-2 Y-1 Yo v-1 Po to-1 wo 0; r0 ro

(c) f -II r0 II; s-3 s-2 s-1 so 0
(d) C-3 C-2 C-1 CO --1; e0 e-1 1; 60 t-I 0 0

(2) For n 1, 2 do
same as step (2a)-(2e) in Algorithm BQMR(2)

(3) U-solve to get the modified H matrix
(a) if mod(n,3) 1

T
Un+l Un+l (Un+1Un)Un; 1)n+l n+l/ ln+l
n/l 1/ tTn/l II; /1 =--(Vnr+lV) * n/l
lA1 n+l/-n+l; ]A2 Oln --n+l */A1; ]A3 n/f-n-1
/Z4 --n-1 */A3/Sn-2; /A5 --n-2 * 4 * 3

(b) else if mod(n,3) 2
T T

Vn+l l)n+l (Vn+lvn-1)vn-1 (l)n+ln)n; 13n+l n+l/ Tn+
TSn+ 1/II ln+l II; n+l ----(Vn+ll)n)* Sn+l *Sn

T T
/’] --Sn+l * l)n+ l)n-1 ?n+l * (1)n+ 11)n) * n
lA1 Yn+l/Sn+l; 2 (Oln --n+l *
/Z3 fin tn */Z2 1 * /Z l; /Z4 /Z5 0
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(c) else if mod(n,3) 0
//1 n+l; 2 --Oln/Sn; 3 (n --n * ]2)/6n-1
//4 --n-1 *//3 */Z2; //5 0; 13n+ l)n+

(4) Perform quasi minimization
(a) 1)5 Sn_ *//,5; t4 --Cn-3 * 115
(b) 1)4 -n-2 * t4 -- Sn-2 * 4; t3 -Sn-2 * t4 n-2 * 4
(c) 1)3 ---Cn-1 * t3 " Sn-1 * ]3; t2 -"-Sn-1 * t3- Cn-1 * 13
(c) 1)2 -Cn * t2 + Sn * 2; tl -Sn * t2 Cn * 2
(d) if (lzll > Itll) t -t/Zl; Sn/l l/v/1 + ta; Cn+I Cn+l * ta
(e) else ta --/Zl/tl; Cn+l l/V/1 + ta2; Sn+l Cn+l * ta
(f) Vl --Cn+l * tl + Sn+l */Zl; V --Cn+l f; f --Sn+l f
(g) Yn (Vn P2Yn-1 1)3Yn-2- 1)4Yn-3 1)5Yn-4)/1)1

(5) Update solution and residual
(a) x. Xn-1 "1" Zyn

2 .BQMR(3)(b) rnBQMR(3) Sn+lrn_ CnW1 fn+l
(6) End for

3.2. Complexity and storage analysis. Table 3.1 shows the operation counts required
for the BQMR(1), BQMR(2), and BQMR(3) algorithms. Since the operation counts for the
BQMR(2) algorithm are different between odd and even iterations, only their average is listed.
The same is true for BQMR(3). BQMR(2) and BQMR(3) are only slightly more expensive
than BQMR(1). When large block size k is used, the operation count for BQMR(k) per
iteration grows with the square of the block size.

TABLE 3.1
Complexity and storage statistics per iteration.

Method 1(4,,,I Total op. count Storage
BQMR(1) 2 4 7 6 28N+2 (MVP + P) 12N+A

BQMR(2) 2 5 8 6 32N+2 (MVP + P) 13N+A

BQMR(3) 2 6 9 6 36N+2 (MVP + P) 14N+A

(1) Number of matrix vector multiplications

(2) Number of inner product calculations

(3) Number of daxpy operations

(4) Number of other (e.g., vector add) operations

P preconditioning

MVP matrix vector products.

4. Numerical experiments with BQMR(k) algorithms. The numerical examples used
in this experiment range from a two-dimensional convection diffusion equation to the problems
in the Harwell-Boeing collections [2]. cde31 and cde63 are the convection-diffusion equations

((4.1) /Xu + x-ff-fx + y +flu=f,

where y 50 and 100,/3 -25 and -100 for n 31 (i.e., 31 x 31 grid) and n 63,
respectively. The rest of the problems were obtained from the Harwell-Boeing collection.
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Table 4.1 shows the iteration counts for the different algorithms without preconditioning
and with right ILUT(0) preconditioning. (This ILUT(0) was originally proposed by Saad
13]. The version used in this experiment, however, was borrowed from the implementation
by Freund and Nachtigal.) The result for GMRES (nonrestarted version) is also included
for comparison purposes since, when breakdown does not occur, GMRES is mathematically
equivalent to BQMR(o). The stopping criterion used here is r / r0 I1< 10-8,
Moreover, x0 0 and t0 r0.

TABLE 4.1
Iteration countsfor different problems.

cde31 101 26 101 26 91 26 24

cde63 259 45 259 43 259 43 39

orsregl 323 29 323 27 318 26 24

orsirr 1026 21 1020 21 1016 20 19

orsirr2 721 22 720 22 718 21 19

shermanl 437 33 437 32 437 32 28

sherman3 (a) 82 (a) 82 (a) 82 76

sherman4 134 35 134 35 134 34 33

sherman5 (a) 24 (a) 23 (a) 23 22

saylrl (a) 14 (a) 14 (a) 14 11

saylr3 435 33 435 32 435 32 28

saylr4 (a) 50 (a) 50 (a) 49 44

(U) No preconditioning

(P) ILUT(0) preconditioning used

(a) > 2000 iterations

From Table 4.1, it can also be observed that the number of iterations needed for the
BQMR(k) algorithms in most cases is not much more than the GMRES algorithm. The
number of iterations for BQMR(k) decreases typically when k increases from one to three.
However, Table 4.1 does not reflect the total cost for each method on a given problem, since
the different methods have unequal cc.st per iteration.

If the total operation count is the sole criterion for determining efficiency, then BQMR(1)
is more efficient than BQMR(2) and BQMR(3) in most problems considered here. However,
for some problems such as orsregl, BQMR(2) with preconditioning is more efficient. An
analysis is given as follows.

orsregl has N 2205 and number of nonzeros NNZ 14133.
A matrix vector multiply takes NNZ/N x 2 12.8N operations.
There are three matrix vector multiply and two ILUT(0) preconditioning per iteration
-> cost 12.8N x 5 64N operations.
Total operation count per iteration for BQMR(1) 64N + 28N 92N.
Total operation count per iteration for BQMR(2) 64N + 32N 96N.
Total operation count for BQMR(1) 92N 29 2668N operations.
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Total operation count for BQMR(2) 96N 27 2592N operations.
EventhoughBQMR(1) seems to be more efficient in mostproblems, there are other factors

that can affect performance. For example, it is well known that matrix vector multiplication
and preconditioning are much more expensive than vector operations, especially on some
parallel computers and on supercomputers without efficient gather/scatter hardware support.
Thus, on these advanced computers, BQMR(2) and BQMR(3) are potentially more efficient,
in addition to giving smoother convergence curves than BQMR(1).

The convergence history of a convection diffusion equation cde63 is also plotted as shown
in Fig. 1. The plots basically show that BQMR(1) does help to smooth out the irregular
convergence behavior of BCG; and BQMR(2) and BQMR(3) most of the time give an even
smoother convergence behavior.

101

100

10-1

= 10-2

10-3

" 10"4

10-5

10-6

solid line BQMR(1)

dashed line- BQMR(2)

dotted line BQMR(3)

10-7
0 5 10 15 20 25 30 35 40 45

iteration number

FIG. 1. Convergence historyfor the ode63 problem (ILUT(0) preconditioned).

5. Transpose-free quasi-minimal residual algorithms.

5.1. A transpose-free QMR algorithm based on BiCGSTAB. In many engineering
applications the matrix vector product Ary is not easily computable. This, together with
other efficiency issues, has motivated the transpose-free Lanczos-based algorithms. The first
ofthese is CGS 16] that often gives extremely irregular convergence curves. Since Freund and
Nachtigal [9] have shown that quasi minimization does help to give a smoother convergence
behavior for BCG, quasi minimization has also been applied to transpose-free methods giving
rise to the several transpose-free QMR methods such as Freund’s transpose-free QMR method
[7], the transpose-free implementation of the simplified QMR method of Chan, De Pillis, and
Van der Vorst [3], and the transpose-free QMR method based on the BiCGSTAB algorithm of
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Chan et al. [4] (QMRCGSTABx). Since this paper proposes variants of the QMRCGSTAB 1
method, only this method will be described in detail.

QMRCGSTAB 1 was developed in the same spirit as Freund developed his transpose-free
QMR method from CGS. QMRCGSTAB was derived based on the matrix representation
of Van der Vorst’s BiCGSTAB algorithm 18]. In particular, the vectors generated by the
BiCGSTAB process can be put into the following matrix form

(5.1) AYm Wm+lZn
where Ym [Pl S1 P2 $2"" "], lYm [?’0 S1 rl s2...], and pi’s, ri’s, and $i’S are defined in
the BiCGSTAB algorithm [18]. Moreover, Ln is the product of an (m + 1) x rn bidiagonal
matrix (which has unity diagonal and ’s on the subdiagonal) with an rn x rn diagonal matrix
(-- diag[a-lw-la-log-1.. .]). The solution can be written in the form

(5.2) Xm XO + YmZ for some z m,

and the corresponding residual is

(5.3)
r ro AYmz

Wm+l (el’’+) Lemz).
-1Wm+i ’m+i ["m+l (elm+l) Lemz)].

The idea of QMRCGSTAB is to minimize the expression "2m+l (elm+l) Lemz). Having the
knowledge of the Ln matrix, quasi minimization can be carried out the same way it was done
in deriving Freund’s transpose-free QMR algorithm [7].

5.2. A family of transpose-free quasi-minimal residual algorithms. The generaliza-
tion of the quasi-minimization step described in 2 can also be applied to the transpose-free
Lanczos-based algorithms. In particular, we choose to start with the QMRCGSTAB 1 algo-
rithm [4]. (We can also start with the CGS algorithm giving rise to variants of Freund’s
transpose-free QMR algorithm.) In QMRCGSTAB1, 2m+1 is a diagonal matrix. In general,

-1 n(k) to be upper"m+l does not have to be a diagonal matrix. Again, if we let f2m+ "m+l
n(k) is orthonormal, we have a minimal residual algorithm. How-triangular such that Wm+l ’m+

ever, this is too expensive to compute. The strategy we propose in this paper is to determine
a relatively sparse n() such that Wm+l R() is close to orthonormal. For example, we can"m+l
orthonormalize sl against r0. (These vectors are defined in [18], s2 against rl, and so on, so

n() is pairwise orthonormal (having (m + 1)/2q subblocks where each subblockthat Wm+ "m+
is orthonormal).) To accomplish this, n() is constructed to be block diagonal with block’m+l
size 2 (each block is 2 x 2 upper triangular). We call this QMRCGSTAB(2). (To be consistent
in naming the methods, QMRCGSTAB will subsequently be called QMRCGSTAB(1). We
can further generalize this approach by generating orthonormal groups in Wm+l of size k.
Again this can be accomplished by using a sparse R(k) weight matrix to be block diagonal"m+l
with block size k. In this paper we also implement the case when k 4 and we call this
QMRCGSTAB(4).

6. Implementation and complexity of the transpose-free QMR algorithms.

6.1. Implementation details. Considering the QMRCGSTAB(k) algorithms, solving
the least squares problem basically involves three steps.

Step 1. Update Bm+l.
[O(k) )-1 eStep 2. Update the relatively sparse matrix n ’m+l L,n"
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(m-t-l)Step 3. Perform QR decomposition on/:em to get Rm, and apply the same Qm to poe
to get tm [’rl Zm]T.
The solution can then be updated by

(6.1) Xm --Xm-1 dr- YmRnl[O 0 rm] T.

The details ofthe QMRCGSTAB(k) algorithms for k 2, 4 are described in the following
sections.

6.1.1. Implementation of QMRCGSTAB(2) algorithms. The pseudocode for the
QMRCGSTAB(2) algorithm is as follows.

ALGORITHM QMRCGSTAB(2)
(1) Initialization

(a) ro b Axo; /71 arbitrary, :0r0 : 0
(b) Po v0 do 0; Po ao too 1; f r =11 ro
(C) S-1 SO 0; C-1 CO --1; ’11 1/II r0 II; w0 llF0

(2) For n 1, 2 do
(a) Pn Prn-1; fin (pnOtn-1)/(Pn-lton-1)
(b) Pn rn-1 + fln(Pn-1 --ton-1Vn-1)
(c) Vn Apn; Cn Pn/(YVn); Yn rn --CnVn

(3) U-solve to get the modified B matrix

m 2n 1; thin Yn (YrnWm--1)Wm--1; 22 1/ lm [I; tom :22lm
12 --(ynTtOm-1)’22ll; /Zl --1/(Cn22); //,2 l/[(On --12/Zl)611]
V2 Sm-1//,2; 61 --Cm-IIZ2
dm= Pn vzdm-

(4) Continue quasi minimization

if (I/zal > 131) -31//z; Sm 1//i + 2; Cm S
else --/z/8; Cm l/v/1 + 2; Sm C
I) --Cm31 -- SmlZ1; r --Cmf; f --Sm,; dm dm/Vl
Xm Xm-1 -JI- dm

(5) Continue with BiCGSTAB

tn Ayn
oo <yr. t)/<tr, t)
r Yn--tontn

(6) second U-solve to get the modified B matrix
m 2n; 33 1/II r II; Wm 33r
/Zl --1/(ton33);/z2 1/(ton22)
3 --(612/d,2)/611; I)3 Sm-2//,3; 2 --Cm-2//,3; 1)2 --Cm-l2 21- Sm-lld,2
Ell 633; tl --Sm-l2 Cm-1/Z2, [m Yn I)3dm-2 I)2dm-1

(7) Continue quasi minimization

if (I/zll Ill) -l//Zl; s 1/v/i / 2; Cm Sm
else -lZl/l;Cm l/v/1 + 2; Sm= cm
1) --Cmt -- SmlZ "r, --Cm f f --Sm f dm lm /Pl
Xm Xm-1 -I- vdm

(8) If xm is accurate enough, stop
(9) End for

6.1.2. Implementation of QMRCGSTAB(4) algorithm. The pseudocode for the
QMRCGSTAB(4) algorithm is as follows.
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ALGORITHM QMRCGSTAB(4)

(1) Initialization
(a) ro b Axo; /1 arbitrary, Yoro 0
(b) Po vo do O; Po uo o90 1; r -II ro
(c) s-3 s-2 s-1 so O; c-3 c-2 c-1 co -1
(d) 611 1/II ro II; wo ro

(2) For n 1, 2 do
same as step (2a)-(2c) in Algorithm QMRCGSTAB(2)

(3) U-solve to get the modified B matrix

(a) if mod(n,2)-- (m 2n- 1)
l)m Yn (yTntom-1)tom-1; 622 1/ /m I[; tOm 622/m
612 --(ynTtOm-1)622611; /Z1 --1/(Ctn622); /Z2 1/[(Ctn --612/Z1)611
1)2 Sin-l/Z2; 31 --Cm-llZ2m Pn vzdm-1

(b) else if mod(n,2) 0
l)m Yn (yTn tOm-1)tOm-1 (yTn tOm-2)tOm-2 (yTn tOm-3)tOm-3
644 1/II /m II; Wm 4413m
614 --644[(ynTtOm-1)611 - (ynTtOm-2)612 + (ynTtOm-3)613]
624 --644[(ynTtOm-2)622 "-1- (ynTtOm-3)633]
634 --644(ynTtOm-3)633; /Zl --1/(0n644); /Z2 (1/Oln --634/J1)/633
/Z3 --(624/Z1 -- 623/Z2)/622; /Z4 --(614/Z1 -+- 613/Z2 -- 612/Z3)/611
1)4 --Cm-3/Z4; 33 wCm-3lZ4; 1)3 Cm-233 Srn-2lZ3
32 --Sm-233 Cm-23
1)2 --Cm-132 .4- Sm_I/Z2; 31 --Sm_132 Cm_ll,Z2
lm Pn vndm-3 v3dm-2- v2dm-1

(4) Continue quasi minimization-same as step (4) in QMRCGSTAB(2)
(5) Continue with BiCGSTAB-same as step (5) in QMRCGSTAB(2)
(6) second U-solve to get the modified B matrix

(a) if mod(n,2)= (m 2n 1)
m rn (rTn tOm-1)tOm-1 (rTn tOm-2)tOm-2
633 1/II /m II; tOm 633m
613 --633[(rnTtOm-1)611 q- (rnTtOm-2)612]; 623 --(rnTtOm-2)622633
/Zl --1/(ton633); /Z2 (l/tOn --623/Zl)/622
/Z3 --(613/Z1 "[- 612/Z2)/611; 1)3 Sm-2/Z3; 32 --Cm-2IZ3
1)2 --m-132 -]- Sm-llZ2; 31 --Sm-132 Cm-llZ2
dm Yn v3dm-2 vzdm-1

(b) else if mod(n,2) 0 (m 2n)
55 1/II r II; Wm 55r;/1 --1/(tOn655); /Z2 1/(tOn644)
/Z3 --(634/Z2)/633; /Z4 --(624/Z2 q-623/Z3)/622
//5 --(614/Z2 d- 613/Z3 -I- 612/Z4)/611; 611 655
1)5 "---Cm-4/Z5; 34 :--Cm-4ld,5

1)4 --Cm-334 "l- Sm-3/Z4; 33 --Sm-334 Cm-3lZ4
1)3 --Cm-233 "-[- Sm-2/Z3; 32 --Sm-233 Cm-2lZ3
1)2 --m-132 "- Sm-1/Z2; 31 --Sm-132 --Cm-llZ2
dm Yn vsdm-4 v4dm-3 v3dm-2 1)zdm-1

(7) Continue quasi minimization

if (I/Zll > 1311) -31//Xl; Sm l/v/1 + 2; Cm Sm
else --/zl/31; cm l/V/1 + 2; Sm Cm
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1) --Cm + SmlZl; r --Cmf; f --Smf; dm dm/1)l
Xm Xm .3ff 75dm

(8) If Xm is accurate enough, stop
(9) End for

6.2. Complexity and storage analysis. Table 6.1 shows the operation counts for the
QMRCGSTAB(1), QMRCGSTAB(2), and QMRCGSTAB(4) algorithms. Since the operation
counts for the QMRCGSTAB(2) algorithm are different between odd and even iterations, only
their average is listed. The same is true for QMRCGSTAB(4).

TABIE 6.1
Complexity and storage statistics per iteration.

QMRCGSTAB(1) 2 6 8 0

QMRCGSTAB(2) 2 7 10 4

QMRCGSTAB(4) 2 9 14 4

(1) Number of matrix vector multiplications

(2) Number of inner product calculations

(3) Number of daxpy operations

(4) Number of other (e.g., vector add) operations

A storage for the A matrix

P preconditioning

MVP matrix vector products.

Total op. count I[ Storage

28N+2 (MVP + P) 8N+A

38N+2 (MVP + P) 9N+A

50N+2 (MVP + P) 11N+A

7. Numerical experiments for the transpose-free QMR algorithms. The set of nu-
merical examples used here is the same as in 4. Table 7.1 shows the iteration counts for the
different algorithms. The initial solution x0 is a random vector, 0 r0, and the stopping
criterion is r / b < 10-8.

It can be observed from Table 7.1 that the number of iterations needed for the
QMRCGSTAB (k) algorithms in most cases is about half of those of GMRES when pre-
conditioning is used. Again, the number of iterations for QMRCGSTAB(k) is in most cases
slightly lower when larger k is used. Again, due to unequal costs per iteration between the
methods, iteration counts alone do not reflect the actual efficiency, which is affected by many
other factors such as total operation counts and the target computer architecture on computers
where matrix vector multiplication is much more expensive than vector operations (as on some
supercomputers where efficient gather/scatter hardware is not available). Hence again, in addi-
tion to giving smoother convergence curves, the QMRCGSTAB(k) algorithms are potentially
more efficient.

In addition to the iteration counts, the convergence history for a convection diffusion
equation cde63 is also plotted in Fig. 2.

8. Concluding remarks. In this paper, we explored the use of different weight matri-
ces in the quasi-minimal residual algorithms, and we derived several QMR variants such
as BQMR(2) and BQMR(3) algorithms and transpose-free QMR variants such as QMR-
CGSTAB(2) and QMRCGSTAB(4) algorithms. These variants were shown to represent a few
of the many possibilities lying in the spectrum of quasi-minimal residual (and transpose-free
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Problem [[

TABLE 7.1
Iteration countsfor differentproblems.

cde31

cde63

orsregl

osrirrl

orsirr2

shermanl

sherman3

sherman4

sherman5

saylr

saylr3

saylr4

65 16 65 16 64 16 24

119 26 119 26 118 25 39

308 16 305 15 303 15 24

1437 12 1383 12 1358 11 19

882 12 824 12 804 12 19

400 18 369 18 362 18 28

(a) 65 ( 65 (a) 64 76

110 25 106 23 105 23 33

1848 15 1843 14 1812 14 22

(a) 9 (a) 9 (a) 8 11

345 18 353 18 348 18 28

(a) 33 (a) 32 (a) 31 44

(A) QMRCGSTAB(1)

(B) QMRCGSTAB(2)

(C) QMRCGSTAB(4)

(U) No preconditioning

(P) ILUT(0) preconditioning used

(a) > 2000 iterations

QMR) algorithms where on the two ends are nonlook-ahead QMR and a GMRES-like min-
imal residual algorithm, respectively. We showed that these variants are only slightly more
expensive than BQMR(1) and QMRCGSTAB(1) per iteration but they generally give smoother
convergence curves. Moreover, in general these variants also give a slightly faster convergence
rate. Thus these variants can potentially be more efficient for the following situations:

when the reduction in iteration count is such that the total operation count is lower
(e.g., orsregl for BQMR(2));
when the percentage of nonzeros in the problem matrix is relatively high so that
matrix vector multiply is relatively more expensive than the overhead for doing quasi
minimization;
when more powerful preconditioners are used (e.g., ILUT(k) for large k) so that the
overhead for doing quasi minimization is relatively inexpensive;
on certain computer platform (e.g., on some parallel computers or supercomputers
with no gather/scatter hardware) where matrix vector multiply is much more expen-
sive than daxpy and dot products.
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PHASE FIELD COMPUTATIONS OF SINGLE-NEEDLE CRYSTALS, CRYSTAL
GROWTH, AND MOTION BY MEAN CURVATURE*

G. CAGINALP AND E. SOCOLOVSKY

Abstract. The phase field model for free boundaries consists of a system of parabolic differential equations in
which the variables represent a phase (or "order") parameter and temperature, respectively. The parameters in the
equations are related directly to the physical observables including the interracial width 6, which we can regard as
a free parameter in computation. The phase field equations can be used to compute a wide range of sharp interface
problems including the classical Stefan model, its modification to incorporate surface-tension and/or surface kinetic
terms, the Cahn-Allen motion by mean curvature, the Hele-Shaw model, etc. Also included is anisotropy in the
equilibrium and dynamical forms generally considered by materials scientists. By adjusting the parameters, the
computations can be varied continuously from single-needle dendritic to faceted crystals.

The computational method consists of smoothing a sharp interface problem within the scaling of distinguished
limits ofthe phase field equations that preserve the physically important parameters. The two-dimensional calculations
indicate that this efficient method for treating these stiff problems results in very accurate interface determination
without interface tracking. These methods are tested against exact and analytical results available in planar waves,
faceted growth, and motion by mean curvature up to extinction time.

The results obtained for the single-needle crystal show a constant velocity growth, as expected from laboratory
experiments.
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1. Introduction. The problem ofnumerical computation of a moving boundary has been
under active study from a number of perspectives (see [G1] for a survey). The phase field
approach to free boundaries has two appealing features: (i) a broad spectrum of distinct
problems that can be studied by means of a single set of equations, and (ii) the interface in
these problems does not need to be tracked explicitly, as the computations use a system of
parabolic equations in which the interface has been diffused.

The phase field equations specifically identify all macroscopic parameters, e.g., latent
heat, diffusivity, etc., and a parameter that is a measure of interface thickness.

We begin by defining a set of sharp interface problems in a spatial region f2 C Itn with
the interface defined as F(t) with R+. A basic problem is to find a temperature function
T(x, t) and a curve (or surface) F(t) C that satisfy the equations

(1.1) pCspmTt KAT in f2 \ F(t),

(1.2) per KVT n]_ on F(t),

o" o’1)

(1.3) T Te -tc or,----- on F(t).
Isle Isle

Te equilibrium melting temperature,

:- latent heat per unit mass,

K := thermal conductivity,

cr "= surface tension between two phases,

p "= density,
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Cspm :"- specific heat per unit mass,

[s]e := entropy difference between phases per unit volume,

v := normal velocity (positive if motion is directed toward liquid),

x := sum of principal curvatures at the particular point on the interface,

VT n] := jump in the normal component of the temperature (from solid to liquid),

a "= kinetic undercooling coefficient.

By defining a dimensionless temperature, u := (T TF)Cspm/g., a diffusion parameter
D := K/Pcspm, and a "capillary length" do := aCspm/([s]ee), one can rewrite (1.1)-(1.3) as

(1.1’) ut DAu in f2 \ F(t),

(1.2’) v DVu. n]_ on F’(t),

(1.3’) u -dox otdov on 1-’ (t).

Note that the parameter D simply adjusts the time versus length scales in the problem. Thus
one could set D := 1 by simply adjusting a (which has units of time/(space)a, as does -).
Within this scaling, the latent heat g has been incorporated into the dimensionless temperature
so that the coefficient of v in (1.2’) is unity. For the limiting situations such as Hele-Shaw in
which latent heat approaches zero, one must adopt a scaling such as (1.1)-(1.3), which avoids
division by g.

The oldest mathematical model for an interface between two phases, e.g., liquid and solid,
is known as the classical Stefan model and incorporates heat diffusion (1.1) and the latent heat
due to fusion (1.2). Furthermore, it stipulates that the interfacial temperature remains at the
melting temperature, i.e., u 0 replaces (1.2). This last condition amounts to setting cr 0
in (1.3) or do 0 in (1.3’). Although the capillarity length do is often very small compared
to the other length scales in the problem, such as x -1 it is nevertheless very significant as a
stabilizing force [Ch].

The classical Stefan model’s neglect of surface tension and surface kinetics can be partially
remedied by the imposition of (1.3) with finite a and a. The numerical study of the surface
tension and kinetics model (1.1)-(1.3) then becomes even more challenging as a consequence
of the curvature term in (1.3).

Another sharp interface problem that arises in the context of a fluid between two plates is
the Hele-Shaw model, which can be expressed as equations 1.1)-( 1.3) with the left-hand side
of (1.1) set at zero. For the Hele-Shaw problem, u describes pressure, and the constants g, x,
etc. represent different physical quantities (see [Oc], [Cr] and references contained therein).

Finally, one may consider the Cahn-Allen model of motion by mean curvature problem
[AC], in which the interface moves with normal velocity

-1
(.4) v x

at each point on the interface F (t).
Anisotropy may be considered in all of the problems above. In typical materials, the

anisotropy is present in the surface tension a and in the kinetic coefficient a so that (1.3’)
becomes

(.5) u -do(O)x. a(O)clo(O)v,
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where c is now a function of the orientation angle 0, and

r (0) + r"(0)
(1.5’) do(O) :=

[S]Ee Cspm.

The term/3(0) := a(O)do(O) is often called the mobility (see [Ta] for general discussion).
The orientation angle 0 may be defined as the angle between the normal to the interface and
a fixed direction, or the angle between a fixed direction and the line from a central point to a
point of the interface.

The precise nature of anisotropy and its interaction with undercooling (liquid below the
equilibrium freezing temperature) is important in determining the shape of the interface, and
one can obtain both a single-needle crystal and cubic crystal growth from a cubic symmetry
material (see 5 for details).

Another approach to free boundary problems involves the use of a phase or "order"
parameter p that specifies the phases (p

_
1 is liquid, p __. -1 is solid) while the level set

p 0 is now the interface. This approach has its origins in Landau theory [LL], Cahn-Hilliard
type equations [CaHi], [La], and the application of mean field theory to critical phenomena
[HH].

Phase field theories are generally rooted in the idea that each molecule or "spin" is under
the influence of all others that effectively constitute an average "field" of interactions. This, of
course, is a vast simplification over evaluating the sum over all possible states to calculate the
partition function and, thereby, the free energy. Preliminary reports on a system of equations
closely related to those discussed here (but with a different scaling that does not precisely
attain any of the sharp interface models defined above) include [Ca] and [F].

The variable p represents the mean field or "averaged" description of the phase at each
point (t, x) in time-space. This mean field approach has been used with some, but not complete,
success in the subtle area ofequilibrium critical phenomena. The application to ordinary phase
transitions is actually quite different in that the correlation length (i.e., mean distance at which
molecules are "aware" of one another’s presence) is very small, whereas it is very large in the
critical region. In fact, the large correlation length provided the original justification for this
approach. (See references in [Ca2] for further discussion.) Another difference between the
critical region and ordinary phase transitions is that critical phenomena can rely on universality,
which states that the critical exponents should be independent of the details of the system.
For solidification, it is generally desirable to specify all material parameters and to obtain
quantitatively reliable results.

Using the scaling introduced in [Cal], we write the phase field equations in the form

K
(1.6) CspmTt + ot --AT,

P

(1.7)
1 3 [S]E

(T TE),

where e is a parameter that is a measure of the interface width and all other constants are as
defined earlier. In 1985 it was shown [Cal ], using asymptotics, that the major free boundary
problems could be attained as distinguished limits of the phase field equations in the form
(1.6), (1.7). In particular, if approaches zero while all other parameters including cr are held
fixed, then the asymptotic solutions of (1.6), (1.7) are governed to leading order by the surface
tension and kinetics model 1.1)-( 1.3).

The classical Stefan model can be similarly recovered in the distinguished limit as both
and r vanish with e/or --+ 0. The formal asymptotics have been made mathematically rigorous



PHASE FIELD COMPUTATIONS 109

in some cases of special symmetry such as traveling waves [CN] and general ld and radially
symmetric [CC]. Other important free boundary models such as the Hele-Shaw equations and
motion by mean curvature are also obtained from the phase field equations [Ca2].

Using the variables defined before (1.1’)-(1.3’), the equations (1.6), (1.7) can be written
in the form

(1.6’) U 21- "99t D/xu,

1
(1.7’) ot20t (52//9 -+- ( /03) -+-

With do and/or c possibly depending on 0, the solutions of (1.6’), (1.7’) approach those
of (1.1’), (1.2’), (1.5). In a philosophical sense, this approach to solidification computation
problems is similar to artificial viscosity methods [PT] in gas dynamics in that the success of
the method depends on whether the interface development is independent of for some range
(0, 0).

The boundary conditions imposed on (1.6’), (1.7’) are the same as the sharp interface
problem for u, with compatible conditions for p. In particular, if one imposes Dirichlet
conditions u ua, then the corresponding values of p are the roots of

1
(1.8) (p+ p3) + 0uo_ 0,

where the plus and minus denote the liquid and solid portions of the boundary, respectively.
In this paper we discuss the numerical study of the phase field equations with the aim

of demonstrating that a single system of equations can be used to compute a broad spectrum
of phenomena that are generally associated with the sharp interface problems defined above.
The advantages of the phase field model include the following: (i) The variety of phenomena
ranging from motion by mean curvature to stable anisotropic crystal growth to single-needle
dendrites are all obtained by simply varying parameters. (ii) The system of equations has
smooth solutions and does not involve explicit conditions on the interface. Hence the interface
is simply the level set p 0 and interface tracking is not required. (iii) All of the physical
parameters are clearly identified so that the system can be used to obtain quantitatively reliable
numbers. (iv) Computations involving self-interactions ofthe interface do not pose difficulties
for the phase field model.

To illustrate how intersections create problems, we consider the following example. Two
solid spheres with a small space between them are surrounded by the liquid that is undercooled
so that the spheres grow slowly. At some point the spheres touch and begin to solidify. If
one models this situation using (1.1)-(1.3), then there is the appearance of a mathematical
singularity due to (1.3) when the spheres touch. This is a mathematical artifact; however,
because 1.3) is not a physically complete description ofthe interfaces in this complex situation,
as condition (1.3) has not been defined when the classical normal is not defined. On the
other hand, the phase field equations are guaranteed to have a smooth solution (p, T) if the
initial and boundary conditions are sufficiently smooth. Thus the phase field model naturally
describes the evolution of intersecting interfaces, such as this example, as it is based on a free
energy description of the phases rather than a macroscopic derivation for a particular (smooth)
geometry. The situation may be summarized by stating that the sharp interface problems
such as (1.1)-(1.3) or (1.4) are a macroscopic approximation for simple geometries, so that
a discrepancy between these models and the phase field is generally resolved by noting that
the sharp interface model is not a correct approximation for the physical problem when the
conditions for their derivation are no longer valid.
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Figure 1.1 displays the computational evolution (using the phase field equations) of two
such spheres surrounded by a slightly undercooled melt. The spheres increase in size until
they touch, at which point the two interfaces fuse into a single one, which then has two points
of (negative) high curvature. The curvature of these points diminishes rapidly due to the
interface conditions that are implicit in the phase field equations. Figure 1.2 is a computation
of the same problem with crystalline anisotropy included in the form discussed at the end of

5. In this case, the initial spheres evolve toward the dynamic Wulff shape discussed in 5 for
a single seed. This evolution conforms to the theoretical predictions for an interface condition
with anisotropic mobility, i.e., (1.5’) with ct depending on orientation. The two seeds meet at
a comer and then evolve into a single Wulff shape, i.e., a new square. In both computations,
there is an absence of any unphysical singularities or blow-ups. In both Figs. 1.1 and 1.2 all
parameters and conditions are identical with those described in 5 for Fig. 5.1, with anisotropy
excluded from the equations for Fig. 1.1.

FIG. 1.1. Self-intersection of interfaces without anisotropy. Two seeds of solid are surrounded by a slightly
undercooledmelt. The intersection ofthe interfacesposes no difficultyfor the computation ofthephasefield equations.

The numerical study of (1.6), (1.7) must confront the issue that the true physical size of e
(which is of the order of the width of the interface) is about 10-8 cm, while the overall domain
of interest may vary between 10-1 cm for dendritic growth and 102 cm for casting of metals.
Since the grid spacing cannot be significantly larger than e without large errors [CS 1 ], [CS2],
a simple application of the phase field equations with physical parameters would imply a grid
of at least 107 x 107 for dendritic growth and 101 x 101 for casting, for example. This
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FIG. 1.2. Self-intersections of interfaces with anisotropy. Two seeds of solid are surrounded by a slightly
undercooled melt. The spheres evolve into squares (the Wulffshape) which then merge.

grid size is prohibitive for practical computations. With this motivation, [CS1] and [CS2]
studied the ansatz that can be made orders of magnitude larger (i.e., the interface can be
spread) within the limitations of (a) and (b) below, without significant error, provided that this
stretching is done within the proper scaling limits [Call, Ca2] so that the crucial quantities
such as the surface tension are not altered even by a small amount. The two key restrictions
are that: (a) must be smaller than the radius of curvature; (b) cannot be large enough to

q93destroy the double-well nature of the potential (0 4- u. The restriction (b) is easily
remedied with a modification such as that introduced in [CC], where u is multiplied by a
factor (1 q92)2 or a similar function. This has the effect of trivializing the role of temperature
outside of the interfacial region where it is usually very small. On the other hand, restriction
(a) is fundamental and is intrinsic to the physical problem. In particular, independent of the
specific method, one does not expect to resolve an interface with a radius of curvature R by
means of a mesh spacing Ax that is greater than R. Within this natural limitation, [CS and
[CS2] showed that quantitatively reliable calculations could be performed using (1.6), (1.7).

In particular, [CS 1 and [CS2] studied the one-dimensional and radially symmetric equa-
tions corresponding to (1.6), (1.7), compared the computations with the exact solutions for
the limiting sharp interface problem, and examined them through self-consistency. Subject to
the radius of curvature limitation, it was established that the interface could be stretched by
orders ofmagnitude without significant loss of accuracy, even in physically delicate situations.
On the other hand, even a 10% change in surface tension resulted in dramatic changes in the
evolution of the interface.
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In this paper, our primary aim is to show that in two dimensions a range of sharp interface
problems with distinct patterns can be computed using the phase field equations. A secondary
objective is to verify that the interface can be stretched with quantitative accuracy when the
computations are truly higher dimensional (instead of radially symmetric equations). In the
higher-dimensional case, the issue of interface stability is also relevant, so that enlarging e
is predicated on the expectation that it does not significantly alter stability properties. We
confirm this in both the planar and spherical cases, and again we use self-consistency and
comparison with exact solutions.

We begin by considering,planar traveling waves for the phase field equations within the
modified Stefan limit. Since the velocity ofthe traveling waves for the sharp interface problem
is known [CCh] from the analytic solution, we compare ourcomputations with the exact results.
The traveling wave is then perturbed with a sine wave so that the stability properties can be
examined in the context of the sharp interface problem. We find that a typical unstable mode
in the sharp interface problem is also unstable in the phase field equations.

In 3 we consider the problem ofthe critical radius, which is an unstable equilibrium in so-
lidification [Ch] and we obtain quantitative agreement with the analytical results. Anisotropic
surface tension is then considered as we observe the change in interface shape as a function
of both equilibrium and dynamical anisotropy. In equilibrium, these results can be compared
with well-established results such as the Wulff construction approach [Wu], [Ta], [CH].

In 4-6 we demonstrate that a broad spectrum of sharp interface problems can be ap-
proximated by the phase field model in the distinguished scaling limits as indicated in [Cal
and [Ca2]. Section 4 features the limit of motion by mean curvature in which the interface is
often characterized by reduction of curvature by becoming more circular and then shrinking
until extinction. The extinction time from a circle is readily calculated analytically so that
quantitative agreement of the numerical computations is verified along with the qualitative.

In 5 we consider solidification in the case of the single-needle crystal. The computations
result in a single needle that moves at essentially constant velocity. Furthermore, this velocity
is independent of the initial conditions. This is consistent with the known experimental [GS],
[SG], and theoretical [BP], [L], and [KKL] results.

Finally, in 6, we consider solidification under conditions that favor more stable growth,
so that the faceted crystal growth is observed in the anisotropic situation. It is noteworthy that a
completely smooth set of equations with smooth initial data render faceted shapes, e.g., cubic.
The results obtained are consistent with those obtained from the classical Wulff construction
methods.

Throughout this study we use finite difference methods [CL], [CS2] with a fixed grid
to isolate the issues that are of specific interest. In principle, a combination of phase field
methods and adaptive grids with finite elements should provide similar accuracy at a lower
cost.

Some of the other numerical studies of solidification include [LF], [SS], [K], and [RT].

2. Plane fronts, stability, and the emergence of single-needle dendrites. We study
first the traveling wave solutions for the phase field equations (1.6), (1.7), the existence of
which was established in [CN]. Next, we perturb the planar fronts to examine the stability
properties of the interface (for which there are no analytical results). In particular, we present
the growth of needle-type crystals from perturbations. These computations bridge the gap
between the initial Mullins-Sekerka instability [MS] and the steady-state dendrites [BP] that
evolve from them.

We consider (1.6’), (1.7’) in the distinguished limit of the surface tension and kinetics
model 1.1’)-( 1.3’), i.e., e approaches zero with all other variables fixed. For the sharp interface
problem, one can verify the existence [CCh], [DHOX] ofthe following traveling wave solutions
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with velocity v* and u(t, cx) Ucool,"

(2.1) u(t, x) ! Ucool + e-v*(x-v*t)/D

/ Ucool -+- 1

(2.2) v*
-1

0-0 (Ucool + 1).

To ensure the positivity of the velocity v*, one must assume that

X > l)*t,

x < v’t,

(2.3) Ucool + 1 < 0.

Note that the velocity v* and the temperature at the interface Ucool + 1 (and in fact for all x in
the solid region, x < v’t) are both determined by the temperature at cx, i.e., Ucool. Also, the
latent heat is just unity for our temperature scale.

To state the analogous problem for the phase field equations (1.6’), (1.T), one must impose
conditions on o as well as on u. A natural set of conditions [CN] is

(2.4)

(2.5) u(-c) Ucool + 1, u(cx) Ucool,

in terms of the moving coordinate z :-- x vt where v is to be determined. Here, the values

o must satisfy the compatibility condition (1.8).
In terms of the moving coordinates, the phase field equations have the form

(2.6) e2Oz e2VOz + -(0 03) + --0 u 0,

(1)(2.7) Duzz + v Uz + -Oz O.

It was proven in [CN] that there exists a unique solution of (2.6), (2.7) subject to (2.4),
(2.5) for small e, and the velocity v (which depends on ) approaches v* given by (2.2). The
far-field temperature Ucool not only determines the velocity, but the other boundary conditions
in (2.4), (2.5) as well [CN]. In the limit of --+ 0, the temperature u in (2.6), (2.7) converge
to the temperature (2.1) of the sharp interface model uniformly with respect to the distance
measure given by the moving coordinate z. Other analyses of traveling waves for phase field
equations in other scaling limits have been performed in [Wi], [BS], and [LBT].

An important question that is not resolved by the theoretical results is the rate at which the
velocity v() converges to v* as approaches zero. Stated differently, the physically realistic
value of is on the order of Angstroms, whereas, in practical computations, one would need
to make larger by orders of magnitude.

Hence our first goal is to determine if the computation of plane waves is still reliable in
the above situation. If so, by taking values of , which are small but still much larger than the
true physical value, the front velocities and stability properties should not differ significantly
from the velocity of the sharp interface model.

In our experiments we set the parameters to be D 1.0, c 1.0, do 0.01, and
uo -1.05, which yield a theoretical velocity v* 5.0. We then examined the nature of
the convergence to the exact solution of the sharp interface model by halving as shown in
Table 1.
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We perform the same computation with each value of e, and we examine the relative error
of the interface

x (theoretical) x (experimental)
x (theoretical)

at a characteristic point (t 0.0051). Note that while e is cut in half between experiments
1 and 2, the relative error in the interface position is reduced to one-fourth. Similarly, the
relative error in velocity is reduced from 0.543 for e 0.00495 to 0.093 for e 0.00247.
Between experiments 2 and 3, the relative error in the interface is similarly reduced. Since
the approximations used in determining velocity are less accurate than those of the interface,
there appears to be a finite limit to the relative error in velocity.

Experiment

TABLE
Relative error with different values of.

Relative error Relative error Maximum relative
in interface in velocity error
at 0.00551 at 0.0051 in velocity

0.00495 0.162 0.543 0.911
2 0.00247 0.048 0.093 0.353
3 0.00124 0.015 0.081 0.135
4 0.00062 0.005 0.033 0.037

In earlier work [CS1 ], [CS2], we studied plane fronts in the distinguished limit of the
classical Stefan model (there are no traveling waves in this case), using a one-dimensional
formulation. The significant difference between one- and two-dimensional computations
necessitates the testing ofplane fronts and traveling waves in the actual two spatial dimensions.
In our 2d experiments, we reproduce the exact classical Stefan results with a relative error of
0.0008 with 200 mesh points and e Ax. The two sets of computations (ld and 2d) agree to
the first 12 digits, thereby confirming the absence of extraneous grid effects in 2d.

Hence, our basic conclusions forthe ld traveling waves [CS 1 ], [CS2] in the surface tension
and kinetics limit remain valid within the 2d context. The overall o profile is essentially
identical with the ld calculations. The boundary conditions o+ are determined by (2.4)
in correspondence with (1.8). The o-level curves are all parallel to the interface and o is
approximately given by the function tanh(x-vt) as indicated by the theoretical results [CN].
The transition layer, is thus O(e) as in the ld case. More specifically, ifwe take o 4-.9 as the
cutoff in the transition layer, then the transition layer has a width 6e; for cutoff t# 4-.99 it is
10e. Of course, we know from the theoretical results that the order e correction to o is crucial
in the selection of the interface velocity, so that a correct interface velocity is confirmation of

t# profile to order e.
It is also noteworthy that the numerical error does not cause shape instability of the planar

front, unlike the perturbation discussed below. This is consistent with the phase field theory
since the stability properties of (1.6), (1.7) are the same as those of (1.1)-(1.3) to leading order
[J], and the latter can be expected to be stable for perturbations with wavelengths that are on
the size of the mesh used. The precise conditions are given in [CCh] and [J].

Next, we consider a planar wave whose interface is perturbed by a sinusoidal function,
so that the interface location is given by

x (y) a + b cos my.

The parameters and boundary conditions remain the same as in experiment 1 with the
initial temperature set at u -t- 1 in the solid with exponential decay to the boundary in the
x-direction.
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In Fig. 2.1 we show snapshots of the time evolution of the interface at 0.0, 0.00367,
0.00826, 0.01286, 0.01745, 0.022041, and 0.03122. In this experiment, m 1, a 0.21, and
b 0.1485. It can be clearly observed that the initial perturbation evolves into a needle-type
shape.

FIG. 2.1. Single-needle crystal growth due to instability of a planar front. Initial interface at x 0.21 +
0.1485 cos y. Parameters are D 1.0, ot 1.0, do 0.01, and u 1.05, which yield a Stefan planarfront
velocity v* 5.0.

Hence the development of instabilities where one expects them on physical and theoret-
ical grounds, and the absence of extraneous instabilities due to numerical error, indicate the
suitability of using phase field equations to study interfaces.

It was noted in [CS ], [CS2] that there are questions of optimization in choosing e with
respect to the mesh spacing Ax. For a fixed grid, practical constraints impose a lower bound
on Ax. For a given Ax, the question of the optimal choice of e is more subtle. If e is too
small compared to Ax, then the surface tension, which is proportional to f(Vo, n)2dx, will
not be calculated accurately since there will be too few grid points in the interfacial region.
This is easily illustrated with the tanh function that approximates 0, so that surface tension
is essentially proportional to f sech2 (r/2e)dr. Recalling that the transition layer is about six
to ten e, depending on the precise cutoff point, a grid spacing of about Ax e would result
in six to ten grid points on the interfacial region. Clearly, any fewer than six points would
mean that the surface tension is not accurately computed. Since surface tension is crucial for
the stability properties of the interface and this integral also has a key role in determining the
O() terms in the solution, this is an important constraint.
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Alternatively, if is too large, then (a) it diffuses the interface so that geometries with
radii of curvatures smaller than would not be captured, and (b) the O(e) dynamics becomes a
more significant factor limiting the quantitative accuracy of the interface velocity, as indicated
by the asymptotic analysis.

In the two-dimensional problems we found the optimal value of the ratio xx to be 0.75 <-- < 1 as in the ld problems. This is not very surprising in view ofthe asymptotic analysis,/kx

in which the size of is significant primarily in the direction perpendicular to the interface.
For the remainder of this paper we will use the ratio e/Ax 1. Performing the same

empirical optimization in some of the low symmetry examples implies a similar range for

IAx.
The computation in Figs. 2.1, 3.1,4.1,5.1,6.2, and 6.3 were done using aCRAYYMPwith

200 meshpoints per side. Computations performed with 400 meshpoints were very similar,
though much more costly. We use the same type of explicit schemes as in [CS 1 and [CS2]
and similar timescales. The timestep in all cases is the largest allowed by numerical stability
considerations. The numerical runs continued until complete solidification or melting.

3. The critical radius and unstable equilibrium. A well-known instability in materials
science is the critical radius [Ch, p. 67] in which a solid sphere with the sum of principal
curvatures equal to x0 is in equilibrium with its melt at temperature u0 with

(3.1) uo -doxo.

Under suitable conditions, e.g., Dirichlet boundary conditions, and , K-1 sufficiently small,
a perturbation of the sphere to a larger one results in complete solidification and, analogously,
for melting (see [CS2] for more discussion). The numerical computations assuming spherical
symmetry confirmed this unstable equilibrium and showed that a small change in tc or tr

produces a dramatic difference (melting to freezing or vice versa), while a large change in
only produces a small change in velocity.

We study this problem now in the fully two-dimensional geometry (without imposing
spherical symmetry), and we find that the spherical geometry is preserved. The values of
K, , etc. are identical to those reported in [CS2], and again there is a 12-digit agreement
between the one-dimensional and two-dimensional results for the location of the interface.
Again, this confirms the absence of artificial grid effects.

Thus the two-dimensional calculations confirm the existence of this physical instability
without causing artificial numerical instabilities nor necessitating the use of explicit equations
ofmotion for the interface. Furthermore, in Fig. 3.1 we illustrate the results obtained when the
initial interface is the perturbed circle r 0.3(1 + cos 80). The parameters correspond to
a critical radius r0 0.01732, and, as predicted by (1.5), the interface evolves to a spherical
shape and continues to freeze.

The introduction of anisotropy with respect to a fixed angle in the surface tension changes
(3.1) into

(3.2) xo -[s]euo/(a(O) + r"(O)).

This expression for the curvature implies that the equilibrium shape is a dilation of the Wulff
region. Figure 3.2 depicts the Wulff crystal for pivalic acid. This will be discussed in greater
detail within the context of crystal growth in 5.

The 2d computations on the critical radius and the perturbed circle (Fig. 3.1) are also useful
in demonstrating that grid effects do not introduce artificial anisotropy. In particular, the grid
effects would be most pronounced for the critical radius problem since the initial configuration
is borderline between melting and freezing, so that any extraneous effects would be magnified.
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FIG. 3.1. Stability ofperturbations in the case of unstable equilibrium at critical radius. Initial interface at
r 0.3(1 + 1/2 cos 80). Parameters are 1.0, D 1.0, 0.01, [s]E 4, e 0.005, and cr 0.034651,
with critical radius ro 0.01732.

_0-’.25-1.00-0.75-0’.50 .25 .00 0.25 0150 0175 1.00 1125

FIG. 3.2. Wulffcrystalforpivalic acid.



118 G. CAGINALP AND E. SOCOLOVSKY

4. The single-needle crystal. In 4-6 we use the phase field equations to study a spec-
trum ofproblems that involve different physical parameters and behavior. One set ofnumerical
experiments (see Figs. 3.1, 4.1, 5.1, and 6.3) are performed with identical initial conditions to
illustrate the wide range of applicability.

The first ofthese is the single-needle crystal solidification at high velocities. Anisotropy is
generally regarded as important for this problem as both cr andc vary with respect to orientation
angle, 0. A series of physical experiments [SG], [GS] indicate that the role of anisotropy is
to select the direction of the growth rather than to determine the shape or velocity of the tip.
(However, other measurements, with samples that are not as pure as those used by [GS] suggest
that the anistropy of these materials is much closer.) For example, the extent of anisotropy in
the surface tension is ten times greater for pivalic acid than succinonitrile, yet the shape and
dimensionless velocity (as a function of undercooling) are essentially identical [GS]. In earlier
work [CL], the anisotropy in r has been studied. In these numerical experiments, we study
the effects of dynamic anisotropy, which is not as well understood in terms of the physical
experiments. As a precise physical form for dynamical anisotropy has not been established,
we use a (phenomenological) function that is strongly anisotropic along the diagonal. In
particular,

-1(4.1) c
co + (1 -oto) cosd
Oo

if:- <d< 4,
otherwise,

where d is the distance to the diagonals (between $ and 33 axes). Note that the dynamic
anisotropy will not generally have a form such as (1.5’), which arises from the second deriva-
tives in the Laplacian.

In a part of the interface in which the temperature and curvature do not vary significantly,
the velocity is given by

(4.2) v --0
-1 (const),

so that the diagonal is the preferred direction of growth. Figure 4.1 displays a time sequence in
which the initial condition is a circle that is strongly perturbed by a sine function with values
of c0 0.1. The growth is chiefly in the preferred direction. The diagonal was chosen as the
preferred direction to ensure that anisotropic growth would not be the result of grid effects.
In fact, the absence of anisotropic growth when c-1 is isotropic indicates that grid effects are
not significant.

There is considerable experimental [SG], [GS], [DG] and theoretical evidence [BP],
[KKL], [L] that suggests that the velocity of the single needle should be constant. This is
confirmed by our numerical experiments, even though only linear interpolation is used to
determine both the interface location and its velocity.

Furthermore, this velocity is found to be independent of the initial conditions, which
is consistent with the experimental and theoretical results cited above. Figure 4.2 depicts
the convergence to a selected velocity from distinct initial conditions. The velocity 44.13 is
constant to within 0.62%.

5. Faceted crystal growth. The geometric patterns and facets that arise from crystal
growth have posed intriguing questions for many years. A very early scheme to describe the
equilibrium interface is known as the Wulff construction [Wu], which will be described later
in this section. The propagation of facets and the development and elimination of comers has
been studied extensively in recent decades from the minimal surfaces and related approaches
[Ta].
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FIG. 4.1. Single-needle crystal growth due to anisotropic mobility (4.1) with co 0.1. Initial interface at

r 0.3(1 + 1/2 cos 80). Parameters are D 1.0, 0.01, [s]E 4, e 0.005, and r 0.034641.

0, ,0-500.00750.01000.012(011 0,0175 0,0200 0,0225

TIME

FIG. 4.2. Tip and axis velocities of needle crystals obtained with different initial interfaces. Needle crystal
tip velocity convergence to a constant independent of initial interface. Initial interfaces at r 0.3, r 0.3(1 +
1/2 cos re(O--)) and r--0.3(1 + 1/2 cos nO)form--4,8. Parameters are D--1.0, e 0.01, [S]E--4, =
0.005, and cr 0.034641.
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In such studies, the comers are explicitly part of the numerical scheme. The evolution
of faceted crystal growth poses a particularly strong challenge for a smooth set of parabolic
equations, such as the phase field. Given a smooth initial data (e.g., first frame of Fig. 5.1), a
material with anisotropy must eventually develop comers and facets and must propagate along
planar fronts dictated by the geometry and anisotropy.

FIG. 5.1. Faceted crystal growth due anisotropic mobility [ct -1 .065(1 + 0.818 cos4(0 -))] is the angle
between interface normal and x-axis. Initial interface at r 0.3(1 + 1/2 cos 80). Parameters are D 1,
0.01, Isle 4, E 0.005, and tr .03464.

The anisotropy in the phase field equations can involve both ct(0) and a (0), where 0 is
now defined to be the angle between the nodal to the interface and the x-axis, i.e.,

(5.1) cos 0- V ..
We study the anisotropy by assuming a and/or u are of the fo

(5.2) a(0) a0[1 + cos M(O 0)],

(5.3) u- (0) uff[1 + cos M(O 0)],

where M is an integer (M 4 for cubic anisotropy), , + are the amplitudes of the
anisotropies, and 0, 0 are the "prefeed" angles. The latter will be defined more precisely
below.

The phase field equations we study are then (1.6’), (1.7’) with d0 and u given by (1.5’),
(5.2), (5.3). In the asymptotic limit as e approaches zero, the solutions to these phase field
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equations are governed to leading order by those of (1.1’), (1.2’), (1.5), (1.5’). Since these
dimensionless equations are related to the fully dimensional equations by simple substitution,
every parameter in our system including those involving anisotropy, e.g., 8o, can be obtained
directly from experimental data. Of course, we wish to "stretch out" the parameter e, as
discussed earlier, for computational convenience.

Next, we consider the issue of preferred direction, which is similar for the phase field and
sharp interface models, in view of the remarks above. Consider the sharp interface problem
(1.1’), (1.2’), (1.5), (1.5’) in equilibrium so that temperature is constant. Then (1.5), (1.5’)
implies that (for some constant C2)

(5.4) x
C2

r(0) + r"(0)’

(5.5) o’(0) + o-"(0) oo[1 (M2 1)8, cos M(O -Oa)].

Hence, if we assume that 8o satisfies (M2 1)8 < 1, then the curvature has its maximum
r this means that the equilibriumwhen 0 0o. For cubic anisotropy (M 4) with 0o := Z

shape of the interface is such that the solid protrudes further in the diagonal directions.
This briefillustration is one implication ofthe Wulffconstruction [Wu] and can be obtained

from the Cahn-Hoffman [CH] vector approach or the Herring spheres approach. Note that
when tr + tr" changes sign, then one has facets in the equilibrium shape as a consequence of
missing angles or orientations. The values of8 fortwo materials used in dendritic experiments
are 0.05 for pivalic acid and 0.005 for succinonitrile [GS].

The dynamical situation is more complicated even if the kinetic term ctd0 in (1.6) is
neglected completely. On the other hand, in a limiting case in which curvature is neglected
and c 0, one can acquire a basic understanding of the effects of this kinetic term. This
analysis amounts to a comparison of velocities of planar fronts with different orientations, so
that (1.5), (1.5’) imply

(5.6)
C2

a(O)[r(O) + r"(O)]

Once again, for small 8o and 8, and 0o 0, the velocity is maximum at 0 0o 0.
Hence in the cubic case (M 4, 0o 0, %), the growth is fastest in the diagonal directions.

These two calculations illustrate the following expectations. An initially spherical solid
with cubic anisotropy will tend to grow fastest in the diagonal directions. If the boundary
conditions are such that equilibrium is reached (e.g., appropriate Neumann conditions), then
the interface will correspond to the Wulff shape, which is shown in Fig. 3.2, i.e., a square
with rounded comers. Note that while the equilibrium result (5.4) is exact, the dynamic result
(5.6) is only suggestive since the temperature will not be exactly constant and curvature is not
precisely zero. Furthermore, one has a natural expectation that the dynamics will be less stable
than equilibrium, thereby exaggerating growth in the favored directions. Thus it is possible
that the dynamical problem will have facets for smaller anisotropies than those required by the
vanishing of the denominator of (5.6), which would be the condition for "comers" or missing
angles in equilibrium according to the Wulff construction.

While we consider the usual case in which 0o 0,, it is worth noting that some materials
exhibit dynamical anisotropy with a different preferred direction than that of the equilibrium.

In our numerical computations, we study a material with anisotropy given by (5.2) or (5.3)
(with 8o 0.05 or 8 .818 and M 4 and 0o or 0 7")" Note that the dynamic
anisotropy appears to be larger, but the coefficient of 8,, is multiplied by M2 1 15. Our



122 G. CAGINALP AND E. SOCOLOVSKY

value of 3o corresponds exactly to that reported by [GS] for pivalic acid. The computations
show that a material with such anisotropy will evolve into a shape with four-fold symmetry,
regardless of the initial pattern. In particular, Fig. 5.1 displays 12 frames in the phase field
computations (1.6’), (1.7’) using (5.3) (i.e., with do(O) defined by (1.5’). Similar results are
obtained with (5.2). The fact that such different sources of anisotropy (5.2) versus (5.3) result
in very similar patterns is an important physical conclusion that is not obvious from the form
of the equations. The initial shape is the same perturbed circle used in the formation of the
single-needle dendrite. By frame 3 of Fig. 5.1, this interface develops some comers and
facets, some of which correspond to the favored directions discussed above, while others form
as an immediate consequence of the initial conditions. In frames 3-9, these latter facets are
gradually eliminated at the expense of the dominant facets distinguished by (5.4) and (5.6).
In the last few frames (i.e., 10-12) these dominant planes become extended until they meet at
the x y diagonal with a slightly smoothed-out right angle. The solidification then continues
without any change in shape.

A rigorous result [So] has established that an interface moving in accordance with (1.3’)
alone, with constant u, would retain the anisotropic shape. While there are no rigorous results
for the full set of equations involved in solidification, our numerics show that this is indeed
the case for the phase field equations. Since these equations are asymptotically governed
by (1.1’)-(1.3’) to leading order, the same conclusion remains valid for the sharp interface
problem.

6. Motion by mean curvature. The problem ofmotion by mean curvature (see [Br] and
references contained therein) is to determine a (d 1)-dimensional surface (or curve) Fs(t)
in f2 C IRa, such that the (normal) velocity, v(t, x), at each point on the surface satisfies

(6.1) v(t,x) -ct-ltc(t, x),

where x is again the sum ofprincipal curvatures andor- is aconstant or a function oforientation
angle.

A closely related problem is to find the level set

(6.2) r(t) := {x f2 q)(t, x) 0},

where q9 is a solution to the single parabolic equation

1 q93(6.3) 2q9 :2Aq9 + (q9 ).

Equation (6.3), which was introduced by Cahn and Allen [Ca], [AC] in the context of antiphase
boundaries is a limiting case of the phase field equations. As the latent heat approaches zero,
while the initial and boundary conditions imposed on u are also zero, the phase field equations
(1.6’), (1.7’) have solutions that are governed by those of (6.3) and consequently (6.1) to
leading order. Thus the leading order asymptotics for (1.6’), (1.7’) is just a special case of
(1.5) in which u 0 [Ca2]. In recent years, the connections with materials science through
the phase field equations have stimulated a resurgence of interest in the mathematical theory
of (6.3) and other regularizations of (6.1) [BK], [MSc], [GG]. From a formal analysis it is
clear that an initial interface of the form of frame 1 in Fig. 6.3 will tend to approach a circle
and then shrink until extinction. The time of extinction from a circle is easily calculated.

Our numerical calculations consist of studying (1.6), (1.7) in the limit of small , with
zero boundary and initial conditions for u, and the standard conditions of tp described in (2.10)
so that 0+ + 1 on the (exterior) liquid and o_ -1 in the (interior) solid in this case. In
our first experiment we compared the numerical results with a theoretical solution. We took
ct 1, 0, zero boundary and initial conditions for u and the initial solid seed to be a circle
of radius 0.3. The theoretical solution gives a circle with radius r(t) (0.09 2t) 1/2, which
has an extinction time To 0.045.
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0.00 0.01 O’ 02 .03 O.O O. 05 O. 06

TIME

FIG. 6.1. Motion by mean curvature. Computedand theoretical interface locationsfor a circular initial interface.
Exact radius is r(t) (0.09 2t) 1/2, 0 < < 0.045. Parameters are D 1.0, e 0, [s]E 4, 0.005,
and o- 0.866025.

FIG. 6.2. Motion by mean curvature. Crystal evolution corresponding to the computation ofFig. 6.1.



124 G. CAGINALP AND E. SOCOLOVSKY

In Fig. 6.1 we depict the computed and theoretical radius ofthe circle as a function of time.
There is an agreement of two or more digits up to 0.0345 and the accuracy deteriorates
approaching To as expected. The computational extinction time is between 0.04575 and
0.0465. Figure 6.2 depicts the evolution at times

0.0, 0.00675, 0.01425, 0.02175, 0.02925, 0.03675,

0.04425, 0.04565, 0.0465.

The initial condition in frame of Fig. 6.3 is identical to those that we used for faceted crystals
and stable solidification. In frames 1-4, the interface moves toward a circle (frame 5) with
a radius that is approximately that of the perturbed circle in frame 1. The interface acts in a
way to minimize the surface tension during this phase. The surface tension in (6.3) or (1.7) is

q93determined to leading order by the coefficients of Aq9 and the (99 term.

FIG. 6.3. Motion by mean curvature. Crystal evolutionfor initial interface r 0.3(1 + 1/2 cos 80). Parameters
are the same as in Figs. 6.1 and 6.2.

The anisotropic analog of (6.1) involves replacing the constant c by a function of orienta-
tion angle as discussed earlier in the single-needle or faceted-crystal growth cases. Note that
the anisotropy involved in the surface tension is not relevant in this limit since r cancels in
the asymptotics. In the anisotropic case the evolution of the interface is similar except that the
convergence of the interface is toward the appropriate Wulff shape rather than the sphere.
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THREE-DIMENSIONAL ADAPTIVE MESH REFINEMENT FOR HYPERBOLIC
CONSERVATION LAWS*
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Abstract. A local adaptive mesh refinement algorithm for solving hyperbolic systems of conservation laws in
three space dimensions is described. The method is based on the use of local grid patches superimposed on a coarse
grid to achieve sufficient resolution in the solution. A numerical example computing the interaction of a shock with
a dense cloud in a supersonic inviscid regime is presented. Detailed timings are given to illustrate the performance
of the method in three dimensions.
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1. Introduction. Advanced finite difference methods, by themselves, are unable to pro-
vide adequate resolution of three-dimensional phenomena without overwhelming currently
available computer resources. High-resolution three-dimensional modeling requires algo-
rithms that focus the computational effort where it is needed. In this paper we describe an
extension of the adaptive mesh refinement (AMR) algorithm for hyperbolic conservation laws
originally developed in [2], [3] to three space dimensions. AMR is based on a sequence of
nested grids with finer and finer mesh spaci,g in both time and space. These fine grids are
recursively embedded in coarser grids until the solution is sufficiently resolved. An error es-
timation procedure automatically estimates the accuracy of the solution, and grid generation
procedures dynamically create or remove rectangular fine grid patches. Special difference
equations are used at the interface between coarse and fine grid patches to insure conservation.
This is all handled without user intervention by the AMR program.

Two-dimensional versions of the AMR algorithm described here have been used to solve
fluid flow problems in a variety of settings and have enabled the study of fluid flow phenomena
not previously possible. For example, the extra resolution provided by AMR enabled the
computation of a Kelvin-Helmholtz type instability along the slip line in a study of Mach
reflection off an oblique wedge [2] and aided in the resolution of the weak von Neumann
paradox in shock reflection [7]. When combined with a multifluid capability, the algorithm
was used to compute the interaction of a supernova remnant with an interstellar cloud [8] and
to categorize refraction patterns when a shock hits an oblique material interface 13]. When
extended to use body-fitted coordinates, AMR was used to study diffraction of a shock over
an obstacle 11 ]. In each of these cases the use of adaptive mesh refinement reduced the cost
of the computation by more than an order of magnitude. The improved efficiency associated
with using AMR may make similar flows in three dimensions computationally tractable.

There are several alternative approaches to focusing computational effort in three-
dimensional flows. One approach uses a logically rectangular grid with moving grid points
that adjust to the flow 11 ], [9]. There are several difficulties with this approach. First, it is hard
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to implement a three-dimensional high-resolution integration scheme for moving rectilinear
grids. In our approach the integration scheme need only be defined for uniform rectangular
grids; this avoids the complexity and computational cost associated with metric coefficients in
the moving grid approach. Furthermore, in three dimensions it is extremely difficult to effec-
tively cluster points to capture unsteady phenomena while maintaining a grid with sufficient
smoothness in both space and time to permit effective computation. Even if acceptable grid
motion can be determined, the entire computation is usually performed with a fixed number
of gridpoints throughout the computation. In contrast, the local grid refinement approach
dynamically adjusts the number of zones to match the requirements of the computation. The
timestep used in moving mesh codes is also limited by the smallest cell size unless additional
work is done by solving the equations implicitly or using techniques that allow each cell to
evolve with its own timestep.

Another approach to three-dimensional computations uses adaptive unstructured grids ],
14]. Unstructured grids offer the most flexibility in optimally placing the gridpoints. They can

treat general geometries in a simple uniform way. They also offer a possibility of anisotropic
refinement, as might be used for Navier-Stokes boundary layer calculations. However, we
favor the use of locally uniform refined patches (the basis for AMR, described later) for their
accuracy and wave propagation properties. The development of discretization techniques that
avoid degradation for strong shocks on highly irregular meshes remains an open issue. Our
use of uniform grids allows us to directly use much of the high resolution difference scheme
methodology developed for this flow regime. Uniform patches also have low overhead, both
from the computational and the storage point of view. The extra information that is needed,
in addition to the actual solution values, is proportional to the number of grids rather than the
total number of grid points.

An indication of the robustness of the mesh refinement algorithm is that very few changes
were required in extending it from two to three dimensions. However, time-dependent three-
dimensional computations push the limits of current machine resources, both in terms of
memory and CPU time. For this reason, particular care was taken in the implementation, and
a better grid generation algorithm was used to increase the overall efficiency of the code.

The starting point for this paper is the version ofAMR presented in [2] and we assume the
reader is familiar with that paper. In 2 we describe the differences in the three-dimensional
mesh refinement algorithm which have to do with the grid generation algorithm and the error
estimator. In 3 we describe the operator split integration scheme used in the numerical
experiment. In particular, this section clarifies the interaction of the grid refinement and
operator split boundary conditions on patched grids while maintaining conservation at grid
interfaces. We include a brief section on implementation since some simple changes that
produce much cleaner code have been incorporated. We are also rewriting the code in a hybrid
of C++ and FORTRAN. The results of a numerical experiment of a shock-cloud interaction
modeling the laboratory experiments of Haas and Sturtevant 12] are presented in 5. Detailed
timings are presented as well as memory usage and grid statistics demonstrating that AMR
offers significant savings of computational resources and can be an important tool in the study
of three-dimensional fluid dynamics.

2. The adaptive mesh refinement algorithm. AMR uses a nested sequence of logically
rectangular meshes to solve a partial differential equation (PDE). In this work, we assume the
domain is a single rectangular parallelepiped although it may be decomposed into several
coarse grids. With the new grid generator described below, grids at the same level of refine-
ment do not overlap. We require that the discrete solution be independent of the particular
decomposition of the domain into subgrids. Grids must be properly nested, i.e., a fine grid
should be at least one cell away from the boundary ofthe next coarser level unless it is touching
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the boundary of the physical domain. However, a fine grid can cross a coarser grid boundary
and still be properly nested. In this case, the fine grid has more than one parent grid. This
is illustrated in Fig. 1 in two dimensions. (This set of grids was created for a problem with
initial conditions specifying a circular discontinuity.)

liil_ r

FIG. 1. A coarse grid with two levels of refined grids. The grids are properly nested, but may have more than
one parent grid.

AMR contains five relatively separate components. The error estimator uses Richardson
extrapolation to estimate the local truncation error; this determines where the solution accuracy
is insufficient. The grid generator creates fine grid patches covering the regions needing
refinement. Data structure routines manage the grid hierarchy allowing access to the individual
grid patches as needed. Interpolation routines initialize a solution on a newly created fine grid
and provide the boundary conditions for integrating the fine grids. Flux correction routines
insure conservation at grid interfaces by modifying the coarse grid solution for coarse cells
that are adjacent to a fine grid.

When all these components are assembled, a typical integration step proceeds as follows.
The integration steps on different grids are interleaved so that before advancing a grid, all the
finer level grids have been integrated to the same time. One coarse grid cycle is then the basic
unit of the algorithm. The variable r denotes the mesh refinement factor in both space and
time (typically 4), and level refers to the number of refinements (the coarsest grid is at level
0). The regridding procedure is done every few steps, so any particular step may or may not
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involve regridding.

Recursive Procedure Integrate (lev)
Repeat rtev times

Regridding time? error estimation and grid generation
for level lev grids and finer

step Atlev on all grids at level ev
if (lev+ 1) grids exist
then begin

integrate (lev+ 1)
conservation_fixup(lev, lev+ 1)

end
end.

lev 0 (* coarsest grid level *)
Integrate (level)

Single Coarse Grid Integration Cycle

All of these steps are described fully in [2], with the exception of the new grid generation
algorithm.

2.1. Grid generation. The grid generation algorithm takes a list of coarse grid points
tagged as needing refinement and groups them in clusters. Fine grids are then defined by
fitting the smallest possible rectangle around each cluster. The grid generator should produce
efficient grids, i.e., rectangles containing a minimum number of cells that are not tagged,
without creating a large number of small grids with poor vector performance and excessive
boundary overhead.

The grid generator described in [2] uses a simple bisection algorithm. If a single enclosing
rectangle is too inefficient, it is bisected in the long direction, the tagged points are sorted
into their respective halves, and new enclosing rectangles are calculated. The efficiency is
measured by taking the ratio of tagged points to all points in a new fine grid. The procedure is
repeated recursively if any of the new rectangles is also inefficient. Since this algorithm uses
no geometric information from the tagged points, it often results in too many tiny subgrids
and is followed by a merging step. Unfortunately, this results in overlapping grids. Since the
memory usage in three-dimensional calculations is at apremium, we want to avoid overlapping.
Furthermore, we expect that there will be large numbers of grids in three dimensions which
makes the merging step costly.

We now use a new clustering algorithm that uses a combination of signatures and edge
detection. Both techniques are common in the computer vision and pattern recognition liter-
ature. After much experimentation, described in [4], we settled on what amounts to a "smart
bisection" algorithm. Instead of cutting an inefficient rectangle in half, we look for an "edge"
where a transition from a flagged point region to a nonflagged one occurs. The most promi-
nent such transition represents a natural line with respect to which the original grid can be
partitioned.

We describe the procedure in two dimensions for purposes of illustration. First, the
signatures of the flagged points are computed in each direction. Given a continuous function
f(x, y), the horizontal and vertical signatures Ex and Ey are defined as

Ex fy f(x, y) dy
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and

,y f f(x, y) dx,

respectively. For discrete binary images, this is just the sum of the number of tagged points
in each row and column. If either signature contains a zero value, then clearly a rectangle
can be partitioned into two separate clusters in the appropriate direction. If not, an edge is
found by looking for a zero crossing in the second derivative of the signature. If there is more
than one such zero crossing, the largest one determines the location for the partitioning of the
rectangle. If two zero crossings are of equal strength, we use the one closest to the center
of the old rectangle to prevent the formation of long thin rectangles with poor vectorization.
This procedure is also applied recursively if the resulting rectangles do not meet the efficiency
criterion, with the exception that if no good partition is found and the efficiency is at least
50%, the rectangle is accepted; otherwise, it is bisected in the long direction as a last resort. In
computational experiments in two space dimensions, for the same level of accuracy the new
algorithm reduces the CPU time by approximately 20%.

Figure 2 illustrates the entire procedure on a sample set of points. The first column on
each side is the signature, and next to it is the second derivative. After each partitioning of the
points, a new enclosing rectangle is calculated around the tagged points. In this figure, after
three steps, the fine grids are acceptably efficient and the procedure stops.

2.2. Error estimation. The second improvement over the basic approach in [2] is the
addition ofapurely spatial component to the errorestimation process to supplementRichardson
extrapolation. In Richardson extrapolation, the data on the grid where the error is being
estimated is coarsened and then integrated for a timestep. That result is then compared to the
result of integrating first and then coarsening. For smooth solutions, the difference in these
two results is proportional to the truncation error of the scheme. The motivation for including
an additional error measure is to identify structures that are missed by the averaging process
associated with the coarsening in the Richardson extrapolation. For example, in gas dynamics
a slow-moving or stationary contact surface generates little or no error in the Richardson
extrapolation process. In fact, the integrator is not generating any error in this case. However,
failure to tag the contact will cause it to be smeared over a coarser grid. The error associated
with deciding whether or not to refine the contact surface is associated only with the spatial
resolution of the discontinuity, not with errors in integration. Should the contact need to be
refined later (for example, if it interacts with another discontinuity), the initial conditions are no
longer available to provide higher resolution. For certain special cases a similar phenomenon
can also occur for shocks. These problems can be avoided by providing the error estimation
routine with the unaveraged grid data so that spatial resolution can also be measured.

Along with the addition of a purely spatial component to the error estimation, we also
directly control the process of tagging (and untagging) cells for refinement. For example, a
user can insist that only a certain part of the domain is of interest and that the error estimator
should be ignored if it says refinement is needed outside of the interesting regions. Similarly,
it can force refinement in a particular region independent of the error estimation result.

3. Integration algorithm. For the computational examples presented in 5, we use an
operator-split second-order Godunov integration scheme. However, the particular form of
the integration scheme is independent of the remainder of the AMR shell. Other integration
methods and, in fact, other hyperbolic systems can be easily inserted into the overall AMR
framework. The only requirement for the integration scheme is that it be written in flux form,
i.e.,
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FIG. 2. The signature arrays Ex ,Ey and the second derivatives Ax, Ay used to partition the clusters.

(1)
UI. uinj.k- At (Fi+l/2’j’kAx--Fi-1/2’j’k

Gi j+l/2,k Gi j-1/2,k

Ay
ni,j,k+l/2 Wi,j,k-1/2

where F, G, H are the numerical fluxes in the x, y, z directions, respectively. In its current
form, these numerical fluxes are assumed to be explicitly computable from the values in cell
ijk and a localized collection of its neighbors, as is typical of conventional explicit finite
difference methods. When the integrator is invoked, it is provided with data on the grid to be
integrated as well as sufficient boundary data (based on the scheme’s stencil) to advance the
solution on the given grid. No special stencils are used at fine/coarse interfaces. Instead, coarse
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grid data is linearly interpolated to the fine grid resolution to provide a border of boundary
cells, which is provided to the integrator along with the grid data itself. After the integration
step, fluxes are adjusted to insure conservation at grid interfaces.

When operator splitting is used with local grid patches, the only thing to note is that extra
boundary cells must be integrated during the first sweep to provide accurate boundary values
for subsequent sweeps. For example, for a scheme with four points to the side in the stencil,
four entire rows of dummy cells along the top and bottom of the grid must be advanced in the
x sweep, so that four points are available for the y sweep at the next stage. For very small
grids, this additional boundary work can dominate the computational cost of advancing a grid
(particularly for difference methods having a broad stencil such as the Godunov algorithm
we are using). This additional boundary work, as well as the vectorization issues, places a
premium on generating large but efficient grids during regridding.

As an example, if one 60 x 60 x 60 grid were replaced by two 30 x 60 x 60 grids, both
grids would redundantly integrate the overlapping boundary cells. This causes approximately
4% of the total computation to be redundant.

4. Implementation. Two simple decisions had a large impact on the implementation
of AMR. The first concerned the organization and separation of the problem-dependent and
problem-independent parts of the AMR code. The problem-dependent parts include the par-
ticular hyperbolic systems to be solved (and a suitable integration scheme), the initial and
boundary conditions, the problem domain, and the error estimation routines. When a new
problem is being set up, the changes required to the code are localized to a small number of
subroutines. The integration subroutine advances the solution of the particular differential
equations for a single timestep on a rectangular subgrid and returns fluxes that are required
to insure conservation at coarse-fine boundaries. Consequently, adapting an existing integra-
tion module for use with the AMR algorithm is routine. The remainder of the AMR shell
treats the data in terms of conserved variables where the number of variables is specified as
a parameter. Thus, the data structures, memory management, grid generation algorithms, the
logic controlling the timestepping and subcycling on subgrids, interior boundary conditions,
and the interfacing between grids that insure conservation are completely divorced from the
particular system being solved.

The second implementation detail that simplified the programming of AMR and resulted
in much cleaner code than in [2] is the use of a global integer index space covering the do-
main. These integers are used in describing the location of the grids. Based on the initial
(user-specified) domain, given in floating point numbers, an integer lattice based on the num-
ber of cells in each dimension (nx, ny, and nz) is determined. The domain may then be
partitioned into several coarse grids, each located in subcubes with indices between (1, 1, 1)
and (nx, ny, nz). If the refinement ratio is r between level and level I + 1, then the fine grid
cells corresponding to coarse grid cell i, j, k are r + Pi, r j + pj, r k + Pk, where the
0 < Pi,j,k _< r 1. This completely eliminates round-off error problems that would otherwise
require careful coding to determine whether two grids overlap or whether a coarse grid is a
parent to a fine grid.

We are currently rewriting theAMRalgorithm in C++ with calls toFORTRANroutines for
the numerically intensive parts. By constructing the appropriate classes we are able to define
a grid calculus in which the computation of intersections and, in fact, the entire regridding
process is greatly simplified. Using the built-in macro preprocessor, we are able to implement
a large portion ofthe code in a dimension-independent manner with the dimension as a compile
time parameter. With the data hiding inherent in C++ we are able to implement AMR in such
a way that the underlying data representation is restricted to a few model dependent classes.
Changing the data representation, such as to a sparse datarepresentation for a multifluid version
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ofthe code, would be restricted to the member functions ofthese classes. Since the majority of
the run time for AMR is spent integrating large rectangular meshes, the overhead experienced
by doing the data management in C++ is just a few percent over an implementation done
entirely in FORTRAN. Further optimization of the most important member functions reduces
the running time to a few percent less than the pure FORTRAN code.

5. Numerical example. To test the performance of the three-dimensional AMR algo-
rithm, we have modeled the interaction of a Mach 1.25 shock in air hitting an ellipsoidal bubble
of Freon-22. The case being modeled is analogous to one of the experiments described by
Haas and Sturtevant 12]. The Freon is a factor of 3.0246 more dense than the surrounding air,
which leads to a deceleration of the shock as it enters the cloud and a subsequent generation
of vorticity that dramatically deforms the bubble.

The computational domain is a rectangular region with length (x) 22.5 cm and width (y)
and height (z) of 8.9 cm. The major axis of the bubble is 3.5 cm and is aligned with the z-axis.
The minor axes are 2.5 cm with circular cross sections of the bubble in the x y plane. The
bubble is centered at the point (x, y, z) (10 cm, 0 cm, 0 cm). The shocked fluid is placed
at points less than or equal to 14.5 cm in the x direction. The shock moves in the direction
of increasing x. We use the operator split second-order Godunov method of [6], with Strang
splitting. Reflecting boundary conditions are set on the constant z and constant y planes. The
inflow and outflow velocities on the constant x planes, as well as the interior fluid velocities,
are set so the frame of reference is shifted to one in which the post-shock velocity is zero in
order to minimize the x extent of the problem. The numerics preserve a four-fold symmetry
in y and z, so we only compute on a quarter of the physical domain. (We have reflected the
data in the renderings so that the entire domain is shown.)

We use a simplified treatment of the equations of multifluid gas dynamics. The features
of this method include using a single fluid solver, advecting only one additional quantity, and
solving a set of equations in conservation form.

We use a ,-law equation of state for each gas with 9/a 1.4 for air and ,f 1.25 for
Freon. Mixtures of the two gases are modeled with an equation of state defined using both
,’s,

for sound speeds, and

Fe 1+

for energy. Here, l"c is used to compute an effective sound speed for the mixture with

(2) c FcPp
and f is the mass fraction of the Freon. The harmonic average used to compute Fc, used
by Colella, Ferguson, and Glaz for multifluid computations [5], expresses the net volume
change of a mixture of the gases in terms of their individual compressibilities. The sound
speed defined by (2) is used in the integration routine for defining characteristic speeds and
for approximate solution of the Riemann problem. We also assume that the two components
of a mixed fluid cell are at the same pressure. Pressure is computed from density and internal
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energy using Fe, namely,

p (Fe-1) pe.

The harmonic average used to compute I"e insures that mixing of the two fluids at the same
pressure does not result in a pressure and internal energy change of the composite fluid.

We ran the AMR algorithm with an initial coarse grid of 80 x 16 x 16 with two levels
of refinement, each by a factor of four, for 100 coarse grid timesteps. The integration used
six conserved quantities (mass, momentum, energy, and mass of Freon). The addition of this
extra conserved variable besides the usual five found in three-dimensional gas dynamics does
not change the AMR structure. The error estimation procedure was modified so that the finest
level grids (level 3) only existed in a neighborhood of the bubble and so that acoustic waves
away from the bubble were not refined once the incident shock was well past the bubble. The
computation was performed on a Cray-2 and required about 20 hours of CPU time. In Fig. 3,
we show volume renderings of the density field at four times during the evolution of the cloud.
For the renderings, we interpolated all the data onto a uniformly fine grid. The effective result
of the volume rendering is to yield an isosurface of the interface between air and Freon. The
earliest frame is shortly after the incident shock has completely passed through the bubble.
The bubble evolution qualitatively agrees with the experimental results ofHaas and Sturtevant.
The dominant features of the flow are a strong jet coming from the back of the bubble and the
unstable evolution of the roll-up of the outer portion of the bubble.

During the computation, a total of 1.77 x 109 cells were advanced by the integration
routine (not including boundary advancements required by operator splitting) for an effective
time of 40/z-seconds per zone including all of the AMR overhead. Figures 4 and 5 present
a more detailed breakdown of the algorithm performance. Figure 4 shows a histogram of the
dimensions of the level 3 grids during the entire calculation. In this figure, each dimension is
counted separately in adding up the total number of grids of a given size. For this computation
the maximum grid dimension was limited to 50 and most grids were at least 24 cells wide
in each direction. This was done to limit an individual grid size to 125000 zones times
six variables per zone. Since the integration algorithm is operator split and each dimension
determines the vector length for one step, this gives a measure of the quality of the grids.

Figure 5 shows the number of level 3 cells as a function of time and indicates a growth in
memory requirements as the solution complexity grows. The maximum memory required at
any point during the run was 22.6 Mwords.

Independent measurements ofthe integration algorithm on a single large grid 160 x 64 x 64
indicated a time of 30/z-seconds per zone. Thus, the additional boundary work, smaller vector
lengths and AMR overhead increased the time per zone by 33%. However, to achieve the same
resolution, a uniform grid 1280 x 256 x 256 would be required. Such a computation would
require 500 Mwords of storage and 1100 hours of CPU time. The net speedup with AMR is
a factor of 55.

Although it is difficult to predict in advance, only 40 of the 80 zones in the x direction
played a significant role in the computation. The difficulty in prediction of the extent of the
problem is shown by cruder mesh calculations, which indicated a larger computation region.
An outflow boundary condition to handle the reflected shock off of the bubble could have
eliminated a region of length 40 zones in the x direction. Such a computation would require
251 Mwords of storage and 560 hours of CPU time. Alternatively, we estimate that with a
carefully designed, exponentially stretched computation mesh, the fixed grid computational
cost also could be halved; however, such an approach also requires substantial knowledge of
the solution in designing the mesh. Thus, even from a conservative viewpoint, AMR reduced
the computational cost by more than a factor of 20 for this problem.
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FIG. 3. Volume renderings of the density during the evolution of the bubble after being hit with a shock wave.
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FIG. 5. The number oflevel 3 cells as afunction oftime during the calculations.

Of course, the performance of AMR is highly problem dependent. For some problems
the cost reduction may be greater and for some problems it may be less. However, AMR will
be cost effective as long as the average number of coarse cells per timestep that require the
finest level of refinement throughout the computation is less than 75% of the total number.
Although sophisticated grid placement strategies can reduce the advantage of using AMR,
these strategies require considerable knowledge of the solution to be effective and may add
considerable difficulties to problem setup. AMR provides a high level of performance while
making problem setup routine.

REFERENCES

J. D. BAUM AND R. LOANER, Numerical design of a passive shock deflector using an adaptive finite element

scheme on unstructured grids, AIAA-92-0448 (1992).
[2] M.J. BERGER AND P. COLELLA, Local adaptive mesh refinementfor shock hydrodynamics, J. Comput. Phys.,

82 (1989), pp. 64-84.

[3] M.J. BERGER AND J. OLIGER, Adaptive mesh refinementfor hyperbolicpartial differential equations, J. Comput.
Phys., 53 (1984), pp. 484-512.

[4] M.J. BERGER AND I. RIGOUTSOS, An algorithmfor point clustering and grid generation, IEEE Trans. Systems
Man and Cybernet, 21 (1991), pp. 1278-1286.

[5] P. COLELLA, R. E. FEROUSON, AND H. M. GLAZ, Multifluid algorithm, to appear.
[6] P. COLELLA AND H. M. GLAZ, Efficient solution algorithmsfor the Riemannproblemfor real gases, J. Comput.

Phys., 59 (1985), pp. 264-289.
[7] P. COLELLA AND L. F. HENDERSON, The von Neumannparadoxfor the diffraction ofweak shock waves, J. Fluid

Mech., 213 (1990), pp. 71-94.

[8] P. COLELLA, R. KLEIN, AND C. MCKEE, The nonlinear interaction ofsupernova shocks with galactic molecular
clouds, in Proc. Physics of Compressible Turbulent Mixing Intl. Workshop, Princeton, NJ, 1989.

[9] G. S. DIETACHMAYER AND K. K. DROEGEMEmR, Application of continuous dynamic grid adaption techniques
to meteorological modeling. Part i: Basic formulation and accuracy, Mon. Wea. Rev., 120, (1992), pp.
1675-1706.

10] H. A. DWYER, M. SMOOKE, AND R. J. KEE, Adaptive gridding for finite difference solutions to heat and mass

transfer problems, in Numerical Grid Generation, J. Thompson, ed., Elsevier Science Publishing Co.,
New York, 1982.



138 J. BELL, M.BERGER, J. SALTZMAN, AND M. WELCOME

11 I. I. GLASS, J. KAC, D. L. ZHANG, H. M. GLAZ, J. B. BELL, J. A. TRANGENSTEIN, AND P. COLLINS, Diffraction
ofplanar shock waves over half-diamond and semicircular cylinders: an experimental and numerical

comparison, in Proc. 17th International Symposium on Shock Waves and Shock Tubes, Bethlehem, PA,
1989.

12] J.-E HAAS AND B. STURTEVANT, Interaction ofweak shock waves with cylindrical and spherical gas inhomo-

geneities, J. Fluid Mech., 181 (1987), pp. 41-76.

13] L. E HENOESON, E COLELLA, ANO E. G. PuEar, On the refraction ofshock waves at a slow-fast gas interface,
J. Fluid Mech, to appear.

14] D. J. MAVRIPILIS AND A. JAMESON, Multigrid solution of the Euler equations on unstructured and adaptive

meshes, in Proc. Third Copper Mountain Conf. Multigrid Methods, Lecture Notes in Pure and Applied
Mathematics, 1987; ICASE Report 87-53.



SIAM J. ScI. COMPUT.
Vol. 15, No. 1, pp. 139-148, January 1994

() 1994 Society for Industrial and Applied Mathematics
009

STABILITY OF THE PARTITIONED INVERSE METHOD FOR
PARALLEL SOLUTION OF

SPARSE TRIANGULAR SYSTEMS*

NICHOLAS J. HIGHAM AND ALEX POTHEN

Abstract. Several authors have recently considered a parallel method for solving sparse triangular systems with
many right-hand sides. The method employs a partition into sparse factors of the product form of the inverse of the
coefficient matrix. It is shown here that while the method can be unstable, stability is guaranteed if a certain scalar
that depends on the matrix and the partition is small and that this scalar is small when the matrix is well conditioned.
Moreover, when the partition is chosen so that the factors have the same sparsity structure as the coefficient matrix,
the backward error matrix can be taken to be sparse.
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1. Introduction. The method of choice for solving triangular systems on a serial com-
puter is the substitution algorithm Several approaches have been suggested for parallel solu-
tion. Implementations of substitution for distributed memory architectures are described by
Heath and Romine [12] and Li and Coleman [15], and a short survey of this work is given
by Gallivan, Plemmons, and Sameh [9, 3.5.2] (see also [11, 6.4.4]). Implementations of
substitution for sparse matrices on shared memory architectures are investigated by Rothberg
and Gupta [20]. Algorithms that are not based on substitution are surveyed by Gallivan,
Plemmons, and Sameh [9, 3.5], Heller [13], and Ortega and Voigt [16]. A new method
has been developed recently for the parallel solution of sparse triangular systems with many
right-hand sides when these vectors are not necessarily available at the same time 1]-[3], [8].
The method involves representing the inverse of the coefficient matrix as a product of sparse
factors, and can be explained as follows

If L nn is lower triangular, we can write L L1L2... Ln, where Lk differs from
the identity matrix only in the kth column:

Ik-1
[kk

(1.1) Lk lk+l,k

Ink
The factorization of L can be partitioned

(1.2) L G1G:z... Gm,

where < rn < n and

1 < i2 < < im+l n -t- 1.
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Note that Gk is the lower triangularmatrix equal to the identity except for columns ik ik+l--
1, which equal the corresponding columns of Lik Lik+l_l, respectively. Defining Gk
Gk(:, ik" ik+l 1) (using the colon notation from [11]) we have the relation

(1.4) L G1G2... Gm [G1, G2 Gm],

which we will use later. Equation (1.2) yields the partitioned, product-form representation

(1.5) L -1 Hm Hm-1. H1, Hk G- 1.

For a sparse matrix L, the idea behind the "partitioned inverse method" is to choose the
partition (1.2) so that (1.5) represents L -1 as a short product of sparse factors. Then Lx b
is solved by forming

(1.6) x HmHm-1... Hlb,

and the advantage is that x can be computed in rn serial steps of parallel matrix-vector mul-
tiplication. Thus on a massively parallel SIMD computer such as the Connection Machine
CM-2, only rn communication steps involving the router are necessary in the algorithm. The
scalar multiplications in each product xk HkXk-1 (where x0 b) can be done concurrently
in time proportional to v, where v is the maximum number of elements of Hk assigned to
a processor, and the additions can be done in logarithmic time 1]. The two extreme cases
are rn n, which gives a modified version of forward substitution (or forward substitution
itself if L has unit diagonal), and rn 1, for which the method forms x L -1 x b. For a
sparse matrix L we would not take rn 1, because H1 L -1 is usually much denser than
L [7, 12.6]. Rather, we would like to minimize rn subject to the condition that each factor
Hk can be stored in the same space as Gk, since rn is the number of serial steps in the parallel
evaluation of x. Since we are assuming that many right-hand sides are to be processed, we
can afford to spend some computational effort in constructing the partition (1.2).

Algorithms for finding a best no-fillpartition (1.2) are described in 1 ]-[3]; such a partition
has the smallest possible number offactors (the minimum value ofrn) subject to the requirement
that each Gk is invertible in place. A matrix X is invertible in place if (X-1)ij 0 whenever

Xij 0 for any assignment of (nonzero) numerical values to the nonzeros in X. Note that Lk
in (1.1) is invertible in place, so a partition with rn n is always a no-fill partition. When L
is sparse, a best no-fill partition could have rn << n. Partitions that incur some fill-in have also
been investigated [3].

Algorithms are also given in [1] and [2] for finding a best reordered partition: this is
a no-fill partition with the fewest factors over all lower triangular matrices PLpT, where
P is a permutation matrix. Let F L + L:r denote the filled matrix corresponding to a
Cholesky factor. It is well known that if L is the Cholesky factor of a symmetric positive
definite matrix A whose nonzero elements are algebraically independent, then the adjacency
graph of F is chordal. By exploiting chordality, very efficient algorithms for computing best
reordered partitions in time and space linear in the order of the matrix (rather than the number
of nonzeros) can be designed for a Cholesky factor L 1 ], 19]. Furthermore, algorithms for
finding a partition with the fewest factors over all permutations P such that the permuted matrix
PFP has the same structure as the filled matrix F have also been designed [17], [18]. Note
that, in this case, the permutation may change the structure of L, and hence the permutation
P has to be applied to A before it is factored.

The numerical stability of the partitioned inverse method has not been studied in previous
work, either theoretically or in numerical experiments. The numerical stability is clearly
questionable because when rn 1 (which gives the best no-fill partition for a dense matrix)
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the method computes x L-1 b, and a numerical example in [6, 4] shows that this
evaluation need not be backward stable. To answer the question of stability we have done
an error analysis of the partitioned inverse method; this analysis is presented in 2. In 3
we describe some numerical experiments that illustrate the analysis and confirm the possible
numerical instability of the method.

Our main findings are as follows.
(1) In general, the partitioned inverse method does not satisfy the componentwise back-

ward and forward error bounds enjoyed by the substitution algorithm (namely, (2.1) and (2.2)).
(2) Normwise stability depends on a quantity p, defined in (2.13), which is a function of

the matrix L and the partition, and which can be arbitrarily large. Specifically, the computed
solution " to Lx b satisfies (L + AL)" b, where IlZXLlloo is bounded in (2.12); the
relative error IIx -’lloo/llx Iloo is bounded in (2.19). If p is of order 1, which is guaranteed if
L is well conditioned, the partitioned inverse method is both normwise backward stable and
normwise forward stable.

(3) If L is sparse and each Gk is invertible in place (as is guaranteed by a best no-fill or
best reordered partition), then the backward error matrix AL mentioned in (2) can be taken to
have the same sparsity structure as L.

Another way to summarize the stability of the partitioned inverse method is to say that
the method is only conditionally stable, with the backward error dependent on the condition
number of L. The partitioned inverse method therefore provides another example, to add to
those discussed by Demmel [4], of how parallelism can conflict with stability.

In future work we intend to examine how particular sparsity structures and other special
properties of L affect the stability of the partitioned inverse method.

2. Error analysis. In this section we give an error analysis of the partitioned inverse
method for solving Lx b. To keep the analysis general we will not make any assumptions
about sparsity. As our model of floating point arithmetic we take

fl(x + y) x(1 + oe) +/- y(1 +/3), loci, 1/31 _< u,

f/(x op y) (x op y)(1 + 8), I1 < u, op ,,/,

where u is the unit roundoff. This model admits machines that lack a guard digit in addition
and subtraction. We place a hat over a variable to indicate a computed quantity.

For later comparison we summarise what can be said about the substitution algorithm.
The computed" satisfies (see, for example, [22, p. 150] or [14])

(2.1) (Z + AL)" b, IAL] < ((n + 1)u + O(u2))lZl.
(Absolute values and inequalities are interpreted componentwise for matrices.) This result
shows that there is a componentwise tiny backward error matrix AL that has the same sparsity
structure as L. From (2.1) it is easy to obtain the forward error bound

(2.2) IIx ’lloo < (n + 1)u cond(L, x) + O(u2),
Ilxlloo

which contains the Bauer-Skeel condition number

IZ-llZllxl Iloocond(L, x)

This bound may be weakened to

(2.3) IIx -’11oo <_ (n + 1)UXoo(Z) + O(u2),
Ilxlloo
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where x(L) IlLllcllZ-lll. Our aim is to see how close the partitioned inverse method
comes to achieving the ideal bounds (2.1) and (2.2). Note that if L is sparse, the constant
n + in (2.1)-(2.3) can be replaced by p + 1, where p is the maximum number of nonzeros
per row over all the rows of L. Similarly, the constants ck that we define below to equal the
partition widths can be redefined to take account of sparsity.

First, we consider the computation of the factors Hk G-1 of L-1 (from L). Because
of its special structure, G is formed without error, and we assume that G-1 is computed by
one of the several stable methods described by Du Croz and Higham in [6] (for example, its
columns may be computed one at a time by forward substitution). For each of these methods
applied to G, precisely one of the following two residual bounds holds, depending on the
method:

(2.4) Ilkak- II <_ (cku / O(u))llkllakl,
(2.5) Iakik II < (cku + O(u2))lakl]Ikl,
where ck ik+l ik + 1. Each residual bound implies the forward error bound

(2.6) I G-I < ckulnkllGkllnkl + O(u2).

(Since we are working to first order, Hk and Hk are interchangeable in all the bounds.)
Applying standard error analysis of matrix-vector products 11, p. 66] to (1.6) we obtain

(2.7) (Hm + Am)(Hm-1 -k- Am-l)... (Hi + ml)b,

where

(2.8) Izl (cu + O(uZ))ll.
If the inner products that occur in the matrix-vector products are evaluated using the fan-in
algorithm for summation, then the constant ck in (2.8) can be replaced by log2 ck. We can
rewrite (2.7) as (L + AL)" b, where

(2.9) L + AL (H + El)-1 (H2 --[-- E2)-I... (Hm + Em)-,
with

(2.10) E, =/x, + (H,- H,).

Now we consider the sparsity of AL. First, we note that if Hk is computed by forward
m(J))-j-- where is thesubstitution, then, by (2.1), its jth column hj satisfies (Gk + ej ej

tz’(J)jth unit vector and I k < ((n + 1)u + O(u2))lakl, so that ’(J) has the same sparsity
structure as Gk. It follows that if Gk is invertible in place, then Hk (whose jth column is
that of (Gk + FJ)-) has the same sparsity structure as Gk. The same is true for any of the
stable methods in [6] because, as explained there, these methods all incur essentially the same
rounding errors. Next, we observe that by (2.8), Ak has the same sparsity structure as Hk, and,
therefore, if Gk is invertible in place, then (Hk + Ek)- (k + Ak)- has the same sparsity
structure as Gk. From (2.9) and the structural relation L G1G2... Gm, we conclude that

if each Gk is invertible in place then the backward error matrix AL has the same sparsity
structure as L. It remains to bound AL.

From (2.9) we have

m

AL y H?l... g_ll H gkH;1. Hk-+ll... Hn --]-- O(u2),
k-1
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so that

m

k=l

If (2.4) holds, then, from (2.8) and (2.10),

]nlEka-1 In-lAkn -4- HI(kH1- I)1

< c.uln-lllnklln-I + c.ulnlllHllG] + O(u2)
2c,ulG, lln,lla,l / O(u2),

and precisely the same bound is obtained if we use (2.5).
Define dn 2 max c,. To obtain a convenient bound for AL we use (1.4), together with

the observation that since IG,IIH,IIG,I differs from the identity only in columns i, i,+1
1, it can be treated like Gk[ when we invoke (1.4). We have

(2.11)

m

IALI < d,,u IGI... IG-I. IGIIHIIG,I. IG+I IGml-4- O(u2)
k=l
m

<dnuE[[l[ [k-l[, IGkIIHkIIGkI, [k+ll [’m[] + O(u2)
k=l

< dnu((m 1)ILl + [0 O, IG,IIHklIG,I, 0 0]) + O(uz)
k=l
rn

dnu((m 1)ILl / IG,IIHkIIG,I (m 1)I) + O(u2).
k=l

This bound is not of the form (2.1) that holds for substitution, because of the summation term.
If rn 1, the bound is IAL] _< 2(n + 1)ulLIIL-1IILI + O(u2). When rn n, the relation

ILkIIL-IIILkI <_ 3]Lkl allows us to simplify the bound to IALI < 4(n + 2)ulLI + O(u2),
which is of the same form as in (2.1).

Taking norms in (2.11) we obtain

(2.12) IIALII < dnu(m 1 + P)llLIIoo + O(u2),

where

(2.13) p
Iakilalllak[- (m- 1)Ill

The scalar p > 1 might be loosely described as a growth factor for the partitioned inverse
method, although it is not related to the growth factor in Gaussian elimination. For any rn < n,
p can be arbitrarily large, but for tn n it is easy to show that p < 3. Under scaling of the
system, p behaves as follows: if D1 diag(di) and D2 diag(ei) are nonnegative diagonal
matrices and we scale Lx b -- (D1LD2) (Dlx) Dlb, then

D LD2 I1

where DIk) diag(1 1, di,, dn) and D2{k diag(1 ,1, e#, eik+,--1, 1 1)
(recall that i is defined in (1.3)). This expression suggests that p is fairly insensitive to the
scaling of the rows and columns of L.
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We see from (2.12) that if L and the partition are such that p is of order one, then the
partitioned inverse method is normwise backward stable; that is, the computed solution "solves a system obtained by making a tiny normwise perturbation to L. Using (2.12), the
sparse backward error property noted earlier can be expressed as follows. Define Z ]n xn

by

1 if lij k O,(2.14) zij 0 otherwise.

Then, if each Gk is invertible in place,

(2.15) (L + AL)" b, IALI < (d,u(m q- p)llZl[ -+- O(u2)) Z,
where the matrix inequality both bounds Alij and shows that AL has the same sparsity structure
as L.

Two useful upper bounds can be obtained for p. By examining the form of the matrix
whose norm is the numerator in (2.13), it is easy to show that p < m maxk tc(Gk). From the
relation

G- Gk+I GmL-G Gk-1

Gk+I... Gm 0 L-(ik" n, ik" n)

we have IIa-ll _< max(l, IILII)max(l, IIL-III). As p is invariant under scalar multi-
plication of L, we can assume, without loss of generality, that L I1 1, and hence we have,
for all partitions,

p < mtc(L).

We conclude that the normwise backward error for the partitioned inverse method is bounded
by a multiple ofx(L)u. Although this bound may be very weak when L is ill conditioned,
it shows that if L is well conditioned then the partitioned inverse method is guaranteed to be
normwise backward stable.

It is interesting to note that dependence of the backward error on the condition number
occurs also in block LU factorization [5]. Another example of this dependence is a parallel
triangular system solver analysed by Sameh and Brent [21], for which a backward error
result with IIzXLII <_ CnUX2(Z)llZll is obtained. It seems to be a rule of thumb that if we
attempt to improve the parallelism of Gaussian elimination or substitution, we will achieve
only conditional stability, with the backward error potentially proportional to some function
of the condition number.

Now we turn to the forward error. One way to obtain a forward error bound is to expand
the equation " (Hm + Em)(nm-1 + Em-1)... (Hi + El)b, which follows from (2.7) and
(2.10). For m 1, this leads to the bound

IZ-llZllt-lllbl I1
/ O(u2)IIx ’11 <_ 2(n / 1)u

(2.16) Ilxll Ilxll

_< 2(n / 1)u0111Z-allZl I1 / O(u2),

where

IL-llbl Iloo(2.17) 0 > 1.
iiZ-lbll
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The scalar 0 can be regarded as a measure of forward stability for the L- b method. Note that
0 is large only when there is a lot of cancellation through subtraction in the product L-1b. Gill,
Murray, and Wright 10, 4.7.2] analyse the L -1b method under the simplifying assumption
that the computed inverse is the correctly rounded inverse. Their forward error bound from a
normwise analysis is proportional to c(L)(IIL-1 [[][bll/llxl[), and so is consistent with
our bound.

For general m, a more useful bound is obtained by manipulating the backward error result.
Since (L + AL)" b implies Ix -’1 < IL-1IIzXLI[’[, we obtain from (2.11)

(2.18)
IIx ’11 _< dn u

I1((m 1)lZ-llZl / ]Z-ll(-km=l IallHllal- (m 1)I))[x[[l
Ilxll Ilxll

+O(u2).

The summation term precludes this bound from matching the ideal bound (2.2), but (2.18)
does share with (2.2) the very desirable property that it is independent of the row scaling of
the system. We can weaken (2.18) to obtain

(2.19) IIx -ll _< dnu(m 1 + p)tc(Z) + O(u2),
Ilxll

where p is the growth factor in (2.13) (of course, this bound could have been obtained directly
using (2.12)). Hence if p is of order one, then the partitioned inverse method satisfies a bound
of the form (2.3), that is, it is normwise forward stable.

3. Numerical experiments. We describe two numerical experiments that illustrate the
error analysis and confirm the potential instability of the partitioned inverse method. Our
experiments were performed in Matlab, which has unit roundoff u , 1.1 x 10-16. Statistics
that we report include

nberr min{" Ib- L’I < llLlleell},
sberr min{e "lb L’I _< IILIIZI’I/,
cberr min{e "lb L’I < ILII’I},

and

IIx 11ferr
Ilxll

where e (1, 1) 7" and Z is defined in (2.14). The quantity nberr is the usual normwise
backward error, written in a way that shows its connection with the "sparse normwise backward
error" sberr. From (2.12) it follows that, to first order, nberr < dnu(m 1 + p), and, ifeach Gk
is invertible in place, sberr satisfies the same bound, by (2.15). The componentwise backward
error cberr is O(u) for substitution, by (2.1). We mention that in both experiments, modifying
the backward errors nberr, sberr, and cberr to include a b term (thus allowing b to be perturbed
in the definition of backward error) changes the backward errors by at most a factor 2.

In our first experiment L Rr, where V QR is a QR factorization of the 15 15
Vandermonde matrix with (i, j) element ((j- 1)/(n- 1))i-1 and b Le. This linear system
is taken from [6, 4]. We solved the system Lx b by using the partitioned inverse method
with "fixed-width" partitions (1.3) having i+1 i + p, for several values of p. Results are
reported in Table 3.1; since L is dense, nberr sberr, so we do not give the sberr values.
We see that as p increases, the normwise backward error increases and the algorithm loses
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backward stability. In these examples, both (2.12) and (2.18) are a factor 103 from being
equalities for p > 4, and the bound p < rn maxk xo(Gk) is clearly very weak. The ideal
forward error bounds (2.2) and (2.3) are 6.43e-4 and 3.87e-3, respectively; ferr exceeds both
values for p > 6, so the algorithm also loses forward stability. The quantity 0 in (2.17) has
the value 0 3.60e 11, so the bound (2.16) predicts forward instability when rn 1, but is a
factor 108 from being an equality. We also solved Lx c, where c (- 1, 1, 1, 1
and the result for p 15 is reported in the last line of Table 3.1. Here, 0 1, and, as predicted
by (2.16), the algorithm performs in a forward stable manner; the tiny backward error is not
predicted by our analysis.

TABLE 3.1
Dense system Lx b, n 15.

2
4
6
8
10
12
15

15

Xo(L) 2.18e12, cond(L, x) 3.62ell

nberr ferr /9 maxkx(Gk)
15 0.00 2.04e-6 3.00 8.38e6
8 4.98e- 18 5.68e-6 2.65e 1.55e7
4 5.77e-16 4.94e-4 1.49e3 9.51e8
3 2.14e-14 4.36e-3 3.62e4 9.51e8
2 9.10e-14 8.42e-3 5.68e5 1.03ell
2 4.73e-13 7.34e-3 2.04e6 1.41el0
2 6.63e- 13 1.1 le-2 2.72e6 3.83e9

6.60e-13 1.13e-2 2.78e6 2.18e12
Lx c, cond(L, x) 3.90e4

9.07e-23 8.78e-ll 2.78e6 2.18e12

In our second experiment L is a 20 x 20 matrix with 58 nonzeros; the entries and their
locations were chosen randomly and then manipulated "by hand" to produce interesting be-
haviour. The inverse of L has 93 nonzeros. We solved the system Lx b, where b Le,
using five different partitions. Partition A corresponds to forming " L-1 b (m 1),
Partition B has rn 2 with G1 L1Le... L14 and Ge L15... Leo, Partition C is a best
no-fill partition, Partition D is a best reordered partition, and Partition E gives a variant of
forward substitution (m n). (Recall that Partition D corresponds to a partition of a sym-
metric permutation of L that preserves its lower triangular structure.) In Table 3.2 we report
the backward errors and p (the system is too ill conditioned for us to determine the forward
errors, but the computed solutions probably have no correct digits).

TABLE 3.2
Sparse system Lx b, n 20.

x(L) 2.69e28, cond(L, x) 1.47e16

Partition (il, i2 ira+l)
A: (1,21)
B: (1,15,21)
C: (1,2,3,4,11,12,13,19,21)
D: (1,5,9,11,17,19,21)
E: (1,2,3 21)

nberr sberr cberr p
5.49e-9 4.26e-6 2.47e- 7.36e19
1.83e-14 4.26e-6 9.48e--2 1.06e14
4.03e-24 1.55e-14 6.96e-14 5.67e3
4.93e-24 1.55e-14 6.96e-14 5.67e3
7.27e-24 3.80e- 17 1.70e- 16 3.00

The results confirm two properties suggested by the analysis.
(1) For partitions in which the factors are not invertible in place (Partitions A and B in

the table), the sparse backward error can greatly exceed the normwise backward error.
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(2) Even a best no-fill partition can yield sparse or componentwise backward errors ap-
preciably larger than those for substitution.

We have been unable to construct a numerical example where the sparse backward error is
large even when p is small, which the analysis suggests may be possible for partitions where
the factors are not invertible in place. Our limited experience with the partitioned inverse
method suggests that, like substitution, it frequently achieves surprisingly small forward and
backward errors in practice. However, in view of the possible instability it is wise to compute
one of the backward errors and make an a posteriori test for stability. Alternatively, if many
right-hand sides are to be handled, it may be preferable to compute/9 or estimate its upper
bound mc(L) before solving the systems. If any of these tests reveal or predict instability,
substitution could be used instead.
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TWO-LEVEL LOCAL REFINEMENT PRECONDITIONERS FOR
NONSYMMETRIC AND INDEFINITE ELLIPTIC PROBLEMS*

RICHARD E. EWINGf, SVETOZARA I. PETROVAt, AND PANAYOT S. VASSILEVSKI

Abstract. Preconditioners of optimal order for nonselfadjoint and indefinite elliptic boundary value problems
discretized on grids with local refinement are constructed. The proposed technique utilizes solution of a discrete
problem on a uniform coarse grid; then, the reduced problem is handled by a generalized conjugate gradient (GCG)
method. The reduced problem is coercive if the initial coarse mesh is sufficiently fine and is local, solving only
for the unknowns on the subdomains where local refinement has been introduced. The reduced problem can be
preconditioned by a preonditioner for the symmetric positive definite matrix arising from the symmetric and coercive
principal part of the original bilinear form restricted to the subdomains containing local refinement. This problem
also utilizes a uniform grid. In the numerical tests, the recent algebraic multilevel (AMLI) preconditioners [Axelsson
and Vassilevski, SlAM J. Numer. Anal., 27 (1990), pp. 1569-1590; Saad and Schultz, SlAM J. Sci. Statist. Comput.,
7 (1986), pp. 856-869], which are of optimal order for selfadjoint and coercive elliptic problems, were used.

Key words, indefinite problems, nonsymmetric problems, optimal order preconditioner, local refinement, two-
level method, generalized conjugate gradients, elliptic problems

AMS subject classifications. 65F10, 65N20, 65N30

1. Introduction. Recently much interest has been devoted to the construction of precon-
ditioners for solving discretized elliptic and parabolic problems on grids with local refinement
(for example, see the so-called fast adaptive composite (FAC) grid method of McCormick
[20], McCormick and Thomas [22], Mandel and McCormick [19], and the monograph by Mc-
Cormick [21 ]. Also, a symmetrized version ofthe FAC grid-method was proposed in Bramble,
Ewing, Pasciak, and Schatz [9] and studied further in Ewing, Lazarov, and Vassilevski 15] for
elliptic problems and in Ewing, Lazarov, Pasciak, and Vassilevski 13] for parabolic problems
with local refinement in time and space. These methods have been also generalized to the
case of multilevel local refinement by Widlund [29], Dryja and Widlund 12], Ewing, Lazarov,
and Vassilevski [14], and Vassilevski, Petrova, and Lazarov [28]. The additive version of the
multigrid method as proposed by Bramble, Pasciak, and Xu 10] is also suitable for multilevel
local refinement.

Another approach, based on the two-level method of Bank and Dupont [7] and studied
further in Axelsson and Gustafsson [3], was successfully exploited in Ewing and Vassilevski
17] in the context oflocal refinement methods for two-level and multilevel grids. In the present

paper, we extend one of the two-grid preconditioners (the so-called two-level block Gauss-
Seidel preconditioner) to the case of nonsymmetric and possibly indefinite finite element
discretization matrices. The extension is based on the paper of Vassilevski [26] and uses the
fact observed by Schatz [25] that, within a certain subspace, the bilinear form corresponding
to our elliptic problem is coercive. In matrix notation, this means that the coefficient matrix
of the discrete problem has a Schur complement that has a positive definite symmetric part. In
the context of local refinement, this Schur complement is obtained by first solving the original
problem discretized by an initial uniform coarse grid. Hence, this Schur complement is related
to the unknowns corresponding to the grids in the subdomains where we have introduced
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local refinement. This is again a problem with similar discretization to the original problem,
but now in uniformly refined subregions. The difference with the result from Vassilevski
[26] is in the preconditioner derived for the reduced Schur complement that is based on
preconditioners for the principal symmetric and coercive part of the original bilinear form
restricted to the subdomains where we have uniformly refined grid. This means that we do
not have to precondition the symmetric positive definite principal part of the original matrix of
the problem in the entire domain with complicated grid with local refinement (as the method
from Vassilevski [26] would have required), but only its restriction to the subdomains with
uniformly refined grid.

In the present paper, we prove that the reduced problem can be preconditioned in a gener-
alized conjugate gradient (GCG) method by any preconditioner for the symmetric and coercive
principal part of the bilinear form restricted to the subdomains where we have introduced local
refinement. By exploiting the technique from Axelsson and Vassilevski [6] (see also [5]), we
can allow the coarse-grid solvers to be somewhat inexact; but this is not discussed further in
this paper.

The outline of the paper is as follows. In 2, we introduce the problem and formulate the
preconditioner. The convergence properties of the preconditioner are studied in 3. Finally,
in 4, a number of numerical tests that illustrate our theory are presented.

2. Construction ofthe preconditioner. Let f2 be a given two-dimensional (2D) polygon
or a three-dimensional (3D) polytope, and let FN be a given part of the boundary 0f2 on
which Neumann boundary conditions are imposed. We assume that the Dirichlet portion,
FD 0’2\FN, is a nontrivial part of 0f2. We denote by W](Q) the standard L2-based
Sobolev spaces on

We consider the second-order boundary value problem in a variational setting. Given

f 6 L(f2) and gN WI/2(FN), find u W (f) such that

a(u, p) =-- ki,j(x) OX OXj " (b. Vu)p + coucP dx

(2.1)

 :0on o.
J JI

The bounded measurable coefficients ki,j(x) define a symmetric matrix that is as-
sumed to be uniformly positive definitive for x ft. We also assume that co is a measurable
and bounded function and that the vector field b is sufficiently smooth.

The principal symmetric and coercive part of a (., .) is

(2.2) ao(u, fo ki j
Ou O dx

i,j Oxi OXj

We discretize the boundary value problem above on an initial coarse mesh o3. For definite-
ness, we consider the case of triangular grids for a polygonal domain f2. The finite element
discretization space I C W(g2) is assumed to be spanned by piecewise linear functions that
are continuous in f2 and vanish on I"D. The nodes (vertices of triangles that do not lie on
FD) define the initial (coarse) grid o3. We denote by h the discretization parameter on o3. The
discrete finite element problem reads: find u, 6 V such that for all b V, we have

a(u,, ck) f fkdx + f gvckdF.
N
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Let {i }i=1 be a standard nodal basis for V. Then we can compute the corresponding stiffness
matrix ,

d--" {a(j,4i)]ij=
and formulate the finite element problem as a linear algebraic system

d=g,

where R is the coefficient vector of ua expanded in tes of the basis {i a}i=1 and

fidx + giaF
i=1

In general, we may not be satisfied by the solution u on the coarse mesh . Thus,
after a proper a posteriofi analysis, one may decide to refine the mesh. This process can
be repeated successively. In practice, the refinement will usually te place only in ceain
subregions where the cuently computed approximate solution has a large gradient. We study
the following model situation. Let C be a subregion where we introduce a finer mesh. We assume that 1 is covered by coarse-grid elements. The refinement is peffoed
by subdividing any coarse-grid element in 1 into a fixed number of congruent ones. At
the interfaces that arise between the refined and unrefined elements, we have to introduce
so-called "slave" nodes. The values of the functions at these nodes in the coesponding fine
finite element space D are obtained by inteolation (linear intewolation between the
veices of the adjacent coarse-grid element that is not refined). This means that the values at
these nodes are not degrees of freedom. We denote the finer grid (also called the composite
grid) obtained in this manner by . We have 1 ; that is, 1 consists of all the nodes
(old nodes and those added in the refinement) in . The fine-grid space can also be defined
as follows:

v ; +
where ) is the standard finite element space of piecewise line functions in fl that vanish
on the interfaces between fl and the unrefined pa of . Let {i}i be the standard nodal
basis in . Then one can consider the following hierarchical basis in V"

{i}
n {} {i n}i=h+l
i=1 i=1

We compute the stiffness matrices with respect to the above hierarchical basis, obtaining
n

AO= ao(j,i)}ij=lA= {a(j,i)}i,j=l,
Our ultimate requirement is the following:
(I) Problems on the standard, possibly unifo, grids can be solved efficiently; for exam-

ple, there exists a standd efficient softwe code for such solution processes.
In our case, such grids will be ,, and any grid obtained by unifo refinement of any

of their regul pas. For example, we can thi of rectangul subgrids. We now paaition
the composite-grid matrices into the following natural two-by-two block fos:

A= Ao=
F g }mN, Fo Ho
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We note that, since we use hierarchical basis functions, the first block on the diagonal of A or
(A0) is just .4- (respectively, A-0), the coarse-grid matrix. We will need the Schur complements

(2.3) W H- F-lG and Wo Ho- Fo.,-lGo.
Our next goal will be to construct a preconditioner for W, the reduced Schur form of A.

To do this we will need the stiffness matrix

A(0l’= [a0,l (j, i)}x,,xjsa,l"
This is the stiffness matrix corresponding to the symmetric and coercive bilinear form a0(., .)
restricted to 1; it is defined in the subregion f21 using the finite element space V01) offunctions
that vanish on the interfaces between 21 and the unrefined part of f2. We similarly have the
hierarchical block form

0
.-,(1)
6 Ho }o\o.

Here oS1 and wl are the coarse and fine grids in f21, respectively. Note that col \l w\oS. We
note that, in the computation, the hierarchical basis stiffness matrices are used only implicitly,
cf. Yserentant [32] or Bank, Dupont, and Yserentant [8].

We also need the Schur complement

(2.4) W0(1) H0(1) t?(1) (1)-1 "(1)
"0 ’0 tJo

Note that W0l) is symmetric and positive definite.
Consider now the composite-grid problem

Ax b,

where

X2 }0)\0, b2 }o)\o,

which, after a coarse-grid solution, is reduced to

(2.5) Wx2 2 b2 FA--I.
We will precondition IV in a GCG method, e.g., the method from Axelsson [2] or the gener-
alized minimal residual (GMRES) method from Saad and Schultz [24]. The construction of
the preconditioner Z(1 for IV is given below.

Let M(1) be a symmetric positive definite (s.p.d.) preconditioner of A01 such that, for
some positive constants do and dl, we have

(2.6) do(1)r M(1)v(1) _< v(1)r A(ol)v(1) _< dl(1)r M(1)v(1)

for all (1) corresponding to the nodes in wl. Then Z(1) is defined through the relation

(2.7) [ JM(1)-J * }o1,
, Z(1)-1

}o31 \01
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Thus, to solve the system

we solve the larger system

Z(1)V1)--- b(21),

b(21) }o-)1\o1,

and then v2(1) Z(1)- .112(1) is the second block component of (1)

(1> [ * J }O1’

(21) }O)1 \O1.

We recall that w is a standard, unifo grid. We see that solving systems with the precondi-
tioner Z<1) is based on solving systems with the preconditioner M<) for A1) on a standard,
unifo grid; we assumed in (I) that this can be efficiently realized. Also note that, to compute
the actions of the Schur complement W, we need to solve a copse-grid problem with , again
on a stand,d, unifo grid.

3. Convergence properties of the preconditioner. At first we study the propeies of
the Schur complement W given in (2.3). We use the notation that I" Is, and II" II,a denote the
seminos in the Sobolev space W(). We need the following result, which is the essence of
many iterative methods for nonsymmetfic and/or indefinite elliptic problems; cf., e.g., Mandel
18] for multigfid methods for nonsymmetfic problems, Yserentant [33] for hierchical basis
methods for nonsymmetfic and indefinite problems, Cai and Widlund 11 for ceain additive
domain decomposition methods, and the general approaches developed in Xu and Cai [31 for
additive preconditioners, and Xu [30] for his multiplicative version. This result was also used
in Vassilevski [26] where iterative methods in a subspace (ohogonal to a coarse-grid finite
element space) were proposed.

LEMMA 3.1. Assume the following approximation proper for the coarse-grid finite
element space " given f La(), consider the adjointproblem: find v W(), v 0 on
FD, such that

(3.1) a(, v) ( v) for all W(), 0 on Fo.

We make the assumption thatfor some accuracy level > O, there exists a function V
such that

I- lfl0,.(3.e) v
1,

Consider the space

w =oo =o

Then, thefollowing properties ofthe bilinearform a (., .) hold:

a(w, w) (1 -O())ao(w, w) for all w e H

and

a(v, w) (1 + O())ao(v, v)ao(w, w) for all w e H,

and all v E W (g2), v 0 on Fo.
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Proof. As already mentioned, this result can be found in one form or another in many
papers. In the present form (which is suitable for our application) it was proved in Vassilevski
[26]. For completeness we provide the proof here also.

For simplicity, we assume that FD 0f2. We follow the standard method of "duality
argument" (due to Aubin 1 and Nitsche [23], and used in Schatz [25], Mandel 18], Yserentant
[33] and, more recently, in Cai and Widlund [11], Vassilevski [26], Xu and Cai [31], and Xu
[30]). If v is the solution of the corresponding adjoint problem (3.1), and for any w H, we
have

(w, f) a(w, v)

=a(w,v-) forallq6 ?

-ao (w, + Vw +cow,

< ao (w,v-) + cllwlll Iv-10

where we have used the boundedness of the vector field b, the coeNcient matrix [ki,], and

co. Since e P is bitr, using (3.2), we obtain,

Thus for f w, we obtain

(3.3) Iwl0 celwl ceao(w, w)

by using the coercivity of a0(., .), the principal symmetric part of the bilinear form a(., .).
Then, using integration by parts (b has been assumed to be sufficiently smooth) and (3.3), we
see that

a(w, w) ao(w, w) + co :divb w2

> ao(w, w)- co- ldivbl I/1

> [1 O(e2)] ao(w, w),

which is the first desired inequality. The second inequality is again obtained through integration
by parts. We have

a(w, v) ao(w, v) + I [(b. Vw)v + cowv]
Jn

ao(w, v) fn w div(bv) + fn cowv
< ao(w, v) + clwl0 Ivll
_< [1 + 0()] /ao(w, w)/ao(v, v),

where we have used (3.3), the coercivity of a0(., .), and the Schwarz inequality.
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Consider now the hierarchical block-matrix forms of A and Ao:

A G }o5, Ao Go }o5,
A and A0=

F H }w\oS, Fo H0 }w\oS.

As already noted, the first blocks equal the corresponding coarse-grid stiffness matrices since
we use hierarchical basis functions. The blocks A and Ao are the stiffness matrices at the
initial (coarse) discretization level.

The coefficient vector of a function e 1? C V with respect to the hierarchical basis in
V has the block form,

o

Then, if w F has a coefficient vector

W

w2

and

a(w, fi)=O for all6 I,

we have

A
0 w2

Thus

T (A’I "4- Gw2) "--0 for all .
This implies that

A@ + Gw2 0.

Having this in mind, we see that the space

H={w.V’a(w,)=O for all q }
in matrix-vector form can be written as

{w. x, + o}.
Next we state the following main result from Vassilevski [26].

LEMMA 3.2. There exist two positive constants F1 O() and F2 + O()
such that, under the approximation property stated in Lemma 3.1, the following spectral
equivalence relations between the Schur complements W of A and Wo Ho F0 Go of
Ao hoM:

Vf W’W2 J"l V2
T WoV2 for all V2
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and

v2
r Ww2 _< ’2 (v WoV2)1/2 (w2r Wow2)1/2 for all v2, w2 E I’.

Proof. From Lemma 3.1, we have

(3.4) vrA __. V1 vTAov

[ ] in the subspace H satisfying A-g, + Gv2 0; here ’1 1 O(e) Sincefor any v vz o\
0 ] the inequality above implies thatAV--- Wv

VWv2 >_ "1 in_f vT AoV ’1v Wov2.

From Lemma 3.1, we also have that

VTAw "< 2 (VTAov)1/2 (WT40W) 1/2,

[ ] 1o and all w [ r, ] t from thewhere 2 1 + O(e), for arbitrary vectors v
v2

subspace H, satisfying , + Gw2 0. Then we have

from (3.4). We set v2 w2 in this inequality, and thus obtain

(WWw2) 1/2 p2// (WW0w2)1/2
Substituting the last inequality in the preceding one, we get

VWw2 22/’1 (v Wov2)1/2 (w2T Wow2) 1/2.

Denoting ’2 22/’1 + O(), we thus obtain the second desired inequality. [3

We next need the following result.
LEMMA 3.3 (Strengthened Cauchy Inequality, cf. Axelsson and Gustafsson [3] or Bank

and Dupont [7]). There exists a constant , (0, 1) such that

ao (q, ) < ’ (ao(b, ))1/2 (ao (q, q))l/2
for all ( and all V that satisfy dplco O. In matrix notation, we have

V2
TF0 y (vHoV2)1/2 (vTAoI)1/2
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for all vectors 2 - ]n-, E ,. In general, the constant y depends only on the shape of
the elements, also on h/h (the ratio of the coarse grid over the fine grid) and on the local
ellipticity constant cr defined asfollows:

/z2(T)
r sup

r63 1 (T)

here/Zl (T) and/z2(T) are the bounds ofthe expression

/Zl(T)II2 < y ki,j(x)gj < =(Z)ll= for all x T 3.
i,j

Inparticular, this means that y remains boundedawayfrom unity, independent ofthe possible
jumps ofthe coefficients ifthese occur only across edges ofelementsfrom , (the set ofinitial
coarse triangles). The asymptotic behavior of ?, in terms ofh/h is (cf, e.g., Vassilevski [27])

C for 2D domain
,2 + log

h for 3D domainC,

We assume throughout this paper that the aspect ratio, / h, is bounded.
A corollary from Lemma 3.3 is the following lemma (cf. Axelsson and Gustafsson [3]).
LEMMA 3.4. Thefollowing inequality holds:

1vHov2 _<
1-y2vrAov forallv= I f ]}’V2 }0)\(.

Proof. We have, using the strengthened Cauchy inequality,

which is the desired inequality. [3

We also need the following basic lemma (cf. Ewing and Vassilevski 17]).
LEMMA 3.5. Thefollowing inequalities between the Schur complement W(o 1) H(o 1)

Fo(1) A-(o1)-1G(01) of A(o) (see (2.4)), the Schur complement Wo of Ao (see (2.3)), and the block
Ho ofAo hold:

V" Wov2 _< v2
T Wo(1)v2 _< vHov2 _<

1 Vm0v2 for all v2 E ]n-h.
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Proof. By a main property of Schur complements of s.p.d, matrices, we have,

vWv2=inf[ ]rv2

V2 2 0 }O\1

inf A(o1)o V2 V2

We have, by Lemma 3.4,

1
vrn0v < vr40v,

1_?,2

and hence
1vHoV2 < inf vr Aov vWov2.l_y2 1--y2

Finally, noting that H0 =/-/01) and

(Ho ’(1)-1G(01))V W0(I)v2 V2
T 1) fo(l).0 v2 < v2

T Nov2,

the proof is complete.
Now we can prove our main result.
THEOREM 3.6. The preconditioning matrix Z(1) induced by the preconditioner M0 for

Ao (see (2.6) and (2.7)), is spectrally equivalent to the reduced Schur matrix W of A, and
thefollowing spectral equivalence relations hold:

V2
T Ww2 _< dl ’2 (v" Z(1)v2)1/2 (w2T Z(1)w2) 1/2 for all v2, w2 E ]n-,

VWV2 >_ (1 ?’2)doylv Z(1)v2 for all V2 E ]n-.

The constants ’1 and ), are from Lemma 3.2; the constants do and dl are from (2.6), and
), (0, 1) is the constantfrom the strengthened Cauchy inequalityfrom Lemma 3.3.

Proof. We have, from (2.6), noting that Z1 is a $chur complement of M(1),

d0vz(1)V2 _< vWo(1)v2 _< dlvZ(1)v2 for all v2 ]n-.

Then the proofsimply follows from Lemma 3.2, the above inequalities, and Lemma 3.5. [3

COROLLARY 3.7. The generalized conjugate gradient methods, e.g., thosefrom Axelsson
[2], or the GMRES methodfrom Saad and Schultz [24], applied to solve the reduced system
(2.5) with W as a coefficient matrix using ZO) as apreconditioning matrix, have an asymptotic
convergencefactor that depends only on the constant (o./y1)(1 ?’2)-ix, where c d/do
is the condition number ofM(1)-I A(01)

Remark 1. The approximation property of the coarse finite element space I? assumed
in Lemma 3.2 is ensured, for example, if the adjoint problem (3.1) has certain (very weak)
regularity, say, for some ot > 0 and any f 6 L2 (f2) the solution v of (3.1) belongs to W+(2).
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Then we can let e O() in (3.2), where is the coarse-grid discretization parameter. We
also note that the ratio Ya/Fl + O(e) + O() in this case. Hence, the convergence
propeies of the preconditioner Z1 e asymptotically the se (if is sufficiently small) as
if the oginal problem was assumed symmetc. We also remk that 1/(1 Fa) is bounded
when /h is bounded.

4. Numerical experiments. In this section we present numerical results for the bilinear
fo

Here is the unit sque. We impose homogeneous Dichlet bound conditions on the
boundes {x 0} and {y 0} d homogeneous nmural bound conditions on {x 1
d {y 1 }.

We test the following problems.
Problem 1 (symmetric and positive definite bilinear fo). This case coesponds to the

biline fo a0(., .) from (2.2) with k 1 + x2 + , i.e., v 0d Z 0.
Problem 2 (nonsymmetdc biline fo). The coefficients e
1. v cos 0 (x cos 0 + y sin 0),
2 sin 0 (x cos 0 + y sin 0),

2. 1 -10cos0(x cos0 + ysin0),
v2 -10sin0(x cos0 + ysin0),

where 0 is 45; in this case, 0d k 1 + x2 + y2.
Problem 3 (symmetric but possibly indefinite biline fo). This case coesponds to

a Helmholtz-like equation, i.e., k 1 + x2 + and v 0. We test this problem with
10, 50, 500.
For all problems, the exact solution is

u(x,y)--x 1--x y 1--y
In the discretization, we use the finite element methods with piecewise linear elements on

isosceles right-angled triangles. The results are listed in Tables 1-6 where Nc is the number
of nodes in the initial coarse grid coordinate, i.e., the initial mesh size is hc 1INc. The
subregion f21 where the local refinement is introduced is chosen to be the northeast 1/16 part
of the whole domain f2 and the local refinement is done with parameter no hc/hf 2, 4, 8,
where hf is the grid size in the subdomain f21.

TABLE
Iterative convergence resultsfor Problem 1.

v Oand,k =0
Nc no iter arfac
8 2 4 0.126

4 5 0.186
8 7 0.255

16 2 4 0.111
4 5 0.217
8 7 0.289

32 2 3 ’0.153
4 5 0.196
8 6 0.280
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TABLE 2
Iterative convergence resultsfor Problem 2, (1).

16

32

no iter
2 4
4 5
8 7
2 4
4 5
8 7
2 3
4 5
8 6

Z=0,0

arfac
0.127
0.182
0.255
0.111
0.217
0.289
0.153
0.196
0.280

=45

coercive coercive
coercive coercive
coercive coercive
coercive coercive
coercive coercive
coercive coercive
coercive coercive
coercive coercive
coercive coercive

TABLE 3
Iterative convergence resultsfor Problem 2, (2).. =0,0 =45

Nc no iter arfac .4" W
8 2 4 0.128 coercive coercive

4 6 0.213 coerceve coercive
8 7 0.273 coercive coercive

16 2 4 0.113 coercive coercive
4 6 0.214 coercive coercive
8 7 0.292 coercive coercive

32 2 3 0.152 coercive coercive
4 5 0.201 coercive coercive
8 6 0.284 coercive coercive

TABLE 4
Iterative convergence resultsfor Problem 3.

v OandZ 10

Nc no iter arfac A- W
8 2 4 0.130 indefinite coercive

4 5 0.186 indefinite coercive
8 7 0.255 indefinite coercive

16 2 4 0.112 indefinite coercive
4 5 0.217 indefinite coercive
8 7 0.289 indefinite coercive

32 2 3 0.153 indefinite coercive
4 5 0.196 indefinite coercive
8 6 0.280 indefinite coercive

TABLE 5
lterative convergence resultsfor Problem 3.

v 0 and 50

Nc no iter arfac . W
8 2 4 0.134 indefinite coercive

4 5 0.185 indefinite coercive
8 7 0.253 indefinite coercive

16 2 4 0.115 indefinite coercive
4 5 0.217 indefinite coercive
8 7 0.288 indefinite coercive

32 2 3 0.153 indefinite coercive
4 5 0.196 indefinite coercive
8 6 0.280 indefinite coercive
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TABLE 6
Iterative convergence resultsfor Problem 1.

v 0 and , 500

Nc no iter arfac
8 2 8 0.211 indefinite

4 10 0.339 indefinite
8 11 0.455 indefinite

16 2 5 0.160 indefinite
4 7 0.284 indefinite
8 8 0.354 indefinite

32 2 3 0.126 indefinite
4 5 0.204 indefinite
8 6 0.295 indefinite

noncoercive
noncoercive
noncoercive
coercive
coercive
coercive
coercive
coercive
coercive

We solve the corresponding reduced discrete problems (2.5) where the fight-hand side
vector b corresponds to the exact solution u(x, y) above. We use the GCG method from
Axelsson [2] with a stopping criterion

A rr2 < e, e 10-12,

where r2 is the residual vector and the parameters iter and arfac in the tables are, respectively,
the number of iterations and the average reduction factor for reaching the above accuracy, i.e.,

arfac

-(r-( and r( is the initial residual vector.whereA0=r2 r2
For problems in the subregion we use the AMLI preconditioner (algebraic multilevel

preconditioner) from Axelsson and Vassilevski [4] as modified in Vassilevski [27]. We also
indicate in Tables 2-6 whether A and If are positive definite (coercive) or not.

From the numerical results presented, we see that the proposed extension of the iterative
refinement methods from Ewing and Vassilevski 16], 17] works as predicted by the theory. If
the coarse-grid space P gives more accurate approximation to the considered boundary value
problem, i.e., when Nc is larger, we see that the GCG method has better convergence properties
in the sense that the number of iterations (iter) decreased for a fixed no hc/hf 2, 4, 8.

For the case in Table 6, for N 8, no 2, 4, 8 and . 500, we obtain noncoercive
Schur complement . However, it turns out that the GCG method, after a short starting phase,
performs as in the coercive case. This behavior can be explained as in Yserentant [33]. This is
due to the fact that the GCG method is also convergent when we have a number of eigenvalues
(but not too many) with negative real part. The number of such eigenvalues depends only on
) (if the discretization is sufficiently accurate) and is independent of the preconditioner used.

We also observe from Tables 4, 5, and 6 that the method is not very sensitive with respect
to ;. We get about the same number of iterations for . 10, 50, and 500 in the case when
the Schur complement W is coercive.
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FAST BAND-TOEPLITZ PRECONDITIONERS FOR HERMITIAN TOEPLITZ
SYSTEMS*

RAYMOND H. CHAN AD PING TAK PETER TANG

Abstract. This paper considers the solutions of Hermitian Toeplitz systems where the Toeplitz matrices are
generated by nonnegative functions f. The preconditioned conjugate gradient method with well-known circulant
preconditioners fails in the case when f has zeros. This paper employs Toeplitz matrices of fixed bandwidth as

preconditioners. Their generating functions g are trigonometric polynomials of fixed degree and are determined
by minimizing the maximum relative error II(f- g)/fll. It is shown that the condition number of systems
preconditioned by the band-Toeplitz matrices are O(1) for f, with or without zeros. When f is positive, the
preconditioned systems converge at the same rate as other well-known circulant preconditioned systems. An a priori
bound of the number of iterations required for convergence is also given.

Key words. Toeplitz matrix, generating function, preconditioned conjugate gradient method, Chebyshev ap-
proximation, Remez algorithm

AMS subject classifications. 65F10, 65F15

1. Introduction. In this paper, we consider solutions of n-by-n Hermitian Toeplitz sys-
tems Anx b by the preconditioned conjugate gradient method. The Toeplitz matrices
are assumed to be generated by 2zr-periodic continuous real-valued functions f defined on
[-zr, zr], i.e., the entries of An are given by the Fourier coefficients of f:

[A,]j,, - f(x)e-i(J-k)Xdx O<j,k<n.

We emphasize that the generating function f is given in some applications of Toeplitz
systems. Typical examples are the kernels of the Wiener-Hopf equations, see Gohberg and
Fel’dman 12, p. 82], the spectral density functions in stationary stochastic process, see Grenan-
der and Szeg6 14, p. 171 ], and the point-spread functions in image deblurring, see Oppenheim
[16, p. 200].

Ifthe generating function f is positive, the preconditioned conjugate gradient method with
circulant preconditioners has proved to be a successful method--the preconditioned systems
converge superlinearly when f is smooth, see, for instance, Chan and Strang [3] and Chan
and Yeung [5]. However, these circulant preconditioners do not work in general when f has
zeros. A specific example is the one-dimensional discrete Laplacian given by the tridiagonal
matrix trid[- 1, 2, 1 ]. Its generating function is f(x) 4 sin2 x, which has a zero at x 0.
The corresponding Strang circulant preconditioner, see [17], is actually singular. (See also
the numerical results in 4 for the performance of the T. Chan [8] circulant preconditioner in
the case where f has zeros.)

Recently, Chan [4] proposed using band-Toeplitz matrices Bn,e as preconditioners for f
that has zeros. These preconditioners are constructed by matching their generating function g
with f at those zeros of f. It is proved that if the order ofthe zero of f is 2e, then the condition
number to(An) of An is O(n2e), whereas tc(B,,An) is O(1). However, when f is positive,
the band-Toeplitz preconditioned systems converge much slower than those preconditioned
by circulant preconditioners.

Our main aim in this paper is to design band-Toeplitz preconditioners that work when

f has zeros and yet their preconditioned systems converge at the same rate as the circulant
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preconditioned systems even when f is positive. Our idea is to increase the bandwidth of
the band-Toeplitz preconditioner to get extra degrees of freedom, which enable us not only to
match the zeros in f but also to minimize the relative error II (f g)/fl Io. The minimizer
g is found by a version of the Remez algorithm proposed by Tang 18]. The algorithm also
computes the minimum relative error, which ultimately gives an a priori bound on the number
of iterations required for convergence.

We note that the band-Toeplitz preconditioner we proposed has bandwidth that depends
only on the order of the zeros of f and is independent of n, the size of the matrix. Hence
for any vector x, B-1

n,ex can be obtained by band solver in O(en) operations. In contrast,
solution of circulant systems requires O (n log n) operations. We remark that in 15], Ku and
Kuo have considered using products of lower- and upper-triangular band-Toeplitz matrices
as preconditioners. Their resulting preconditioners are in general non-Toeplitz and hence are
different from ours.

The outline of the paper is as follows. In 2, we analyze the convergence rate of our
preconditioned systems B-1 ./ln in terms of the generating functions g of Bn and f of Ann,
In 3, we describe the Remez algorithm and how it is applied to construct the generating
function g and hence the preconditioner Bn,e. In 4, we present numerical results that confirm
our analysis in 2. In 5, we discuss the use of regularization, a technique that is relevant
in computations corresponding to f having zeros and especially when n is large. Finally,
concluding remarks are given in 6.

2. Convergence analysis. In this section, we analyze the convergence rate of the pre-
conditioned conjugate gradient method in terms of the generating functions f and g.

We first note that if f is nonnegative, then An is always positive definite.
LEMMA 2.1. Let fmin and fmax be the minimum and maximum of f in [-rr, yr]. If

fmin < fmax, thenfor all n > O,

fmin < ,i (An) < fmax, 1 n,

where .i(An) is the ith eigenvalue ofAn. In particular, iff > 0, then An are positive definite
for all n.

The proof of the lemma can be found in Chan [4]. Next we give a bound on the condition
number of the preconditioned systems.

THEOREM 2.2. Let f be the generatingfunction ofAn and let g be the generatingfunction
ofa band-Toeplitz matrix Bn,e

g(x) E bJeijx’ bj [_j.
j=-(-l)

then Bn,e is positive definite and

l+h

Proof. By assumption, we have

n=1,2,3

f(x)(1- h) < g(x) < f(x)(1 + h) Vx e [-yr, zr].
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Clearly, g(x) is nonnegative. In particular, by Lemma 2.1, B,,,e is positive definite for n
1, 2, 3 Since An and Bn,e are Toeplitz matrices, we have

f(x) uje’ixU*An U - r j=0

2

and

11 g(x)u*au=
n-1- uje

ijx

j=0

2

for an arbitrary (complex) n-vector u* [u0, u Un-1], see Grenander and Szegti [14].
Hence, we get

(1) (1 -h)u*Anu < u*Bnu < (1 + h)u*AnU.

Since Bn,e is also positive definite, we finally have

l+h
tc(B-1 An) <n,e l-h"

By standard error analysis of the conjugate gradient method, see, for instance, Axelsson
and Barker 1, p. 14], we conclude that the number of iterations required for convergence is
bounded by

-l (l + h) log (1)- +1
2 1-h "r

where : is the tolerance. Since h is given explicitly in the Remez algorithm, we have an a
priori bound on the number of iterations required for convergence.

3. Construction of preconditioner by the Remez algorithm. In this section, we de-
scribe how we construct our band-Toeplitz preconditioner. For ease ofpresentation, we assume
the matrix An is real symmetric. Handling the complex Hermitian case will become clear once
the symmetric case is explained. Since An is symmetric, its generating function f is even,
in addition to being 2zr-periodic and continuous. It suffices to consider f on [0, zr]. The
generating function of a band-Toeplitz matrix B,e,

( bo bl be-1

bl
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is given by

g(x) bo + bl(2cos(x)) + b2(2cos(2x)) +... + be_(2cos(( 1)x)).

Thus, in the case where f > 0 on [0, zr], determining the optimal P is a standard linear
minimax approximation problem:

minimizepo,pl p,_l 1 e(x)llo,

where

e-1

P(x) p+++(x),
j-O

4o 1/f(x) and 4j(x) 2cos(jx)/f(x) for j > O.

Note that P g/f. This optimal P (and hence g) can be obtained by a standard Remez
algorithm (see Cheney 10], for example). We, however, use the versionproposed by Tang 1 8],
which can be extended to handle the case when f(xo) 0 for some x0 e [0, zr]. We now
describe this version of the Remez algorithm briefly; after that, the extension will also be
explained.

Given b0(x) 0, and )j(X) 2cos(jx)/f(x), j 1 1, we are to solve
Problem 79

Minimize h subject to h >_s 1- pjqbj(x)
j=o

(s,x) {-1, 1} x [0, zr].

One can think of Problem 79 as a linear programming problem (by, say, replacing [0, zr by a
finite set of points). The dual of this problem is given by the following.

Problem 79.

Maximize E s.rs,x subject to rs,x > O, and E rs,xqbj(x)s O,
S,X S,X

j=O, 1 -1.

It is observed in [1 8] that even without discretizing the domain [0, zr], the Simplex algorithm
can be applied to Problem 79. The preconditioners in the next section are obtained by this
computation.

Now, suppose that f(xo) 0. In practice, x0 is often known. Because f > 0 (lest An has
negative eigenvalues for large enough n), we have f’(x0) 0 also. Suppose that f"(x0) # 0,
then we would determine P by imposing the constraint g(xo) 0, that is,

Po + 2E PJ cos(jx0) 0.
j=l

This linear constraint on the coefficients pj’s can be naturally added to Problem 79 and trans-
lated to its dual form in Problem 79. In general, the case when f(k) (x0) 0 for k 0, 1 rn
can be handled by the constraints g(k)(x0) 0 for k 0, 1 m 1.

We note that when An is complex Hermitian, f will not be even necessarily (but still
continuous real-valued and 2zr-periodic). The domain of approximation becomes [-zr, zr]
and the approximant will be trigonometric polynomials with sin and cos. Similar constraints
can be imposed when f(xo) 0 for some x0.

Let us end the section by discussing the computational cost of our method. As pointed
out in [18], the number of Simplex iterations needed to determine g is proportional to . In
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practice, all of our experiments took less than 2 iterations. Moreover, after an initial LU
decomposition of an -by- matrix, each Simplex iteration requires only a modification to the
decomposition after a rank-1 change. The total effort for location g is 0(3). We stress the
fact that g is independent of n. Thus, as long as f is fixed and a sufficient bandwidth is
reached, the entries for Bn,e are determined for all n.

In each iteration of the preconditioned conjugate gradient method, we have to compute
matrix vector multiplications ofthe form Anx and B-1

n,eY" We note that Anx can be computed in
O(n log n) operations by first embedding An into a 2n-by-2n circulant matrix and then perform

-1the multiplication by the Fast Fourier Transform (see Strang 17]). The vector z Bn,ey can
be obtained by solving the banded system Bn,eZ y with any band solvers, see, for instance,
Golub and Van Loan [13], or Wright [19] for a parallel one. Typically, we will decompose
Bn,e into some triangular factors and then solve the system by a backward and forward solve.
The cost of obtaining the triangular factors is O(e2n), and each subsequent solve will cost
O(en), as the triangular factors will also be banded.

Recall that the number of iterations is independent ofthe size ofthe matrix n; we therefore
conclude that the total complexity of our method is O (n log n + en).

4. Numerical results. In this section, we compare the convergence rate of the band-
Toeplitz preconditioner with a circulant preconditioner on five different generating functions.
They are coshx, x4 + 1, 1 e-x2, (x 1)2(x + 1)a, and x4. The first two functions are
positive while the others have either one or two distinct zeros. The matrices An are formed
by evaluating the Fourier coefficients of the generating functions.

We note that when f(x) 1 e-x2, its Fourier coefficients cannot be evaluated exactly.
In this case, we approximate them by

f(x)e-ijxdxa --1 21 f (kzr 7r) e-ij(kr/n-rr) j 0, -4-1, -1-2’’nn
where the last expression is evaluated by using the Fast Fourier Transform.

In our tests, the vector of all ones is the right-hand side vector, the zero vector is the initial
guess and the stopping criterion is Ilrqllz/llroll= <_ 10-7, where rq is the residual vector after
q iterations. All computations are done by Matlab on a Sun workstation. Tables 1-5 show the
number of iterations required for convergence with different choices of preconditioners. In
the tables, I denotes that no preconditioner is used, C is the T. Chan circulant preconditioner
[8], and Bn,e is the band-Toeplitz preconditioner with half-bandwidth .

We note that for the cases when the f’s are positive, our preconditioners, with half-
bandwidths four to five, work as well as the circulant preconditioners. In the cases when
the f’s have zeros, our preconditioned systems still converge at a rate that is independent of
the sizes of the matrices. For the circulant preconditioned systems, however, the numbers of
iterations required grow as the sizes of the matrices increase.

5. Regularization. We note that when f has zeros, the system of equations AnX b
will become very ill conditioned when n is large. Thus the usefulness of the solution x can be
in doubt even though we can solve for it quickly using our preconditioners. In this case, one
can employ the technique of regularization to alleviate the problem. One approach is to solve
the appended least squares problem:

min x
x /zPn 0

2
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TABLE
Numbers ofiterationsfor f(x) cosh x.

n I C Bn,2 Bn,3 Bn,4 Bn,5
16 9 6 9 7 6 5
32 16 6 10 7 6 6
64 21 5 11 8 6 6
128 23 5 10 8 6 6
256 24 5 10 7 6 6

TABLE 2
Numbers of iterationsfor f(x) x4 + 1.

n I C Bn,2 nn,3 nn,4, nn,5
16 10 9 9 8 8 7
32 22 7 16 11 8 7
64 37 7 22 12 8 7
128 56 6 25 12 8 7
256 67 6 26 12 8 7

TABLE 3
Numbers of iterationsfor f(x) e-x2

I C nn,2 nn,3 nn,4 Bn,5
6 9 7 4 3

32 7 15 7 5 3
64 24 8 17 8 5 3
128 42 10 17 8 5 3
256 77 13 17 8 5 3

Here/z is the regularization parameter and the n-by-n matrix Pn is the regularization operator
that tries to smooth the solution x to a certain degree. Choosing Pn as the 2kth difference
operator will force the solution to have a small 2kth derivative. We note that the corresponding
Pn will be a banded Hermitian matrix with half-bandwidth k + 1. Typical choices of Pn are
the n-by-n identity matrix and the one-dimensional discrete Laplacian matrix. Choosing the
regularization parameter/x, on the other hand, is usually not a trivial problem. One may need
to solve the least squares problem for several values of/z to determine the best one; see Eld6n
[11].

TABLE 4
Numbers ofiterationsfor f(x) (x 1)2(x + 1)2.

n I C Bn,3 Bn,4 Bn,5 Bn,6
16 11 9 9 9 8 7
32 27 14 13 11 9 7
64 74 17 16 11 8 7
128 193 22 18 11 8 7
256 465 28 19 11 8 7

TABLE 5
Numbers ofiterationsfor f(x) x4.

n I C Bn,3 Bn,4 Bn,5 Bn,6
16 12 10 9 9 9 7
32 34 16 15 10 11 9
64 119 26 21 13 11 9
128 587 77 24 15 12 10
256 > 1000 179 27 16 12 10
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The solution to the least squares problem can be obtained by solving the normal equation:

(AZn + #2P2n)x Anb.

An obvious choice of preconditioners for the normal equation is the band matrix BZ,e + ]2 pn2.
Its half-bandwidth is max(2g 1, 2k + 1). By using (1), we can easily show that

+ (A. + <

In contrast, cvcn if C, is a good circulant prcconditioncr for A, the matrix C2 + 2p2
will no longer bc circulant. However, wc rcmk that rcgulzation techniques using other
circulant prcconditioncrs have bccn considered in Ch, Nagy, and Plcmmons [7].

6. Concluding remarks. By understanding the Tocplitz prcconditioncrfrom the point of
view of minimax approximation of the cocsponding generating functions, wc can construct
bd-Tocplitz prcconditioncrs that offer fast convergence rates cvcn when the matrix to bc
preconditioned has a generating function with a zero. Moreover, our prcconditioncr with
modest bdwidth is also an excellent choice for f without a zero. Wc emphasize that for a
gNcn f, the entries of the prcconditioncrs arc unchanged as n increases. Thus, wc nccd to
invoke the Rcmcz algorithm once for each f. Wc note, moreover, that the Cholcsky factors
of Bn,e can bc used to build the Cholcsky factors of Bn+,g. That can reduce the cost of
factofization of the band-Tocplitz prcconditioncr. Finally, wc rcmk that our prcconditioncr
can also bc adapted easily to give a good prcconditioncr for Tocplitz-plus-band systems of
the fo (A, + D,)x b, where D, is an bitrbd matrix. Tocplitz-plus-band sysmms
appc in solving Frcdholm integral-differential equations, scc Delves and Mohamcd [9, p.
343] and, in signal processing literature, scc Carayannis, Kalouptsidis, and Manolis [2].

For such systems, direct Tocplitz solvers and the preconditioned conjugate gradient
method with circulant prcconditioncrs will not work. However, one can use Bn,e + Dn as
a prcconditioncr and use the proof mentioned in Chan and Ng [6] to derive basically the same
result that wc have in Theorem 2.2, ncly that

x {. + .)-A. + .)} < +
-l-h"

Hence the number of iterations required for convergence is still fixed independent of the size
of the matrices. Since Bn,e + Dn is a band matrix, the system (Bn,e + Dn)x y can still be
solved efficiently by band solvers for any vector y.
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SOME REMARKS ON A MULTIGRID PRECONDITIONER*
JINCHAO XU* AND JINSHUI QIN*

Abstract. This paper is devoted to a class of multilevel preconditioners developed in [Math Comp., 55 (1990),
pp. 1-22] by Bramble, Pasciak, and Xu and in the Ph.D. thesis ofXu at Cornell University, Ithaca, NY, 1989. A simple
proof is given for optimal estimation of the conditioning. A derivation of matrix representations and a description
of efficient implementation techniques are also given. Some modified preconditioners are proposed combining the
hierarchical basis method. Numerical examples are also given that compare various preconditioners discussed in this
paper.
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1. Introduction. We consider the following model boundary-value problem:

-AU=F in2,
(1.1)

U 0 on 0S2,

where f2 C IRd is a polyhedral domain.
Let H () be the standard Sobolev space consisting of square integrable functions with

square integrable derivatives of first order and let H (f2) be a subspace of H () consisting
of functions that vanish on 0f2 (in an appropriate sense). Clearly, U e H (f2) is the solution
of

(1.2) a(U, x) (F, x) Y x e H(),

where

(F, x) fFxdx and a(U, x) fvU. Vxdx.(1.3)

We approximate the above problem by finite element discretizations on a quasi-uniform trian-
gulation 7" of f2. We assume that the triangulation 7" is constructed by a successive refinement
process. That is, 7" Tj for some j > 1 and 7"k for k < j are a nested sequence of quasi-
uniform triangulations, which consist of simplexes 7"k r of size h for k 1, j such
that g2 Ui r, where the quasi-uniformity constants are independent of k (cf. Ciarlet [6]).
These triangulations should be nested in the sense that any simplex rkt_ Zk-1 can be writ-
ten as a union of some simplexes of {r T. We further assume that there is a constant
> 1, independent of k, such that h is proportional to 0-. In the two-dimensional case, for

example, the finer grid is obtained by connecting the midpoints of the edges of the triangles
of the coarser grid with 211 being the initial triangulation.

Corresponding to each triangulation T, a finite element space .Mk is defined by

A4 {v n(2) vl, T’l(r) V r E ’Tk},

where 791 is the space of linear polynomials. As a result, we have a nested sequence of
subspaces as follows:

/1 C./2 C C.]j.

*Received by the editors May 15, 1990; accepted for publication (in revised form) March 16, 1993. This work
was supported in part by the National Science Foundation.
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We shall drop the subscript j and denote A//= ./j for the finest space. The finite element
discretization on the space A/[ for (1.2) is finding a solution u A/[ such that

(1.4) a(u, v) (F, v) v J/l.

For each k, A/It has a natural nodal basis }i=l (nt dim.A/It) that satisfies

(1.5) cki (x) il ’ i, 1

where {xt 1 nt} A/’t is the set of all interior nodal points of the triangulation
T on which .A//t is defined. By means of the nodal basis functions on the finest .AA, (1.4) is
reduced to the following algebraic system:

(1.6) Aot b,

where

(1.7) A ((7i, Vl))nxn Ol (Oli n)i--1 and b ((F, i))in=l

(with n nj), and A is often called the stiffness matrix, which is symmetric and positive
definite.

It is well known that the condition number of A is O(h-Z), and hence (1.6) is an ill-
conditioned system. Thus preconditioners (used with the preconditioned conjugate gradient
method) are often constructed for its solution. What we shall study in this paper is a class of
multilevel preconditioners (in the form of functional operators) proposed in [2] and 10].

Since the publication of [2], 10], there are a number ofworks devoted to the improvements
of the estimate of the conditioning. One improvement was made by Zhang 14]. The optimal
estimate was first proved by Oswald [9] using Besov space technique. Alternative proofs of
the optimal estimate have been given recently by Bramble and Pasciak 1], Bornemann and
Yserentant [3], and Xu 11 ]. In this paper, we shall present a simple proof for such an estimate.

The preconditioners in [2], 10] were presented in terms of functional operators. In this
paper we shall show that their matrix representations can be written as follows:

(1.8)
J

k=l

where ht is the meshsize ofT and Tt "nk is the representation matrix of the nodal basis
{q/} for .A/It in terms of the nodal basis {4i for .A4 (for k < j since .A/It C A/l). More
precisely,

k Tt,,

where

(1.9) dot (kl,... nkt,), (:I:) (I n).

The preconditioner B given by (1.8) depends entirely on the transformation matrices
between the nodal bases in different levels. For this reason we shall call this preconditioner
the multilevel nodal basis preconditioner.

1Throughout this paper, if a subscript or superscript is j, it will often be dropped from the notation without
further explanation.
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The simple algebraic structure of (1.8) makes it easy to implement the preconditioner that
is the basis for a very simple and efficient implementation technique for the preconditioner
presented in this paper.

Another purpose of this paper is to introduce some modified preconditioners. The first
example will be a Gauss-Seidel version of (1.8) as follows:

(1.10)
J

k=l

where Gk is the symmetric Gauss-Seidel iterative matrix obtained from the stiffness matrix on
Aak, namely, Ak ((Vb/, V))nknk. Numerical experiments show that this preconditioner
results in a much smaller condition number than (1.8).

Another modified preconditioner we propose is related to an algorithm developed by
Yserentant [12] that is often called the hierarchical basis preconditioner. The hierarchical
basis preconditioner is quite similar to (1.8) and, in fact, can be derived from (1.8) by elim-
inating certain nk-1 columns from each T/. Based on such an observation, the hierarchical
basis preconditioner can be slightly modified to improve its efficiency. The implementation
techniques for (1.8) can also be applied directly to hierarchical basis preconditioner and its
modified version.

For convenience of exposition, we shall use MNB (multilevel nodal basis) or GS-MNB
for the preconditioner (1.8) or (1.10), and HB for the hierarchical basis preconditioner.

The outline of the remainder of the paper is as follows. In the next section, the pre-
conditioner proposed in [2], [10] is reviewed; 3 contains the derivation of expression (1.8);
4 is devoted to the implementation of the algorithms; and 5 discusses the hierarchical ba-
sis preconditioner, some variants of (1.8), and a few numerical examples that compare the
performances of different algorithms.

2. Multilevel preconditioners and optimal conditioning estimates. In this section, we
shall give a brief description of the multilevel preconditioners to be studied in this paper and
then present a proofon their conditioning. Even though the theory holds in more general cases,
the focus in this paper is only on its applications to finite element equations with quasi-uniform
triangulations.

We first need to introduce some linear operators on the finite element functional spaces.
For distinction, we will use boldface letters to denote these operators. In contrast, notation for
matrices is not boldface unless otherwise specified.

With respect to the L2 inner product (., .) (given by (1.3)), for each k we define operators
A/ Adk > .AA and Q/ .A/I > j4k by

(2.1) (Aku, v) a(u, v), (Qku, v) (u, v), u .A/l, v A4k.

The operatorAk(which is symmetric positive definite) may be regarded as a discretization
of the elliptic operator -A on A4k and Qk is the standard orthogonal Lz projection.

Again we denote A Aj. By definition, problem (1.4) is equivalent to

Au= f

for some appropriate f 6 .k/l. One of the preconditioners forA proposed in [2], 10] is given
by

j nk

(2.2) Bv Zh-a Y-(v, :bl)d"ri "ri V M.
k=l i=1
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It is easy to see that B is symmetric positive definite with respect to L2 inner product.
The effectiveness of the preconditioner B is measured by the condition number of BA,

denoted by x (BA), which is the ratio of its maximum eigenvalue to the minimum one. We
have the following theorem.

THEOREM 2.1. There exists a constant C independent ofk or j such that

x(BA) <_ C.

The constant C appearing in the estimate in Theorem 2.1 behaves like O(h]-2), where h
is the size of triangulation T1. This is usually not a problem since h is often of unit size in
practical computations. Nevertheless, if h is considerably small, the preconditioner can be
modified by solving the problem on .M1 exactly:

(2.3)
j nk

By A-{1Q1-F h-Cl (v, rb)d
k=2 i=l

for which the relative condition number is independent of h (cf. 10]).
A slightly more general preconditioner is also given in [2]"

(2.4)
J

Bg ekQk,
k=l

where Rk Jk - Jk are symmetric positive definite operators satisfying

C0-IlIvll 2 (RkV, V) < Cl,-111vll 2 V v ,
where I1.112 (., .). It can be shown that Theorem 2.1 also holds for (2.4).

Using the techniques in [2], [10], the proof of Theorem 2.1 follows directly from the
following.

PROPOSITION 2.2. There exist positive constants co and Cl such that

k=l

v e ().

The above proposition can be derived from Oswald [9] and we shall present a new proof
of this result in the rest of this section.

The proof to be presented can also be found in Xu 11] and the idea is similar to a proof in
Bramble and Pasciak 1]. The main ingredient in our analysis is the fractional S0bolev space.

The fractional Sobolev space Hn+" (f2) (rn 0, 1 and 0 < tr < 1) is defined by the
completion ofC(f) in the following norm:

vll,m+(a) (Ilvll aHm(’) + Ivlm+(a))/2
where

(s)-
IDly(x) Dv(y)lZ

Iotl=m Ix yld+2r
dx dy.

2Here we assume there are infinitely many number of levels of nested triangulations. The result is more general
than the case of finite number of levels.
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For c 6 (0, 1], we define H-a(f2) (H(g2))*, the dual of H(fl).
The following inverse inequalities (cf. [4], 10]) hold:

(2.5) Ilvllm+ h-llvtlm<, Ilvllm< h-llvll V v .A4,

where a (0, i) and s [0, 1].
Let Pk H (f2) w..A4k be the H projection defined by

(VPku, Vvk) (Vu, Vvk) V u e Ho (f), vk 6 .A4k.

It follows from the standard finite element approximation theory that

(2.6) IIv PkvllHl-(a) hllvllH(a) v v g
for some constant c (0, 1] (depending on the domain

It is well known that (cf. Bramble and Xu [5])

(2.7) IIv -Qvll + hkllQkvllnl(a) hkllvll/4,(a)

By interpolation, we have (for r 6 (0, 1), cr g)

(2.8) IlOvllm(a) < Ilvllm(a) v v e H().

The first ingredient in our proof is the so-called strengthened Cauchy inequality. This
result is similar to the corresponding result by Yserentant 12] for his hierarchical basis pre-
conditioner. A constructive proof of this inequality may be found in Xu 11], and the proof
presented here is a modification of a proof of Bramble and Pasciak 1 ].

LEMMA 2.3. There is a constant ?, (0, 1) and a positive constant C such that

(Vui, Vl)j) < cyli-JlllVuil[ IlVvll v u, v e H(f2), i, j _> 1,

where ui (Qi Qi-1)u and vj (Qj Qj_l)v.
Proof. Let Di O/Oxi. Obviously Di Hd() - L2(f2) is continuous, and by duality,

so is Di" L2(f2)- H-l(). By interpolation, for c 6 (0, 1/2), Di’Hl-(f)- H-(f2)
is also continuous. Consequently, IIVVlIH-() < IIVlIHI-=(), for v H0(f2). Therefore
(without loss of generality, we assume that j > i),

It follows from the inverse inequality (2.5) that

(Vui, Vvj) < h[lluilln,(a)hf(1-)llvjl < (rl)J-ih-fllluillnl(a)llvjll.
An application of (2.7) then completes the proof with ?’ r/’. [-1

We are now in a position to present the proof for Proposition 2.2.
Denote 0_. Qk Qk-1 and vi (ei ei-1)v. It follows from (2.5), (2.8), and (2.6)

that

IIvillrl(a < llOvillz
re(a).Hl-o(") Zk Ilvillz,-,(a) < )h2illvill 2
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Let i/x j min(i, j); we have

On the other hand, by the strengthened Cauchy inequality

This completes the proof of Proposition 2.2.

3. Preconditioners in terms of matrices. The preconditioners in the form of (2.2) are
convenient for theoretical analysis. But for numerical implementation, a matrix form is more
desirable. In this section, we shall derive the corresponding preconditioning matrix that can
be applied directly to the system (1.6). For a more systematic approach, we refer to Xu 11 ].

In this section, we shall use (., .) for the usual L2 product and (., .) for the usual Euclidean
inner product of vectors in any Euclidean spaces.

To relate the functional operator to matrix, for a given operator R A’[ .A4, let Rm be
the n x n matrix representation ofR satisfying

(Rmtz, v) (Ru, v), u, v
_

3please note an abuse of notation here; a boldface with subscript m, e.g., Rm, denotes a matrix.
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where/z (/i) (u(x/)) E ][n and v (Pi) (l)(x/)) ]n. Rm may be called the matrix
representation of the operator R.

The above definition of the matrix representation is a little different from the usual defi-
nition for a matrix corresponding to a linear operator on a linear vector space. The advantage
of this definition can be seen from the following lemma.

LEMMA 3.1. The matrix representation of.4 (defined by (2.1) for k j) is just the usual

stiffness matrix .4 given by (1.7).
The proof of the above lemma is straightforward by definition. The unusual property

of our matrix representation of operators is that the product of two operators does not quite
correspond to the product of their matrices.

LEMMA 3.2. For any two operators R, S on .AA,

(R + S)m Rm + Sm, (RS)m RmM-1Sm
with M being the mass matrix (which is symmetric positive definite) given by

(3.1) g ((qi,

Proof. The first identity is obvious by definition. To see the second one, for any u, v
we introduce a mapping E ]Rn - A4 defined by

El* E Iii"

Thus u E/z if/zi u(xi) and v Ev if vi v(xi). Let E* dX// n be the adjoint of
E, namely,

(E’u, v) (u, Ev).

Obviously, both E* and E are isomorphisms. By definition, one can easily check that

Rm E’RE, E*E M.

Consequently,

(eS)m E*RSE E*RE(E*E)-IE*SE RmM-1Sm
This proves the second identity.

In order to see what Bm is, by Lemma 3.2, it suffices to obtain (Bk)m for each k, where

nk

(3.2) Bkv E(v, "ri "ri, 1) ./.
i--1

To do this, taking u, v A/, we have

nk

(3.3) (Bku, v) E(u, cpki )(v, (pki (or, ,),
i=I

where ot ((u, 1) (u, nk)) and, ((v, Pl) (v, qbnk))t.
Note that, with and given by (1.9), u /z and T. Hence

T(dptdp)lzdx=T (fn *tdpdx)lz.
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Observing that fa Otdx is exactly the mass matrix M defined by (3.1), we then get

or= TMIx
and, similarly, TMy. Combining these identities with (3.3) yields

(MT, T/, Mix, v),

which means that

(Bk)m MT, Tic M.
Therefore, by (2.2), (3.2), and Lemma 3.2,

J
(3.4) Bm Eh-d(Bk)m MBM,

k=l

where

J
(3.5) B h-aTT.

k=l

Let ,k0 and )1 be the minimum and maximum eigenvalue ofBA, respectively,

.o(Av, v) < (ABAv, v) < Z (Av, v) v JM.

By the definition of the matrix representation

)o(Amv, v) <_ ((ABA)mv, v) <_ )1 (Amp, p) V p In.
The above expression involves the matrix representation of a product of operators. By Lemma
3.2,

(ABA)m AmM-1BmM-1Am
Applying Lemma 3.1 then yields

(ABA)m ABA,

where B is given by (3.5). Hence

.o(Av, v) <_ (ABAv, v) <_ ’1 (Av, v) V V . Nn.
Consequently,

x(BA)

In summary, we have the following theorem.
THEOREM 3.3. The matrix B given by (3.5) is a preconditioner of the stiffness matrix A

such that

x(eA) <_ c.

Corresponding to (2.3), we can have the following more refined preconditioner:

J
B T1A-fIT[ +

k=2

More generally, A-I may be replaced by a preconditioner of A1.
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4. On the implementation. In this section, we shall discuss some techniques for the
implementation of the preconditioner B given by (3.5).

As the preconditioner is applied with the preconditioned conjugate gradient method, it
suffices to consider the computation of, for c /Rn, Bc and (Bot, c) as follows:

J J
(4.1) Ba Z h-aTkTt’ (Bot, or) h-a (Ta,t Ta).

k=l k=l

The implementation ofthe above computations was also discussed in the earlier paper [2].
But the cuent version ofthe algorithm allows us to discuss this issue in a more straightfod
way. If, for k l, T] denotes the matrix that transfos the nodal basis of to the nodal
basis of t, the following relation is then obvious by definition:

l I, T lT-l, k < l.

Let, for 1 < < j,

By definition B Bj and

nl E h2-dT"l(Tlk)tk lk
k=l

g h-dI + TlI_ 1BI- TIl_ )t.
Wc shall use the above recurrence relation to compute the action of B. Assume that m is the
number of operations that arc nccdcd to compute the action BlOt for CZl e ]Rnt. By the identity

B Ot h d
otl + Tll_ B Tll_ Otl

we get, for some constant co > 0,

ml < ml-1 + conl

from which we conclude that
J

mj < ml + Co "nl <_ tin
/=2

for some positive constant Cl. This means that the action of Bj can be carried out within O (n)
operations.

In summary, we have the following algorithm.

AN ALGORITHM FOR COMPUTING Bot AND (Ba,
2-d (0/,otj ot c hj

forl=j-l:l,
0/l= T/l+1OQ+I, C C -[- h -d (l,

end
(Bc, o) =c;

forl=2: j,

h-% + 5-1;
end
au .
As discussed above, the number of operations needed in the above algorithm is O (n). We

also note that all the vectors zt for 1 < < j need to be stored, but the whole storage space
for these vectors is also only O (n).
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5. Other variants and numerical examples. In this section, we shall discuss several
other methods that are related to our main algorithm. We shall first present a preconditioner
by means of Gauss-Seidel iteration. We shall then have a look at the relationship between
the preconditioner (1.8) and the hierarchical basis preconditioner. By comparing these two
methods, a modified preconditioner will be proposed. Finally, some numerical examples will
be presented.

5.1. Gauss-Seidel-type algorithms. By the more general version of the multigrid pre-
conditioner (2.4), R are operators that are free to choose. ChoosingR hl that is related
to the damped Jacobi iteration, we get the preconditioner and hence (3.5). It is well known that
the Gauss-Seidel iteration often has better performance than the Jacobi method. In our case,
a Gauss-Seidel algorithm can be obtained by choosingR from the symmetric Gauss-Seidel
iteration as follows:

J

k=l

where G (D q- U)- D(D q- L)- from the decomposition of the stiffness matrix

A D -t- L -t- U with D being the diagonal, L the lower triangle, and U the upper
triangle of A.

By comparing their asymptotical theoretical estimates, Bg is spectrally equivalent to the
B in (1.8). However, our numerical experiments seem to indicate that Bg results in much
smaller condition numbers.

5.2. Hierarchical basis preconditioner. Since the hierarchical basis preconditioner only
works well for one- or two-dimensional problems (cf. [8], 11]), the following discussion is
then confined in a two-dimensional problem. The so-called hierarchical functions are defined
in .A by the nodal basis of A and in A, for k 2 j, by the hierarchical basis
functions of .//_, together with those nodal basis functions {b/ of .A that correspond to
the nodes in A/’ \ Aft_. It is easy to see that the set of all the hierarchical basis functions on
.A4 indeed form a basis for A//.

Let S Inn be the matrix that transforms the nodal basis into hierarchical basis, namely,

q (I)S,

where q is an n row vector whose components are hierarchical basis functions and (I) is an n
row vector whose components are nodal basis functions. In terms of S, the hierarchical basis
preconditioner [12] can be represented by

H SSt.

Following [12] and [10], we let S, ]nx(nk-nt,_l) be the matrix that represents the part of
hierarchical basis on A//k in terms of nodal basis in .h//, then we have S (S Sy) and

(5.1)
J

k=l

Notice that Sk is a submatrix of T,; hence we have

(5.2) (Ha, or) < (Bc, or) ’v’ o/ ]n.

A more detailed discussion of the relationship between the MNB preconditioner and the
HB preconditioner can be found in Xu [10], [11] and in Yserentant [13]. We note that the
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action of H is slightly easier to compute than that of B, but, from the theoretical estimates
as well as numerical experiments, B is much better than H as far as the resulting condition
numbers are concerned. We would also like to mention that in three-dimensional or higher
cases, the HB preconditioner deteriorates (cf. Ong [8]), but the MNB preconditioner does not.

5.3. A modified preconditioner. In view of the inequality (5.2), we introduce the fol-
lowing modified preconditioner:

(5.3)
j-1

I2I= E SS[ + I.
k--1

It is trivial to see that

(Ha, c) < (a, c) _< (Ba, c) O n.

The preconditioner in (5.3) is obtained by a very slight change from the HB preconditioner, but
as we shall see from the numerical experiments, it is muchbetterthan the HB preconditioner and
sometimes even better than the MNB preconditioner. Notice that, in terms of computational
complexity, is quite close to H. For convenience, we use MHB to stand for the modified
hierarchical basis preconditioner.

5.4. Some numerical examples. In this subsection, we shall report some numerical
experiments that compare the performances of the various preconditioners discussed above.

Our numerical examples will be for the problem (1.1) with piecewise linear finite element
discretizations as described in 1. The equation we need to solve is (1.6).

For a given preconditioner B of A, to solve (1.6), we consider the equivalent system of
(1.6):

BAx Bb.

The conjugate gradient method may be applied to the above system and the resultant algorithm
is a preconditioned conjugate gradient method. The effectiveness of the preconditioned con-
jugate gradient algorithm is measured by the condition number of the preconditioned matrix:

Xmax(nA)
x(BA)

Zmin(BA)

where B is any preconditioner mentioned above and Zmax(BA) and ,min(BA) are the maximum
andminimum eigenvalue ofBA, respectively. These eigenvalues are calculatedby the standard
power method and inverse power method. In the inverse power method, the corresponding
systems can be solved effectively by the conjugate gradient method since BA is a well-
conditioned matrix.

We have tested the MNB, HB, and MHB preconditioners on three different domains:
(a) unit square; (b) slit domain; (c) irregular polygon. All the multilevel triangulations will
be determined by the first triangulation T1 as all the other triangulations will be obtained by
connecting the midpoints of the edges of the triangles from the previous coarse mesh. The
first triangulations for different domains are shown in Fig. 1 (with broken lines).

The numerical results are shown in Figs. 2-4 for square, slit, and irregular polygon
domains, respectively. The correspondences between pictures with different precOnditioners
are as follows:

x(HA) tc(I2IA) , x(BA) X(BgA)



REMARKS ON A MULTIGRID PRECONDITIONER 183

/,"

//

I,

(a) (b) (c)

FIG. 1. Three different test regions.
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FZG. 3. Slit domain.
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FIG. 4. Irregular polygon.

As shown by the pictures, MNB, GS-MNB, and MHB preconditioners result in much
smaller condition numbers than the HB preconditioner, and GS-MNB gives the smallest con-
dition number. It is most interesting to compare MHB with HB and MNB. In terms of
computational complexity, the difference between MHB and HB is negligible, but the resul-
tant condition numbers differ considerably. Note also that the behaviors ofx(HA) and x(BA)
are quite close.
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FAST ADAPTIVE METHODS
FOR THE FREE-SPACE HEAT EQUATION*
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Abstract. Standard numerical methods for the heat equation in two or more space dimensions are excellent if
it is necessary to follow the evolution in great detail through many small timesteps. This paper presents efficient
and accurate new adaptive methods that solve the free-space heat equation with large timesteps. These methods
combine the fast Gauss transform with an adaptive refinement scheme that represents the solution as a continuous

piecewise polynomial, to a user-specified degree of accuracy. The same approach is extended to solve inhomogeneous
problems and to solve the heat equation in moving domains with boundaries. In problems with boundaries, it allows
the use of accurate boundary representations without requiring difficult product integration formulas or precluding
fast evaluation schemes. Numerical experiments in two space dimensions show these methods to be accurate and
efficient, especially for highly nonuniform or discontinuous initial data or when substantial accuracy is required.
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1. Introduction. It is often necessary to solve the free-space heat equation

U AU in R2

(1)
u= f at =0

with a difficult initial temperature field f: We suppose that f vanishes at infinity, is globally
Lipschitz but not necessarily C1, and varies rapidly over only a small portion of its support.
One needs values of u at arbitrary points, not on a regular grid.

In this paper, we present efficient and accurate new numerical methods for solving this
problem. These methods are accurate in the sense that the user can specify a precision e, and
the solution is then produced within error e (relative to lull). The work required increases
as e decreases, as it must, but these methods are efficient in the sense that they attempt to
represent u with as few degrees of freedom as possible, adapting those degrees of freedom to
fit u. These methods are efficient in another sense as well; the work required to go from u (x, t)
to u (x, + At) is proportional to the number of degrees of freedom required and decreases as
At increases. (For explicit numerical methods, the work required increases as At increases,
and for implicit methods, it is superlinear in the number of degrees of freedom.)

Our methods are based on the exact evolution formula

1 fI e-lX-yl2/u(Y’ t) dy, 4At.(2) u(x,t + At) -We begin by projecting the initial temperature field f onto a finite-dimensional space of
piecewise polynomial interpolants, chosen adaptively to resolve f within error . Then we
use Hermite expansions to evaluate u (x, At) via (2) efficiently, again within error, and project
u (x, At) onto another adaptively chosen finite-dimensional space that resolves it within error. This process can be repeated at each timestep, or the Hermite expansion coefficients can be
updated to simply evaluate u at any desired time > At. The first approach is more applicable
to inhomogeneous problems, the second approach more efficient.
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The techniques used here can also be used to solve the more general problem

U AU 21- F(x, t) in f2 C R2

U(3) tzu + fln g on 3f2

u=f att 0,

with f2 a possibly time-dependent subset of the plane having a bounded C2 boundary Of2, n
the outward unit normal to f2, and or,/5, g, f, and F C2 functions on their domains.

We first discuss the inhomogeneous free-space problem

(4)
Ut AU -- F(x, t) in R2

u= f att=0

as an example of the technique employed on (3). We solve (4) by Duhamel’s principle and
evaluate the resulting integral by the trapezoidal rule; this is second-order accurate in At.
Simpson’s rule gives a fourth-order method, and higher-order methods are similarly easy to
construct.

The organization of the paper is as follows. In 2, we derive the Hermite expansion of
the heat kernel and truncation error estimates. Next, in 3, we describe how we project a
given function f onto a finite-dimensional subspace, which resolves it within error 6 relative
to Iflc max Ifl. In 4, we describe how to combine these two techniques to solve the
homogeneous free-space heat equation (1), and in 5 we extend the method to the inhomo-
geneous equation (4). In 6 we sketch how to solve (3), using our method and heat potential
theory; details will be given in a later publication. Numerical experiments are presented in 7
and conclusions in 8.

2. Hermite expansions. The purpose of this section is to describe how certain moments
of u(x, t) suffice to evaluate u (x, + At) at any point x within an error tolerance 6. We use
the explicit evolution formula [5]

1 fR e-lx-yl2/u(Y’ t) dy, 8 4At(5) u (x, t + At) -for the bounded solution u of (1).
The heat kernel (with 1 for simplicity) is a real-analytic function of y R, so we

can expand it in a two-dimensional Taylor series:

1
(6) h(x y) e-Ix-el2 -.ha(x)ya.

a>O

Here c (tl, ct) is a multi-index with integer components, c! =Otl !a2 !; we say that tz > 0
if cti > 0 for each 1, 2, and ya yy. The Taylor coefficients are given by

(7) ha(x) Oyh(x- Y)ly=0 (-1)IID h(x),

where Icl Cl -+- 02 and

Dv Yl
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Since the variables Xl and x2 are separated in h(x), we have

h(x) h,,, (xi)h, (x2),

where each one-variable function hn (x) is given by

(xl=(- e-(al

Hn(x)e-x2

and Hn is the usual Hermite polynomial. We will need two facts from 11]. First, the two-term
recursion

Hn+l (X) 2xHn (x) 2nHn_ (x),

with H0(x) 1 and H1 (x) 2x. Second, Cramer’s inequality

Inn(x)l _< K2n/2q/-.eX2/2,

where K is less than 1.09. Hence

1 K2
211/2

(9) u Ih(x)l <

The "tail" left after truncating the series (6) after terms with every ai < p is bounded
uniformly in x by

1 K2 21l/2rll=O(2er2)(p+l)/2(10) E -. [h(x)lly[ < Z p + 2some ai p some ai p

if [Yi[ < r for 1, 2, by Stirling’s formula. This decreases very rapidly as p increases.
Thus the kernel h(x y) can be approximated by a (p + 1)2-term truncated Taylor, series
when lygl _< r, with an error that decreases rapidly as p, increases uniformly in x.

This expansion was used in [6] and 10] to evaluate the two-dimensional discrete Gauss
transform

N

(11) G$f(ti) E fie-It’-s12/, 1, 2, 3, M,
j=l

with ti, sj E R2, t$ > 0, It[ 2 tl + t, in O(N + M) time. (In [6], was a constant; [10]
extended the algorithm to cover the situation when 3i or 3j.)

Now rescale and shift this formula with an arbitrary and a center of expansion c; we get

(12) h (x-Y)/ =h (X-c-(y-c)) >o 1-.ho (x-c) (y-c)/
and the error in truncating after terms with oti < p is given by (10) if lYi ci[ r//. Hence
e-Ix-ylz/8 is well represented by a truncated Taylor series in y when y lies in a square with
center c and side 2r/.

This suggests a natural way to evaluate the integral

1 fa e-lx-yl2/’Gf(x) - f(y)dy.
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Suppose f has compact support. Cover the support of f with nonoverlapping square cells C
of side 2rx/ and centers c. In each cell, expand the heat kernel about the cell center using
(12);

(13)

where

C a>O /0

l fc(Y-C)a(14) ca f(y)dy.

The variables x and y are now separated, so we have decomposed the calculation into two
simpler pieces; first, we evaluate the moments Ca for each cell C and for O/i 0, 1 p,
and then we sum the Hermite series (13) for each point where Gf(x) is to be evaluated. The
numerical error in the approximation ofGf by this procedure comes from two sources: first,
truncation of the Hermite series, and second, quadrature error in evaluating Ca numerically.
We have already discussed the truncation error; the quadrature error will be discussed in the
next section.

We can speed up the evaluation considerably, when 3 is small, by dropping negligible
contributions from cells distant from the point of evaluation x. The contribution from a distant
cell C’ is bounded by

1 C’ 12/8rc3l e-lX-yl2/alf(y)[ dy _< --lfll e-Ix-x

where x0 is the closest point in C’ to x and IC’I is the area of C’. Thus only a fixed number
of cells within a distance O(f) need to be kept, for any fixed precision. Our next step is to
evaluate

3. Adaptive refinement. The purpose ofadaptive refinement is to know a function within
as efficiently as possible. Numerically, we know a function f within if we can evaluate it

at any point x with an error that is less than
The Hermite expansion of 2 enables us to evaluate u(x, 4- At) at any point x, not

just on a fixed set of grid points. The cost per evaluation is fixed, because each evaluation is
independent of the others. Thus we are in the following situation: We have a function, f say,
and we can evaluate it at any point for fixed cost per evaluation. How can we best approximate
f by piecewise polynomials within error elfin? For our applications, f is not very smooth
initially, so refinement in space seems a reasonable approach. Thus we use a fixed low degree
d of polynomial interpolation and refine the interpolation grid wherever f is not accurately
represented. We use a triangular grid and approximate f by degree-d interpolation over each
triangle; the degree is selected by the user. When we evaluate the moments Ca, we have to
integrate f times powers over cells C. It is convenient if each triangle of our triangulation lies
completely within a single cell C. We begin with the simplest such triangulation, which is the
one formed by cutting each cell C into two isosceles right triangles and subdividing until f is
accurate within

Thus we use the following method to construct the adaptive approximation of f; we begin
by dividing each cell C into two fight triangles and constructing the degree-d interpolant to f
at the (d + 1)(d + 2)/2 nodes shown in Fig. 1.

Now we stack all the triangles and sweep through, testing whether each triangle requires
subdivision. To test a triangle, we evaluate f at each node that would be produced by bisecting
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3 3
13

Linear Quadratic

32

331 i13

Cubic

FIG. 1. Nodesfor degree-d interpolation on trianglesfor d 1, 2, and 3.

221

112

the longest side, as shown in Fig. 2. This requires one evaluation for d 1, three for d 2,
and six for d 3; all these values are used if the triangle is subdivided. We also evaluate the
degree-d interpolant at the same nodes and compute the maximum difference between the two
sets of values. If f is within e (relative to the maximum value of fl so far encountered) of
the interpolant at the new nodes, the triangle is accepted. Otherwise, the triangle is subdivided
by Mitchell’s newest-node bisection method [8], maintaining compatibility by subdividing
neighbors as necessary, and the new triangles are stacked. We then repeat the procedure until
the stack is finished.

Linear Quadratic Cubic

FIG. 2. New nodes produced when the base is bisected are circled.

Mitchell’s subdivision procedure assigns one vertex ofeach triangle in the initial triangula-
tion as a "peak" and the side opposite the peak as the base. (In our case, the initial triangulation
consists of isosceles right triangles and the peak is the vertex at the right angle, opposite the
hypotenuse.) Then it subdivides triangles by dividing the base and the neighboring triangle
opposite the peak, with the new vertex being assigned as the peak of each of the four new
triangles created by the subdivision. Compatibility is maintained by always subdividing com-
patible pairs of triangles; if the neighbor opposite the peak is not compatibly subdivisible, it
is itself divided recursively until compatibility is maintained. An example is shown in Fig. 3.
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(b)

(d)

FIG. 3. An example ofMitchell’ recursive newest-node bisection [8]. Triangle T1 isflaggedfor subdivision, but
the peak of its neighbor T2 (indicated by circle) does not lie opposite T1. Hence we must refine T2 and its neighbor
T3. Similarly, the peak of T3 does not lie opposite T2, so we must refine T4 and T3. The peak of T4 lies opposite T3,
so the recursion stops here. We then divide triangles backwards in pairs as shown in (b) through (d), until we have
divided the triangle T1 we originally wanted to divide. The subdivided triangulation is shown in (d).

Once a triangulation is constructed, we have enough information about f to solve the
heat equation to accuracy e after time At has elapsed. We need only to use the interpolant of

f on the adapted triangulation to evaluate (p + 1)2 of the moments C, within relative error e.
This requires integrating the interpolant times ((x c)//) over each triangle lying in cell
C with center c.

This task is simpler if we put the interpolant, on each triangle, in the shifted and scaled
Cartesian form

Ifll-<d r
This requires considerable hand calculation, because fis most naturally expressed in barycen-
tric coordinates as in [3], and the expressions for the Cartesian coefficients Ffi can become
quite complicated for quadratic or cubic interpolation. The expressions for F are given in
the Appendix.

Next we need to calculate the approximate moments

(15)
ot !--- f y dy

Z f(y)dy
TcC
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using the piecewise polynomial interpolant. Here we have split up the integral over C into a
sum of integrals T, say, over the triangles T contained in C.

Now consider the evaluation of

fr(Y-C)’(16) Ta f(y) dy

(Y-C)+’
(17) F-. dy.

I/l_<d

We need only evaluate triangle moments

T ,!8
dx

for , 0, 1, 2 p + d. Note that while c may not lie in T and 3 may be small, we
neveheless have T C C and thus ]x cl r for x T, where r is a fixed constant.
Hence evaluating Tr and adding up values with coefficients is not a numerically unstable
process.

To evaluate Tr, we first translate and scale T to simplify the notation, then use the
Divergence Theorem and recursion. Write y (i, j) and x (x, y). Then

T .j x yJ dxdy,
ij

where r’ (r c)/ is a shifted and scNed version of T.
Let Vl, v, and v3 be the vegices of T’, aanged in counterclockwise order, and let v4 v.

Then by the DNeNence Theorem,

3

k=l

where explicit pametfization of the line segment vvt+ gives

xi+l yj
(A+ Y)

(i + ) j
dO.

Here (x, y) v Ovt+ +(1-0)v and vt (xt, y). Integrating bypass gives arecuence
relation

AxA
(i + 1) (j + 1) --Ay ’-1’+1’"

Here A is the forward difference operator Ax X+l x. We can use this recuence
to compute .] for i, j 0, 1, 2 q p + d if we st with vNues for T0] for j
0, 1, 2 2q. Integrating by ps again produces initial values for the recuence:

AxAr0= x(j+) -Ay (J+)

Note that (a) it is eNcient to precomputed store the values x/i and y/j, whiche used
repeatedly, d (b) -] 0 when Ay 0 (so there is no diNculty with dMding by zero).
is concludes the evaluation of E. and hence of C.
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4. The homogeneous problem. We now combine the tools described in 2 and 3 to
construct methods for solving the homogeneous free-space heat equation

(18) Ut Au in R2,

(19) u(x, O) f(x),

with f a bounded function that vanishes at infinity. The unique bounded solution u satisfies
the semigroup property [5]

f [x_y]2/(20) u(x, + At) e- u(y, t) dy,

with 6 4At.
Method 1. Taking 0 and At gives

fR e-lx-yl2/(21) u(x, t) f(y) dy, 4t,

which represents u at any time in terms of the convolution of a Gaussian with scale 3 4t
with the initial temperature field f. Let us suppose that we want to know u (x, t) within relative
error e at a sequence of times 0, At, 2At NAt T, and At is not too small. (If At
is very small and we wish to know u at every step, explicit adaptive finite difference or finite
element methods are excellent.)

Let 3 4At and let us first evaluate u(x, At). We replace f by a piecewise polynomial
f constructed, as in 3, to approximate f within elfl/2. Then we use f to evaluate the
moments a defined in (15) for 0 < O p for each cell. We can now evaluate u (x, At) by
(21) within error e relative to [fl, by a truncated Hermite series

"-->o

p

(xc)
C

where the error E comes from several sources; first, the error due to replacing f by f, which
is bounded by lfl/2 by the maximum principle [5]; second, the error due to truncating
each Hermite series at O p, and third, the error due to ignoring distant cells. These add up
to

(22,
,Ifl [_o(2er2)

(p+l)/2

()\p + 2 Ifl + O e-4rzI ]fl,

which can be easily made less than by choice of p and the cutoff distance once r and N are
fixed.

Thus we can evaluate u(x, At) at any point x. Method 1 is distinguished by the way in
which we evaluate u at later times. In principle, a separate computation should be required
for each time at which we wish to evaluate u, because the moments Ca depend on through
3. However, Ca is homogeneous of degree -1 Iotl/2 in 3;

1 fc(Y-C) or!3 f(y) dy.

Thus Ca(23) 2-(2+lal)/Zca(3) if we make the dependence on 3 explicit. Once we have
Ca(3), therefore, we can evaluate u(x, t) with relative error less than e at any time >_ At,
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simply by scaling the coefficients and evaluating. More precisely,

2"t" C O

where E < elfl. The need to include more cells C in the sum as increases, due to
spreading of the Gaussians, is more than counterbalanced by the fewer coefficients required:
Ca is effectively reduced exponentially as 4t increases.

The scaling of coefficients used in Method 1 was developed in [10] for evaluating the
discrete Gauss transform with target-dependent scales.

Method is highly efficient and accurate. It requires a substantial investment of effort at
the beginning of the calculation to construct the triangulation and approximate f (especially
if f is not very smooth), but evaluation of u gets less and less expensive as time goes by.
Moreover, the space required for the triangulation can be reused for other purposes as soon
as the coefficients are evaluated and stored. Method is useful whenever the homogeneous
free-space heat equation is to be solved for rough data and not too small times.

Two fundamental properties of the heat equation influence this method. First, the increas-
ing smoothness and decreasing variation of u (x, t) as increases means that it takes fewer and
fewer degrees of freedom to represent u within a fixed relative precision e. A typical example
is shown in Figs. 4 and 5. In Fig. 4, we display the triangulation needed to resolve

10 10

f(x) y cos(kl(Xl -1))Cos(k2(x2 2))e-(’(xl-g’)):-(’(x-))

kl=l k2=l

(where)1 and 22 are randomly chosen, for each kl and k2, on [-1, 1]) within error e 10-2

relative to Ifl, using linear interpolation. Figure 5 displays the triangulation needed to
resolve the solution u(x, t) with initial data f(x), at 0.1, to the same relative precision.
The triangulation began with a 6 x 6 grid of square cells on [-3, 3] in both cases; f required
2910 triangles while u required only 608, a reduction in the number of degrees of freedom by
almost 5. The smallest triangle for f is 2.6 on a side, while at 0.1, the smallest triangle
is 2.3 Thus smoothing by heat flow speeds up later stages of the calculation.

The other property of the heat equation, the spreading support of its solutions, is less
benign though hardly malignant. Even though f has compact support, u(x, t) will not have
compact support for any > 0, because heat flows instantaneously (though in small amounts)
to infinity. Thus if we begin by representing f by a piecewise polynomial on B [-R, R]2,
say, where Ifl _< outside B, the support of u will spread and lul will eventually be greater
than e outside B. No fixed region can be used for computing u for arbitrarily long times,
because eventually significant heat flows to infinity.

Method 2. We now describe another method for solving (18), with slightly different aims.
Method 2 is better suited to solving inhomogeneous problems and extends more easily to
solving problems on domains with boundaries and variable-coefficient and nonlinearproblems.

The basic idea of Method 2 is simply to restart Method at each step. (More generally,
we could restart every few steps.) The advantage in this is that data like inhomogeneous terms
and boundaries can more easily enter the evolution.

More precisely, we carry out Method to construct the coefficients Ca of u (x, At). Then
we apply the adaptive refinement strategy again, with u(x, At) in place of f(x). Thus we
construct a new triangulation on which u(x, At) is equal to a piecewise polynomial of degree
d, within error elu(., At)l. We then repeat the construction of the C’s with u(x, At) in
place of f, and we then can evaluate u (x, 2At). We repeat this process, going from real-space
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FIG. 4. Initial triangulationfor sum of O0 scaled and randomly shifted terms of

el/4T-l’4
Ul (x, t) cos e-x/r,

where T + 4t, resolved to error 10-2 relative to luloo with linear interpolation. The triangulation began
with a 6 x 6 grid ofsquare cells on [-3, 3]. This required 2910 triangles and 1468 nodes, with minimum side length
2-6.5 times the maximum side length.

FIG. 5. Triangulationfor 100 terms ofu at 0.1, with 10-2 and linear interpolation. The increasing
smoothness ofthe solution is reflected in the larger triangles used to represent it; only 608 triangles are needed here,
with 317 nodes and minimum side length 2-3.5 times the maximum side length.
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values sufficient to resolve u (x, n At) to the coefficients for u(x, (n + 1)At) and back again,
at each timestep.

A disadvantage of Method 2 is that in the worst case we commit error e at each step;
thus if we want to go N steps to time T, and guarantee a final error _< , we have to commit
error N at each step. Fortunately, this estimate is quite pessimistic, because the error
committed at one time is high frequency and therefore decays rapidly under the heat flow.
Hence errors do not accumulate to this extent in practice.

There are several ways to deal with the problem of spreading support and they lead to a
subdivision of Method 2.

Method 2.1 is the simplest. Here we plan to compute up to some final time 7’, determine
R so that lu(x, t)l < outside [-R, R]2 for 0 < < T, then compute on the fixed domain
[-R, R]2. Either R can be determined experimentally or the exact representation (18) for u
can be used to bound R a priori. Suppose Ifl _< lfl when Ixl >_ t). Then within error

1 fly e-Ix-yl2/*f(y) dy, 4At.u (x, t)

If Ix _> R where R > p, then

p2
lu(x, t)l _< --e-(n-o/alfl.

We can make this < e for 0 < < T with R p + O(v/T log( T)), so R grows rather slowly
with T. This a priori bound is rather crude, however, and it is usually far cheaper to run the
code once with At T and large e (which costs very little), measure the maximum of lul
near the boundary, and increase R until a suitable value is found. Note that increasing R adds
to the outer regions of the computational domain, where u is small and smooth and therefore
needs little refinement, hence adds Very little to the cost of the calculation.

Method 2.2 is almost as simple as Method 2.1; here, we compute on a changing com-
putational box B(t) [al(t), bl (t)] x [a2(t), b2(t)], outside of which Ifl < initially. At
each step, we expand B(t) adaptively to include all regions in which lul > . This is done by
computing the max of ]u] over each side and adding one cell at a time until satisfied.

This method is adaptive in a way that fits well with our general approach. It is not foolproof
(as Method 2.1 with an a priori estimate would be), but in practice works very well. It achieves
a small savings over Method 2.1 at a small additional cost in algorithmic complexity.

Method 2.3, like 2.2, expands the domain as necessary. But Method 2.2 adds cells, so
the cost goes up; in Method 2.3, we simply scale up the size of each cell by increasing 3 until
cells of size 2r/ cover the region on which lul > . Thus we look at the solution on a
larger spatial scale to take advantage of its increased smoothness and take larger timesteps
accordingly. The spatial and temporal scalings are related by the natural scaling law of the
heat equation; time space squared.

This method achieves roughly constant cost, but at the price of varying the timestep.
Thus we have to use interpolation in time if we want to know u at a specific time. Another
disadvantage is that Method 2.3 does not easily extend to inhomogeneous problems, where
the solution does not necessarily become smoother as time goes by.

Method 3 speeds up the evaluation of u by transforming the sum of (21 + 1)2 Hermite
series into a single Taylor series for each cell, using a technique developed in [6].We have

C ot>_O
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We can transform this to a single Taylor series in the cell B in which x lies, say,

f>O

where b is the center of B. To do this, we simply calculate the Taylor coefficients

B ()l__l Db u(b t)

But h (-D)e-Ix12, by definition, so

(23) B-
(-1)lt. (b-c)

C ct>0

This sum can be truncated with an error bound similar to that for the original series. Thus u can
be expressed as a local Taylor series in each cell, with coefficients depending on the Hermite
coefficients C for nearby cells and the Hermite functions of the center-to-center vectors.

The advantage of this is that each evaluation of u costs only O(p + 1)2 arithmetic oper-
ations, rather than O((2I 4- 1)(p + 1)), which can be one or two orders of magnitude larger.
Since most of the computational effort is spent on evaluating u, this is a considerable savings.

As in [6], there is a break-even point, a number of evaluations per cell below which it is
not efficient to transform u to a Taylor series. This point depends on the degree of refinement
necessary in the given cell, hence is not known a priori. However, it can be estimated from
the behavior of u in the cell in the previous timestep or directly from the rate of decay of the
Hermite coefficients.

However, another advantage is that when u is given by a truncated Taylor series, the
coefficents C, for the next time level are trivial to compute. For cell C, we have

dx
<_p

(24)
rl+/l+2(1 (_1)+#+)(1 (_1)2+#+)--B/ (Ctl 4- 11 4- 1)(o/2 4-/J2 4- 1)<p

since the sides of C are 2r/ long. Thus it is unnecessary, as far as u is concerned, to

retriangulate. Of course, inhomogeneous terms and layer potentials will still need to be
approximated on a triangulation.

By substituting (23) into (24), we also get an expression for the new C’s in terms of the
old C’s, which allows us to evolve u completely in transform space and makes it unnecessary
to return to real space at every step.

5. The inhomogeneous case. We now generalize one of the methods, Method 2.1, to
solve the inhomogeneous free-space heat equation

(25)
ut=Au+F(x,t) inR2,

u (x O) f(x),
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where F has compact support in x for each t. The evolution formula corresponding to (20) is
Duhamel’s principle [5, p. 196]

(26)

1 f ix_ylu(x, + At) 7- e- /au(y, t) dy

t+At

f+ e-Ix-yl2/r F(y, s) dy ds
at 7tl

with 3 4At as usual and r 4(t + At s).
Let us begin by discretizing the time integral. The integrand is a smooth function of s, so

the trapezoidal rule

t+At At
g(s) ds --;-(g(t + At) + g(t)) + O(At3)

z

is globally second-order accurate. Moreover, when s - + At, the integrand approaches
F(x, + At). Thus we have

fR e-lx-yl2/a [u(x, + At) u(y, t)
At ]+ -F(y, t) dy

At
+--F(x, + At) + O(At3).

Thus u(x, + At) can be found by Method 2.1, if we simply replace u(y, t) by u(y, t) +
+/- At F(y, t) in the construction of the triangulation and the evaluation of the moments, and2

afterward add gl AtF(x, + At). Since we commit O(At3) error at each of N STr steps,
the final error in u up to time T is O(At2).

Higher-order methods are easy to construct, but slightly more expensive per timestep.
Several sets of coefficients must be stored, and updated (by the technique of Method 1) after
each step. These higher-order methods are important, however, because our approach is
efficient when At is large; thus we need a higher order of accuracy to capture variations in F.
Hence this approach is suited to F varying rapidly in x but not in t.

A fourth-order method, for example, can be based on Simpson’s rule:

t+At At

At 3
[g(t At) + 4g(t) + g(t + At)] + O(At5).

This leads to two possible methods, depending on whether or not it is convenient to evaluate
F at half timesteps. If not, for example, we get

u(x, + At) e-lx-yl2/2a u(y, At) + F(y, At) dy

4At fR e-lx-ylZ/a+- F(y, t) dy

At
+ F(x, + At) + O(AtS).

The final error after N steps of this method is O(At4).
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6. Domains with boundaries. The methods we are developing in this paper find perhaps
their best application in the solution of the heat equation on domains with (possibly time-
dependent) boundaries. To do this, we use the classical theory of layer potentials for the heat
equation described in [9] and more recently in [2]. The key operators in this theory are the
layer potentials

Sg(x, t) G(x x’, t’)g(x, t’) dx’ dt’,
(t’)

Dg(x, t) t’)g(x t’) dx’ dt’
(t’)

(x x’,

D*g(x, t) t’)g(x t’) dx’
(t’

(x x’ t-

taken over atime-dependentboundary 1-’ (t). Here G is the heat kernel G (x, t) (4rt)- le- Ix12/4t

and g is a function defined on F (t) for each t. Various boundary conditions for the heat equa-
tion can be transformed into Volterra integral equations on F(t), with operators like S, D, or
D*, by representing the solution of the heat equation as a sum of layer potentials.

In this section, we describe briefly how our methods can be used to evaluate Sg. The
basic idea is that layer potentials are solutions of inhomogeneous problems like the one treated
in the previous section, but with distributions rather than smooth functions on the fight-hand
side as forcing terms. Sg, for example, solves

U AU--}-,
(27)

u(x, O) O,

where/z is the measure that assigns density g concentrated on F (t). The double layer potential
Dg has the normal derivative of a measure on the right-hand side.

Clearly this observation does not allow one to evaluate layer potentials with standard
numerical methods that mostly require point values. Our methods, however, require only the
ability to integrate the inhomogeneous term against a piecewise polynomial. The singularity in
time ofthe kernel G turns out to complicate the integration slightly, requiring a straightforward
asymptotic calculation.

Let us consider the single layer potential u Sg. Since u satisfies (27), the evolution
formula (26) gives

1 f e-Ix-yl2/au At) dyu(x, t) (y,

(28)

flfp e-lx-yl2/4(t-t’)
+

At {t’) 47r(t t’)
g(y’ t’) dydt’.

The integrand in the time integral is singular; it becomes infinite as t’ approaches t. Thus
a standard integration formula like the trapezoidal role will not achieve its usual order of
accuracy. A standard technique for eliminating this difficulty is product integration; to apply
product integration, one extracts an analytic form for the singularity of

e-lx-yl2/4(t-t’)
(x, t’)

t’) 4yr(t t’)
g(y’ t’) dy

as t’ approaches from below. Say, (x, t’) 4(x, t’) as t’ " t. Then we construct an
integration rule by interpolating (x, t’)/cb(x, t’) and integrating the resulting polynomial



FAST METHODS FOR THE HEAT EQUATION 199

times q (x, t’) exactly. Such a rule will achieve the order of accuracy of the interpolation used.
Of course, b must be simple enough that p times a polynomial can be integrated exactly or
very accurately, by some trick.

Thus we need the asymptotic behavior of as t’ " t. When x lies on 17 (t), a simple
calculation shows that

1
(x, t’) g(x, t) as t’ ’l" t.

/4n’(t t’)

This square-root singularity is consistent with the usual parabolic scaling of the heat equation.
It is derived by approximating F(t’) by its tangent line, estimating the error, and Taylor
expanding. The technique is fairly standard 1 ].

When x does not lie on 17 (t), however, approximation by the tangent line gives the wrong
answer, because it neglects the curvature of 17(t). A better approach is to approximate 17(t)
by the osculating circle or parabola; the result depends only on the curvature of F (t), so either
will do. We omit the details and state the result.

Assume x0 is the closest point on 17 (t) to x and let D Ix x01. Let R be the radius of
curvature of F (t) at x0 and p be the distance from x to the center of curvature. Then, if p > 0,

(x, t’)
/4:r(t t’)

e-z2/4(t-t’)g(x’ t)

ast’ " t.
We now have the asymptotic behavior of the integrand. The next step is to write the time

integral as

f e-D2/4(t-t’)
h (x, t’) dt’

xt /4zr(t t’)

e(D2-1x-yl2)/4(t-t’)
h (x, t’)

(t’) /4zr (t t’)
g(y’ t’) dy

so that h(x, t’) /R/pg(xo, t) as t’ " t. Now h is a nice smooth function, so we replace it
by its linear interpolant

/i(x t’)
t’ zxt t’

h(x, At) h(x, t)
At At

and carry out the time integral exactly. This gives

ft e-D2/4(t-t’)

(29) e-2/ 170 170 g(x0, t)
4zr 2 3 2 3

A (3 D2)fr e-Ix-ylz/
+ 1-’o 2’ 3 (t--At)

g(y, At) dy + O(AtS/2).

Here 170 is the normalized incomplete gamma function defined by

17o(a, ) e-a e-Zza-1 dz a<0.
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We now have an approximate evolution formula

1 fR e-lx-yl2/’u(Y’ t) dyu(x,t + /xt)

e- lx-yl2-- W1 (x, t)g(xo, + At) + W2(x, t) frIt)
g(y’ t) dy,

accurate to O(Ats/2). Here W0 and W are given in (29) as functions of x, At, and F(t). To
evaluate u by this formula, we need to find the nearest point x0 on F (t + At) to x and estimate
the curvature and normal of [’ (t + At) at x0. Finding the nearest point can be done efficiently
by binning pieces of F’ (t + At) and searching bins.

To evaluate u, we also need to evaluate the "Gauss transform on a curve" defined by

e-lX-yl/
Fag(x) ------ g(y) dy.

This can be approximated adaptively by the Hermite expansion technique used for the homo-
geneous case. We begin by representing 1-" and g as piecewise polynomials of degree d, within
accuracy e. To do this, we first lay down a coarse grid on F (parametrized by s [0, 1 ], say),
and construct piecewise polynomial interpolants to the coordinate functions of 1-" and to g at
meshpoints sj equispaced in [0, 1 ]. In the style of 3, we now refine our representation of F
adaptively whenever the polynomial interpolation fails to represent either 1-" or g accurately.
The result is a representation

r ujrj + 0(),

g= + o(),

where Fj is an element; if we use linear interpolation, for example, Fj is a line segment.
Now we apply the expansion technique of 2. Lay down cells C of size 2rVC8 to cover

1-’, and expand the contribution of 1-" A C as a series about the cell center c. We find

with E O (e) and

C
C--8 c ,r8 y dy

1

Vc8 ,]
y dy,

where F Fj. (In order to have F divided into elements each of which lies in a single cell
C, we peffo a fuher subdNision of F by cutting any element crossing more than one cell.)
This Heite series can be truncated with the usual bounds.

We now have to evaluate integrals of the fo

) (y)dy,

where is a polynomial. If we use line inteolation, the recuence relation for doing this
was developed in 3. Otheise, simil but more complicated recuence relations can be
developed, or Gauss-Legendre integration of sufficiently high order can be used.
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A major advantage of the present approach is that we are able to use high-order approxi-
mations of F without having to integrate Gaussians over such approximations. The difficulty
of carrying out these calculations has been a major stumbling block in the construction of
high-order product integration schemes, both for the heat equation and the Laplace equation.
With the current approach, one needs only to integrate powers over polynomial curve elements,
a technique that can always be carded out. This advantage was observed but not developed in
[6]. The fast multipole method [7] can be used in a similar way to eliminate the necessity of
product integration in potential theory for the Laplace equation. This approach seems likely
to be particularly useful in three-dimensional problems, where product integration is more
difficult.

The remainder of the calculation is straightforward; we present some preliminary nu-
merical results in 7. We have described only the single layer potential, but the analysis of
the double layer potential is quite similar. The jump in the double layer potential across the
boundary complicates matters surprisingly little.

7. Numerical experiments. In this section, we describe the results of codes written for
the homogeneous problem and the single layer potential. The codes were written in standard
FORTRAN 77 and run on a SUN SPARCstation 1+ with the optimizer flag -(3, using double-
precision arithmetic. The timings reported are usually reproducible within 1 or 2%, which is
sufficient for our purposes.

First, we implemented Method 2.1 for the homogeneous problem, checking the numerical
results against exact solutions for three sets of exact temperature fields; each is produced by
shifting, scaling, and summing a basic solution. We put

K K

u(x, y, t) Z uj(k(x xk), k2t)uj(k2(y yk), kt),
kl=l k2=l

where xkl and Yk2 are random uniformly distributed on [-1, ]. The three basic solutions are
given by

el/4Te-1/4 ()e_X/ru (x, t)
/

cos

where T 1 + 4t,

max(1 Ix I, 0) if 0,
u2(x,t)

A2[ (x 1)eft((x 1)/) + 47-e-(x- )2/4t] if > 0,

where Af(x) f(x + 1) f(x), and

u3(x, t) [ X-l,l(x) if 0,

! [erf((x + 1)//) erf((x 1)/qt)] if > 0,

where X-I, 1] (X) is zero for [x[ > 1 and 1 otherwise. The first solution is smooth with
K2 sharp peaks of scales from 1 to , and decays exponentially at infinity. The second is
piecewise linear, continuous, Lipschitz, and piecewise smooth but not C at 0. The third
is discontinuous in x at 0 but smooth and sharply varying for > 0. We used our method
to compute u for ten timesteps equispaced from 0 to 1, beginning each triangulation with a
14 x 14 grid of square cells on the domain [-7, 7]2 and using linear, quadratic, and cubic
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interpolation with various error tolerances e. We took K 10, so each solution Uj varies over
scales from 1 to 0.1. We used p 6 and I 2 to achieve error e 10-2 relative to lul at
each step.

Table 1 reports the errors and times produced by Method 2.1 on these three temperature
fields. Several conclusions can be drawn from Table 1. The method achieves the requested
accuracy in every case. The time required for accuracy scales roughly like -1 for linear,
-2/3 for quadratic, and -1/2 for cubic interpolation, as it should.

For purposes of comparison, the standard explicit nonadaptive finite difference method

nq-1 n 9 2 nAt(A7 -’b lj)Ui_l,j_Uij Uij "[-

on a square N x N grid requires time O(e-2) to attain accuracy e. Indeed, this method has
error O(At + h2) and is stable if At < h2/4, so decreasing the error by a factor of 4 requires
halving h and reducing At by 4. Since this method requires O(h-2) work per step, we see
that decreasing the error by a factor of 4 requires 16 times as much work, corresponding to
O(e-2). A fourth-order explicit method would need O(e-1) work to achieve error less than e.

Our method is relatively unfazed by nonsmooth or discontinuous initial temperature fields
as long as they are bounded. It resolves the discontinuity as well as it can, and ends up with a
very good approximation except on a very small area. The small area where the interpolant is
inaccurate does not affect the total error, essentially because the heat equation is stable in L
as well as L.

TABLE
Times and errors for the homogeneous free-space heat equation. Column No/N1 displays the number of

triangles in the triangulation at 0 and at 1, T is the total computing timefor ten stepsfrom 0 to 1,
and E is the maximum error, divided by the maximum of the solution. Results for lower-degree interpolation with
small , shown with dashes, were too time consuming and were omitted.

u Linear Quadratic Cubic

No/N1 T E No/N1 T E No/NI T E

10-1 3198/784 52 .96-1 1076/394 66 .81-1 728/392 115 .76-1
10-2 27634/5260 752 .43-2 3382/590 276 .18-2 1550/396 317 .17-2
10-3 264454/49028 8812 .44-3 14460/1888 1079 .20-3 3948/532 628 .21 3
10-4 64056/8126 5619 .20-4 11096/1236 1898 .14-4
10-5 33496/3604 11178 .22-5
u Linear Quadratic Cubic

No/N T E No/N T E No/N T E

10-! 4548/784 26 .98--1 2188/394 32 .82--1 1410/392 55
10-2 54664/5242 568 .46--2 27340/588 318 .19--2 21746/396 446
10-3 399988/48982 7834 .48--3 316904/1884 2973 .22--3 249236/534 3833
10-4 399988/8152 7350 .21--4 399988/1242 7764
10-5 399988/3654 16443

.77--1

.18--2

.22--3

.14--4

.23--5
U Linear Quadratic Cubic

No T E No/N1 T E No/NI T E

10-1 5106/782 25 .10-0 5290/394 41 .84-1
10-2 14632/5266 457 .86-2 15032/590 213 .52-2
10-3 115852/49016 6476 .95-3 115852/1878 1430 .18-2

5344/392 80 .75-1
15060/394 309 .42-2
115852/530 1779 .60-3

One feature that is not apparent from the tables is that evaluation of u is more costly than
evaluation of the coefficients. Typically the code spends 80% of its time evaluating u and
only 20% evaluating coefficients. This is partly due to inefficiency; the refinement test we
use wastes many evaluations of u when the grid is almost completed. We plan to address this
admittedly minor point in future improvements.



FAST METHODS FOR THE HEAT EQUATION 203

Finally, we present some preliminary numerical results for the evaluation of the single
layer potential

Sg(x, t) fot fr e-lx-yl2/4(t-s)

(t’) 4n’(t s)
g(y, s) dy ds.

In order to compute the error, we took a very simple case with g and F(t) a stationary
circle with center (0, 0) and radius 1.1. (Of course, we coded the method for a general curve
and density.) We computed Sg on an adaptive grid using N steps until 1, setting 10-1

initially and reducing by a factor of4 for each successive calculation. The triangulation with
10-1 is shown in Fig. 6 at 1; the triangulation for this problem changes little over

time.

\/

\)

Fo. 6. Triangulationfor the single layerpotential ofunit density on a circle with center (0, 0) and radius 1.1.
Here 10-2 and 0.1. The smallest triangle has sides oflength 2-s times the maximum side length and there
are 1232 triangles with 5581 nodes in the box [-3, 3]. The maximum level ofsubdivision was 10. The dotted circle
is the curve F(t); it is resolved to accuracy ’ 10-3 with 120 line segments, subdividedfurther to have each line
segment lie in a single cell.

Table 2 presents numerical results for this calculation with N 10, 20, 40 steps and
cubic interpolation. T is the total computing time, E is the maximum error, divided by the
maximum of the solution, and Nr is the number of triangles at 1.

TABLE 2
Times and errorsfor the single-layer heat potential; T is the total computing time for N stepsfrom 0 to

1, and E is the maximum error, divided by the maximum ofthe solution.

At h p I Nr T E
0.1 1.33 8 218 79 .58-1
0.05 0.923 10 2 520 1104 .15-1
0.025 0.632 11 2 1220 6694 .37-2

We conclude that the method is expensive but accurate; perhaps its best feature is the
elimination of product integration.
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8. Conclusions. We have described an efficient adaptive approach to several heat flow
problems that arise in physics. The simplest is the homogeneous free-space heat equation, for
which we constructed several methods. All are based on the Hermite expansion of the heat
kernel, combined with an adaptive triangulation scheme that represents a given function f as
a piecewise polynomial within an error lflo. Another key ingredient is the idea of writing
the solution as afunction that can be evaluated at any point, rather than a set of values to be
interpolated.

We then demonstrated how to construct methods for the inhomogeneous case, using
Duhamel’s principle, and how to evaluate layer potentials. We treated layer potentials as in-
homogeneous problems with distributional fight-hand sides and treated the time singularities
by product integration. The Hermite expansion is highly useful here, because it makes it
unnecessary to carry out product integration in space. Thus even for high-order curve repre-
sentations such as cubic splines, we still need only to evaluate integrals of monomials over
the curve; we do not have to integrate Gaussians over a cubic spline curve, which is very
difficult or impossible to do exactly. The Hermite series approach also combines the accuracy
of product integration with the speed of the fast algorithm; usually product integration and
fast algorithms do not marry well, because fast algorithms depend on processing the source
independently of the location of the target then evaluating. In this case, the product integration
simply postmultiplies the output of the fast summation technique.

Numerical results show these methods to be efficient and accurate. They perform partic-
ularly well in spatially rough problems where considerable accuracy is required.

The present techniques are formulated for the heat equation. It is shown in [4] how to
extend fast techniques for the heat equation to nonlinear parabolic problems, and a similar
technique works for variable-coefficient linear problems. Thus the techniques presented in
this paper seem likely to be broadly applicable.

Appendix A. Cartesian coefficients. The polynomial of degree d that interpolates given
values of a function f at the nodes shown in Fig. 1 (for d 1, 2, 3) is usually expressed in
terms of the barycemric coordinates )1 (x, y), L2 (x, y), )3 (x, y) defined by

)L1 "- 2 q" )L3 1,

(30) Xl)l + X2)2 + X33 X,

yl)L1 -- y2)2 @ y3,3 y,

with (Xi, Yi) Vi the vertices of the triangle. The barycentric coordinates of a point v can be
computed in terms of the components x and y of v, by

(31) Li aix + bi y + ci,

by solving (30).
The (d + 1)(d + 2)/2 nodes required for interpolation of degree d are shown in Fig. 1.

The interpolants of degrees d 1, 2, 3 at these nodes are given by [3]
3

f(x) )L f(vi) (d 1),
i=1

3

f(x) Zi(2Zi 1)f(vi) + Z4)i)jf(1)ij) (d 2),
i=1 i<j

1 3 9
f(x) - i )i(3)vi 1)(3)re- 2)f(vi) + - )viLj(3)vi 1)f(viij)

"= ij

+ 27 zxxf(v) (d 3).
i<j<k

The numbering of the nodes is shown in Fig. and follows [3].
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In the linear case, it is straightforward to transform from barycentric to Cartesian coordi-
nates:

f(x, y) (a f )x + (b f y + (c f ),

where a. f E=I ai f(vi), and so forth.
For the quadratic case, we find after some tedious calculations that

f(x, y) Z fx’ f2x2 + fllxy + fozy2 -+- flox -+- FOlY + Foo,
1o1_<2

where the Cartesian coefficients f/j are given by
3

F20 E 2aZi f + E4aiaj fij,
i=1 i<j

3

Fll E 4aibi fi + E 4(aibj + ajbi) fij,
i=1 i<j

3

F02 Z 262if + E 4bibj fij,
i=1 i<j

3

F10 E 2ai(4ci 1)f + E 4(aicj + ajci)fij,
i=1 i<j

3

F01 E 2bi(4ci 1)f + E 4(bicj + bjci)fij,
i=1 i<j

3

Foo E 2Ci(2Ci 1)f + E 4CiCj fij.
i=1 i<j

Here we have abbreviated f f(vi), fij f(vij), and so forth.
The calculations for the cubic case are even more tedious and lead to

f(x, y) E Fxa
Io1_<3

f30x3 -+- f21x2y "k- fl2xy2 + fo3Y3

+ f20x2 + fllxy-]- fo2Y2 -t- flox + FOlY + Foo,

with

9 27
F30 Ei=I a3i f + a2iajfij + 27ala2a3f123,

27 3 27
F21 -- E a2i bi fi + - E ai(aibj -+- 2biaj) fiij

i--1 ij

+ 27(ala2b3 + alba3 + bla2a3)f13,

27 3 27
El2 - E b2iaifi + - Ebi(biaj + 2aibj)fiij

i=1 ij

+ 27(blb2a3 + bla2b3 + alb2b3)f123,
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9 3 27

b2ibjfiij -F 27blb263f123Fo - Zb3i f + -i--1

9 3 9
F2o ila2i(3ci.= 1)f + ijai(3aicj. + (6ci- 1)aj)fiij

q- 27(ala2c3 -I- alc2a3 -F cla2a3) f123,

3 9 (6aibicj -+-ai(6ci 1)bj -+-bi(6i 1)aj)fiijEll 9 i=1 aibi(3ci 1)f -+-
ij

-F 27(cl (a2b3 -+- a3b2) -+- c2(alb3 q- a3bl) q- c3(alb2 -F a2bl)) f123,

9 3 9
F02 /1"= b2i(3ci- 1)f + . bi(3bicj + (6ci- 1)bj)fiij

+ 27(blb2C3 -F blc2b3 -}- clb2b3) f123,

1 3 9
Flo /1 ai(27c2i 18ci + 2)f + _(ai(6ci 1)cj -+- ci(3ci 1)aj)fiij

ij

"+" 27(alc2c3 + cla2c3 -1-ClC2a3)f123,

1 3 9
F01 /1 bi(27c2i 18ci -+- 2)f + y(bi(6ci 1)cj d-ci(3ci- 1)bj) fiij

ij

-ff-27(blc2c3 -+- clb2c3 q-- ClC2b3) f123,

1 3 9
Foo - i Ci(3Ci 1)(3ci 2)f + Z Ci(3Ci 1)cj fiij -+- 27ClC2C3f123.

ij
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A NONLINEAR VARIATIONAL PROBLEM FOR IMAGE MATCHING*
YALI AMITt

Abstract. Minimizing a nonlinear functional is presented as a way of obtaining a planar mapping that matches
two similar images. A smoothing term is added to the nonlinear functional to penalize discontinuous and irregular
solutions. One option for the smoothing term is a quadratic form generated by a linear differential operator. The
functional is then minimized using the Fourier representation of the planar mapping. With this representation the
quadratic form is diagonalized. Another option is a quadratic form generated via a basis of compactly supported
wavelets. In both cases, a natural approximation scheme is described. Both quadratic forms are shown to impose
the same smoothing. However, in terms of the finite dimensional approximations, it is easier to accommodate local
deformations using the wavelet basis.

Key words, image matching, movement compensation, nonlinear variational problem, spectral methods,
wavelets

AMS subject classifications. 68V10, 65M70, 49N60

1. Introduction. Let F and G be smooth functions on the two-dimensional unit square
12, and let 4(x) be a mapping of the unit square into itself, such that G(x) F(4(x)). It is
clear that if F and G have the same range, many such mappings exist, most of which would
be highly discontinuous and degenerate and not very interesting. However, if the mapping
q (x) is a smooth diffeomorphism of the unit square onto itself, then the extremal points of F
would be mapped via 4-1 onto the extremal points of G, level curves would be mapped onto
level curves, etc. Heuristically speaking, the graphs of F and G considered as surfaces would
have similar topographies. Conversely, if F and G have similar topographies, then it should
be possible to find a smooth and locally nondegenerate mapping q such that F((x)) is close
to G in some sense.

To illustrate this idea, consider the images in Fig. 1, which are x-rays of two different
hands. If we consider the images as some smooth function sampled at the points of the pixel
lattice, we obtain two functions that indeed have very similar topographies. This would be
the case with any two images of some fixed organ of the body of two different patients, or of
the same patient obtained at different times, provided that these images came from the same
type of imaging device. Consequently, there should exist a smooth and locally nondegenerate
mapping q that transforms one image, called the template, into the other image, called the
data, via composition. The mapping q would automatically match between the corresponding
parts of the two images. See, for example, Fig. 1 where the various parts of the hand such as
the tips of the fingers or the joints are correctly matched.

One ofthe first attempts dealing with the issue ofimage matching can be traced to Horn and
Schnuck [5] and Huang and Tsai [6] in the context ofoptical flow and movement compensation
calculations for sequences of images. These ideas were further developed by Nagel 10] and
Terzopoulos 11]. In Bajcy and Kovacic [2] these ideas were applied to the issue of matching
medical images of similar organs, such as MRI images of the brain. Here the matching is not
intended to calculate movement, but to automate the analysis of medical images. This second
problem is also more difficult in that large deformations may occur, as opposed to relatively
small deformations in image sequences.

*Received by the editors April 1, 1991; accepted for publication (in revised form) March 1, 1993. This re-
search was supported in part by Office of Naval Research grant N00014-88-K-0289 and Army Research Office grant
DAAL03-90-G-0033.

fDepartment of Statistics, University of Chicago, Chicago, Illinois 60637. This work was done while
the author was at Brown University, Division of Applied Mathematics, Providence, Rhode Island 02912
(amit@galton.uchicago.edu).
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FIG. 1. The template corresponds to the function F and the data to the function G. The restoration was done
using the Fourier method. The white lines show the matching induced by the displacementfield. A point x in the data
is connected via the restoration to the point x -t- U(x) from which it obtained its grey level value. Thefinal difference
image shows IF(x + U(x)) G(x)] and the initial difference image shows IF(x) G(x)l.

The question is how to find the mapping b. We have addressed this problem by minimizing
the following functional:

(1) I(U) - IF(x + U(x)) G(x)12dx,

where U(x) qb(x) x is the displacement field and T2 is the unit torus. Minimizing I over
some set of vector fields provides a mapping b (x) x -t- U(x) of the torus into itself, such
that F o 4 (x) is close in the mean square norm to G.

It should be noted that the periodic domain is chosen for the sake of notational and
computational convenience. It takes care of the problem of what to do when x -t- U(x) is not
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in 12. Another possibility is that F is defined on some large domain D that includes 12. Then
one would want to minimize over mappings from I2 into D.

To rule out the discontinuous and irregular solutions to this minimization problem, it is
possible to introduce a smoothing or regularizing term, thus obtaining a new functional

(2) J(U) orS(U, U) -k- - IF(x q- U(x)) G(x)12dx,

where is a bilinear form penalizing nonsmooth functions. In all our applications, was
taken to be a Hilbertian norm equivalent to one of the Sobolev norms. Since the domain under
consideration is two dimensional, taking the Sobolev norm to be of order greater or equal to
two will ensure that the solutions are continuous. Higher-order Sobolev norms will, of course,
introduce additional smoothness. This approach was first described in a statistical setting by
Amit, Grenander, and Piccioni 1 ].

The functional J is nonlinear and may have many global and local minima. In the sequel
we will be interested mainly in finding local minima of J close to the initialpoint U(x) 0
that corresponds to the identity map. The nondegeneracy of the mapping q generated by a
local minimizer is then ensured by the fact that it is close to the identity map so that its
Jacobian is nonzero at most points.

There are several major differences between the work mentioned above and the approach
presented here. First, we do not use a data term derived from intensity conservation assump-
tions originally suggested by Horn and Schnuck [5], which is equivalent to linearizing the
functional I as described at the end of 2. It appears that the linearized problem will not
capture larger deformations (see Fig. 2).

Second, the solution of the variational problem is obtained by parametrizing the unknown
function in terms ofits coefficients with respect to either the Fourier basis or some wavelet basis,
thus allowing for a coarse-to-fine or multiresolution approach. This was indeed suggested in
11 using multigrid techniques, which may be appropriate for the linearized equations that
have a unique solution and are known to be efficiently soluble using multigrid techniques.
However, given that the nonlinear functional is to be used, and that this nonlinear functional is
not convex, it is not clear how well the classical multigrid approach will perform. The coarse
level displacement is calculated using only the information of a smooothed version of the data
on that same coarse grid, and there is some risk of information being lost. Moreover, when
moving to finer grids, a bilinear interpolation is used that may not be smooth enough and that
may introduce unnatural deformations.

Setting the problem in terms of an orthonormal basis directly incorporates interpolation
through the basis functions. The smoothing operator is automatically written in diagonal form
in terms of the basis chosen. Thus using the description in terms of a basis expansion, and
solving first for low-frequency coefficients, gradually increasing the number can be thought
of as a multigrid method translated onto the finest grid. Although some computational speed
is lost, the advantage is that all the data is used to drive the algorithm.

The level of smoothness versus locality can be controlled by the choice of wavelet basis.
Since the problem at hand is not really governed by physical fluid dynamical or elasticity laws,
there is no special advantage in using the Laplacian as a smoothing operator. The existence
of fast transforms for these bases makes the algorithm computationally feasible.

In 2 the smoothing term g is set to be a quadratic form generated by a linear differential
operator. The approximations are then described together with minimization procedure. The
basic idea is to diagonalize the differential operator using the Fourier basis and to solve the
problem in the spectral domain.
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Temp ae Temp ate

Restoration Data

Di splacement
Field

(a)

Restoration Data

Di splacement
Field

(b)

(c)

FI. 2. A transformation constructed with the Fourier basis was initially applied to the template to generate the
data. (a) was done using the Fourier basis. (b) was done using the wavelet basis. (c) was done using the linearized
equations.
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In 3 an alternative smoothing term is suggested. This time is directly given in a
diagonal form using a wavelet basis instead of the Fourier basis. The eigenvalues are set so
as to ensure the same type of smoothing.

In 4 the experiments are described, and the performance of the two approaches is com-
pared.

2. A nonlinear partial differential equation. Consider the bilinear form

1 fr )2B(f, g) 2(A + e f(x). g(x)dx,

where A denotes the Laplacian with periodic boundary conditions. This bilinear form defines
a Hilbertian norm equivalent to the standard Sobolev norm on H H2(T2). Set s(U, U)
B(U(1), U(1)) + B(U(2), U(2)) in (2). With this choice of the bilinear form in the functional
J, the Euler equation for the minimizer is the following nonlinear partial differential equation
(PDE):

OF
O(t -- E)2U(1) (G(x) F(x + U(x)))-x, (X + U(x)),

OF
o/(t + 8)2U(2) (G(x) F(x r- U(x)))-x2(X + U(x)).

The parameter a determines the relative weight of the regularizing term. Since the issue of the
choice of is not addressed here, we set ot 1. This is the parameter used in the experiments
as well.

For the purpose ofnumerical solutions, it is, ofcourse, necessary to find finite-dimensional
approximations to the functional J. Since the spectral decomposition of A is known, it is
convenient to write J in the spectral domain and then approximate it coordinatewise. Let
)kt, kl denote the eigenvalues and eigenvectors of A, then

kl (2:rt’)2(k2 + 12) + e and (kl(Xl, X2) e2ri(kx+tx2),

and the functional J can be rewritten as

--2 (1),2 (2).2.J(U) AklttUkl + Ukl
k,l=-x

(2) dx+ a(x)]
F(u(1), u(2)) + q(u(1),/1(2)),

(i)where Ukl f u(i)(x)cp/d(x)dx. The vector (u(1) u (2)) e2 e2, is simply the coordi-
nate vector of (U(1), U(2)) with respect to the basis t of L2(T2). We write (u (1), u (2))
zr(U(1), U()). Note that q(u(1), u()) I(U(1), U(2)) with I as in (1).

The finite dimensional approximations of the functional are obtained by taking the sums
in the linear term and those in the integrand between -(N 1) and N. The approximation
is therefore obtained by restricting the argument of J to the space HN HN, where Hv
sPan{dflkl}ff.l=_(N_l). The dimension of the approximate space Hv is (2N)z and zr(Hv x

HN)-- R(2N)2 R(2N)2.
Let Jv denote the approximate functional on Hv x HN. Each of the finite dimensional

functionals is positive and continuous. Moreover, Jv(U) as U o and therefore has
at least one global minimum. Let Sv be the set of global minima of Jv.
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THEOREM. Let UN SN for N 1, 2 Then UN has a convergent subsequence in
H x H, which converges to a global minimum of J.

Proof. Consider H x H with the Hilbertian norm defined by g(.,-). Since H x H is
compactly imbedded in C(T2) x C(T2), IUN UIHH --+ 0 implies uniform convergence
that, in turn, implies that G (x + UN(x)) -+ G (x + U(x)), as N -- cxz. Since G and F are
bounded, it follows from the dominated convergence theorem that I(UN) -+ I(U). Clearly,
(UN, UN) -- (U, U), so that J is continuous in H.
Now JN(UN) is a positive monotonically decreasing sequence so that it converges to some

value L. Moreover, since UN is the global minimum of J in HN x HN, and since k/= (HN x
HN) is dense in H x H, it follows from the continuity of J that L infunn J(U).

Since UNIHn (UN, UN) < Jm(UN) < J1 (U1) for all N 1, 2 the sequence
UN is weakly compact. Let Umk be a subsequence that converges weakly to some U H x H.
Again, since H is compactly embedded in C(T2), UNk converges in the uniform norm to U
as k -- o. As above, this implies that I(UN) -+ I(U). Together with the fact that J(UN)
converges, we conclude that (UN, UN) converges to L [(U) as k --+ o.

Now since the norm function is lower semicontinuous in the weak topology, we have
g(U, U) <_ L I(U), and since L is the infimum, we have g(U, U) + I(U) L and
(U, U) limko(UNk, UN). This, together with the weak convergence of UN to
U, implies strong convergence in H. Finally, since J(U) L, it is a global minimum
of J.

Observe that by using the same arguments as above, it is possible to show that the set of
global minima of J is compact in H.

Practical considerations. In practice, the template and the data are images and are given
only on a discrete pixel lattice of equally spaced points x, or,/3 0 L 1 in 12. The
unknown displacement field U is given in terms of its array of values at the points ofthe lattice,
which will also be denoted by U. We write U U(xu) for all c,/3 0 L 1. The
approximate functional JN now has the form

N

(3) JN(U) kl(" (1).2 (2).2.
L-1

[uk, + [u, )+ -- Z [F(x + V) G(x)]2

k,l=-(N-1) or,/3=0

The array uk,l, k, -(N 1) N is the discrete Fourier transform of the array U, i.e.,

(i)_ 1
Ukl -’

l
otfl kl (Xotfl),

a,/=O

and we write u (i) 7r(u(i)). Since F is actually given only on the lattice, and
may not lie on the lattice, it is possible either to truncate to the nearest point or to use a linear
interpolation between the four nearest points. The resolution of the pixel lattice is the finest,
so that these corrections are negligible.

We have not tried to find the global minimum of the approximating functional. Instead,
we have done gradient descent starting at initial point zero. In other words, the following
ordinary differential equation (ODE) in R(2N)2 R(2N)2 was solved.

dt --klUkl
L-1() OF

L2 [F(xa + Ua(t)) G(xa/)] -xi(Xa + Ua(t)),l(Xa).
a,/=0

Writing
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OF7(i)(t) [F(xa# + Uu(t)) G(x,t)] -xi(Xu + Uu(t)),(5) .
the second term in (4) is simply ((Z(i) (t)))t. The choice of initial point zero is motivated by
the fact that the mapping generated by the solution is expected to be in some neighborhood of
the identity map. The symmetric difference approximation of the derivatives of F was used.

It was found that minimizing all 2(2N) coefficients at once for large N is not the best ap-
proach. It might be preferable to st out in a low-dimensional space and gradually to increase
the dimension until the desired maximum dimension is reached. The initial point in each space
is then ten as the local minimum obtained in the previous space. This procedure is also
faster. Heuristically, this can be intereted as matching global features in low-dimensional
spaces and moving on to the finer details as the dimension increases.

The algorithm is described as follows.

(i) Set N 0, initial condition u(0) 0.
(ii) Find local minimum for J, staaing from u (0).

SetNN+landu(0)= [ () for-N<k,lN,
(iii)

/ 0 otherwise.

(iv) Go to (ii).

Step (ii) is caed out by a simple Euler method.
(a) Fix time step dt, set 0.
(b) Generate U(t) from (u(1)(t), u(2)(t))-inverse DFT, U(i) n-l(u(i)) or

N

ua(i) (t) Z U(ki)l (t)qbu(x)
k,l=-N+l

ot, fl =0 L-1.

(c) Carry out quadrature (in (4)) for each eigenvector bkt-DFT, v(i)(t) yr(z(i)(t)) or

L-1

(t)
1 OF

kl Z F(x + Ul(t))xi(X + U(t))dpkt(x).
o,=o

(d) Add the linear term and carry out Euler step.

(i)(t-Jr 1) (i)(t)-dr. [r’r(/)(t)+a (i)(t)]Ukl Ukl kl kltkl

If difference is smaller than tolerance, set N u (t + 1) and go to (iii).
(e) Go to (b).

The time-consuming parts of the algorithm are steps (b) and (c). One option is to apply a
fast Fourier transform (FFT) and an inverse FFT. The dimensions ofthese FFTs are determined
by the size of the pixel lattice on which F and G are defined, i.e., 128 x 128 or 256 x 256.
However, when N is very small, or when the dimensions of the pixel lattice are not powers
of two, it may be faster to actually carry out the quadrature in step (c) for those frequencies
that are being updated and to carry out the summation in step (b) for all points (c,/3) on the
lattice.

In some cases it is possible to carry out the quadrature in (c) on a coarser lattice than the
original pixel lattice; then, of course, the summation in (b) is only done for the points on the
coarse lattice. This is particularly true when F and G are smooth functions. This is related
to the multigrid approach suggested in 11 ]. However, in 11 the number of unknowns is
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equal to the number of points used and this seems to be insufficient. This is also the case for
the pseudospectral methods described below. In the experiments described here the algorithm
did not produce much improvement for N > 10, and at low frequencies the coarse lattice
quadrature method is indeed faster than the FFT method.

In some experiments it was useful to actually smooth out the template and the data through
some low-pass filter (see Figs. 3 and 4). This tends to single out global topological features
and eliminate local ones. In this case the coarse lattice quadrature is very appropriate. For
images 128 x 128, one could work with a 16 x 16 lattice for the first four or five frequencies
and get good results.

Final Final
Frame 1 Difference Frame 1 Difference

Restoration Frame 2
LOW RESOLUTION

Restorati on Frame 2
HIGH RESOLUTION

Initial
Difference

FIG. 3. Frames and 2 are two subsequent picturesfrom an x-ray ofa catheter inserted into an artery. Frame
is used as the template and Frame 2 as the data. The displacementfield is found by using the wavelet method at

the low resolution, and then applied to the high-resolution template (Frame 1). The black line in the restoration is
almost perfectly aligned with the black line in the secondframe.

If the full lattice has L x L pixels and the coarser lattice has K x K pixels, the number
of floating-point multiplications used in this method is of order K2 N2, with N being the
number of frequencies, whereas using the full FFT would be approximately L2. log L2. Thus,
depending on the number of frequencies to be used, it is possible to choose which is the most
appropriate. As a rule, K, the number of quadrature points, should be greater than N, the
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Final Final
Frame 1 Difference Frame 1 Difference

Restoration Frame 2 Restoration Frame 2

SMOOTH VERSION ORIGINAL VERSION

Initial Difference Displacement field

FIG. 4. The same setting as in Fig. 3. The restoration is done using the Fourier basis. The line in the restoration
is not aligned at the upper right-hand corner.

number of frequencies being solved. For high frequencies the coarse lattice approximation is
therefore not suitable, in which case it is clearly advantageous to use the FFT.

Another method is the pseudo-spectral method described by Gottlieb, Hussaini, and
Orszag in [4]. Since one does not expect to solve, say, for N > K (namely, the solution
that is assumed to be in H/( x Hx) using the periodic version of the sampling theorem, one
can write

K-1

u(i) (X) "-’orr(O S#(x),
a,=O

where S(x) are trigonometric polynomials andx, or,/3 0 K 1 are equally spaced
points on the unit square called the collocation points. Thus

K-1

A2u(i) (x) Y ’-’o4tr(i) A2So (x)"
u,/=O

If the quadrature in (3) is carried out on the K x K lattice of collocation points, then the
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gradient descent equation has the form

dU(i)(t)
dt E [(i)cfl (t)(A2 - F,)Sot(Xy3)

OF
[F(x + Ua(t)) G(xva)] -xi(Xa + U(t)),

for y, 8 0 K 1. Now since the minimization is taking place in the space domain, the
coupling between the equations occurs in the smoothing term and not in the data term. The
derivatives of the functions S at all collocation points can be calculated off-line and stored as
a matrix.

The discrete time iterations for this ODE require only one time-consuming step, the
summation, as opposed to the previous schemes that had two time-consuming steps. If a
K x K lattice of collocation points is used, the number of floating-point multiplications is
approximately K4.

The disadvantage of this method lies in the fact that the number of frequencies being
updated is equivalent to the number of collocation points used. Thus if only very low frequen-
cies are to be updated, very few collocation points are used and they are insufficient to obtain
a good result. On the other hand, if more collocation points are used, the solution obtained
involves higher frequencies at the start and this might be undesirable. There is also no natural
way to gradually increase the dimension of approximation.

As mentioned in the Introduction, a further possibility would be to linearize the functional
by substituting F(x) + VF(x) U(x) for F(x + U(x)) in I(U). Then we obtain a quadratic
form in U(x), or in the coefficients u,t, which has a unique minimum. The Euler equations
for this functional are precisely those suggested by Horn and Schnuck [5]:

OF OF
o/(A "+" t)2U(1) -- (VF- U)-x (G(x) F(x))

OX
OF OF

u(A + s)2U(2) + (VF. U)x2 (G(x) F(x))-x2
Experiments with this option have not led to satisfactory results; see 4 and Fig. 2.

The disadvantage of the various spectral methods described above is the use of the Fourier
basis whose functions have global support. This makes local changes in U or in the mapping
b difficult to achieve. A very attractive alternative is the wavelet basis.

3. The wavelet method. Using a periodic wavelet basis obtained from certain types of
compactly supported wavelets, it is possible to rewrite the functional J in such a way that the
same regularization is achieved with a different bilinear form. First, a brief survey of various
results regarding these wavelets. For a detailed description of the discrete wavelet transform
used in the experiments see the Appendix.

Periodic wavelets. Let be a compactly supported wavelet as constructed by Daubechies
in [3] with support in [-R, R]. Let 4 be the corresponding function that generates the
multiresolution analysis. Observe that q has compact support on [0, 2R]. Define enk(X)
2n/2 lC’=_ (2n(x-l)-k) andqe (x) 2n/:nk l=-oo b (2 (x l) k) for 0 < x _< 1. All
the functions with superscript P are periodic with period 1 and if k 2" then nk nO
similarly for qe. The number of terms in these sums is determined by the support of and
is bounded by 2R. For n > r log2 R + 1 there are at most two terms in the sum.

For small n the functions ap P cannot be expressed as scales and shifts of P0(x) _= P
nk

However, for n > r, we have pe(n+l)k(x) VCn(2X --k), where the argument is considered
modulo 1 or on the unit circle. Moreover, the family of functions pe for n 0, 1 andnk
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k 0, 1 2n 1 together with the function q0 1 form an orthonormal basis. Let
V0 span{40} (i.e., the constant functions) and Wn span{ "t’Pv,nk}2"-lk=0 Using the fact that
the ordinary wavelet basis spans L2(R), it is not hard to verify that

L2(T 1) V0 )nCX=l Wn,

where T is the one-dimensional torus. All that is necessary is to extend a periodic function

f to a function F 6 L2(R) by making 2R copies to the fight and to the left of the unit interval
and leaving the rest zero. Expanding F in the ordinary wavelet basis, we find that the part
supported on [0, 1 can be given in terms of the functions 1 and /tn/; see [9, Chap. III, 11 ].

By [3] for sufficiently large R, the functions ap and 4 are twice differentiable and the first
two moments of are zero. Hence by [9, Chap. II, Thm. 8], f 6 H2(T) if and only if

x 2n-i

C f f)- foo + J(1 + 42n) < ,
n=l k=0

where foo f f(x)dx and fnk f f(x)p(x)dx. This implies, via the closed graph
theorem, that the Hilbert norm C(f, f) defined above is equivalent to the Sobolev norm.

In two dimensions let

P,a

P,b P P P,c P11nk (X) rnk(X nl(X2), IInk (X) lk(Xl)rnPl(x2).
Let V0 denote the constant functions and

{ P’a] 2"-1 n-1n
a) span klInk

k,l=O

similarly for b and c. Setting Wn Wf’a @ Wne’b @ Wne’, we can show that

L2(T2) V0 nC= mn.
As in one dimension, f 6 H2(T2) if and only if

cx 2n-1

(f(b))2 ’(c)C(f, f)- f)o "p" Z (1 --t-. 42n) ((fn(])2 -I nkl "l- tdnkl )2) < 0,
n=l k,l=O

where fn] f f(x)Ttn)a (x)dx, similarly for b and c. Consequently, it is possible to redefine
e(U, U) in the functional J as C(U() U(1)) -k- C(U(2) U(2)) to obtain the same regularization
as before. Now the finite dimensional spaces are given by

N-1HN Vo )n=0 Wn"
Thus the regularization on the infinite dimensional space is the same as in the Fourier method;
however, the sequence of approximations is different, and hence should lead to different types
of solutions.

Observe that HN is of dimension 2N x 2N. Moreover, for f HN, the coefficients can
be arranged in a 2N x 2N array C so that Coo j and

(a) for 2n < k < 2n+a and 0 < < 2nkl

Ckt JC(b)nkt for 0 _< k < 2n and 2n _< < 2n+l,
c(c) for 2n < k < 2n+l and 2n < < 2n+lJnkl

forn 1 N-1.
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Practical considerations. The algorithm itself proceeds very much like the one described
in the previous section except that the Fourier transform is replaced by the two-dimensional
wavelet transform. In practice, we are working with discrete data so that we use the discrete
two-dimensional wavelet transform developed by Mallat in [8].

This transform takes the data D given on a discrete 2N 2N lattice as representing
the coefficients of some function f HN on the unit square with respect to the functions
P 2N(PNkt, k, 0 1. Think of f as an interpolation between the data values Dij given

on the discrete lattice using the compactly supported functions nkl" As above, the function

f can be decomposed into its coefficients with respect to the wavelet basis. Let C denote
this new 2N 2N array of coefficients, and write C W(D). Mallat [8] provides a very
simple and fast algorithm for calculating W(D), the forward wavelet transform, and W-1 (C),
the inverse wavelet transform. For the sake of completeness this is described in detail in the
Appendix.

Now the algorithm described previously is modified as follows. Let u (i) describe the
wavelet coefficients of U(i), i.e., u i) W(ui)). In step (iii) we now have

(i) { (N)kl
u (0)

0

for0 _< k,l < 2N 1,

for 2N < k < 2N+I or 2N < < 2N+I.

In other words, when increasing the level of approximation 3 2N zeros are added for each
component of the displacement field. In step (b) we have Ui) (t) W- (ui) (t)) and in step
(C) v(i)(t) W(Z(i)(t)) with z(i)(t) as in (5). In step (d) the eigenvalues )kt are replaced
by r/t 1 + 42n for 2n _< k < 2n+l, 0 _< < 2n, or 0 _< k < 2n, 2n _< < 2n+l, or
2n _< k < 2n+l 2n < < 2n+l

In this approach the smoothing term is, of course, decoupled as before. In addition, since
at higher frequencies aPnk have small support, the data parts of the equations are only locally
coupled. This is in contrast to the Fourier approach in which all the equations are coupled
through the data part.

This points to a clear advantage of the wavelet approach. It allows for local updates in
problematic regions where the difference between F(x + U(x)) and G (x) is still large, which
has a relatively small effect on other regions where the difference is small.

The periodic setting we have chosen greatly facilitates the discrete algorithm by elimi-
nating the need to store extra boundary terms at each level. Thus the size of the transformed
data at each level of resolution is precisely that of the original data.

In practice we have used R 3, which does not generate a wavelet smooth enough to
apply the above-mentioned theorems; however, it performed well enough for our purposes.

The wavelet algorithm was tried using only the discrete transform. Due to its speed and
ease of implementation there was no need to try the quadrature method for low-frequency
coefficients. Moreover, instead of smoothing the data G and the template F as in the Fourier
method, we take a lower resolution version ofboth, which consists of smoothing and sampling
at the coarser grid (see the Appendix). The field U is found on the coarser grid. This field is
then interpolated to the fine grid through the inversion formula (6) in the Appendix with the
y coefficients set to zero (see Fig. 3). Again, this is similar to multigrid techniques; however,
we did not apply it to a cascade of grids or continue the algorithm at the fine grid. This was
merely a way to help the algorithm to "see" similar topological structures.

4. Description of experiments. In the first experiment (Fig. 1), the transformation be-
tween one x-ray of a hand, the template, to another, the data, is found and is used to automat-
ically identify the location of important landmarks of the hand in the data image. The white
lines connect points in the template to the points they are mapped to by the displacement field.
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In this case, the tip of the index finger was successfully located in the data, whereas the tip of
the little finger was slightly misplaced. The restoration has definitely succeeded in correcting
the widths of the fingers and the palm. Observe that the fingers in the template are wider
than those in the data, as is the palm of the hand. The absolute value of the initial difference
between the images is shown as compared to the absolute value of the difference between the
restoration image and the data. The black area indicates large differences.

In the second experiment (Fig. 5), the restoration on the right represents the result using a
fixed dimension, whereas the restoration on the left used a sequence of increasing dimensions.
The maximum dimension used was N 7. Using the increasing dimension method not only
produces a better result, but is also much faster when the Fourier transform is calculated via
quadrature only for the frequencies being updated.

Final Final
Tern late DiTTerence Tern ate Diirerence

Restoration Data Restoration Data

INCREASING LEVELS (N=2-7) SAME LEVEL (N=7)

(a) (b)

FIG. 5. The restoration was done using the Fourier method. Using (a) increasing levels ofapproximation starting
at N 2 up to N 7, and (b) using afixed level N 7.

In the third experiment, we use a synthetic image consisting of two "humps" for the
template F. The data G was created by composing F with some field U. The field U was
generated by drawing the coefficients of the Fourier basis from independent Gaussian random
variables with variances 1/)nm for -9 < n, rn < 10. On the left in Fig. 2, we have the
restoration process using the Fourier basis and on the right using the wavelet basis. Observe
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that the final field obtained by both methods is very similar. Again, it is possible to see that the
topological landmarks the maxima, the saddle points, etc. are mapped into each other
by the field U. At the bottom we have the restoration using the linearized equations. These
did not do nearly as well in spite of the fact that the mean square error in the equation was
down to 10-5.

The fourth experiment (Fig. 6) shows what happens whenwe attempt to use a template with
the wrong topological features (Template 2) as compared to the correct template (Template 1).
The data in this case was the same as in the previous two pictures with added independently and
identically distributed Gaussian noise of variance 0.2, when the grey level values are scaled
to the interval [0, 1]. Even though the restoration using the wrong template is fairly good,
the displacement field is highly irregular when compared to the displacement field obtained
by using the correct template. This might indicate a method of determining which of several
possible templates corresponds to the objects in the noisy image.

Final Final
Tern late 1 Dfference Tern late 2 Difference

Restoration 1 Data Restoration 2 Data

Displacement field I Displacement field 2

(a) (b)

FIG. 6. Gaussian independently and identically distributed noise was added to the data. In (a) the correct
template was used, and in (b) a different template was used (one hump instead of two).

The fifth experiment illustrates the possible advantages of the wavelet basis. The template
F is a subimage from a sequence of x-rays of a catheter that has been inserted into a coronary
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artery. The data G is the corresponding subimage ofthe x-ray that follows in the sequence. The
idea is to use the algorithm to find the movement of the catheter between the two images. In
this experiment the template F is larger than what is actually seen in the image. In other words,
the function F is defined outside the unit square. When x + U(x) lies outside the unit square,
the value of F is taken from that point and not from the corresponding point on the torus.
Thus we did not wrap around when composing the template with the mapping. This allows
the algorithm to find possible movement in and out of the frame under consideration, and is,
of course, much better adapted to the issue of movement compensation between consecutive
movie frames.

Figure 3 shows the result using the wavelet basis. On the left side are the low resolution
versions of the template, Frame 1, and of the data, Frame 2, together with the restoration
obtained by using these lower resolution versions in the algorithm. On the right side are the
original Frame 1 and Frame 2 together with the restoration obtained by using the displacement
field from the low-resolution calculation. Most of the movement between these two consecu-
tive frames has occurred in the upper right-hand corner and, indeed, the restoration has found
that movement. Observe that in the low-resolution versions the black lines are widened and
thus begin to overlap. This is what generates a gradient for the algorithm to proceed along.

Figure 4 shows the result of using the Fourier basis. The smooth version is on the right
and the high resolution is on the left. Observe that this time the change in the upper right-hand
corner was not found by the restoration procedure. Apparently, the wavelet basis performed
better due to its ability to create a local change in the field without affecting other parts of the
image.

In this experiment both the data and the template images are quite noisy. In the Fourier
method the Fourier transforms of the template and the data are low-pass filtered and retrans-
formed to the original space domain. They are, therefore, much smoother than in the wavelet
case where a low-resolution version of the two is used, i.e., a low-pass filter that is not retrans-
formed to the original resolution. This explains why the final low-resolution difference image
in Fig. 3 is much noisier than the corresponding smooth version difference image in Fig. 4.

It should be noted that this movement analysis of the catheter is done without any pre-
processing of the images to find the line or edge corresponding to the catheter. The algorithm
was "helped" only by having it run on the low-resolution transform of the images. In such a
way the "canyons" corresponding to the lines become wide valleys that overlap and enable
the algorithm to draw them into one another. In other words, if the high resolution images are
used, small changes of the field do not produce a better mean square error because the error
along both canyons remains the same. Thus there is no clear gradient in any direction. On the
other hand when the "valleys" overlap, the direction in which the field could reduce the error
is clear.

In the sixth experiment (Fig. 7), we tried to find the movement between two subsequent
frames of x-rays of the coronary arteries themselves. The direction of movement varies
between different parts of the frame and the wavelet method managed to accommodate these
local changes. In this experiment the actual difference between the two frames is compared
to the actual difference between the restoration and Frame 2. The grey levels indicate values
close to zero. Black or white values indicate large differences.

5. Conclusion. We have presented a nonlinear functional whose minimizers represent
the mapping that transforms one image or function into another. The minimizers make sense
only in so far as the two functions considered as surfaces have similar topographies, so that
one function may be considered as a template for the other.

The functional is regularized using two different choices of a bilinear form. The first form
is generated by a differential operator and has a spectral representation using the Fourier basis.
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Frame 1 Restorati on Frame 2

Initial Difference FinalDiference

FIG. 7. Frames and 2 are two subsequent pictures from an x-ray movie of the coronary arteries. The
displacementfield corresponds to the movement between the twoframes. The initial difference and thefinal difference
pictures represent the actual difference. Grey values are close to zero and white and black values correspond to large
differences. The restoration was done using the wavelet method.

The second form is directly defined in the spectral domain using a wavelet basis of compact
support. Both bilinear forms generate the same type of regularization, namely, they constrain
the solutions to the same Sobolev space.

The variational problem is solved in terms of the expansion coefficients of the unknown
map in terms of the chosen basis. The solution starts at low frequency and gradually moves up.
The experimental results clearly indicate that the wavelet basis is more flexible and permits
local changes in the mapping.

Appendix. For the sake of completeness we briefly describe the discrete wavelet trans-
form so that the interested reader can code it without further reading. We start with the
one-dimensional case.
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Let N 2n and let x() (x0 XN-1) be the data. Given two vectors g
(go g2R-1), and h (ho h2R-1), let h x() and g x(), i.e.,

2R-1 2R-1

2k--" hjX[(k+j)modN], k-- gjX[(k+j)modNl,
j=0 j=0

fork 0 N-1. Now setx1) 92i and yl) fi2i for/-- 0 N/2-1. Alternatively,
we write x (1) Hnx) and y<l) Gnx(O), where Hn, Gn are linear mappings from RN to
RN/2. As long as N > 2R, it is possible to write the N/2 x N matrix for Gn as follows:

go gl g2 g3 g2R-3 g2R-2 g2R-1 0 0

0 0 gO g g2-3 g2R-2 g2R-1

g2 g3 g2- 0 0 0 0

0 0

0 0

go gl

The N/2 N matrix for Hn is given in the same way using the vector h. (Observe that we
have indexed the matrices according to the log of the dimension.) This is the first level of the
transform. Using the properties of multiresolution analysis and other techniques (see [3] and
[8]) it is possible to find vectors g and h with the following properties.

(i) /2__R-I gi 0 and /2=R-I hi ,
(ii) gi (--1)nh2R-l-i,

(iii) HtnHn +GtnGn I,
(iv) HnGtn O.
The first item implies that the Hn matrix is a smoothing operator and that the Gn matrix is a

difference operator. The third item is the inversion formula. The fourth item is an orthogonality
condition. Given two vectors x, y of length N/2, then the corresponding vectors in the full
resolution space are orthogonal, i.e., Htnx, Gtny) O.

() for() and y g 2iThe second level of the transform is given by x{2) h -2i
0 N/4 1. yl remains unchanged. Thus, at each level, the smoothed version x i),

which is of length 2n-i, is decomposed into yet a smoother version x+1) and the difference
component y(i+l) both of length 2n-i-1. Clearly, this procedure comes to an end at step

n, where x (n) and y(n) are scalars. The sequence of vectors x1) xn) are called lower
resolution versions of the original vector x.

From the inversion formula it follows that

n-1

X (i) gtn_ig_i_l --n--14-1
l=i

In Daubechies [3], numbers for the vectors h and g are calculated so as to satisfy the four
conditions listed above (see [3, p. 980]). Moreover, Daubechies shows that the wavelet corre-
sponding to these numbers satisfies certain smoothness conditions. In terms of the inversion
formula above this means that if we set xn) 1 and y(J) 0 for j 1 n, then the
vectors

x (i) Htn_i H;_i_ "HI
for small values of are smooth. It should be noted that since we are working here in the
periodic setting, x() would be constant.
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In two dimensions the wavelet transform is constructed using the one-dimensional opera-
tors described above. An initial N x N matrix xC) is decomposed into four components. First,
the one-dimensional transform is carried out on the columns, A Hnx) and B Gnx(O),
where A, B are N/2 x N matrices. Then the one-dimensional transform is carried out on the
rows of A and B or on the columns of A and Bt, and we obtain

X (1) nn At nn(nnx())t, ya(1) Gn At Gn(nnx())t,

yb
(1) nnBt nn(Gnx())t, yc(1) Gn Bt Gn(Gnx())t.

The low-resolution version of x C0) is x 1). The transform continues by operating on x1) with
the matrices G,,_, Hn-. Finally, the inversion formula has the form

,,-t (1))t (1)(6) x) Gtn (GtnY(c1) -- ly -- H(GnY + nx(1))
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A REFORMULATION OF THE PARTIAL LEAST SQUARES REGRESSION
ALGORITHM*

P. J. YOUNG

Abstract. A new algorithm for partial least squares regression is introduced that is shown to be equivalent to,
and more efficient than, the current algorithms. In addition, the new algorithm works explicitly in terms of the factor
loadings and is therefore particularly useful when interpretation of the factors is required.

Key words, partial least squares, latent variables, factor loadings
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1. Introduction. In the notation of Helland [2], we assume that we have k variables
recorded on n subjects, X (xl, x2, xk), where xl, x2 xk are n-dimensional vectors,
often referred to as the independent variables. Also available is an associated n-dimensional
vector, y, which we shall call the dependent variable. Until mentioned again it is assumed that
the means 21, 2"2 2" and have been subtracted from the data Xl, x2 x, and y.

In linear regression we attempt to predict the values of the dependent variable using a
linear combination of the independent variables, i.e., X/3 for some k-dimensional vector

/. If we then define S X’X and s X’y, then the ordinary least squares estimate of/ is
S-1S.

Unfortunately, problems arise with S being singular if there is collinearity between the
independent variables. This is frequently the case when large numbers of independent vari-
ables are available on relatively few subjects. Typically, examples of this are found in the
social sciences [4] and the use of infrared spectroscopy data ]. Use of the Moore-Penrose
generalised inverses does not often lead to a unique solution [8], and selecting the appropriate
variables from a large pool of variables is not an easy task.

There are three methods of overcoming the problem of collinearity which are currently
used [6]. The first, partial least squares (PLS) regression [9] is the focus of this paper and is
considered at length later. The second method, ridge regression, overcomes singularity of S
by replacing it by (S + kI), where k is a scalar known as the ridge parameter. Ridge regression
is known to lead to biased parameter estimates. However, it is also known to have better mean
squared error properties if the ridge parameter is chosen correctly. Unfortunately, to date, no
satisfactory method of selection of the ridge parameter has been proposed and the selection
of the ridge parameter is carried out using subjective methods. A more detailed explanation
of ridge regression is given by Smith and Campbell [7].

The final method is principal component (PC) regression. In PC regression linear combi-
nations ofthe original variables are formed and used instead ofthe original variables. The point
to note here is that because the new factors, or latent variables, are only linear combinations
of the original variables, PC regression is still a method of linear regression.

The advantage of PC regression lies in the way in which the factor loadings are selected.
These are selected sequentially, by maximising the variance of each factor such that it is
mutually orthogonal to all the previous factors. These conditions are equivalent to using the
eigenvectors S as factor loadings, with the eigenvalues being the corresponding variances.

*Received by the editors July 27, 1992; accepted for publication (in revised form) March 12, 1993. This research
was supported by a Science and Engineering Research Council research studentship held at the University of Kent,
United Kingdom.

tDepartment of Applied Statistics, University of Reading, PO box 238, Earley Gate 3, Whiteknights road,
Reading RG6 2AL, United Kingdom (SNSYOUPH@uk.ac.reading).
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The advantage of using PC regression is that if there is collinearity in the data, then the last
few PC will have zero variance and can be discarded.

The idea of using latent variables is not just restricted to PCs. Two points to note are that,
first, the importance of any of the PCs in the subsequent linear regression depends on more
than just their variance. Second, the PCs are formed without reference to s. In PLS the factors
are formed by sequentially maximising the canonical correlation between the latent variables
and y, whilst keeping the different latent variables uncorrelated. PLS regression therefore
has two advantages over PC regression. First, the order of the latent variables is known, and
second, it usually requires fewer latent variables in any stepwise inclusion [2]. One criticism
of using latent variable methods is that they use all the original variables. For this reason it
is often desirable to see the factor loading explicitly so that the factors can be interpreted [3].
Alternatively, having access to the factor loadings may be useful in the detection of outliers
[5].

2. PLS regression. PLS revolves around the central decomposition of X.

(1) X tlP’l + t2p +-.. + tap + Ea.

The ta’s are n-dimensional vectors, which are referred to as the "score vectors," while the pa’S
are k-dimensional vectors, known as the "loading vectors." The n x k matrix E is a residual
matrix, which is intended to be small in some sense. The basis of the PLS algorithm is that
the relationship between X and y is carried through the score vectors, so that

(2) y tql -k- t2q2 -+- + taqa +

where the qa’s are scalars and fa is a residual vector.
There are a multitude of ways in which X could be decomposed, as in (1). There are two

restrictions that are of interest here. First, the ta’s are forced to be mutually orthogonal, and
second, the pa’S are forced to be mutually orthogonal. Using both restrictions has a unique
solution [2]. Interestingly, the algorithms derived from assuming either the loadings or the
scores to be orthogonal have been shown to be equivalent by Helland [2]. Here we will only
consider the so-called original PLS algorithm, derived from assuming the ta’s to be orthogonal,
which is by far the simpler of the two algorithms to use.

2.1. The original PLS algorithm. Initially, we define Eo X and f0 Y. The following
items are then iteratively defined in the following sequence, starting with the so-called weight
vector

(3.1) Wa Ea_l 1,

(3.2) ta Ea-!Wa-1,

(3.3) Pa (Ea-lta)/(ttata),
fta_lta WaWa(3.4) qa
tata tata

(3.5) Ea Ea-1 taPta,
(3.6) fa fa-1 taqa.

The above algorithm does not explicitly give the factor loadings and the following procedure
is needed for the prediction of a new observation. Because cross-validation is usually used to
determine A, the number of factors required [2], this procedure is often used even if there are
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no additional observations to classify. For additional observations with an outcome yo and
covariates (Xl, x2 xk), we define eo (Xl, x2 xk)’ and the predicted value of Yo is

(4)
A

riO + E ta,Oqa,
a=l

where ta,o ea-1Wa and ea ea-1 ta,0Pa.
Alternatively, the factor loadings can be explicitly calculated. Let bi be the vector of

factor loadings for the th factor, then the predicted values of the dependent variable, , is
given by

" Y + fllXbl + fl2Xb2 +’.. + flAXbA Y + XCA,

where/i’S are calculated by ordinary least squares regression [8] and cA ]lX -I--/2X +
+ flAX is the vector of regression coefficients using d factors. Then as the regression

coefficients and factor loadings are interchangeable quantities

(5) Ca Wa(etaWa)-lqa,

where qa (ql, q2 qa)’, Wa (Wl, V2 Wa) and Pa (Pl, P2 Pa). Fortu-
nately, it has been shown that P’aWa is bidiagonal, with all diagonal entries equal to one [5],
which is of help in the computation stage (see 5).

3. Reformulation of the original PLS algorithm. We define U0 I

[ (UtaS)(UtaS)t(U’aSUa)](6) Ua+ Ua I- (Us)(USUa)(UtaS)
for 1, 2 k. The Helland algorithm given in (3)-(8) is equivalent to the following.

(7.1) Wa Uta_l S,

(7.2) ta XUa-lUta_l S,

(Uta_ SUa_ (Uta_ S)
(7.3) Pa (Uta s)’ (Uta 1SUa- 1) (Ua s)’

(7.4) qa

(7.5)

(7.6)

(U/a_IS)/(U/a_ 1s)
(Va s)t (Va SVa-1)(Va_ s)’

Ea XUa,

(UiUtis)(Utis)t(Utis)fa Y- X (Utislt(UtiSUi)(Utis)i=0

The proof of equivalence given below is dependent on the following lemma and is proved in
the Appendix.

LEMMA. Ua UiUaVi <_ a.

Proofofequivalence. Proof is by induction. First, the forms of (7.5) and (7.6) are assumed
to be true. Then, using (3.1),

a--2 (UiVtis)(Utis)t (Vtis)
Wa Vta-lS Uta-lSZ

i-’0 (U/s) (UiSUi)(Us)
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Now, using the lemma,

a-2

Wa Uta-lS- Uta-1 E Uti+IS
i=o

(UiUs)(Us)’ (Us)
(Us) (USUi)(Us)

and from (6)

a-2

[Wa V’a_lS Uta_l i0
VS (ViViS)(VS)(VS)

(Vii s)(Vii SVi) (Vi s)

(USUi)(U8is)(Us)’US(UiUs)(Us) (Us) ](Vs),(V,iSVi)(Us)2 Uta_l s.

Using (3.2)-(3.4), the derivation of (7.2)-(7.4) is then trivial. Using (3.5) and (6), the form of
(7.5) is easily verified as

(Uta s) (Uta s)’ (Uta 1SUa_ 1) ] XUaE XUa-1 I-
(Ua_lS)t(Uta_lSUa_l)(Uta_lS)

and, finally, the form of (7.6) is also easily verified.
In order to complete the induction process it is only necessary to show that (7.5) and (7.6)

hold for a trivial example. Consider a 0, we know that E0 X, f0 Y, and U0 I, in
which case (7.5) and (7.6) are clearly correct. Hence equivalence of the algorithms is shown.

4. Implementation of the new algorithm. Although theoretically more simple, the
above form of the algorithm is not practical. The regression equation is defined as

(8) Y + qlXbl + q2Xb2 +’" + qAXbA.

In the case where ba UaUas consider the following:

Ua+l Ua I-
(UaUtaS)tS(UaUtas)

I- babta S ]bSba
Ua"

Therefore,

Ua+l II (I bibtiS)
i--1 bSb/

but it is known that b’ SBj 0 if # j. Hence

(bib,S)Ua+l I- bsbi Ua
i=l

bahia s
baSba

Therefore,

ba+l Ua+lUta+l S Ua+lUta S Ua+lSbaqa+l

[I bab’aS]uaU’as-Ua+lSbaqa+l---Ua+lSbaqa+bSba

[ bah:S] ILI[ bib’iS 7I aab-a UaSbaqa+l I i-l ]
Sbaqa+l

i=1
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remembering that b’ SBj 0 for - j.

(9) ba+l I Sbaqa+
i=l bSbi

The new algorithm is then defined as follows.
Initially, obtain S, s, and define go Ss, h0 s’Ss, and ql s’s/s’Ss, then iteratively

find

(10) - bi (gga)
ha+l

hii=0
ga) qa+l,

and store ga+l Sba+l, ha+l htaSha, qa+2 hta+lS/ha+l, and, of course ha+1.

5. Relative efficiency ofthe algorithms. Ifwe considerthe cost ofthe ofthe original PLS
algorithm in terms of flops then we see that (3.1)-(3.3) are all matrix-vector multiplications
each using nk flops. In addition, (3.3) requires an additional n + 1 flops for the scalar product
of, and division by, tta. For (3.4) there is another scalar product requiring n flops and one
extra for the scaling by t’ata. The vector-by-vector multiplications in (3.5) of ta P’a require nk
flops. For (3.6) only n flops are required. This gives a total of 4nk + 3n + 2 flops per iteration.
Therefore, if A factors are used, a total of

(11) A(4nk -t- 3n + 2)

flops are required.
However, it is necessary to explicitly obtain the factor loadings. This requires the calcu-

lation and inversion of Pallia, which is an a x a matrix. As the matrix is bidiagonal with all
diagonal entries equal to one, we need only calculate the a 1 off-diagonal entries which uses
k(a 1) flops. The inversion itself is trivial using the Gauss-Jordan method which requires

(a + 1) flops as the inverse is triangular. Fi-a 1 flops. Postmultiplication by qa requires ga
3 2+a(k+ 3nally, the premultiplication by Wa needs a2 flops, which gives a total of ga ) (k+ 1)

flops. So, as A factors are required, an additional

1
(A3 + A2k + 3A2 Ak)(12)

flops will be required.
The new algorithm requires the multiplication of g’iga, which takes k flops. This is then

divided by hi, and is then premultiplied by hi using k flops. The procedure is repeated a times
so that a(2k + 1) are used. This vector is then scaled by qa+l using another ka+l flops. All
that remains is to find gi+l, which needs k2 flops, hi+l, which requires k flops, and qi+2, which
uses another k + 1 flops. Hence a total of a (2k -t- 1) -t- k2 + 3k flops are required. Assuming
that A factors are required, then

((13) A k2 + Ak + 4k + -A + -flops are required.
We consider only the dominant terms of (11) and (13) for a large problem. For (11) the

dominant term is 4Ank, while for (13) it is Ak2 + A2k. Hence the ratio ofthe relative efficiency
of the old method to the new is 4n/(A -t- k). If we then consider the cost of calculating the

l(A3 q- A2k) which altersfactor loadings in the old algorithm, the dominant term in (12) is g
the ratio of relative efficiency to 4n/(A + k) + A/2k.
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Appendix. Proof of lemma. The proof is in two parts. In the first part it is shown by
induction that UaUa Ua. Assuming this to be true for a i, consider a + 1. First,
denoting

(Vti s) (Uti s)’ (Vti SVi)
Vi+l (U/s) (Ui SUi)(Us)

it can be seen that

Ui+IUi+ Ui[I- Vi+I]Ui[I- V/+l] UiUi UiVi+lUi UiUiVi+l -- UiVi+lUiVi+l,but, as UiU Ui, it follows that Vi+1U Vi+l, and it is then easy to see that Ui+1Ui+I
Ui+I. Hence all that remains is to show that UaUa Ua hold for a trivial example, for which
we consider a 0, where U0 I.

We now note that Ua Ua-1 (I Va) so that

Ua (I Vl)(I V2)’’’ (I Vi)(I Vi+l)""" (I Va) Ui(I Vi+l)""" (I Va)
UiU/(I V/+l)... (I Va) UiUa.
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A NOVEL TWO-GRID METHOD FOR SEMILINEAR ELLIPTIC EQUATIONS*
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Abstract. A new finite element discretization technique based on two (coarse and fine) subspaces is presented
for a semilinear elliptic boundary value problem. The solution of a nonlinear system on the fine space is reduced
to the solution of two small (one linear and one nonlinear) systems on the coarse space and a linear system on the
fine space. It is shown, both theoretically and numerically, that the coarse space can be extremely coarse and still
achieve asymptotically optimal approximation. As a result, the numerical solution of such a nonlinear equation is
not significantly more expensive than the solution of one single linearized equation.
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1. Introduction. In this paper, we shall present a new discretization technique for semi-
linear elliptic equations based on finite element spaces defined on two grids of different sizes.
Methods along this direction have been studied in a recent paper 1] for linear (nonsymmetric
or indefinite) and especially nonlinear elliptic partial equations. (See also references cited in
1] for other methods for nonlinear elliptic equations.) As for nonlinear equations, the idea in
1 is basically to use a coarse space to produce a rough approximation ofthe solution, and then
use it as the initial guess for one Newton iteration on the fine grid. This procedure involves
a nonlinear solve on the coarse space and a linear solve on the fine space. A remarkable fact
about this simple approach is, as shown in ], that the coarse mesh can be quite coarse and still
maintain an optimal approximation. The purpose of this paper is to make a further refinement
in the aforementioned process by solving one more linear equation on the coarse space. This
additional correction step (which needs very little extra work) improves the accuracy of the
algorithms in 1] up to one or two orders. The fact that a further coarse grid correction after
the fine grid correction can actually improve the accuracy appears to be of great theoretical
interest.

The rest of the paper is organized as follows. Section 2 is devoted to the standard finite
element discretization for a model semilinear equation. Section 3 contains the new algorithm
of the paper with error analysis. Section 4 gives a simple numerical example.

2. Preliminaries. Given a bounded domain f2 C I[d (d 1, 2, 3), we assume that
0f2 is either smooth or convex and piecewise smooth. Let kVn (f2) be the standard Sobolev
space with a norm I1" IIm,p given by IIllmP,p ]ll_<m IIDllP> For p 2, we denote
7-/m (f2) kVn (g2) and 7-/ (g2) to be the subspace of 7-/1 () consisting of functions with
vanishing trace on 092. I1" IIm I1" IIm,2 and I1" II" II0,2. The following Sobolev inequalities
are well known:

*Received by the editors September 14, 1992; accepted for publication (in revised form) June 8, 1993. This work
was supported by the National Science Foundation.

tDepartment of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802 (xu@
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(2.1) Ilull0, Ilull (d 2 and 1 < p < cx) and Ilul10,6 Ilulll (d 3),

where the notation "<" is equivalent to "< C" for some positive constant C.
We consider the following semilinear equation:

(2.2) Au + f(x, u) O, x
_

f2, uloa=O.

Here the function f is sufficiently smooth. For brevity, we shall drop the dependence of
variable x in f(x, u) in the following exposition.

We assume that the above equation has at least one solution u () fq 2(f2) and
the linearized operator Lu --A + f’(u) is nonsingular. As a result of this assumption,
Lu 7-/2() fq (g2) - Ea() is a bijection and satisfies

Ilwl12 CollLuwll v w e 2(g2)c 7-/(K2)
for some constant Co depending on u.

Given h (0, 1), we assume that Vh C 7-((f2) is a piecewise linear finite element space
defined on a quasi-uniform triangulation (with a meshsize h) of f2 satisfying

inf {llv xllo,p + hllv xlll,p} < hllvll2,p V v e Zp(g2) 7-[(g2), 1 <_ p <_ cx.
XVh

The standard finite element discretization of (2.2) is to find uh Vh so that

(VUh, VX) + (f(Uh), X) O X Vh.

It can be proven that (cf. 1] and the references cited therein) if h is sufficiently small, the
above equation has a (locally unique) solution uh satisfying

(2.4)

and

Ilu uhllo,p + hllu uhlll,p < C(llull2,p)h 2 V 2 <_ p < c

Ilu- uhll0, C(llullzo)hlloghl, Ilu- uhlll, C(llull,)h.

LEMMA 2.1. There exists a constant > 0 such thatfor any v 7-[() f3 E(f2) with

Ilu vllo, <_ , thefollowing statements are valid.
1. The operator Lv -A + f’(v) 7-/(f2) N 7-2(f2) E2(f2) is bijective and there

exists a constant C C(6), so that

where

(2.5)

Ilwll:z C()llLowll v w 7-[(ff2)
2. Ifh is sufficiently small, there exists a constant c c(3) such that

av(Wh, X)
sup > c()II wh Ill [ ll)h : Vh,
xV Ilxlll

av(Wh, X) (VWh, VX) -F (f(V)Wh, X).

Proof. Since f is smooth, we have

Ill(u) f’(v)ll0, _< ClllU- o11o, < Cl



TIMELY COMMUNICATION 233

for some constant C1 depending on f and u. Thus

II(Zu Z)wll--II(f’(u)- f’(v))wll < IIf’(u) f’(v)llo,ollwll < Clllwll2,

and, if < (2COC1)-1,

Ilwl12 CollLuwll Co(llZowll + II(Zu Z)wll) CollZwll + llwl12.
The first statement is then justified with C 2C0.

The assumption that Lu is nonsingular implies that

au(wh, x)
sup > c011 wh II1 wh e Vh
XVh Ilxlll

for some constant co and sufficiently small h. But

av(Wh, X) > au(Wh, X) ClllwhlllllSlll.

The second statement then follows with c co/2 for < co/(2C1). []

3. Two-grid algorithms based on the Newton method. In this section, we shall present
the main algorithm of this paper. The basic ingredient in our approach is another finite element
space Vn (C Vh C 7-/(f2)) defined on a coarser quasi-uniform triangulation (with meshsize
H > h) of f2. Note that all the results for Vh in the previous section are valid for Vn if H is
sufficiently small.

Setting an(v, ok) auH(V, ok) (see (2.5)), the main algorithm of the paper is as follows.

ALGORITHM A1. Find uh uH -I- eh -I- en such that

1. UH VH, (VUH, Vb) + (f(uI-I), ) 0 qb Vn;

2. eh Vh, an(eh, X) -(f(uI-i), X) (Vu/-/, VX) X Vh;

(f,,(ui_i)e q) qb Vn.3. en s Vn, an(en, qb) --The new feature of the above algorithm mainly lies in step 3 where a further coarse grid
correction is performed. We notice that the linearized operator used in this step is based on
the first coarse grid approximation Un (instead of the more accurate un + eh). As we shall
see later, such a correction indeed improves the accuracy of the approximation.

Corresponding to the form an(., .), we define a projection P/_/ 7-/(f2) Vn by

ai-l(dp, Pnv) an(, v) qb s Vn, v s 7-[(f2).

By Lemma 2.1, it can be easily shown that there exists H0 > 0, if H < H0, Pn is well
defined and satisfies for k 1, 2

(3.1) IIw- enwll

We begin our analysis for Algorithm A1 with a simple lemma.
LEMMA 3.1. For any X Vh

(3.2)

(3.3)

an(Un + eh, X) (--f(Un) + f’(Un)Un, X),

f,an(u, X) (-f(un) + f’(un)un - (un)e, X)

-’t- ’ (f"(uH)e, X PHX).
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Proof. The first equality follows directly for the definition of un and eh. Again, by the
definition of Pn and en,

al(en, X) an(en, PnX) -1/2(f"(ul)e, PnX).

Adding this to the first equality then leads to the second one.
LEMMA 3.2. If u W2p(f2) with p > 2for d 2 and p for d 3, then

Iluh (Un + eh)lll < H4.

Proof It follows from (2.3) that

an(uh, X) -(f(uh), X) + (f’(un)uh, X),

which, together with (3.2), gives

an(uh (un + eh), X) (f(un) f(uh) + f’(un)(uh u), X) (b(uh un), X).

Here we have

b (1 t)f"(un + t(uh un))dt.

By assumption and (2.4), it is easy to see that b is a uniformly (with respect to both H and h)
bounded function on . Using the H61der inequality and (2.1), we then deduce that

((Uh UH)2, X) < II(uh UH)2110, IlXllo, < Iluh unll 20,pllxlll.
It follows from Lemma 2.1 and (2.4) that

[luh (UH -F eh)l[1 < Iluh UHII 2 H4.o,p< n

The estimate in Lemma 3.2, essentially contained in [1], is already quite remarkable
because of the high power on the coarse meshsize H. But more remarkable estimates will be
seen in the next theorem.

THEOREM 3.1. If u /V(f2) is the solution of(2.2) and Uh Vh is the solution of(2.3)
(satisfying (2.4)), then

Iluh u II1 < H5, Iluh u H6.

Consequently,

Ilu ulll h + H5, Ilu ull h= + H6.

Proof. By the definition of uh and the Taylor expansion, we have

f"(UH)(Uh UH)2 X)aH(Uh, X) (--f(UH) + f’(UH)UH
+(O(uh u)3, X),

which, together with (3.3), gives that for any X Vh,

l(f.aH(Uh U, X) --1/2(f"(uz)(e (uh uz)2), X) + (uz)e, X PzX)
+(O(uh un)3, X).
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By the HSlder inequality and (2.1)

(e (uh UH)2, X) < II(uh (Un + e,))(e, + u, un)ll0, Ilsll0,6
"< ]lUh (UH + eh)llo,31len + un UHllO,2llxllo,6
"< IlUh (UH + en)ll(llenll + Ilu UHII)IIxII.

It follows from (2.4) and Lemma 3.2 that

(e (Uh UH)2, X) < H6IIXlll
By the Schwarz inequality and Lemma 3.2,

(f"(uH)e (I- PH)X) Ilehll 2 H40,411(I- PH)XII I1(I- PH)XII.

By the HSlder inequality, (2.4), and (2.1),

(O(uh UH)3, X) < II(uh UH)3110, IIXII0,6 < Iluh UHIIg,411XII1 < H611XII1.
Consequently,

(3.4) aH(Uh U, X) H6IIXII1 + Hall(I PH)XII.

This, together with Lemma 2.1 and (3.1), immediately implies the first estimate ofthe theorem.
To derive the estimate in E: (f2) norm, we use a duality argument by considering the auxiliary
problem: Find to 7-/(f2) f3 7-/2(f2) so that

-Aw + f’(ui-i)w uh

By Lemma 2.1, there exists H0 > 0 and C(H0) > 0, so that if H < H0,

Ilwll= C(no)lluh -ull.
Then, if wh Vh is the nodal value interpolation of w, we have

* W) an(Uh * *Ilu u,ll 2 aH(u, u,, u,, w w) + aH(U Uh, Wh).

Note that

aH(Uh U*h, W Wh) Iluh ulllllW whlll HShllwll: n61luh ull,

It follows from (3.4) that

ai-i(uh u, wh) < H6llwhlll q-- H411(I- et-i)whll

H61lwll: + H4(II(I- P/Dwll + Hllw whlll)

< n611wll: < n611Uh --u,ll.

The second estimate of the theorem then follows. [3

Comparing Theorem 3.1 with Lemma 3.2, we find that one coarse grid correction leads
to a one-order improvement in 7-/1 () norm and possibly a two-order improvement in 2()
norm.

According to Theorem 3.1, to obtain the asymptotically optimal accuracy, it suffices to
take H O(h 1/3) for both Z3:(g2) and 7-/1 (f2) norms (for ../1 (,’) norm, it even suffices to take
H 0(hl/5)). As a result, the dimension of VH can be much smaller than the dimension
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of Vh, and thus the dominated part of the work in Algorithm A1 is the solution of the linear
system in step 2.

With a standard treatment near the boundary where it is curved, the estimates correspond-
ing to Theorem 3.1 for Algorithm A1 for elements of degree r are as follows:

Thus

H2r+3Iluh uhlll < Iluh uZ H2r+4.

Ilu ulll h + n2r+3, Ilu u,ll hr+l - n2r+4.

A proper choice of meshsizes would be h O(H+/+1) (or even h O(H2+3/r)).
For most practical purposes, Algorithm A1, which involves only one Newton iteration on

the fine grid, is sufficient for applications. Nevertheless, a more dramatic result can be derived
if one more Newton iteration is performed on the fine grid.

ehALGORITHM A2. Find ffh uh + such that
1. u, Vh is obtained by Algorithm A1.
2. eh Vh, au*(eh, X) -(f(u,), X) (Vu,, VX) X Vh.

For this algorithm, we can prove that, if u W42(f2), then

Iluh Tn II1 < Hlal loghl1/2.

In fact, by Taylor expansion, we have

au*h((Uh h), X) (O(uh U*)2h ,X).

For d 2, using the well-known inequality that Ilxll0, < log hl/=llxlll, we deduce that

(O(uh u,)2, X) Iluh u,ll=llsll0, < Iluh u,ll=llsllll loghl1/2 < Hi21 loghl1/2 Ilslll.

The desired estimate for d 2 then follows. The proof for d 3 depends on the Lp(f2)
and the technical details will be omitted here.estimates of uh uh,

It is also possible to make an additional coarse grid correction in Algorithm A2 to further
improve the estimate, but we suspect such an improvement will not be that important since
the order of H is already so high.

One final remark is that the technique presented in this paper extends naturally to other
discretization methods such as finite difference and spectral methods.

4. A numerical example. In this section we present a simple numerical result to demon-
strate the efficiency of our proposed schemes. Our model problem is

-Au+u3=f(x) inf2 and u=0 on

Here f2 is the unit square (0, 1) x (0, 1) and f is so chosen that u sin rx sin ry is the
exact solution. The domain f2 is divided into families TII and Th of quadrilaterals, and
VII, Vh C H (f2) are linear spaces of piecewise continuous bilinear functions defined on TII
and Th, respectively.

On the coarse grid level, we solve the nonlinearproblem by the Newton iteration. (Because
of its small size, this nonlinear system takes very little time to solve compared to the larger
linear systems.) The fine grid linearized equations (which are symmetric positive definite for
this example) are solved by the conjugate gradient method or multigrid method. We take
h H4 with H . Notice that dim Vh 65,025 while dim VII 49. The numerical
results are shown in Table 1.
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TABLE
Errors in 7-[ and E2 norms.

7-/1 -norm /2-norm

U UH 5.01E-1 3.19E-02

u (UH + eh) 7.90E-3 1.45E-04

u (u/4 + eh + e/4) 7.87E-3 3.19E-05

u uh 7.87E-3 7.85E-06

Acknowledgment. The author wishes to thank Dr. Ping Lee for his help on numerical
experiments.
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Abstract. An approach to data analysis and matrix analysis is presented with the aid of a general algorithm to

carry out data analysis, matrix decompositions, and computation of the generalized inverse. The algorithm represents
a novel approach to common numerical and statistical analysis of data. It allows users to specify their views on data
so that the solution may reflect the importance of different parts of data. The algorithm provides a unified method to

analyze data, to decompose the matrix similar to the singular value decomposition, and to compute the generalized
inverse. It is a fast and efficient way to handle numerical questions like solving linear equations or determining the
rank of a matrix. The algorithm allows views on the column vectors, row vectors, and on both rows and columns.
Different views on the data give different decompositions or solutions. Stopping rules are presented that can be used
to identify the noise level in data. Some basic modelling questions are treated and applied to typical situations found
in practice.
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1. Introduction. The solution of linear equations and the decomposition of matrices are
now fundamental techniques in many applied sciences. Excellent textbooks have been written
on these topics, both from a numerical point of view (see, e.g., ]) and from a statistical point
of view (see, e.g., [2] and [3]). One can state that these theories have been extensively studied,
and there are now good algorithms available for performing linear numerical analysis such as
solving linear equations, computing eigenvalues and vectors of matrices, and handling similar
matrix problems.

Modem measurement equipment often produces a large amount of data. In modem
chemical laboratories it is common that the data matrices collected from the measurements
are large, often containing more than 100 rows or columns. Matrices containing 100 or
200 rows and a similar number of columns are "medium"-sized matrices in many chemical
laboratories. These matrices are usually of low rank. We often see matrices of size 100 times
100 or larger, but of rank only 10 or even less. For example, in these cases we can easily
compute the singular value decomposition (SVD) of the matrix. But experience with these
solutions has shown that they often do not function well. The reason is that the results are often
very unstable. In statistics it is called "instability due to overfitting." In numerical analysis the
phenomenon is well known in the case of polynomial approximation: If we choose too high a
degree of the polynomial in order to get good fit to the data points, the estimated polynomial
will tend to fluctuate between the data points. The approximation may be good at the data
points, but can be very bad between the points. Experience with these large models has shown
that what is important is that one gets a stable solution. The exact numerical solutions give
good fit or description, but when applied they often give unstable and uncertain predictions.
For example, a stable solution should, from a practical point of view, be almost equally good
in terms of fit as the exact numerical solution, but have good performance when it is applied.

We present here an algorithm for solving linear equations and linear decomposition of
matrices, which has been found efficient in handling large data matrices. The solutions arrived
at by the algorithm have been found to be stable and function well from the point of view
of the user, i.e., providing an almost equally good solution as the exact one, but giving more
precise predictions.

*Received by the editors July 9, 1992; accepted for publication (in revised form) March 19, 1993.
Danish Engineering Academy, DK-2800 Lyngby, Denmark (ah@m.dia.dk).
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If a large data matrix A is given and it turns out to be of low rank, the linear equation
Ax b is often solved by computing the generalized inverse At by the SVD, and one works
further with the solution x Atb. But this is usually not a good way to compute the solution
vector. The reason is that SVD does not take into consideration the right-hand-side vector b.
If b projects onto the subspace associated with the small singular values of A, the solution
vector can be very bad or even useless, although there may be a solution given by the present
algorithm that functions well. Similarly, the results of an SVD may not be easy to interpret
for the user, because the criteria for SVD may not be the important ones for the user.

The present algorithm reduces at each step the matrix A by rank one. The result, if all
components are extracted, is a decomposition of A of a kind that looks like SVD:

A uv’ + )2U2V2’ "-
But in the present algorithm the vectors (Ui) and (Vi) need not be orthogonal vectors. The
properties of these vectors depend on the criteria used.

In many applied situations we have views or expectations concerning the results we obtain
from the mathematical model. For example, ifwe wish to estimate the maximum of a quadratic
surface that fits the given data, we have certain expectations concerning the results. We wish
the maximum value to be well determined and the quadratic surface to fit well to data. Often
the data follow approximately a quadratic surface in the neighbourhood of the maximum,
while data points far away from maximum may not be adequalely described by a second-order
model. In such situations one may have to choose between a good description of data and
a good determination of the maximum. In situations like that it can be useful to be able to
specify that the algorithm should take into account the way we look at data. It is actually
quite common that we have an attitude concerning the way in which data should be viewed.
In neural networks, e.g., aij is sometimes the weight that goes from node to node j in the
network. If the values in a row are small, we want the solution vector not to depend much
on such small values. Similarly, in geology substantial measurement values may be more
important than samples with small values. In these situations we would like the results to take
into account these views or preferences.

The algorithm presented here allows the user to specify the way he looks at the data.
The views are formulated as criteria for determining weights on columns, or on rows, or on
both columns and rows. Thus the user specifies a criterion for determining a vector w that
states how the columns of A should be treated. Similarly, the user can specify a criterion for
determining a vector z, that states how the rows should be looked at. The fundamental idea
of the present algorithm is that the user specifies criteria for determining wi, how columns
should be treated, and zi, how rows should be treated, such that wi and zi reflect the views
we have on the given data. The algorithm then orthogonalizes A with respect to these given
choices, zlAj 0 and Ajwi 0 for j > i. This means that we, at each step, extract as
much as possible from the given data and adjust the data so that they do not depend on what
already has been selected. This means that we select "the best possible" at each step, and we
stop when there is nothing more to fetch from data. This means that the algorithm is good
at identifying the noise level in data, i.e., the situation where we cannot select more useful
results from data. One can ask, "What about the numerical accuracy of the algorithm?" The
answer is that, if the data are appropriately scaled from the beginning, we identify the noise
level (where we stop) long before there are problems with the numerical accuracy.

The algorithm has been applied to numerous data from practice. What is the experience
from these cases? The general experience is that the algorithm functions better than corre-
sponding traditional approaches. This holds especially for large matrices of low rank. But in
many cases it can be difficult for the user to know when to stop in the algorithm. Therefore,
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we give some criteria and guidelines that we have found useful in determining when to stop
in the algorithm.

The present algorithm is a decomposition of the coefficient matrix A into rank-one com-
ponents according some choices of the criterion vectors wi and zi. For special choices of wi
and zi one can arrive at most decompositions found in numerical analysis and statistics, but it
is not the purpose of the present paper to show that. However, we will point out some cases
in which the connection may be of interest.

The emphasis here is on a unified approach to data analysis, matrix decompositions, and
computation of the generalized inverse. The practical situation may or may not dictate the
approach to choose. The algorithm and a stopping criterion identify the noise level, and we
arrive at a decomposition that in a certain sense reflects the views on data as well as possible.

Since the algorithm is very fast and contains at most as many steps as the number of
columns or rows in A, we frequently find that scientists like to see more than one decomposition
before they decide upon which to use. The scientist looks at different measures of quality and
sizes and at several plots; on the basis of these, one decides which decomposition to use.

There are two situations considered in this paper. In the first situation we have only a
given data matrix A. In the second one, we need to solve a linear equation Ax b. The
algorithm is the same for both. In the case of a linear equation one more set of equations needs
to be computed, namely, the present solution vector (step 6 in the algorithm).

2. Notation. Let A be a rectangular matrix, an n-times-k matrix. We will write

A- (aj) (ai) (aij).

Here aj is the jth column vector of A, a the ith row vector and aij is element number (i, j).
A decomposition of A into rank-one components can be written as

A -/lUlV1 + )2u2v2 %-...
(1)

UAV’.

Here U (ui) is a matrix with n rows, A diag(.i), a diagonal matrix with/i in the ith,
diagonal and V (vi) a matrix with k rows. The number of components in (1) is equal to the
number of columns in U, A, and V. The last equality of (1) follows from the rules of matrix
multiplication. When a new set of (.i, ui, vi) is computed in the algorithm below, we will
sometimes say that we are "extracting a component from A." Note that if A is of full rank and
n > k, the number of terms in (1) is equal to k. Thus, e.g., U will be an n-times-k matrix like
A, which shows that there is a lot of indeterminacy in (1). We utilize this indeterminacy to
compute the decomposition reflecting the problem in question. A’ and v’ denote the transposes
of A and v, respectively.

3. Scaling of data values. If the units for different parts of data deviate much, it may
be necessary to scale the data values. If we are using a criterion for columns, we consider the
variation in the numbers (am’al), (ak’ak). If these values are very different, the data values
in A should be scaled. It is common to scale the data values such that ai’ai 1. Similarly,
if we are using a row criterion, it may be necessary to scale the rows. If all values are given
in the same units, scaling of data is not needed. For example, if all values are concentrations
with values between 0 and l, scaling is not needed. If the rank is low, one should be careful
with scaling data. In order to show the problems involved, suppose that A has rank two and
ul’u2 0 in the decomposition (1). Then we get

A’A )L12(UltUl)VlVl %- )L22(u2tu2)v2v2t.
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Scaling A such that the diagonal elements of A’A consist of ones means that there are con-
straints on the v-vectors. If we know A and U, v2 can be derived from vl. Thus scaling of
columns puts constraints on the v-vectors and if we have only a few v-vectors, we may not be
able to use the interpretations that the plots of v-vectors suggest.

4. The singular value decomposition. The singular value decomposition (SVD) is the
most used decomposition method in practice. Since the decompositions generated by the
present algorithm are of a type similar to the SVD, it is useful to look closer at it. It is a
decomposition (1), where the vectors (ui) and (vi) are chosen to be orthogonal,

UitUj 0 and vitvj 0 for j

and

UitUi and VitVi 1.

The vectors (Ui) and (Vi) are the eigenvectors to the eigenvalue problems

A’Avi i2vi and AA’ui i2ui

The singular values ()i) have the appealing interpretation

(2) )12 max IlAwll 2 max IIA’zll 2 max(z’Aw)2

for Ilwll and Ilzll 1, w a k vector and z an n vector.
Here Ilwll denotes the length of a vector w. The solutions to (2) are given by w vi and

z ui. This means that the first pair, u and vl, is a set of n-vector and k-vector that gives
maximal rank-one reduction, )12, of A,

(3) tr(A’A) )12 @ )22 + 32 q-

)12 (u’Av)2 is the maximal size of all possible rank-one reductions of A. The next set
(u2, v2) is selected to be orthogonal to u and v, respectively, and gives a maximal reduction
in A, /22, i.e., the largest possible second term in (3). (Here tr(A’A) denotes the trace of a
matrix A’A.) This interpretation of the SVD is important and easy to understand.

Most technical literature uses the SVD to determine the generalized inverse, because it
has a very simple form,

(4) A 1/)vu’ + 1/K2V2U2’ q-

But, as mentioned earlier, in many situations it need not be the proper generalized inverse
to use, because the situation may dictate another generalized inverse.

5. The basic algorithm. The basic algorithm is somewhat complicated because it allows
judgement of rows, columns, or both We suppose that we have some view or criterion of
treating column vectors (ai) of A. (wi)-vectors reflect this view. Similarly, some principle or
view determines (zi), which states how to look at the row vectors of A.

Let Ao A, Xo 0 and let Eo Ik and Bo In, where Ik and In are the identity
matrices of size k and n, respectively. The steps of the algorithm are as follows:

For/= 1,2. Determine criterion vector for columns.
Choose the k-vector wi that reflects how columns of A should be treated.
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2 Determine criterion vector for rows.
Choose the n-vector z that reflects how rows of A should be treated.

3. Computeeomponents.
Compute

ui Ai_wi, vi Ai_’zi, and ,ki 1/(zi’Ai_wi).

4. Rank-one reduction of A.

Ai Ai-1 iuivi t.

5 Compute the transformation vectors.

ri Ei_lWi, si Bi-lZi,

Update the transformation matrices.

Ei Ei-1 )irivi t, Bi Bi_I iSiUi .
6. In case of solving a linear equation, Ax b.

Compute the improved solution vector.

xi xi- + )i(b’si)ri ) (b’s)r +... + .i(b’si)ri.

7. Determine if a new iteration should be carried out. Determine from the criteria
used if a new iteration is to be carried out. In that case set to + and start from .

Discussion of the algorithm. We shall now discuss the individual steps in the algorithm.. We suppose that there is a criterion that determines wi. The criterion states how we
look at the columns of A. If the user does not specify such a column criterion, we choose
W V

2. Similarly, we suppose that there is a criterion that determines zi, which shows how
rows should be looked at. If the user does not specify such a row criterion, we choose zi ui.

3. The vectors ui and vi are the resulting vectors,

Ui Ai-lWi aitoli -- a2t02i +.-.

and

aVi Ai-1 zi Zli + a2z2i +....

These vectors are the best we can select from A and the value of a common criterion is
1/,ki zitAi_lWi. The larger the numerical value of this common criterion is, the better are
the vectors ui and vi. If the value is zero, we cannot reduce A more by using the given criteria.

4. Here we reduce A by the vectors selected. That it always gives a rank-one reduction of
A, when zitAi_l Wi is different from zero, is a well-known theorem of Laplace. If all possible
vectors are selected, we get (1).

5. The transformation vectors ri and si are needed in order to compute the generalized
inverse that is associated with the decomposition. The vector ri is determined so that u Ari
and ri is a linear combination ofw wi. We write

U Ari Ai-lwi Ai_2(I i-lWi-lVi-lt)Wi

A(I )lWlVl’)... (I ti_lWi_lVi_lt)Wi A Ei_lWi.
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For

Ei-1 (I- lWlV1 ’) (I- i_lWi_lVi_

we can write

Ei Ei-1 (I-)iwivi t) Ei-1 )irivi’.

Similarly, s is determined so that v A’si and si is a linear combination of zl Zi. An
expansion of Ai-1 given by

Ai_I (I-)i-lUi-lZi-l’)Ai-2

’) (I lUlZ ’)A- Bi I’A(I i-1 ui-1 z/-1

gives similarly the equation of s and the recursive one for Bi.
6. In the case where we are solving a linear equation, we use this step. The vector xi is

an estimate of the linear least squares solution x (A’A)tA’b, when terms are used in the
expansion of x.

The algorithm works with three pairs of vectors. The vectors (wi) and (zi) are determined
from the criteria given by the practical problem in question. (ui) and (vi) reduce A by rank
one, and (ri) and (si) reduce A by rank one. When wi or zi are selected, they can be scaled
to be of length one. In the algorithm we do not scale ui or vi. The scaling is taken care of
by the constant .i. This is done in order to secure numerical stability of the algorithm. All
computations in the algorithm are products and inner products except the computation of .i.
This means that the algorithm can be programmed to give very precise numerical results.

In the case of SVD the (wi) are the eigenvectors to the eigenvalue problem A’Aw w.
In that case, wi vi ri and ui zi si apart from a scaling constant. Note that in the
SVD, u- and v-vectors are scaled to be of length one, while in the present algorithm they are
not. See below what criterion gives SVD.

6. Geometric properties ofthe vectors. The vectors in the algorithm have the following
geometric properties.

PROPERTY 1. zi is orthogonal to later A-matrices,

(5) zi’Aj 0 for < j.

PROPERTY 2. zi is orthogonal to later u-vectors,

(6) zi’uj O, < j.

PROPERTY 3. wi is orthogonal to later A-matrices,

(7) Ajwi O, < j.

PROPERTY 4. w is orthogonal to later v-vectors,

(8) WitVj O, < j.

PROPERTY 5. (Si) and (Ui) are mutually orthogonal,

(9) SitUj 0 and SitUi 1/)i, j.
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PROPERTY 6. (ri) and (vi) are mutually orthogonal,

(10) ri’vj O, ri’vi 1/)i for j.

l,PROPERTY 7. If (wi) is chosen such that it is in the range of Ai-1 (wi) are mutually
orthogonal

wi’wj O for j.

PROPERTY 8. The generalized inverse of A can be computed as

A )lrlSl’ + J2r252’ +..-
()

RAS’.

These properties are proved in Appendix 1.
Properties and 3 are the most basic properties. They show that the reduction of A can

be viewed such that A is adjusted for the actual choices of wi and zi. The rows of A are made
orthogonal to d/i and columns of A are made orthogonal to zi. Usually wi is chosen to be in
the range of Ai-I’, which gives orthogonal set (wi). By symmetry, if zi is chosen in the range
of Ai-1, the set (zi) becomes an orthogonal set of vectors. Note that the coefficients (,ki) in
(11) differ from the corresponding ones in (4), because the vectors (ri) and (s/) are not scaled
to be of unit length.

In terms of matrices, Properties 5 and 6 can be written as

R’V=A-1 and S’U=A-1,

where R (ri), V (vi), S (si), U (ui), and A-1 Diag(1/,ki).

7. The quality of solutions: Example 1. We shall here consider some questions con-
cerning the quality of solutions derived from the decompositions arrived at by the algorithm.
We shall discuss the question of quality in the light of a small example. We suppose that the
situation is that there is given a set of linear equations, Ax b. The data are given as follows.

101.00001 98.00001 101.00002 98.00002

99.00001 102.00001 99.00002 102.00002

98.99999 -101.99999 -98.99998 -101.99998

100.99999 -97.99999 -100.99998 -97.99998

Here A has approximately the rank two (a3 -al). But the exact numerical solution can be
computed and it is given by x (1, 1, 1). Although this example is small, it is representative
for the situations in which large data matrices are involved. If we use the column criterion
(17) below and no row criterion, the solution vector xi obtains the following values in the
algorithm.

Solution vector x at iterations 1 3:

2 3

-0.33326669332267

0.33346669333867

0.00000000000287

0.99999999999445

1.00000000013348

1.00000000000000

0.33326669332268 0.00000000000844 1.00000000013349
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Here we would normally select as a solution the one obtained at the second iteration, x2.
We note that the solution x3 is close to the exact solution, while x2 differs much from the
exact solution. When should we select as exact a solution as possible, and when should we
select as stable a solution as possible? In cases where we have a technical construction and
the coefficients are exact numbers derived from the given construction, we should select the
exact solution. But in most cases in practice the coefficients are uncertain. In these cases we
should select as good a solution as possible. There are three aspects of a good solution that
we shall consider here.

I. Sizes of criteria used.
(1) Size of the column criterion.
(2) Size of the row criterion.
(3) The combined criteria, zi’Ai-lWi.
Interpretation of (3) is similar to the one in the case of the SVD, i.e., the variation extracted

by the row and column criteria. In the example above z3’Azw3 2"10-1. This shows that
the third component, ()3, u3, v3), is not explaining any variation in data.

II. Sizes of results.
(1) Residuals, Ai-1 or Axi b.
(2) Size of reduction in A and/or b due to the rank-one reduction.
(3) Size of extracted matrices, A Ai and (A Ai) t.
Here the elements of Ax2 b are less than or equal to 10-5. Thus x2 gives sufficiently

small error estimates. The precision of the solution vector xi can be expressed in terms of
((A Ai)’(A Ai))t, see Appendix 2. Since the rank of A is approximately two, the inverse
increases extremely, when adding the third component. This means that x3 is a very unstable
solution.

III. Measures ofperformance.
(1) Total prediction variance,

2
(a) Ai F2 (A A/)?IIF (b) IIAxi bl]2l](A- A/)IIF2.

(2) Total prediction error variance,

(a) IIAillF2(1 + II(A- Ai)I [IF2), (b) IIAxi bll2(1 -+-II(A Ai)t IlF2).
(3) The H-index,

2 2
(a) IIAAiIIF2/IIAAitlIF (b) IIA(Axi)II2/IIAAi F

Since the size of (A A2) is small, while that of (A A3) is very large, x3 when it is
applied, will have very bad performance.

The formulas (a) refer to the case in which we have only A, while (b) refers to the case
of solving a linear equation. The motivation for these three measures is given in Appendix 2.
Note that in the algorithm Ai is the residual matrix, when components have been extracted,
while (A Ai) represents what has been extracted.

8. Criteria based on columns only. In many situations we wish to select only wi. This
happens when there are not big differences from row to row in A. In many statistical analyses
the rows of A can be viewed as repeated samples and thus expected to be of approximately
same size. If we have no special information or theory on the variation of the row, it is natural
to seek only to determine wi.

In this case we have

Ui Ai_lWi, zi --si --ui, and V Ai_ltUi.

From Property 2 we get that (Ui) are mutually orthogonal:

ui’uj 0 for =/= j,
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and from the definition of i we get

(12) )i- 1/(ui’ui).

Since Ai-I’Ui A’ui, it follows that si ui. The size Hi of the reduction in A is given by

Hi tr[(,iUiVit)()iUiVit) t] 2i (UitUi)(VitVi) (Vi’Vi)/(UitUi)
(13)

(ui,ui)llAi_’Ai_will2/(llAi_will2)2.

If wi is any eigenvector of Ai-I’Ai-I of unit length, Hi will be equal to (uitui) zi’Ai-lWi.
Often the w-vector will be close to an eigenvector of Ai-I’Ai-1, and therefore H/ will be
approximately the squared size of the u-vector. Also H/ is invariant to the scale of wi, and
thus wi can always be chosen to be of length one.

It is often convenient to work with the algorithm in terms of the positive definite matrix
associated with A, namely, A’A, i.e., not to compute the vectors ui. This is the case when
we want to work with the normal equations only: A’Ax Ab. The algorithm can now be
formulated as follows"

0. Compute Q A’A and let Qo Q.
1. Determine wi.

Select wi, e.g., according to some criterion.
2 Compute components.

Vi Qi_lWi and i 1/(wi’Qi_lWi).

3. Rank-one reduction of Q.

Qi Qi-1 iViVi ’.

4 Compute the transformation vector.

ri Ei_lwi.

Update the transformation matrix.

Ei Ei_I irivi.
5. In case of solving a linear equation, Ax b.

Compute the improved solution vector, q A’b,

Xi Xi-1 -[- )i(q’ri)ri X1 (q’rl)rl 4-... 4- )i(q’ri)ri.

6. Determine if a new iteration should be carried out.
If a new component is to be selected, --+ 4- and go to .

This form of the algorithm is based on the properties that the u-vectors are orthogonal
and that i is given by (12). If the matrix A’A is fully reduced, we have

A’A ,klVlVl + 2VzV2 4-’’’,

(A’A) ,klrlrl’ + ,kzr2r2’ +.-..

This form of the algorithm is useful if we are updating the decomposition with a new row of
A, or analyzing the dependence of the decomposition on one or more rows. This follows from

(14) A’A ala1’ 4- aZa2’ 4-... 4- a"a’.
Using (14) and the above form of the algorithm makes it easy to update the decomposition
when a new row is added to A. If an+l is a new row, we compute the new Q-matrix as
Q A’A + a"+lan+l’ and start from in the modified algorithm.
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8.1. Some criteria based on A only. In order to simplify the notation we shall drop the
indices associated with each step in the algorithm. We are to determine a vector w such that

u Aw wlal + w2a2 +... + wa,

has some desirable properties or characteristics. There are some views that are common in
practice that we will review.

8.1.1. Variation in u. One view is to determine w such that the variation in the values in
the u-vector has some properties. One is to require that the length of u is as large as possible
for Iwl 1. This is the criterion of the SVD. The power method, see [3], can be used to
determine w, because it gives one eigenvector at a time.

8.1.2. Selection ofvariables. Frequently, each column in the data table contains repeated
measurements of a given physical magnitude. In practice we say that we have a variable and
the column represents measurements of the variable at different instances. A basic question
is often, "Which variables (columns) are important?" In our setup it corresponds to choosing
w to be a unit vector having zeros at all coordinates except one, which is equal to 1. The
coordinate equal to corresponds to the variable that is selected. Let w be given by

w’-(o,o o,,o
with at the jth coordinate. With this notation we have

u aj., v’ (a’a, aj’a2 and k 1/(aj’aj).
This gives/-/j, of (13)equal to

)2(15) Hj [(a/a + (aj’a2)2 +... + (aj’ak)Z]/(aj’aj).
In [4] the H-principle, the Heisenberg principle of mathematical modelling, is formulated and
applied to different modelling tasks. According to the H-principle we should consider

size of reduction in A}{size of the u-vector}

(16) N(u.’u
(aj’al)2 + (aj’a2)2 +... + (aj’ak)2.

Thus the criterion of determining a column of A is

(17) maximize[(aj.’al)2 + (aj’a2)2 +... + (aj’ak)2] for j 1, 2 k.
J

The intuitive argument for criterion (17) is that the size of the reduction of A, Hj, does not
depend on the length of the u-vector, only on its direction (Hj does not change if u is replaced
by cu, where c is a constant different from zero). Thus if we only use (15) as a criterion, the
risk is that we select a column that is small and will "blow up" (15) because it is small. On
the other hand, a large u-vector need not be good to "explain" the remaining columns in the
A-matrix. The criterion (17) is balancing these two opposite points of view on the modelling
task.

In the literature there have been many suggestions ofhow to select columns. An interesting
one is the concept of "pure variables," see [5]. The basic idea is to consider O"i/mi, where ri
is the standard deviation of the values in the ith column and m the average value (where m is
close to zero, it is replaced by (mi - )). The purest variable is the one where this is smallest.
When a pure variable has been selected, the A-matrix is adjusted for the selected column, as in
the present algorithm. The disadvantage of the concept of pure variables is that a pure variable
need not be good in explaining other variables. Thus the concept of pure variables should be
modified in a way similar to the way in which we treated the reduction/-/j, due to a variable.
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8.1.3. w as weight coefficients. It was shown in the algorithm that the rows of reduced
A become orthogonal to the w-vectors that have been selected. Sometimes the data or the
situation dictates some weights that are appropriate to use. In [6] the concept of a marker is
introduced, which is a row of A that is "important" and appropriate to use as relative weights.
Another choice of w consists of ones, w (1, 1). Here we are actually centering the
rows of A because all rows in reduced A’s will have sum zero.

Criteria other than those mentioned above can be used. Also the above criteria can
be mixed. For example, it sometimes happens that in the selection of variables once some
variables have been selected, none of the remaining ones are doing a good job, though we
are clearly not at the noise level. In these cases it can be advantageous to start selecting w
according to the variation in u like, e.g., the eigenvectors of the reduced A matrix (eigenvector
of Ai-l’Ai-1).

We shall now consider more closely the case when A is not of full rank and we are
selecting variables. Suppose that j variables have been selected and Aj is judged to be zero.
To simplify the notation, we will suppose that it is the first j columns of A that have been
chosen. Let A be partitioned as A (A1, A2), where A1 is the first j columns of A. If V is
partitioned in a similar way, V’ (VI’, V2’), where V1 is j times j, we get from A UDV’,

(18) A1 UDVI’ and A2 UDV2’.

Here U has j orthogonal columns. We are here selecting columns and (DV’1) is upper triangular
with in its diagonal. Thus here the algorithm is numerically equivalent to the well-known
QR algorithm in numerical analysis. Equation (18) also shows how the last columns of A
depend on the first j ones:

A2 A1 Vii-iv2,.
8.2. Selection of w in case of linear equations. The choice of w is one of the most

extensively studied problems in numerical analysis and theoretical statistics. In numerical
analysis it has been studied in relation to "conjugate" and "steepest descent" methods, see.J7].
In statistics it is known as variable or component selection, see [8], [9], and [11]. We shall
only mention here how the H-principle suggests that we choose w. Similar to (16), we should
consider

(9) {reduction in variation in b}{size of the u-vector}.

The reduction in variation in b is (b’u)2/(u’u) (the squared length of the projection of b onto

u). Thus (19) becomes

(20) [(b’u)2/(u’u)](u’u) (b’u)2 (b’Aw)2.

Thus the H-principle suggests choosing w so that it maximizes (20), which has the solution

(21) w- A’b/llA’bll.

This choice ofw is the criterion ofpartial least squares (PLS) regression, see 12]. The intuitive
argument for (19) is the same as for (16). With this choice of w they become orthogonal,
wiwj 0for 76 j.

Example 1, cont.
We shall look at the properties of the solution shown earlier, where w was chosen as given

in (21). If w in (21) is inserted in (20), we get (b’Aw)2 ]]A’b]] 2. Let us look more closely
at Table 1.
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TABLE

Size of column criterion Combined criteria Prediction Prediction
[[Ai-l’bl[ Zi tAi-1W variance error

variance

69282.035074038 119999.990401923 0.01110667 10-7 15.99360064
2 19.5919995419 24.000001920 0.00000695 10-7 0.0000000004
3 0.0000000003 0.000000000 0.10097420 10-7 0.0000000101

The first two columns tell us how much we are selecting at each step of the algorithm.
And we see that at the third step we are actually not selecting anything. The last two columns
are approximate estimates of variances, when the linear model is applied. Generally, we select
the number where they are smallest. We see that they are smallest at the second step, 2.
This table therefore confirms the previous conclusion that we should carry out only two steps
(iterations) in the algorithm. q

The approach given by (19) to (21) identifies the projection of b onto the linear column
space of A. If there is a very high degree of collinearity in the column space of A, then this
approach may not be the best approach. If large portions of columns of A depend linearly
on the other columns of A, it can be beneficial to identify the "good" linearly independent
columns and use the approach given by (19) to (21) on these columns instead of the whole
of A. The reason for this is that w in (21) involves the linear combination of all columns in
A, and one can show that the redundant columns may worsen the quality of the solution. We
shall here consider how to choose "good" columns of A using the criteria (19) and (20). Let
w (0,..., 0, 1, 0 ), where the jth element of w contains one and others are zero. Then
Aw aj and the criterion (20) becomes

(22) maximize (b’aj)2 for j k.

Thus the procedure here is to determine the column giving the maximum value of (22). We
shall see how this functions for the small example we have considered.

Table 2, which is similar to Table 1, follows:

TABLE 2

Size of column criterion Combined criteria Prediction Prediction
Col Ai_ tb zi Ai- w variance error variance

2 40016.0000000008 40016.0000000004 0.0000000000003 10-6 0.0004 10-6

3 0.0000000004 35.9856057581 0.0000012351853 10-6 0.0004 10-6

0.0000000004 0.0000000004 0.1312664544592 10-6 0.1313 10-6

From the table we see that when we have selected the second column very little is left in data.
Thus the results here suggest that only column number 2 should be used. [3

9. Criteria based on rows only. Criteria that are the same or similar to the ones we have
discussed previously can be used for the rows. But frequently we have different views on rows
than on columns. We often expect some rows to be more important than some other rows.
This can often be formulated in terms of weights determined by the row.

When there is given a criterion for rows only, we choose only the vectors (zi). We have

Vi Ai-ltZi, Wi ri Vi, and Ui Ai_lWi.

From Property 4 it follows that (Vi) are orthogonal:

VitVj 0 for :/: j.
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From the definition of/i we get

i 1/vitvi

The size of the reduction in A, which is similar to H/of (13), is here given as

Hi (uitui)/(vitvi) (vi’vi)llAi-Ai-’zi 112/[llAi-l’Zi 112] 2.

If z is any eigenvector of Ai-IAi-I’ of unit length, the size of the reduction will be (VitVi)
zitAi-lWi. Thus one can state that the size of the reduction when zi is close to an eigenvector
is approximately equal to (vitvi).

9.1. Sizes. An important type of choice of zi is the size of rows of A. An example is to
let zi be the length of rows of A:

(23) z’= (llalll, Ila211 Ilanll).

A way to look at z is provided in the following equation:

2z’z IIAIIF tr(AA’) a21 + al +... + an,.
Thus the squared length of z is equal to the sum of squares of the data that is present at each
step of the algorithm.

Sometimes we want vi to be one of the "important" rows of A. For example, we may
want vi to be the row that has the largest value in A. This can be achieved by setting zi
(0 0, 1, 0 with the index of one being the number of the row containing the largest
value in A.

9.2. Weights. Sometimes parts of data carry more information than other parts. This is
often solved by defining z to be equal to one for the important part of data and smaller than
one for other parts. In control theory, e.g., see 13], this kind of scaling is fundamental to most

applications. There typically exponential decaying weights are used. But it is more natural to
let the data themselves define the weights. We shall look at how the type of weights can be
defined. Suppose that a is the important row (or the most "recent" row). If rows are close to
a they will be given weight one, and weight less than one, if the rows differ much from a
(Another view is to use the correlation coefficient between a row and a as criterion.) This
can be achieved by defining for the vector z (Zl zn):

zj for IlaJ a < c,

zj c/llaJ a for IlaJ a > c

for some constant c. There are other ways to define z that reflect views on the rows of A. For
example, there can be a "target," and we may want to use the same views on the rows as we
treated the columns in the case of linear equations, where the b-vector was the "target" vector.

10. Criteria based on rows and columns. All the criteria mentioned above can be
combined and used on both rows and columns. A possible complication is the constant

(24) 1/,ki (zi’Ai-l wi).

This must be different from zero in order for the algorithm to reduce the rank of Ai-1 by one.
Values of (24) close to or equal to zero indicate that there is nothing more to select in the sense
that the two criteria are not able to select components from Ai-1. The criteria treated above
will be discussed later in this paper.
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11. Stopping rules. When this algorithm is used, the basic question concerns when one
should stop. The algorithm stops automatically at n or k, whichever is smallest.
But usually one should stop earlier. There is, however, no unique answer to this question. It
depends on the problem one is trying to solve. When dealing with engineering construction
where.the coefficients A (aij) and b (bi) are uniquely determined, the maximal number of
iterations should be carried out. But in most applied sciences these coefficients are uncertain.
In these cases it is important to obtain a "stable" solution. There are three aspects we can
consider when evaluating the results. They are sizes, predictions, and crossvalidation. We
shall consider them closer.

11.1. Sizes. If the criteria that are being used have very small values, it indicates that
we have selected all that can be selected. We can also look at the elements of (A Ai) or
(Axi b). If all of them are small, there is no need to continue the iterations. This aspect is
discussed in more detail in the study of the (Flow Injection Analysis) data ( 15).

11.2. Predictions. It is always good to look at the measures of predictions, both the
(total) prediction variance and the (total) prediction error variance. From the point of view of
prediction, we should choose the number of components (iterations) where they are at their
smallest. Usually the two measures give approximately the Same number of components. The
H-index is a measure that the H-principle is trying to maximize. It is the ratio {decrease in
residual variation}/{increase in model variance}. If the H-index gets small compared to the
values of the H-index for the first components, it indicates that the prediction ability is getting
small and therefore it is time to stop extracting components.

11.3. Crossvalidation. In this approach some 10 to 15% of data are left out. Initially,
these values are estimated by the average values. If only column criterion is used, aij is
estimated by aj, where aj is the average value of the jth column. Similarly, if only row
criterion is used, we estimate aij by ai. If both row and column criteria are used, we estimate
aij by aj + ai a, where a is the average over all data values. The decomposition Ai is
computed using these estimated values. The steps in the crossvalidation are as follows:

(1) Delete randomly 10 to 15% of the data values. Compute Ai. Replace the estimated
aij-values by those from Ai. Compute a new Ai. Repeat this procedure until Ai does not
change.

(2) We compute the PRESS value,

(25) PRESS ,(aij Ai(i, j))2.

The sum in (25) is over the left-out values, and Ai (i, j) are the corresponding values in
Ai.

(26)

(3) Repeat (1) and (2) a number of times, e.g., N 100 times.
(4) Compute the average of the N PRESS values for fixed i:

PRESS/= E PRESS/N.

(5) Repeat (1) to (4) for 1, 2 Then we choose the number of components that
gives the smallest value of (26).

The basic idea of crossvalidation is to determine the number of components needed to
determine unknown data values. The experience with large numbers of data tables indicates
that the number of components may be slightly underestimated by this procedure. Note that
if the PRESS value is used to estimate residual variance for given numbers of components, it
should be divided by the appropriate number of degrees of freedom.

This is an empirical approach, and it is useful, if the data table is not large. Where there
are large data tables, this approach may be time consuming to carry out on the computer.
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In the case of linear equations the theoretical formula corresponding to the crossvalida-
tion procedure (25) and (26) is given by (A.2.5) in Appendix 2. If we assume the standard
assumptions in linear regression analysis, one may show that (see [4]) requiring (A.2.5) to be
as small as possible is equivalent to requiring

(27) (btui)2/(uitui) > 0-2n/(n i),

where 0
-2 is the residual variance. It can be estimated by

0
-2 ’ I]Axi bll2/(n i).

The interpretation of (27) is that, if it is not satisfied, we are generating more noise than
the variation we are explaining. Thus (27) represents an upper bound on the number of
components that should be used, i.e., if (27) is not satisfied, the component should not be
extracted. Experience has shown that (27) is generally better for estimating the number of
components than the crossvalidation steps (1)-(5). (There can, however, be problems with
this method, as, for example, when the estimate of 0-2 tends to zero because of overfitting and
where an estimate of 0-2 must be obtained by crossvalidation.)

12. Some guidelines concerning choice of criteria. The algorithm has been applied
to many data from practice. In this section we shall discuss our experiences concerning the
choice of criteria. The criteria treated in this paper are as follows:

(a) wi is the eigenvector associated with the largest eigenvalue of the eigenvalue problem
Ai-I’Ai-lWi )iwi

(b) wi (0 0, 1, 0 ), where the index of is the column number, which maxi-
mizes max((aj’al)e + (aj’ag.)e +... + (aj’ak)e).

(c) wi aj is an important row in Ai-1.
(d) wi (0 0, 1, 0 ), where the index of is the column number of the column,

which contains largest element aij in A;_ (we can also choose the column that is the largest
in size).

(e) W (lla Ila]l).
(f) w wi (wl, w2 with wj. for Ilaj akll < c, and wj c/llaj all for

Ilaj all > c.
In the case ofa linear equation Ax b:
(g) Wi Ai-l’b/llAi-’bll
(h) wi (0 0, 1, 0 ), where the index of is the number of the column giving

the maximum of (b’aj)2.
Here we have formulated the criteria as column criteria. Similar criteria can be obtained

for rows by changing column and row indices. (Note that wi need not be scaled to be of unit
length. But we recommend doing so, when wi has been selected in order to prevent numerical
instability in the algorithm.) One set of the vectors (wi) and (zi) should be orthogonal. The
criteria (a), (b), (c), (d), (g), and (h) all give orthogonal w-vectors. In the case where we are
reducing a matrix A, the criteria (a) and (b) are proper ones according to the H-principle, where
an optimal balance between residual variance and model variance is determined. Similarly, (g)
and (h) are the criteria determined by the H-principle when we are solving a linear equation.
If the columns are of approximately equal size, the criteria (b), (g), and (h) are numerically
very stable and can be applied to large matrices containing hundreds or thousands of rows and
columns. In many cases w is determined according to (a), (b), (g), or (h), while z is used to
determine the weights that should be used. The weights may be defined from the given applied
situation. They may also be derived from one’s expectation of data. What happens if wi is
selected according to (a) and zi according to (e)? Well, (w/) will be orthogonal and only u
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will be the same as ul in SVD. It means that at each step we select I1 to be of maximal length,
but we weigh the rows, and rows having large length will be more important than small ones.
This may be important when we want rows with small values to be scaled down.

It is the author’s opinion that the row and column criteria should be selected such that
they reflect the views one has on the data.

13. Discussion. The algorithm presented here can be used in many fields of applied
sciences. Here we shall discuss some practical aspects of the algorithm.

13.1. Statistics. In the statistical analysis of data the rows are usually considered as
repeated samples. In these cases we are mainly interested in the columns. For example, in
stepwise regression we determine "good" w-vectors. Program packages such as SAS, BMDP,
SPSS, and others, contain a large collection of criteria for determining w, all of which are
different from the choices treated here. These program packages allow a weight vector z to
take into account differences between rows (samples). This weight vector is independent of
the data, and the same at each step (iteration) in our setup. In general it is better to let data
themselves determine appropriate weight vectors, in our case the z-vectors.

13.2. Biology. Biologists, in their field work, often work with a certain number of species.
For example, a biologist may have, say, 51 samples of species. The species are given, but they
can be measured in many ways. The main features of the 51 species can be supplemented by
different kinds of chemical measurements. New measurements on the 51 species mean that
the data table is expanded by new columns representing the new measurements (as opposed
to many situations in statistics, where new measurements mean new rows). Here the biologist
has certain views on the 51 species that z-vectors can represent, while the columns are further
information on the given set of species. In these cases the biologist may wish to treat the rows
in much the same way that the statistician treats the columns; columns, on the other hand, may
be treated as rows. An example of this situation is shown in 14].

13.3. Archaeology and analytic chemistry. In archaeology some excavations are rich
in materials while other are scarce. One row of the data table can represent the amounts of
different types of materials found at a given location. That the quality of data is different
at different locations is often solved by "closing the data table," i.e., scaling the rows to get
sum equal to each. The values in a row thus represent the percentage of each type found
at that location. In analytical chemistry this approach is also often used. The argument for
this scaling of original data is that one is mainly interested in the relative proportions in each
sample (row). But this type of scaling often has several complications. In chemistry, for
example, some proportions are so small that they are below the detection level. And scaling
values to sum to may cause some undesirable side effects, such as overemphasizing samples
that are at the noise level. See, e.g., 15]. It will be better to let the data define the weights of
samples through the z-vectors.

13.4. Neural networks. In some neural networks aij represents the weight of the link
between neuron j to neuron i. In such neural networks the rows of A that contain only small
values carry very little information. In the analysis such rows should be weighed down, or
perhaps not used at all. Sometimes this is solved by defining a threshold value for coefficients
in a row, see 16]. But this is not a proper way to handle "small effects," when the phenomenon
is continuous. It is better to introduce a weight vector z if the data indicate that there is a need
for one.

14. Plots. Plots of appropriate vectors are useful in order to learn the variation in data.
The most useful plots involving the vectors in the algorithm are the following ones.
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(a) b versus !1 Added variable plots. They show how the new component relates to the
right-hand-side vector when solving linear equations. The plots should show some degree of
linearity. If the scatter plot does not show any kind of linearity, it indicates that the component
and later ones should not be used.

(b) ui versus uj. Score plots. They show how the components vary. They are useful in
detecting outliers and groups in data.

(c) vi versus vj. Loading plots. They show how the variables vary. They are useful in
detecting special variables and groups of variables.

(d) ri versus rj. Transformation plots. They show how the score values are computed.
They are useful in detecting the influence of variables and groups of variables.

Reference 17] is a good tutorial paper on the interpretation of plots of the above type.

15. Example 2: FIA data. We shall consider a data table from analytical chemistry. It is
a data table derived from flow injection analysis (FIA). FIA is popular in chemical laboratories,
because a high degree of automation can be used and because the data Collection happens over
a relatively short period of time, see [18]. We shall here consider a data table that has 41
rows and 241 columns. One row in the data table is an observed spectrum and the columns
are the time points where registration takes place. The contents of the data table are the
concentrations of the chemical substance that is being analyzed. The data table considered
here has 41 241 9881 data values and all of them are between zero and one. Table 3 gives
the ten largest singular values associated with A that is a 41-times-241 matrix. The numerical

TABLE 3

No. Singular Cumulative Size Largest element
value Percentage Ai- F in Ai,
i ij2/ Ej2 max(lai il)

21.0829379 98.5371 21.2388612 0.142489
2 2.3627405 99.7747 2.5688423 0.034013
3 1.0047351 99.9985 1.0081708 0.006078
4 0.0607094 99.9993 0.0831609 0.003875
5 0.0293583 99.9995 0.0568340 0.003520
6 0.0272765 99.9996 0.0486641 0.002379
7 0.0193580 99.9997 0.0403012 0.002372
8 0.0124964 99.9998 0.0353476 0.001878
9 0.0111743 99.9998 0.0330650 0.001744
10 0.0097538 99.9998 0.0311196 0.001335

precision of the individual data values in an FIA analysis is approximately 0.006. This means
that the measured data values are given with an uncertainty of -+-0.003. Thus, from a practical
point of view, the rank of A is at most 10. The size of a matrix is given by

IIAi IIF [tr(Ai’Ai)] 1/2.

Note that IIAolIF 21.2388612 is the size of the original matrix A. From Table 3 we
see that the size of the residual matrix after 10 steps is not zero. This is due to the existence
of so many elements (in this case, 9881). Also the singular values do not approach zero as
one would expect, 20 0.0057, ,30 0.0045, 40 0.0031, and ,,41 0.0030. The
last column in Table 3 gives the largest element in the reduced A-matrix, Ai, when the th
component has been subtracted from Ai_I. We see that the last value in that column is well
below the numerical precision of the measurements.

The SVD of this data table is not especially interesting from the point of view of the
chemist. The important parts of the data table are those points where the concentrations are
large. An important question is: "At what time points would it be sufficient to measure the
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chemical process? The problem can be phrased as: "What are ’good’ columns?" And if we
know them, can we compute the remaining columns?" This problem is important, not because
we want to limit the number ofmeasurements, but because in FIA analysis we get many tables,
and it is difficult to compare the tables when they are so large. The measurement equipment
gives us 9881 data values for each experiment, but we want to reduce that data, when storing
data and when comparing results from experiments. One way to handle this problem is to
select columns according to the criterion (17). The results are shown in Table 4. This table

TABLE 4

No. Column Criterion Size Largest
number (17) Ai- F element

max(lai. 1)
91 3146.692156845 21.238861 0.19597

2 127 2.050383374 3.153601 0.03967
3 73 0.036819414 1.096335 0.00785
4 157 0.000000740 0.099461 0.00729
5 109 0.000000229 0.075478 0.00408
6 47 0.000000047 0.058675 0.00263
7 139 0.000000015 0.050093 0.00261
8 231 0.000000014 0.044776 0.00204
9 61 0.000000003 0.043120 0.00201
10 226 0.000000002 0.039775 0.00167

shows that we can select 10 columns, which can represent the remaining 231 columns with the
desired numerical accuracy. We see that the value of criterion (17) is very small for the tenth
component compared with the first one. We notice that criterion (17) is already very small at

step number 4, where column number 157 is selected. The first impression is that only three
components should be selected. If 10 components are selected, the resulting matrix will be
41 times 10. The same procedure can in principle be used on the rows of this new matrix to

give a 10-times-10 matrix that is able to reproduce the original data matrix. Similar analysis
can be carried out selecting the spectra (rows) instead of columns (time points).

When we look at the data table, large spectra (rows) are more important than the small
ones. Here the size of a row is the length of the row vector

(j. )1/2(28) Ila aij
2

In Table 5 we consider both criterion (17) and the maximization of (28). We determine the
column that gives maximal value of (17). The coordinates of w are equal to zeros except for
the one that corresponds to the index of the maximum, where it has value one. Similarly,
z has zeros except for the index that gives the maximum value of (28), where it has value
1. The results of the decomposition are given in Table 5. From the table we see that when
selecting the first component, the time (column) number 91 has the most predictive power and
spectrum (row) number is the largest among the 41 spectra. The last column shows that we
can manage with at most 10 components. Note that the size of A need not decrease, when it is
reduced by rank one. In Table 5 the size of A slightly increases at the fifth, eighth, and tenth
components, respectively. This is due to our working with two independent criteria, which
when applied may give a slight increase in the size of A, although A is always reduced by rank
one. This happens often when we have reached the noise level in data. It is basically due to
the fact that the vectors (ui) and (vi) are not a set of orthogonal vectors when we have both
column and row criteria. Experience with many data tables has shown that we may need more
components when we use criteria for both columns and rows than if we use only a criterion
for one of them.
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TABLE 5

No. Column Criterion Row Row size Size Largest
number (17) j [laJl[ [IAi_l [[F element

max([aiil)
91 3146.69215684526 5.975865 21.23886 0.06715

2 128 26.01563248754 41 1.104906 5.71131 0.08252
3 73 0.40918002568 14 0.520859 2.00683 0.00938
4 155 0.00001107016 19 0.051685 0.17976 0.01542
5 109 0.00063866157 25 0.098970 0.37716 0.00394
6 43 0.00000116260 11 0.028896 0.10209 0.00367
7 163 0.00000008812 18 0.022980 0.06830 0.00338
8 231 0.00000024607 35 0.018013 0.07341 0.00339
9 119 0.00000009667 31 0.015004 0.06579 0.00532
10 108 0.00000066585 5 0.029082 0.08567 0.00282

We shall study more closely the decomposition derived from (17), where the main results
were given in Table 4. Some descriptive measures are given in Table 6. We see that the common

TABLE 6

Number Column zitAi_lWi ,i211uill211vill2 Cumulative II(A- Ai) IIF
number %

91 7.1330268 441.14402307 97.7953 0.374423
2 127 0.2345104 8.74325000 99.7335 2.428226
3 73 0.0308873 1.19205798 99.9978 6.459474
4 157 0.0001764 0.00419565 99.9987 89.363820
’5 109 0.0001017 0.00225422 99.9992 167.450845
6 47 0.0000502 0.00093339 99.9994 228.700527
7 139 0.0000294 0.00050444 99.9996 329.757384
8 231 0.0000935 0.00014557 99.9996 356.663916
9 61 0.0000097 0.00027722 99.9996 533.998761
10 226 0.0000111 0.00014826 99.9997 640.703899

criterion zitAi_IWi is already small for the fourth component. (Note that this criterion has a
similar interpretation to that of the singular values. Since the smallest singular value is 0.0030,
we notice that the value of this criterion at the fourth component is smaller than the smallest
singular value.) The total variation in A, IIAlIF2, is at each step reduced by )iZlluillZ[lvill2.
The size of this reduction is given in the next column, and the cumulative percentage in the
following one. We see that the first component accounts for 97.7953% of the variation in
A. Already the first three components account for 99.9978%. When we select the fourth
component, the size of the inverse, Z )jrjsj, increases from 6.459474 to 89.363820. All of
these measures indicate that only three components should be used. In Table 7 the predictive
measures associated with this decomposition are given. Table 7 confirms that only three
components should be extracted from A because the prediction variances are smallest at the
third component. The prediction variances increase 100 times when going from three to four
components. Also the H-index, the last column, shows that components number 4 and up
have no predictive abilities. These results conform well to the chemical knowledge of data.

As mentioned above, we could have chosen the corresponding row (spectra) criterion and
selected the three spectra that can represent the remaining 38 spectra and carried out a similar
analysis.

A similar analysis, like that shown in Tables 6 and 7, can be carried out for the decompo-
sitions shown in Tables 3 and 5. For the decomposition in Table 5 we get results analogous to
the ones in Table 6 and 7.

For a chemist there is much more information in Tables 4 and 5 than in Table 3, because
the chemist has a more direct interpretation of Tables 4 and 5 than of Table 3. But everything
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TABLE 7

Number Column IIAilI211(A Ai)* IIAi 112(1 + II(A- Ai)t 112) IIAAilIF2/IIAAIIF
number

91 1.3942469 11.3394475 3146.69215684526
2 127 7.0870388 8.2889894 1.51895682315
3 73 0.4127659 0.4226585 0.03327120666
4 157 45.495088 45.5007851 0.00000052814
5 109 96.532847 96.5362896 0.00000011241
6 47 131.247229 131.2497385 0.00000003847
7 139 218.009909 218.0119134 0.00000000894
8 231 236.520152 236.5220116 0.00000000788
9 61 451.138113 451.1396951 0.00000000176
10 226 588.585720 588.5871538 0.00000000118

can be used to represent the original matrix or to compute a generalized inverse. The SVD
is popular, because one gets maximal reduction in the variation of A at each step. But as
Table 4 shows, the decomposition according to the criterion (17) gives almost the same size
of reduction. The general experience is that decompositions using (17) require only very few
more components than does the SVD to get the same size of reduction in variation.

If all computations in this example were carried out in one run on a computer, it would
take approximately 300 Mflops. Thus on a modem workstation or PC these computations can
be carried out in seconds or minutes, depending on the size of the computer.

16. Conclusions. We have presented here an approach for solving standard matrix prob-
lems such as determining the rank of a matrix, solving linear equations, and computing the
generalized inverse. This methodology allows "tailoring" a mathematical model to the practi-
cal situation. The approach is given in terms of a general algorithm to decompose a data matrix
into rank-one components. The algorithm can reflect different views on rows, on columns, or
on both rows and columns. If the criteria used are based on the H-principle of mathematical
modelling and data are initially appropriately scaled, the algorithm has been found efficient
and numerically stable even for very large matrices containing hundreds or thousands of rows
and columns. The algorithm is easy to implement in matrix languages such as MATLAB,
GLIM, MATEMATICA, SASIML, and other similar languages. The main advantage of this
approach is that the noise level can be appropriately identified. The algorithm is important for
scientists who want more nuanced decompositions of data tables that reflect their theories on
data than those provided by standard numerical methods.

Appendix 1. Here we shall prove that the vectors have the geometric properties stated in
the text.

PROPERTY 1. zi is orthogonal to later A-matrices,

(A.I.1) ZitAj--0 fori < j.

Proof. Expressing Aj in terms of earlier A-matrices we get

Aj Aj_ jujvj

Aj-1 jAj-IWjVj

Aj_I (I )jwjvj’)

Aj-IQo

AiQ1.
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Here Qo and Q1 are matrices that are not used. From

ZitUi 1/)i and ziZAi ziZAi_l i(zitui)vi vi’ vi’ 0

(A. 1.1) follows. ]

PROPERTY 2. zi is orthogonal to later u-vectors,

(A. 1.2) ZitUj 0, < j.

Proof. Follows from (A.I.1) and the definition of uj.

PROPERTY 3. Wi is orthogonal to later A-matrices,

(A.1.3) AjW O, < j.

Proof. The iteration is performed in a way similar to the way in which the proof of
Property was performed:

Aj Aj_I )jujzj’Aj_l (I-)jujzj)Aj_l

QAi,

where Q is some matrix that is not used. Equation (A. 1.3) follows now from

WitVi 1/)i and Aiwi Ai_lwi Jiui(witvi) u u O. ]

PROPERTY 4. wi is orthogonal to later v-vectors,

(A.1.4) WitVj O, < j.

Proof. The proof follows from (A. 1.3) and the definition of vj.

PROPERTY 5. (Si) and (ui) are mutually orthogonal,

(A.1.5) SitUj 0 and situi 1/i, : j.

Proof. Consider j-- 1. We get

Ul AWl Arl or

v AzI AsI or

This gives

For 2 and j 1, we get

V2 AI’Z2 A’(I- lZlUlt)Z2 or s2 (I-/,lZlUlt)Z2

This gives

UltS2 (Ul’-- 1 (UltZ1)Ult)Z2 (Ul’-- Ult)Z2 0.
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For j 2 we get from Property 1,

ue’s2 w2’A’s2 w2A’(I- )LlZlUl’)z2 w2’AI’Z2 1/)2.

Higher indices are proved along the lines of the proofs of Properties and 3.

PROPERTY 6. (ri) and (vi) are mutually orthogonal,

(A.1.6) ri’vj O, ri’vi 1/)i for j.

Proof. The proof is shown in a way similar to that of Property 5. [q

PROPERTY 7. If (Wi) is chosen such that it is in the range of AI_ 1, (wi) are mutually
orthogonal,

WitWj 0 for 5/: j.

Proof. Let < j. That wj is in the range of A._ means that there is a vector qj such that
wj A_lqj. This gives

WitvWj (Aj-1 vci)tqj O,

by Property 3.

PROPERTY 8. The generalized inverse ofA can be computed as

(A.1.7)
A )lrlSl’ + )2r2s2’ +...

RAS’.

Proof. The equation AAtA A follows from Properties 5 and 6. 3
Note that if only column criterion is given, the vectors (ui) will be orthogonal, and

similarly if we have only a row criterion, (vi) will be orthogonal.

Appendix 2. Predictive performance measures. In this section we shall consider more
closely the performance measures suggested in this paper. The set of linear equations Ax b
suggests that there is given a linear model,

b aaxl + a2x2 + + akXk atx.

Suppose that ao (aol, ao2 aok) is a new row. We estimate the new b-value, bo, by
inserting this new vector in the equation, giving

bo aox + ao2x2 -+- + aokXk a’oX.
The important question is now: "What variation can be expected for bo, when the coefficients
x are uncertain?" The answer is given in standard textbooks in statistics, see, e.g., [19].
Assuming the usual assumptions in linear regression analysis, it follows that the variance of
bo can be computed as

(A.2.1) Var (bo) r2ao’(A’A)tao IlAx- bll2ao’(A’A)tao/(n k).

We see that the variance consists of two parts, the residual variation IlAx 10112, and the model
variance a’ (A’A) ao. The model variance is due to the uncertainty of the vector x. The model
variance depends on the specific ao that is used. But when we compare one situation to another,
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tr((A’A)t) gives a fairly good impression on the size of the model variance. Therefore, when
we compare solution vectors, we compare what we call the total prediction variance:

(A.2.2)
2IIAx- blltr((A’A)*) IlAx- bll2llA IIF

In the present algorithm, Ai is the residual matrix and (A Ai) is the extracted part. With
this notation (A.2.2) becomes

(A.2.3)
2

IlAxi bllell(A- Ai) IIF

In case we are only reducing A, a similar line of argument suggests that we consider

2
(A.2.4) IIAi IIF2II (A Ai) IIF

to be an analogous measure of total prediction variance.
If we have a value of the right-hand-side, b, we may want to compare b and bo. Usually b

is what is observed and bo is the computed value according to the model. One may similarly
show that the variance of the difference is given by

(A.2.5) Var (b bo) or2(1 + ao’(A’A)tao) IIAx- bll2(1 -+- ao’(A’A)tao)/(n k).

As in (A.2.3), we determine the total prediction error variance to be

(A.2.6) IIAx- bl12(1 + II(A- Ai) IIF2)
in the case of reducing A, it is analogous to (A.2.4):

(A.2.7) IIAiIIF2(1 + II(A- Ai)tlIF2).

For further details on (A.2.1) and (A.2.5) see [4].
The H-principle is concerned with obtaining a balance between the improvement in fit,

A(Axi b) AAxi, and the increase in model variance A(Ait). The H-principle tries
to get at each step of the algorithm as large a value as possible for the H-index, where the
H-index for linear equations is

2A (Axi II2 / AAi liE

and for reducing A it is

2
AAi F2/II AA.* F

For a more precise treatment of the H-principle, see [4]. We compute these measures from

AAxi )i(b’si)ri,

m Ai )iuivi t,

AA )irisi’

A (Axi)II .i (b’si)2 (ri’ri).

AAi F
2 )i 2 (uitui) (vitvi).
2

IIAAi tIIF )i2(ri’ri)(Si’Si)

Acknowledgment. The author wishes to thank Carsten Ridder, Chemical Laboratory A,
Danish Technical University, for supplying small, medium, and large data matrices as well as
many useful discussions.



262 AGNAR HOSKULDSSON

REFERENCES

[1] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, The Johns Hopkins University Press, Baltimore,
MD, 1989.

[2] J.E. JACKSON, Users Guide to Principal Components, Wiley, New York, 1991.
[3] I.T. JOLLIFFE, Principal Component Analysis, Springer-Verlag, Berlin, 1986.
[4] A. H0SKULDSSON, The H-principle in modelling with applications to chemometrics, Chemometr. Intell. Lab.

Systems, 14 (1992), pp. 139-153.
[5] W. WINDIG, C. E. HECKLER, F. A. AGBLEVOR, AND R. J. EVANS, Self-modelling mixture analysis ofcategorized

pyrolysis mass spectra data with the SIMPLISMA approach, Chemometr. Intell. Lab. Systems, 14 (1992),
pp. 195-207.

[6] O. KVALHEIM, Model building in chemistry, a unified approach, Analytica Chemica Acta, 223 (1989), pp.
53-73.

[7] M. HESTENES, Conjugate Direction Methods in Optimization, Springer-Verlag, Berlin, 1980.
[8] R.R. HOCKING, The analysis and selection of variables in linear regression, Biometrics, 32 (1976), pp. 1-49.
[9] M.L. THOMPSON, Selection ofvariables in multiple regression: Part I. Review and evaluation, Internat. Statist.

Rev., 46 (1978), pp. 1-19.
10] Part II. Chosenprocedures, computations andexamples, Internat. Statist. Rev., 46 (1978), pp. 129-146.
11 E R. KRISHNAIAH, Selection of variables under univariate regression models, Handbook of Statistics, Vol. 2,

Krishnaiah and Kanal, eds., North Holland, Amsterdam, 1982, pp. 805-820.
[12] A. H0SKULDSSON, PLS Regression Methods, J. Chemometrics, 2 (1988), pp. 211-228.
13] K.J. STROM AND B. WITTENMARK, Adaptive Control, Addison-Wesley, New York, 1989.
[14] J. C. FRISVAD, Chemometrics and chemotaxanomy: A comparison of multivariate statistical methods for the

evaluation ofbinaryfungal secondary metabolite data, Chemometr. Intell. Lab. Systems, 14 (1992), pp.
253-269.

[15] H. AITCHISON, The statistical analysis ofgeochemical compositions, Math. Geo., 16 (1984), pp. 531-564.
16] Y. KAMP, Recursive Neural Networksfor Associative Memory, Wiley, New York, 1990.
[17] O. KVALHEIM AND Y. g. KARSTANG, Interpretation of latent-variable regression models, Chemometr. Intell.

Lab. Systems, 7 (1989), pp. 39-51.
[18] J. RUZICKA AND E. H. HANSEN, Flow Injection Analysis, 2nd ed., Wiley, New York, 1988.
19] K.V. MARDIA, J. Y. KENT, AND J. M. BIBBY, Multivariate Analysis, Academic Press, New York, 1979.



SIAM J. ScI. COMPUT.
Vol. 15, No. 2, pp. 263-284, March 1994

() 1994 Society for Industrial and Applied Mathematics
002

A HIGHER-ORDER GODUNOV METHOD FOR MULTIDIMENSIONAL IDEAL
MAGNETOHYDRODYNAMICS*

ANDREW L. ZACHARYt, ANDREA MALAGOLI, AND PHILLIP COLELLA

Abstract. The authors present a higher-order Godunov method for the solution ofthe two- and three-dimensional
equations of ideal magnetohydrodynamics (MHD). This work is based both on a suitable operator-split approximation
to the full multidimensional equations, and on a one-dimensional Riemann solver. This Riemann solver is sufficiently
robust to handle the nonstrictly hyperbolic nature of the MHD equations and the presence of local linear degeneracies.
Results from a set of test problems show that this operator-split methodology has no problems handling any of the
three MHD waves, yet resolves shocks to three or four computational zones. The advantages and limitations of this
method are discussed.

Key words, magnetohydrodynamics (MHD), Godunov methods, hyperbolic systems, finite difference equations
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1. Introduction. Conservative, finite-difference schemes based on higher-order
Godunov methods have proven very effective at computing discontinuous solutions to hy-
perbolic systems of conservation laws. Several examples of such schemes are available for
the equations of hydrodynamics (van Leer [23], Roe [20], Harten, Lax, and van Leer 13], and
Colella and Woodward [9]) and have been used extensively to simulate highly supersonic flows
in aerodynamics and astrophysics. For a comparative review of some of these methods, see,
e.g., Woodward and Colella [24]. An extension of Godunov methods to general systems of
hyperbolic conservation laws has been suggested by Bell, Colella, and Tragenstein [3], here-
inafter refered to as BCT, who have also discussed modifications to the basic method when the
systems have points at which they are no longer strictly hyperbolic. At these locations, some
of the eigenvalues of the linearized matrix are identical and the corresponding eigenvectors
become degenerate.

In this paper, we present a new, multidimensional scheme for the equations of ideal MHD,
which is based on a higher-order Godunov method specially developed to treat the degeneracies
that occur in these equations. Our formulation is a direct extension of the method developed
by Zachary and Colella [25], but with several modifications and amendments that have proven
necessary when testing the algorithm on a variety of one- and two-dimensional problems.
The core of the problem is to construct an appropriate solution of a local, linearized Riemann
problem along the ray 0 at the boundary between two adjacent cell edges. This solution

is then used to compute the flux FG (UR, UL), the generalized Engquist-Osher [12] flux for
our system of conservation laws (see BCT [3] for details).

Although this approach has several computational advantages over finding the solution
to the complete nonlinear Riemann problem, it does have two major difficulties that require
special attention. First, the equations of ideal MHD involve seven characteristics that can
become mutually degenerate in several ways. Each type of degeneracy requires a different,
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special treatment. Second, linearized Riemann solvers are known to fail in some extreme
situations, even if the underlying physical problem admits a solution. Einfeldt et al. [11]
have shown, for example, that certain types ofhydrodynamic Riemann solvers fail to compute
strong rarefaction waves correctly. Based on the experience obtained by computing a large set
of test problems, we have incorporated an algorithm in our Riemann solver that detects and
classifies the occurrence of degeneracies and strong rarefactions. This Riemann solver is so
sufficiently robust that we have used it as the basis of a multidimensional scheme.

Following common procedures for higher-order methods, e.g., the piecewise parabolic
method (PPM) andMUSCL schemes, the most natural way to extend ourRiemann solver to two
or three dimensions is by operator-splitting, in which a fully multidimensional step is achieved
by combining a sequence of one-dimensional steps in alternating directions. However, the
use of operator-splitting for the MHD equations cannot be achieved in a straightforward way,
because the condition V.B 0 introduces cross-coupling between the spatial directions. In
this paper we have still adopted an operator-split scheme, because of its relative simplicity,
and we have written the MHD equations in a particular nonconservation form that makes them
suitable for operator-splitting. The condition V.B 0 is further enforced by performing a
projection (see, e.g., Brackbill and Barnes [4]) at the end of each timestep. A fully unsplit,
multidimensional method will be developed at a later stage following the ideas of Colella [8].

In 2, we present an extensive description of the one-dimensional, higher-order Godunov
method. We also briefly discuss our particular form of the operator-split MHD equations, and
then we provide a detailed look at the Riemann solver. Finally, in 3, we present and discuss
the results from our extensive series of one- and two-dimensional test problems.

2. The operator-split higher-order Godunov method. Zachary and Colella [25] de-
scribe a higher-order Godunov method designed for purely one-dimensional MHD equations.
As with similar higher-order methods, e.g., PPM, MUSCL, BCT, this method has two parts: a
predictor step that traces characteristics to determine time-centered values of the solution ex-
trapolated to each cell edge from each of the left and right cell centers; and, a corrector step in
which fluxes are computed at the cell edge and differenced to update the conserved quantities
at the cell centers. These fluxes are computed using an approximate Riemann solver, using
as input the left and right states obtained in the predictor step. In an earlier paper, we showed
that our Riemann solver was sufficiently robust to handle the wave interactions present in a
set of one-dimensional test problems. When these techniques are extended to a fully multidi-
mensional set of MHD equations, they must handle a much wider range of wave phenomena.
As a consequence, we have been led to make a number of modifications in our earlier solver
to deal with these new interactions. Specifically, we must: account for terms of the form
O Bx/OX that arise from the operator-splitting; handle degeneracies that commonly arise in
multidimensional studies, but which rarely occur in purely one-dimensional test problems;
refine the treatment of rarefaction waves; and, finally, modify the predictor step to preserve
monotonic gradients in both the characteristic fields and in the primitive variables. Since this
solver differs significantly from the version described earlier, we present a detailed description
of it below.

Before we begin our discussion, we make one general comment about our method. Many
finite-difference algorithms such as MacCormack’s method, Lax-Wendroff, and flux-corrected
transport work only with U, the conserved variables. Our experience with a higher-order
Godunov method has led us to work with U, as well as with the primitive variables W
[,o, Ux, U.v, Uz, Bx, Bv, Bz, p]t. There are several reasons for our choice. First, working in
W-space provides the simplest possible expressions for the right and left eigenvectors.. Using
these representations reduced the complexity and improved the performance of the resulting
computer code. Second, our algorithm must preserve positivity in the density rld the pressure.
When the predictor or the corrector step used conserved variables, we fourth, ttere was a broad
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range of conditions under which our Riemann solver produced a negative pressure. As our
section below on rarefaction waves makes clear, switching to primitive variables fixed most,
but not all, of the cases under which either the pressure or the density became negative.

2.1. Operator-split equations of MHD. The full set of equations for multidimensional
hydrodynamics naturally splits into a set of one-dimensional equations with no cross-coupling.
Unfortunately, this statement is not true for the equations of MHD; the restriction V.B 0
naturally induces some cross-coupling between the different directions. In this section, we
present a set of one-dimensional equations for MHD that is suitable for operator-splitting. We
begin with the full set of equations written as:

The right-hand side of these equations differs from the conservation form of the equations
by terms of the form V.B(...), where the terms inside the parentheses are not differentiated.
Our reason for using this form was to minimize the extent to which various terms in the discrete
evolution operators in each of the coordinate directions in the operator split algorithm would
have to sum to zero due to the divergence-free constraint on the magnetic field. The use of this
nonconservation form is similar to the common practice, in incompressible flow calculations,
of using advective differencing of the velocity fields, rather than conservative differencing
(see, for example, Bell, Colella, and Glaz [1]). Also, it has been shown by Brackbill and
Barnes [4] that using the nonconservation form of the momentum equations reduces the effect
of magnetic monopole forces on the dynamics of the system. In the above equations, we have
used the following notation:

p B2

pE -pu2 -q- -k- ,
y- 1 8re

Bl,xi B Bxi6i,

U_L,x U l,xi ’i
0

’7. (q+/-,xi a) .ij -xj (qxja V+/-,x (qa),

Oa
qL xi

"Ta .ij qJ -xj (q" Vl xi
a
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With the equations written in this form, it is immediately apparent that a nonconservative,
one-dimensional, operator-split set will be

(2a)

(2b)

(2c)

(2d)

(2e)

(2f)

(2g)

O(pE1D)
(2h)

Ot

Note that we have not completely eliminated terms of the form OBx/OX; they appear in the
By, Bz, and pE evolution equations. However, since 0 Bx lot 0, we can formally treat them
as source terms.

The one-dimensional equations are all of the form

0U1D 0F1D 0I-I(U1D

(3) -{-- -4- A(u1D) 0,
Ot Ox Ox

where U1D [p, pux, puy, pUz, Bx, By, Bz, pE1D] T. On a one-dimensional row of cells,
our discretization of these equations has the following form:

(4)

where by U we mean U1D. By adding the contribution of Bx2 back into the energy, we arrive
at an evolution operator for the conserved quantities, U. We denote this evolution operator by
(LAtUn)ix U7+1. Similarly, we can define operators LyAt and Lzzxt for the one-dimensional
equations in the y and z directions.

We can extend these one-dimensional operators to act on the full two- or three-dimensional
grid of data,

At(zXtU) (Lx U’,j,k)ix ;i,j,k

(5) At At(Ly Ui,(Cy U)i,j,k .,k)j
At(zXtU) (L Ui,j,.)z li,j,k k"
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Our full operator-split scheme is given by

(6) iTn+l (_Axt_,yAt_,,zAt.At ff.At_Atun ’
where we have used symmetric Strang splitting to obtain an overall evolution that is second-
order accurate in time provided the individual one-dimensional operators are second-order
accurate.

2.2. The predictor step: tracing characteristics. As in other higher-order Godunov
methods, we predict states at the zone interface by tracing characteristics. To trace charac-
teristics, we must first construct an approximate gradient AW for each primitive variable in
each zone. There are two alternate ways to construct this gradient: construct AW by ei-
ther monotonizing each primitive variable or by monotonizing each characteristic field. In a
purely hydrodynamic model, the monotonized central difference algorithm used in van Leer
[23] and Colella [7] gives good results. This approximation, which we subsequently refer to
as the MUSCL gradient, follows the first approach and monotonizes each primitive variable
separately, perhaps with some nonlinear flattening algorithm. In a series of experiments with
the MHD code on one-dimensional test problems, using this form of the gradient introduced
moderate amplitude (5-10%) fluctuations at shocks, compound waves, and certain types of
rarefaction waves. These oscillations occur because under some conditions the MUSCL gra-
dient is too steep. The usual curenthe flattening algorithm of [7]nwhen applied to the seven
MHD variables, does not fix the problem.

The other approach, discussed in [3] and [8] for general systems of conservation laws,
monotonizes each characteristic field separately. Unfortunately, this technique does not guar-
antee that the resulting gradient will be monotonic in each primitive variable. Rather than use
either approach independently, we have adopted a modified hybrid of the two. This hybrid
could be thought of as a MUSCL gradient combined with a highly sophisticated flattening
algorithm.

Our method begins by computing eigenvalues, eigenvectors, and structure coefficients at
each zone center. Zachary and Colella [25] give expressions for the eigenvalues and eigen-
vectors and we do not repeat them here. The structure coefficients, clm, are the gradient of
each wave speed in the direction of a characteristic field

(7) Klm (V./) rm.

We then form the following differences:

A-W (Wi Wi_I) a-rk,

A-t-W (Wi.4_ Wi) O/k rk,

AW (Wi+ Wi-1) ar,

Amw o/k 1"k.

The expressions A-, A+, and Ac correspond to backward, forward, and centered differences,
respectively. The final difference, Am is the monotonized, fourth-order difference used in the
MUSCL algorithm.

We combine these differences to construct a fourth-order monotonized gradient by mono-
tonizing each characteristic field independently. That is, we write AW as

r,(9) AW



268 A.L. ZACHARY, A. MALAGOLI, AND E COLELLA

where

/ min(,l-I, 1-I, I1, Ic I) x sign(a) if +
kk > O,

(10) a / 0 otherwise.

The expansion coefficients otn from the MUSCL gradient enforce monotonicity in each vari-
able.

For strictly hyperbolic systems g 2, however, if an eigenvector is locally linearly
degenerate, we use , 1. As in BCT, we detect local linear degeneracy through the structure
coefficients. That is, at meshpoint and for a given characteristic k, whenever

(11) Kkk,i_lKkk, < 0 or Kkk,i+lKkk, < 0,

we assume the corresponding eigenvector is linearly degenerate.
0rt/n+ 2Using the monotonized expansion coefficients, we approximate the states at i+l/2,L and

n+l/2
i-1/2,R by tracing each characteristic forward or backward from zone center. Following the

discussion in BCT, we write

(12)

Finally, the predicted states, WL and WR, are modified by the presence of source terms.
These source terms can originate from: external forces, i.e., gravity; geometry, i.e., spherical
or cylindrical coordinates; or 0 Bx/OX. Written in strict conservation form, the equations of
MHD are each of the form

(3) + V.F S(U),
Ot

where S(U) represents sources terms. However, we have chosen to perform the characteristic
analysis in Lagrangian or primitive variables, W. In the W-basis, (13) becomes

(14)
0W 0W

S(W).
Ot + A(W).

8x

The matrix A(W) is

A(W)
0W

Some straightforward algebra shows that the source terms must be transformed according to
the rule

(15) S(W)= S(U).

Assume for the moment that the only source terms come from the incorrect representation
of OBx/OX in the B+/- and in the pE equations. Then we have

OB
S(U)-- 0,0,0,0, Uy---x,Uz

OBx u+/- B+/- OBxV
x -4" x )
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Using (15) to express S(W) in terms of S(U), we find that

OBx OBx )s(w)= o, o, o, O, uy-x U-x O

In the W-representation, 0 Bx/Ox changes only the B+/--equations, and not the pressure equa-
tion.

2.3. The corrector step. We seek solutions to the system of conservation laws

(16) + Z.F =0.
Ot

As required by the Godunov methodology, we must compute the flux F6 (Un, UL) evaluated
xalong the ray 7 0 in the Riemann problem solution to the above equation with initial

conditions

UL x<O,
(17) U(x,t=0)=

Un x>0.

As mentioned in [25], any general solution technique for the MHD version of (16) faces two
serious difficulties. First, the MHD wave speeds are not strictly hyperbolic. The loss of strict
hyperbolicity at a point means that the analytic structure of the weak solutions is generally
unknown in the neighborhood of that point. Second, the genuinely nonlinear waves can be
locally linearly degenerate. It is much more difficult to determine the correct entropy satisfying
discontinuities for modes with local linear degeneracies.

To deal with these problems, the starting point for our methodology is a high-order
Godunov method developed by BCT. We take the BCT point of view and treat the equations
of MHD as a hyperbolic system of conservation laws whose weak solutions are uniquely
determined by entropy conditions, such as those described in Liu 17] for these systems. The
questions surrounding whether this general approach will produce the correct weak solutions
are far from settled; some of these issues are discussed in BCT. The algorithm described by
BCT is an extension of the Engquist-Osher 12] flux to general systems of conservation laws
and is sufficiently robust to handle the nonstrictly hyperbolic nature of the MHD equations.
In the exposition that follows, we rely on BCT for the higher-order solution of the Riemann
problem.

As discussed in [25], we do not need the entire solution to the Riemann problem. Indeed,
the full solution may not be well defined for nonstrictly hyperbolic systems, so it is sufficient
to develop the solution as a series of approximations to the full Riemann problem along the

x 0. In the next subsection, we describe the basic structure of our Riemann solverray 7
without any of the modifications needed to deal with rarefaction waves or with eigenvector
degeneracies. As in the previous section on tracing characteristics, we continue to work in
W-space.

2.3.1. The Riemann solver. At each interface, we expand the jumpW WL in terms
of a linearly independent set of eigenvectors Rk, i.e.

(18) W Wr Olkk
k

We determine --Rk from We 1 (Wn +WL), and let rk (We) be the kth right eigenvector
of DF at We.
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With these expansion coefficients, we define two intermediate states that "bound" the
entropy wave. These states are defined as

(19) WL WL + otkrc, WR WR otkr.- )+

The )- waves move backward and the )+ waves move forward with respect to the entropy
wave.

At each of the four states W, W, Wn, and We, we compute eigenvalues for all seven
MHD waves. From these eigenvalues, we can construct

1 X* X*)0=( 0,/+ 0,)

which is the average advective velocity at the starred states. The sign of )0 gives an unam-

biguous determination of the upwind state. If .0 >- 0, then the upwind state lies to the left of

the entropy wave, while if )0 < 0, it lies to the right.
In our previous paper, we used the structure coefficients and the wave speeds at the left-

and right-hand states and the two intermediate states to construct a cubic Hermite interpolating
polynomial for each eigenvalue. We interpolated - waves from )(W) and )(W) and )+
waves from )(W) to ;(W). We used the resulting set of interpolants, k, to detect sonic
points along each wave path.

In this study, we find that in the presence of large gradients, the structure coefficients can
often become so large that they make the Hermite polynomial useless. These large structure
coefficients occur when there are substantial changes in density and pressure between We, the

W*point at which we know the eigenvectors, and WL,R, or ,, where we compute V.. To
circumvent this difficulty, we use a simple linear interpolation of the wave speeds from W
toW and from Wg to Wg. Changing to a linear, rather than a cubic, interpolation does not
alter any of our results.

BCT derived a generalized version of the Engquist-Osher flux suitable for systems of
nonstrictly hyperbolic equations. Ignoring for the moment the treatment of degenerate waves,
and assuming that U is the upwind state, the BCT extension of the Engquist-Osher flux is

(20)  (f0Fe(Ut, Un) F(Ut) + min(X, O)da .
k=l

As BCT discuss, the integral terms in (20) add a nonnegative dissipation to each of the char-
acteristic modes in the expansion of Ug UL.

Unfortunately, this generalization is unsuitable for multidimensional MHD because the
terms of the form 0 Bx/Ox require special treatment, and because some terms in the flux must
be differenced as gradients and some terms as divergences. We, therefore, adopt an alternative
formulation of the Engquist-Osher flux. This alternative formulation was presented but not
derived in Zachary and Colella [25]. We now discuss the origin of our flux formulation.

Our motivation is the scalar case, for which

(21)

uR

FF f(uz) + min(a(u), O)du

fu u"

f(ut) + X(u)a(u)du,

where a(u) is the wave speed along the path uR u, and X(U) is the characteristic function
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1 ifa(u) <0,
X(u)

0 ira(u)>0.

This can be written as the sum of terms of the form
uP+

(22) f a(u)du f(up+I) f(uP),
duP

where a < 0 for all u 6 [uP, up+I ], and

a(up) 0 or up UL,
(23)

a(up+l) O or ttP+l uR

A simple formula for FE is then given by

s
(24) F f(uL) + Z(-1)Sf(uS),

s=l

where q sign(uR uL), qu < qu2 < < quS, and u satisfies either a(us) 0 or

a(u 1) 0 u UL,

a (us)=0 us uR.

We can use (24) as the starting point for systems. Given the approximate parameterization
ofthe wave curves in 2 ofBCT, we can define the Engquist-Osher flux for systems ofequations
as follows:

K S(k)

(25) Fe F(W;) + EEF(W)(-1)s’
k=l s=l

where

(26)
Wk W +Z’Rk’’

k’<k

W Wk + otRk.
2 S sign(k). Finally, ot] satisfiesAlso, qot < qotk < < qotk, and q

(27)

,k(ot) =O 2 < s < S(k)- l,

1__0,.(o) < 0

-,, s(k), s(k),k, otk < 0 otk ff.
and )k(ot) is the linear approximation to the wave speed given above.

The advantage of this approach is that various subpieces of the flux can be defined, as
might be required for quasi-conservative differencing. IfF Q1 +Q2, then Qi can be defined
as

K S

(28) QeO Qi(WI) + EEQi(Wk)(-1)s"
k=l s=0

Then Q1 could be differenced as a divergence, while Q2 could be differenced as a gradient,
as might be required in a spatially varying geometry.
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2.3.2. Rarefaction waves. Rarefaction waves cause problems for most Riemann solvers.
Even the fully nonlinear Riemann solver in PPM needs special modification to deal with
rarefaction waves, and most other Riemann solvers simply treat rarefaction waves as if they
were rarefaction shocks. Our technique of expanding the discontinuity at each zone interface
in terms of eigenvectors at a single reference state also does not correctly handle rarefaction
waves. In fact, Einfeldt et al. 11 show that there exist initial conditions for strong rarefaction
waves under which any linear Riemann solver must fail. With this failure in mind, we have
modified our Riemann solver whenever we detect a strong rarefaction. Our detection criterion
is simply that if

(29) vs(We) < ,k0(W) ,k0(W),

where vf is the velocity of the fast magnetosonic wave, then we assume there is a strong
rarefaction wave at this interface. Using the procedures in Einfeldt et al., particularly, equations
(4.4) and (4.5), we recompute the flux as

b+.b
(30) F6 (Wg, W)

b+F(Ws) b-F(W)
+(Ug U;).

b+ -b- b+ -b-

Here, b+ max()+, +, 0) and b- min(), -, 0); see [11] for details. This particular
representation of the Godunov flux is positively conservative.

Rarefaction waves also pose problems for our algorithm since we use density rather than
specific volume as an independent variable. (Using specific volume rather than density poses
similar problems at compressions.) These problems arise when estimating the density at
intermediate states, particularly at W*L,R" When we construct WL or W, if

p(W),< p(W) or p(W) < p(W/),

then we interpolate in specific volume rather than in density on that particular side of the
entropy wave. Using the eigenvectors in [25], we note that a change in basis from p to r only
changes the density components of the right and left eigenvectors. The only nonzero density
component of a left eigenvector belongs to the entropy wave, and since the left eigenvectors
determine the expansion coefficients, only the expansion coefficient for the entropy wave, or0,

changes under this change in basis. Note, however, that or0 is never used by construction. We
simply keep track of the appropriate representation for the right eigenvectors on each side of
the entropy wave. The rest of our method for constructing the Engquist-Osher flux remains
unchanged.

2.3.3. Degenerate waves. The MHD equations are nonstrictly hyperbolic because there
are points with degenerate eigenvalues. At these points, the wave ordering that applies in
strictly hyperbolic systems no longer holds and two or more wave speeds coincide. In MHD,
the eigenvalues become degenerate in two distinct limits: if Bx 0 and if B+/- 0. In the first
limit, the Alfven and the slow magnetosonic wave travel at the same speed as the entropy wave,
resulting in a five-fold degeneracy. In the second limit, there are three different degeneracies
that can occur depending upon the values of the Alfven velocity, Vax, and the sound velocity
cs. When Vax > cs, the fast magnetosonic and the Alfven wave are degenerate, while when

Vax < c, the Alfven wave and the slow magnetosonic wave are degenerate, and finally when
Vax c, all three waves are mutually degenerate. In each limit, and for each subcase, the
algorithm must detect any degeneracy and then take appropriate action.

It is important here to clarify the exact meaning of such degeneracies and why they are
peculiar to MHD. According to the definition given by Lax 15], two or more waves are con-
sidered to be degenerate when their values coincide, resulting in a loss of strict hyperbolicity.
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In this case it may happen that the eigenvectors corresponding to the orginally distinct eigen-
values become essentially parallel, resulting in an eigenvector deficiency like those considered
in BCT. Also, Lax 16] defines a wave to be linearly degenerate when (V),k) rk 0, where
rk is the right eigenvector corresponding to the kth characteristic field. This is the case, for
example, for the entropy and Alfven waves.

We emphasize that with our choice of eigenvectors (Zachary and Colella [25]), the de-
generacy of the eigenvalues does not also imply a deficiency in the eigenvectors. We always
have a set of complete, linearly independent eigenvectors spanning the phase space. The
same situation already occurs in the equations for pure three-dimensional hydrodynamics: the
entropy wave has in fact a three-fold degeneracy that is related to the transport of entropy
and shear, and there are three linearly independent eigenvectors associated with it. In pure
hydrodynamics, the three-fold degeneracy always occurs, and is independent of the value of
the physical variables. Therefore, purely hydrodynamics equations can still be viewed as a
strictly hyperbolic system, and it can be shown that the Engquist-Osher formulation 12] does
compute fluxes that satisfy the entropy condition. In MHD, however, waves that are genuinely
nonlinear in the sense of Lax [16] (specifically, the fast and slow magnetosonic waves) do
become linearly degenerate when their eigenvalues coincide with those of already linearly
degenerate waves, i.e., the entropy and Alfven waves. If this condition happens anywhere
along the wave-path of integration between the left and right states, then the Engquist-Osher
formulation may fail and the entropy condition may not be satisfied. When this happens, we
need to modify our scheme and apply a different type of dissipation, as described below.

The first task in dealing with degeneracies is detecting them. Analytically, two eigenvec-
tors are degenerate whenever their corresponding eigenvalues coincide. It is rare, however,
that eigenvalues will, numerically, be exactly equal; therefore we have adopted here the BCT
detection algorithm. The BCT algorithm was designed with the idea in mind to identify points
in a general system ofhyperbolic conservation laws at which eigenvectors become parallel and
the corresponding expansion coefficients are no longer reliable. However, the same approach
can be utilized more generally to detect loss of strict hyperbolicty, independent of the fate of
the eigenvectors. As already mentioned, our construction of the MHD eigenvectors insures
that when the eigenvalues coincide, the corresponding eigenvectors are not deficient, but an
originally genuinely nonlinear wave may become linearly degenerate. We adopt the BCT idea
that two eigenvectors are degenerate whenever the difference in their eigenvalues at We is less
than some fraction of the difference in the predicted variation of the eigenvalues over the wave
path. Specifically, we say that two eigenvectors are degenerate whenever

(31) lik )eml <. C IOlk(Kkl Kkm)l.
k

(Here, as elsewhere, we use c 0.1.)
The eigenvector degeneracy detection criterion in (31) fails in the limit Bx/B_t. ---> 0,

where the Alfven and slow magnetosonic waves become degenerate, but where the structure
coefficients are independent of Bx. (We define Klm (7.l) rm, but there is no component of

rm along Bx.) We, therefore, adopt an alternative criterion, empirically derived, which states
that the eigenvectors corresponding to the Alfven and slow magnetosonic waves become
degenerate whenever

IVaex < 2 B2 (we) -+- B2t (w) + B2 (WR)) 1/2

(32)
vef Bx (We)

where Vx and v are, respectively, the Alfven velocity and fast mode velocity at We.
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The linear Riemann solver described in the previous sections breaks the full Riemann
problem into two distinct parts, with each part corresponding to waves that move forward
or backward with respect to the entropy wave. Accordingly, we treat all waves that are
degenerate with the entropy wave as if they were additional entropy waves. Recall that from
(19), entropy waves are not included in the construction of WL, R, nor are they incorporated
in the computation of the flux.

Any other changes in the flux computation depend upon whether the eigenvector degen-
eracy is associated with a change in the sign of the wave speed along the wave path. Assume
that the eigenvalues ) and )n satisfy (31), and assume that )0 > 0, so that the reference state
is WL. Let

and

lm

min-- min(,k ,k* ’@mlm

When ,min and )max have the same sign, (25) remains unchanged. When lmin and lmax
""lm ""lm

have opposite signs, then we assume that the eigenvector degeneracy is associated with a
transonic wave. In this case, we replace the flux correction terms in (25) with a dissipative
term from Rusanov’s [21] scheme. More exactly, the added flux correction term is

(33)
k=l,rn k#l,rn s=l

m max minwhere v ax(l,klm l, I)lm I). Although this description of a Rusanov-type dissipation
assumes that only two waves were degenerate, it is easily generalized to include the case
where many different waves are degenerate.

Note that if (32) is true, and the Alfven and slow waves are degenerate, then it is possible
for waves to be degenerate across the entropy wave. In that case, the definitions for )min and
)max simply look at the wavespeeds at WL and WR, without considering the wavespeeds at
the intermediate states.

2.4. Insuring V.B 0. The problem of preserving V.B 0 to the highest possible
accuracy, possibly even to machine accuracy, is a crucial one for discretized versions of the
MHD equations. While the continuum equations insure that an initially solenoidal magnetic
field will remain solenoidal when evolving in time, the discretized equations do not. As a

consequence, numerical solutions of the MHD equations can generate magnetic monopole
forces that strongly affect the dynamics of the fluid (See, e.g., Brackbill and Barnes [4]).
Writing the equations in variables other than the magnetic field, like the vector potential or
the magnetic flux function, partially solves the problem. This approach, however, has two
drawbacks: it requires a staggered mesh, and the equations are not in a form suitable for
characteristic analysis.

In our code we have used a centered, finite-difference scheme based on primitive variables
because this scheme is the natural choice for higher-order Godunov methods. Our choice
means that V.B 0 is preserved only to the truncation error of the method. In principle,
that truncation error could be O(1), since we are computing solutions in the presence of
discontinuities. To deal with that problem, we follow the prescription in [4], remove the
nonsolenoidal part of B, and then apply a Hodge projection to B at the end of each timestep.
First solve the Poisson equation for the potential b

(34) V2q + VB 0,
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then the new solenoidal magnetic field is defined by B B Xzb. Here we used second-order
central difference approximations for the gradient and divergence operators. This numerical
form of the Hodge projection leads to nonstandard discretizations of the Laplacian. How-
ever, the resulting linear equations can be solved efficiently and accurately using interative
methods, e.g., multigrid (see Bell, Colella, and Howell [2]). It is worth noting that, for the
two-dimensional problems presented in this paper, we did not find any noticeable difference
regardless of whether or not we applied a projection.

3. Numerical results. We have tested our algorithm on a variety of MHD problems in
one and two dimensions to check the consistency and robustness of our method under different
conditions on the physical variables. Each problem tests different features of the code, such as
its behavior in special limiting conditions, e.g., in the purely hydrodynamic limit, or its ability
to track discontinuities. Our testing procedure has been particularly useful as we tuned the
degeneracy detection algorithm, which is a crucial component of our Riemann solver.

All computations described below were performed on a Cray Y-MP8e/8128-4 at the Cray
Research, Inc., data center in Eagan, Minnesota, and on a Cray Y-MP8/464 at the NASA Center
for Computational Sciences (NCCS) in Greenbelt, Maryland. At the moment, the current
version of the code, including all the test and corrections for degeneracy, the construction of
two different sets of eigenvectors for each meshpoint, and the modifications for rarefaction
waves, takes 15/zs per cell in one dimension and twice that in two dimensions. In other words,
the algorithm does approximately 32,000 meshpoints/s in two dimensions. Our timestep was
set by the Courant-Friedrichs-Lewy (CFL) stability condition

(35)
AX Ayi )At cr max

i,j lUx,il + Uf, luy, jl + Vf,j

where cr is the Courant number, and the maximum is taken over Nx, j 1 Ny.
All the calculations were done using a Courant number r 0.8 without any artificial viscosity.

3.1. One-dimensional problems. Our suite of one-dimensional problems includes
benchmarks commonly used to test numerical algorithms: the Sod shock tube problem [22],
the Brio and Wu problem [5], and the strong version of the Sod shock tube problem [5]. In
addition, we have studied the strong rarefaction problems considered by Einfeldt et al. 11 ].
Each problem tests a different aspect of the Riemann solver. The Sod shock tube problem tests
the solver in the purely hydrodynamic limit, the Brio and Wu problem stresses our handling
of linear degeneracies and compound waves, while the strong version of the Brio and Wu
problem accents our handling of large-amplitude shock waves. Finally, the Einfeldt et al.
problems test our ability to detect and handle strong rarefaction waves.

As mentioned above, the Sod shock tube is a purely hydrodynamical Riemann problem
in which the initial condition consists of two uniform states WL and WR separated by a

discontinuity. The gas polytropic index is ?’ 1.4, and the initial conditions are

.125

0 0

0 0

W(x<O)= 0 Wn(x>O)= 0

0 0

0 0

1 0.1
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The numerical solution has been obtained for 100 grid points (with Ax 1) and is shown
in Fig. 1 after 50 timesteps (At being given by the CFL condition). The shock discontinuity
is well resolved within three grid points. The contact discontinuity is slightly more diffused,
which is expected since we have not used a detection algorithm (see [9]). Also, there is a
small undershoot at the base of the rarefaction wave that is a peculiar feature of how our
linearized solver treats rarefaction waves. This undershoot can be partially eliminated by
adding a quadratic artificial viscosity to our scheme of the type described by BCT. In Fig. 2
we show a comparison between the density profile at the same timestep as computed by our
method and by the PPM method of Colella and Woodward [9]. Both solutions are very similar,
with the main difference being the undershoot discussed above; one can see that the contact
discontinuity is better represented by the PPM code that used a contact detection algorithm.

In Fig. 3 we present the results ofthe Brio andWu [5] problem, which is anMHD analogue
of the Sod shock tube problem. The initial configuration is the same as the Sod shock tube
problem, but with 9/ 2; the initial magnetic field is By1 x/, By,, -V/--, and
Bx 0.75v. Here we have used a grid of 800 points and 400 timesteps. The solution
is in excellent agreement with the one obtained by Brio and Wu [5] using a Riemann solver
written specifically for this problem. Again, we note that our method introduces a small
perturbation at rarefaction waves. This perturbation does not affect the solution seriously and
was previously noted also by Zachary and Colella [25]. On the other hand, all the shocks are
extremely sharp and do not show any post-shock oscillations. In Fig. 4 we present the last of
our set of Riemann problems, the strong version of the magnetized Sod shock tube problem

5 and all the otherthat was also discussed by [5]. Here we set Bx 0, Pr 1000, F 7,
parameters as before. The solution is very well behaved even in this extreme case, and we
note that we could solve this problem with a F 2, while the Brio and Wu solver could not.

Our final one-dimensional test problem is drawn from the strong rarefaction problems
discussed by Einfeldt et al. 11 ]. In our earlier discussion of the Riemann solver, we noted that
conditions exist under which any linear Riemann will fail, even if the underlying physical prob-
lem admits a solution. We have implemented a strong rarefaction wave detection algorithm
that automatically applies additional dissipation whenever the Riemann solver fails. In Fig.
5 we show the results for the problem defined as 2 0- 3 in [11 ]. This problem consists of
two strong rarefaction waves moving symmetrically in opposite directions. With an adiabatic
index F 1.4, the initial conditions are

WL(X < O)

1

-2 2

0 0

0 Wn(x > 0) 0

0 0

0 0

0.4 0.4

From the analysis in 11 ], these initial conditions have a physical solution, but the solution is
not linearizable.

3.2. Two-dimensional problems. Among the various two-dimensional test cases that
we have tried, we present here two particularly interesting ones: a spherically symmetric
explosion in a uniformly magnetized medium and the compressible version of the Orszag-
Tang vortex (see Dahlburg and Picone [10] and Picone and Dahlburg [19]). Both problems
develop interesting wave patterns and shocks that propagate in all directions, and therefore
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FIG. 1. The solution to the Sod shock tube problem on a uniform mesh with O0 grid points is shown after 50
timesteps. The size of the timestep was controlled by the CFL condition with CFL number of 0.8.
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FIG. 2. The comparison between the density profiles of the solution to the Sod shock tube problem computed
after 50 timesteps by using different algorithms is presented. The solid line is the solution computed with the present
code; the dashed line is the solution computed with the PPM code in which the contact detection algorithm has been
turned off; the dashed-dotted line is the PPM solution with detection ofcontact discontinuities. The effect ofcontact
detection on the resolution ofthe contact discontinuity is clearly visible.
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FIG. 3. The solution to the Brio and Wu magnetized shock tube problem on a uniform mesh with 800 gridpoints
is shown after 400 timesteps. The initial condition consists ofajump discontinuity in pressure and density separated
by a current sheet.
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FIG. 4. The solution to the strong version of the shock tube problem on a mesh with 200 grid points is shown

after 100 timesteps. Here Bx 0 and By changes sign across the initial discontinuity. A CFL condition of0.8 was
used.
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FIG. 5. The solution to the Einfeldt et al. [11] 1-2-0-3 strong rarefaction problem on a mesh with 100 grid
points is shown at time O. 1.

they are very useful tests of the two-dimensional properties of our code. One of the main
differences between the purely one-dimensional problems and the two-dimensional problems
is that the magnetic field B varies in the direction of spatial integration in each of the one-
dimensional sweeps of the operator-split method. This introduces extra source terms in the
equations and may give rise to a new set of degeneracies that are not present in the purely
one-dimensional problems (see the discussion in the previous section).

3.2.1. Spherical explosion. The explosion is driven by a spherical region (with r 0.1)
with a large overpressure. The initial density and pressure are p 1, Pe 1, and the
overpressure is Pi 100. We have tried three different values ofthe initially uniform magnetic
field: By O, By 10, and By 100. Our computation mesh is a cartesian uniform grid with
120 points in each direction. This problem is identical to the one described by KSssl, Mtiller,
and Hillebrandt 14], and we have used their results as a qualitative comparison. In Figs. 6, 7,
and 8, we show the contour plots of density, thermal pressure, magnetic pressure, and kinetic
energy for the three cases in which By O, By 10, and By 100. For By 0 (Fig. 6),
there is one spherically symmetric hydrodynamical shock wave that propagates outward. This
solution is essentially identical to the one obtained with other purely hydrodynamical codes,
e.g., PPM. For By 10, the shock wave is still mostly spherically symmetric, but it becomes
slightly elongated in the direction of the magnetic field.

For By 100, the explosion becomes highly anisotropic: there is essentially no displace-
ment of gas in the direction transverse to the magnetic field, and two hydrodynamical shocks
propagate in the parallel direction. In this highly magnetized fluid, the slow magnetosonic
wave speed is almost equal to the sound speed, and the fast wave speed is almost equal to the
Alfven velocity. Several weak magnetosonic waves are radiated transverse to the magnetic
field as an initial transient until total pressure equilibrium is reached at the center. While
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FIG. 6. The solution to the spherically symmetric explosion problem in the hydrodynamic limit Byo 0 is
shown on a mesh with 120-by-120 grid points after 48 timesteps. For each variable, there are 20 equally spaced
contour levels. A CFL condition of 0.8 was used. No artificial viscosity orflattening was applied.
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FIG. 7. The solution to the spherically symmetric explosion problem with an initial field Byo 10 is shown
after 48 timesteps. All the other conditions are the same as in Fig. 6.
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FIG. 8. The solution to the spherically symmetric explosion problem with an initial field Byo 100 is shown

after 48 timesteps. All the other conditions are the same as in Fig. 6.

the results are in good agreement with the results of 14], we see that the waves and shocks
look very sharp and clean with little or no oscillations. The strong steepening of the profiles
generates the step-like irregularities that appear in the contour lines near the strong disconti-
nuities. These irregularities are a well-known feature of higher-order Godunov methods (see
Woodward and Colella [24]). A flattening algorithm and a quadratic artificial viscosity will
cure this effect and prevent the appearance of low-amplitude nonphysical oscillations.

3.2.2. Orszag-Tang vortex. In the second numerical example, we studied the evolution
of a compressible Orszag-Tang vortex system like the ones described by Dahlburg and Picone
[10], [19]. This problem has been introduced by Orszag and Tang [18] as a simple model to
study the evolution of MHD turbulence, and it has been generalized by Dahlburg and Picone
10] for the case of a fully compressible medium. We have selected this problem to test how
our two-dimensional code treats the interactions between the several shock waves generated as
the vortex system evolves. The initial conditions have a periodic structure containing X-points
in both the velocity and the magnetic field. The velocity and magnetic fields have different
modal structures. We selected an initially uniform pressure and density based on the value
of the average Mach number. The initial configuration is as follows: we choose a cartesian
uniform grid with periodic boundaries and 192-by-192 grid points. The fields are given as in
[19]:

p(x, y, 0) P0,

PCx, y, 0) P0,

v(x, y, 0) sin(y): + sin(x)3,
B(x, y, 0) sin(y): + sin(2x)3,
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FIG. 9. The evolution of the compressible Orszag-Tang vortex system for the case with initial Mach number
Mo and initial fl . The solution was computed on a periodic cartesian mesh with 192-by-192 zones and
is shown after 300 timesteps (approximately 2 Alfven transit times). The upper plot shows equally spaced contour

levels of the thermal pressure. There are several shockfronts that propagate at transverse directions with respect to

the grid and eventually interact. The lower plot shows the pressure profile along the solid line at Y 60. There are

two sharp jumps clearly visible where the solid line intersects the two strong shockfronts.

where and are unit vectors in the x and y directions. The initial average Mach number
is given by M2 po]Vol/(Y Po), where IVl0 is the initial root mean square (rms) value
of the velocity. The initial average/3, i.e., the ratio of thermal and magnetic pressure, is

/3 8zr P0 IB21.
We examined the case with M 1.0 and/3 . In Fig. 9 we present the contour

profiles of the thermal pressure after 300 timesteps. The plot shows the pressure profile along
the solid line at y 60, and it shows how the shocks remain sharply defined within a few
grid points even in two dimensions. There are several shock fronts that propagate at different
angles with respect to the grid, and which interact until the vortex system decays and gives
rise to small-scale structures. The dynamics of the decay appears to closely match the one
described in Dahlburg and Picone 10], even though we are not using exactly the same initial
conditions. We note that in our code, the decay of the vortex system is determined by the
numerical viscosity and resistivity that is built into the dissipation mechanism of the code.
The similarity between our results and the results of Dahlburg and Picone, who use physical
dissipation, therefore suggests that the numerical dissipation indeed provides a good model
for the physical diffusive processes at subgrid scales. This conjecture, which deserves further
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experiments, has been advanced also for the case ofhydrodynamic turbulence by, for example,
Cattaneo et al. [6].

4. Discussion and conclusions. We have derived an explicit, second-order Godunov
method for the equations of ideal MHD in two and three spatial dimensions. Our approach
contains many of the same elements applied successfully to ideal, compressible hydrody-
namics. Most of the general techniques that improve the behavior of Godunov methods in
hydrodynamics, such as flattening and artificial viscosity, carry over to our code. Our main
innovation is the construction of an approximate, linearized Riemann solver. This Riemann
solver detects and handles the degeneracies that occur in ideal MHD, and is well behaved
for physically acceptable states. By well behaved we mean that the Riemann solver does not
produce nonphysical states like, for example, negative pressures and densities in the presence
of strong rarefaction waves.

To apply the one-dimensional characteristic analysis to the formulation of the Riemann
problem, we rewrote the equations in quasi-conservative form. That is, we handle the terms
containing derivatives of the magnetic field component parallel to each spatial direction,
OBx/OX and OBy/Oy, as source terms, not as fluxes. In general coordinates, we split the
terms in the equations into different components: some that must be treated as divergences,
some as gradients, and some as pure source terms. Our particular quasi-conservative for-
mulation is well suited to the operator-split methodology on which we based our code. At
each timestep, we solve two sets of one-dimensional equations, one set for each spatial direc-
tion. These equations are not the same as the purely one-dimensional equations because they
contain source terms arising from the Maxwell equation V.B 0. Furthermore, we wrote
the momentum equations in such a way that the condition V.B 0 applies exactly to the
continuum equations, even if it does not apply to the discretized version. For the examples
we have considered, our approach appears to suppress the occurrence of monopole forces that
would lead to unphysical dynamics. In cases where our basic difference approximation does
not suffice to maintain the divergence-free condition of the magnetic field, we have the option
of applying a Hodge decomposition to the magnetic field at each timestep to eliminate the
monopole component.

The code achieves high resolution and accuracy in the presence of strongly discontinuous
solutions. This high performance has some limitations, however. Because performing a
Riemann solve is computationally expensive, and because the time advance of the solution is
limited by the CFL condition, our code is best suited to studying transient phenomena that
involve the propagation and interaction of shock discontinuities and MHD waves. While the
current formulation of the code can already be used to study a wide variety of problems,
there are good reasons to construct a fully unsplit Godunov scheme for the MHD equations.
We expect that an unsplit method will be more appropriate when studying systems with
strongly sheared fields, and that generally such an approach will improve the advection of the
solenoidal magnetic field. This problem is analogous to the advection of the velocity field in
an incompressible medium. Colella [8] discusses a general method of constructing unsplit
methods that make use of the multidimensional wave propagation properties of the solution
to construct the Godunov fluxes. We believe that the same approach will work also for the
equations of MHD, and that our Riemann solver will be the base of one such scheme. As
usual, the final answer must rely on numerical experiments.
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the numerical reliability and computational efficiency of these approaches on applications from the MINPACK-2 test

problem collection. The conclusion is that ADIFOR is the method of choice, leading to results that are as accurate as
hand-coded derivatives, while at the same time outperforming difference approximations in both accuracy and speed.

Key words, optimization, derivatives, Jacobian, automatic differentiation, function differences, sparsity, large-
scale, sensitivity analysis, nonlinear systems, ADIFOR
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1. Introduction. The solution of large-scale nonlinear problems often requires the com-
putation of the Jacobian matrix ft(x) of a mapping f n

__
m. This computation is

required, for example, in constrained optimization, parameter identification, sensitivity anal-
ysis, and the solution of systems of stiff differential and algebraic equations. In this paper, we
consider three approaches to computing large, sparse Jacobian matrices: function differences,
hand coding, and automatic differentiation.

The most popular approach is to use function differences (FD) to approximate the Jaco-
bian matrix. The ith column of ft(x) can be approximated by first-order accurate forward
differences and by second-order accurate central differences,

f(x + hiei) f(x) f(x + hiei) f(x hiei)

hi 2hi

respectively, where hi is a suitably chosen parameter and ei is the ith unit vector. Computing
derivatives by differences has the advantage that only the function is needed as a black box;
however, the accuracy of such derivative approximations is hard to assess. The choice of the
difference parameter hi can be a source of difficulty for many problems, in particular if the
problem is highly nonlinear or if the function is noisy. A small stepsize hi is needed to suitably
approximate the derivatives, yet it may lead to numerical cancellation and the loss of accuracy.

The potential inaccuracies of difference approximations can be avoided if one is able
to supply derivative code. One approach is to hand code a subroutine to evaluate f’(x).

*Received by the editors March 11, 1993; accepted for publication (in revised form) August 9, 1993. This work
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In addition to being accurate, hand coding usually produces efficient code. However, this
approach is often time consuming and error prone, especially if the function is complicated.
In particular, new coding effort is required whenever the function is modified.

Another way to obtain Jacobian matrices is by using symbolic manipulation packages
such as Maple, Reduce, Macsyma, or Mathematica. Given a string describing the defini-
tion of a function, symbolic manipulation packages provide algebraic expressions for deriva-
tives expressed in terms of the independent variables. Symbolic differentiation is a powerful
technique, but quickly runs into resource limitations when applied to even moderately sized
problems (described by 100 lines of code, say). Hence we will not consider it further.

Still another way to obtain derivative code is through automatic differentiation (AD). AD
techniques rely on the fact that every function, no matter how complicated, is executed on a

computer as a (potentially very long) sequence of elementary operations such as additions,
multiplications, and elementary functions such as the trigonometric and exponential functions.
By applying the chain rule to the composition ofthose elementary operations, one can compute
derivative information for f exactly and in a completely mechanical fashion. The perceived
disadvantage ofAD techniques is that they are not able to handle large problems. In particular,
there seems to be a perception that AD techniques are not able to compute large sparse Jacobian
matrices either accurately or efficiently. The main purpose of this paper is to dispel this
perception.

In 2 and 3, we review three approaches to computing sparse Jacobian matrices: hand
coding, difference approximations, and automatic differentiation using the ADIFOR tool. The
rest of the paper uses several of the MINPACK-2 test problems to compare these approaches.
The test problems are described in 4, and computational results are presented in 5 and 6.
We conclude that ADIFOR is the method of choice, leading to results that are as accurate as
hand-coded derivatives, while at the same time outperforming difference approximations in
both accuracy and speed.

2. Computing sparse Jacobian matrices. Computing the Jacobian matrix f’(x) of a
mapping f Rn --+ m can be a difficult task when f’(x) is large and sparse, particularly if
a sparse data structure is used. One potential difficulty lies in the need to place elements of
f’(x) into the correct positions of the sparse data structure once they have been computed.
For many problems, however, it is relatively easy to develop code for evaluating the Jacobian-
vector product f’(x)v for any x, v 6 Rn since there is no dependence on data structure. In
this section, we discuss the compressed Jacobian technique for computing sparse Jacobian
matrices.

We assume that code is available for evaluating the Jacobian-vector product. It is often
possible to write such code by hand, but as we shall see in the next section, it is also possible to

generate this code with AD tools. If f’ (x) v code is not available, the Jacobian-vector product
can be approximated by

f’ (x)v

for some difference parameter hr.

f(x + hvv) f(x)

hv

Each column of f’(x) can be obtained by choosing v to be the corresponding Cartesian
basis vector. This can be extremely inefficient as it requires the computation of n Jacobian-
vector products or in the case of a difference approximation, n function evaluations. To avoid
this inefficiency, we partition the columns of f’ (x) into groups such that columns in a group
do not have nonzeros in the same row position. For example, if a function f 4 ;5 has a
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Jacobian matrix ft (x) with the structure (symbols denote nonzeros, and zeros are not shown)

0
0 o

f’(x) /x o

then columns 1 and 2 can be placed in one group, while columns 3 and 4 can be placed in
another group. This partitioning identifies structurally orthogonal columns of f’(x), that is,
columns whose inner product is zero, independent of x.

Given a partitioning of f’(x) into p groups, each group consisting of structurally orthog-
onal columns, we can determine f(x) with p evaluations of f(x)v. For each group we
compute f’ (x)v, where vi if the i-th column is in the group, and vi 0 otherwise. In the
above example, we would compute ft(x)vi for Vl ea -+- e2 and v2 e3 + e4, and obtain

0
0 o

f’(X)Vl A f’(x)v2 O

at the cost of only two evaluations of f(x)v (versus four for the naive approach). Because
of the structural orthogonality property, we can uniquely extract all entries of the Jacobian
matrix from the Jacobian-vector products.

When Jacobian-vector products f’(x)vi are computed by hand-coded programs, it is
usually advantageous to calculate them simultaneously to avoid the reevaluation of common
expressions. This is the motivation for the compressedJaobian approach where we assemble
the vectors vi into an n x p matrix V and compute f’(x)V. Clearly, the advantages of com-
puting the compressed Jacobian tend to increase with p. Figure 2.1 illustrates the difference
between the sparsity structure of f’ (x) and the sparsity structure of the compressed Jacobian

f(x) V for the inverse elastic rod (IER) problem from the MINPACK-2 collection (see 4).
Curtis, Powell, and Reid (CPR) [11] were the first to note that a partitioning of the

columns into p structurally orthogonal groups allows the approximation ofthe Jacobian matrix
by function differences with p function evaluations. In the CPR algorithm, the groups are
formed one at a time by scanning the columns in the natural order and including a column
in the current group if it has not been included in a previous group and if it does not have a
nonzero in the same row position as another column already in the group.

Coleman and Mor6 [10] showed that the partitioning problem could be analyzed as a
graph coloring problem and that, by looking at the problem from the graph coloring point
of view, it is possible to improve the CPR algorithm by scanning the columns in a carefully
selected order. Coleman, Garbow, and Mor6 [9], [8] describe software for the partitioning
problem. Given a representation of the sparsity structure of f(x), these algorithms produce a
partitioning of the columns of f’(x) into p structurally orthogonal groups. For many sparsity
patterns, p is small and independent of n. For example, if the sparsity structure has bandwidth
/3, then p _</3. We also note that discretization of an infinite-dimensional problem also leads
to sparsity patterns where p is independent of the meshsize.
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FIG. 2.1. IER Jacobian sparsity (left) and IER compressed sparsity (right).

3. AD and the ADIFOR tool. AD [17] is a chain rule-based technique for evaluating
the derivatives of functions defined by computer programs with respect to their input variables.
There are two basic modes of AD, which are usually referred to as forward and reverse. As
discussed in 12], the reverse mode is closely related to adjoint methods and has a very low
operation count for gradients. However, its potentially large memory requirement has been
a serious impediment to its application in large-scale scientific computing. When there are
several independent and dependent variables, the operation count for evaluating the Jacobian
matrix may be lowest for certain mixed strategies 15] rather than for the forward or reverse
mode. AD can also be extended to the accurate evaluation of second and higher derivatives
[3], [7], [13]. A comprehensive collection on the theory, implementation, and some earlier
applications can be found in 14].

In contrast to the approximation of derivatives by function differences, AD incurs no
truncation error. Hence, at least for noniterative and branch-free codes, the resulting derivative
values are usually obtained with the working accuracy of the original function evaluation. In
contrast to fully symbolic differentiation, both operations count and storage requirement can
be a priori bounded in terms of the complexity of the original function code.

The ADIFOR tool [2], [4], [5] provides AD of programs written in Fortran 77. Given
a Fortran subroutine (or collection of subroutines) describing a function, and an indication of
which variables in parameter lists or common blocks correspond to independent and dependent
variables with respect to differentiation, ADIFOR produces Fortran 77 code that allows the
computation of the derivatives of the dependent variables with respect to the independent
variables. ADIFOR employs a hybrid of the forward and reverse modes of AD. The resulting
decrease in complexity compared with an implementation based entirely on the forward mode
is usually substantial.

In contrast to some earlier AD implementations 16], the source translator ADIFOR was
designed from the outset with large-scale codes in mind. The facilities of the ParaScope For-
tran environment [6] control flow and data dependence flow information. ADIFOR produces
portable Fortran 77 code and accepts almost all of Fortran 77; in particular, arbitrary calling
sequences, nested subroutines, common blocks, and equivalences. The ADIFOR-generated

1For questions and information about ADIFOR e-mail adi for-reque st @mcs. anl. gov.
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code tries to preserve vectorization and parallelism in the original code. It also employs a
consistent subroutine naming scheme that allows for code tuning, the use of domain-specific
knowledge, and the exploitation of vendor-supplied libraries. It should be stressed that ADI-
FOR uses data flow analysis information to determine the set ofvariables that require derivative
information in addition to the dependent and independent ones. This approach allows for an
intuitive interface and greatly reduces the storage requirements of the derivative code.

ADIFORproduces code to compute the Jacobian-vector product f’(x) v or the compressed
Jacobian matrix f’ (x)V. The directional derivative f’ (x)v can be evaluated without forming
the Jacobian matrix explicitly and thus potentially at a much lower computational cost. The
operations count for this calculation is bounded by three times that of f; actual run time ratios
vary depending on the implementation, the computing platform, and the nature of f. The com-
pressed Jacobian matrices can be computed by exploiting the same graph coloring techniques
discussed in 2. As already pointed out, the advantages ofcomputing the compressed Jacobian
matrix increase with p because it allows the reuse of expressions. ADIFOR-generated code
reuses these expressions automatically; this is not possible with difference approximations
and may not be done in a hand-coded subroutine to evaluate f’ (x)V.

4. Test problems. In this section, we describe the problems used in comparing the dif-
ferent approaches for computing a sparse Jacobian matrix. The descriptions are brief since
the problems are part of the MINPACK-2 test problem collection2; the current version of
this collection is described by Averick, Carter, Mor6, and Xue [1]. For each problem, the
MINPACK-2 test collection contains subroutines that define the sparsity pattern of f’ (x) and
evaluate f(x) and f’(x)V for any V Nnp.

These problems are representative of computational problems found in applications. Col-
location and finite differences are used to discretize these problems so as to obtain systems
of nonlinear equations f(x) 0, where f Rn -+ Rn is a nonlinear mapping with a sparse
Jacobian matrix f’(x).

Flow in a channel (FIC). The analysis of fluid injection through one side of a long vertical
channel leads to the boundary value problem

u R[u’u"- uu’"], 0 < < 1,

u(O)=u’(O)=O, u(1)=l, u’(1)=O,

where u is the potential function, u’ is the tangential velocity, and R is the Reynolds number
of the fluid.

Discretization of this problem by a k-stage collocation method, with k 4, leads to
a system of n 8nh equations, where nh is the number of subintervals in the collocation
scheme. In this problem there is a maximum of nine nonzeros per row, independent of nh.

Swirling flow between disks (SFD). The analysis of steady flow of a viscous, incom-
pressible, axisymmetric fluid between two rotating, infinite coaxial disks, located at 0 and

1, yields the boundary value problem

,f" if,,,+ + gg’ 0, g"+fg’+f’g=O,
f(0)=f’(0)=f(1)=f’(1)=0, g(0)=f20,

0_<t<l,

g(1) ’1,

where f’ is radial velocity, g is angular velocity ([20 and "21 are the angular velocities of the
infinite disks), and 0 < << 1 is a viscosity parameter.

ZSoftware for the MINPACK-2 test problem collection is available by anonymous ftp from
info. mcs. anl. gov; current contents are in the file pub/MINPACK-2/README.
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Discretization of this problem by a k-stage collocation method, with k 4, leads to a
system of n 14nh equations, where nh is the number of subintervals in the collocation
scheme. In this problem there is a maximum of 14 nonzeros per row, independent of nh.

Incompressible elastic rods (IER). The shape of a thin incompressible elastic rod,
clamped at the origin and acted on by a vertical force Q, a horizontal force P, and torque M
is described by the solution of the boundary value problem

O’(s) Qx(s) Py(s) + M, x’(s) cos[0(s)],
x (0) y(O) 0 (0) O,

y’(s) sin[0(s)],

where 0 is the local angle of inclination, and s is the arc length along the rod. We need to
determine Q, P, and M such that x(.), y(.), and 0(.) solve this boundary value problem and
satisfy the boundary conditions x (1) a, y(1) b, 0 (1) c.

Discretization by a k-stage collocation method, with k 4, leads to a system of n
15nh + 3 equations, where nh is the number of subintervals in the collocation scheme. The
sparsity structure of the Jacobian and compressed Jacobian matrix for nh 6 are shown in
Figure 2.1. The nonzeros in the last three columns correspond to the variables Q, P, and M.
In this problem there is a maximum of 17 nonzeros per row, independent of nh. Since there
are 17 columns in the compressed Jacobian matrix, the coloring is optimal.

Solid fuel ignition (SFI). This problem arises in the analysis of a thermal reaction process
dependent upon a balance between chemically generated heat addition and heat transfer by
conduction in a rigid material. A steady-state model of this process can be described in terms
of the solution uz of the boundary value problem

--Au(x) =)exp[u(x)], x E f2, u(x) O, x

where A is the Laplace operator, f2 is a domain in R2 with boundary 02, and 2 6 .
Discretization of this problem by finite differences on the unit square leads to a system of

n nxny equations, where nx and ny are the number of interior gridpoints in the coordinate
directions, respectively. For this problem there is a maximum of five nonzeros per row,
independent of nx and ny.

Flow in a driven cavity (FDC). The steady flow of a viscous incompressible fluid in a
planar region f2 is described in terms of a stream function by the boundary value problem

A21]f R[(Oylr)(OxAlr (Oxf)(OyAl)] 0,

1 if 2 1,
P(I, 2) OxaP(l, 2) O, OyaP(l, 2)

0 if 0 < 2 < 1.

Discretization by finite differences on the unit square leads to a system of n nxny
equations, where nx and ny are the number of interior grid points in the coordinate directions,
respectively. The Jacobian matrix has a maximum of 13 nonzeros per row independent of nx
and ny.

5. Accuracy. We first compare the accuracy of the Jacobian matrix produced by
ADIFOR, with the accuracy of the function difference approximation. As the standard, we
take the Jacobian matrix included with the MINPACK-2 test problem collection. We measure
both the absolute error and the relative error,

{ [Oi,jf(x) aij(x). }max [Oi,jf(x) aij(x)[ max
ij ij ma-I I-ij:)
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respectively, where Oi, j f(x) is the derivative produced by the MINPACK-2 software, and

ai,j(x) is either the difference approximation or the ADIFOR Jacobian matrix.
The results presented in Table 5.1 were obtained on a Solboume 5E/902 in double-

precision IEEE arithmetic. For these results, we evaluated the Jacobian matrices at a random
vector with elements in the interval [0,1 and used a value of hi 10-8 for all the variables.
We do not claim that this choice is optimal, but for these problems, this choice produces
reasonably accurate results. In general, the accuracy of an approximation with differences of
function values depends on the choice ofthe difference parameters hi, but even with an optimal
choice of difference parameter, we can expect a difference approximation that is accurate only
up to half the number of possible significant digits.

Problem N

FIC 9’;’
SFD 98
IER 93
SFI 100
FDC 100

TABLE 5.1
Accuracy ofADIFOR andfunction differences.

Absolute Error Relative Error
ADIFOR FD ADIFORFD

2.9 x 10-6

2.5 x 10-8

4.4 x 10-8

9.7 x 10-8

3.2 x 10-6

1.4 x 10-14

0.0
0.0
0.0
3.5 x 10-14

5.6 x 10-1

1.0
1.6 x 10-1

3.8 x 10-8

5.6 x 10-6

9.5 x 10-16

0.0
0.0
0.0
5.4 x 10-14

The results in Table 5.1 clearly indicate the superior accuracy of ADIFOR as compared
with function differences. In terms of absolute error, ADIFOR and hand-coded Jacobians
agree up to 16 significant digits, while function differences offer at most half that accuracy.

The same type of observation can be made for the relative error. However, relative error
can be misleading if the Jacobian elements are sufficiently small. For FIC and IER, the relative
error is usually of order 10-7, but for small Jacobian entries, it may be of order 10-1 In the
case of SFD, function differences show a relative error of one. This is due to entries where
the derivative value is of order 10-13 but function differences yield zero. Note, however, that
ADIFOR accurately computes these small elements.

Ii. Timing. We now compare the time required to compute a sparse Jacobian matrix by
all three approaches. The timing information was obtained for double-precision computations
on a Solboume 5E/902 and an IBM RS6000/580 workstation. Since we are interested in large
problems, we used problems with n variables where n ranges between 14, 000 and 160, 000.
Similar results were obtained on smaller problems.

Figure 6.1 shows the ratio of the run times for difference approximations to the Jacobian
matrix to ADIFOR-generated derivative code. These results clearly show that the ADIFOR-
generated code is faster than the difference approximations in all cases and that the performance
advantage is more pronounced on the IBM than on the Solboume. This can be explained by
noting that the Solboume has a true scalar processor, whereas the IBM employs a pipelined
superscalar chip that performs well on the vector operations that constitute the bulk of the
ADIFOR-generated derivative code.

In general, we expect ADIFOR to perform best if the number of groups p is large because
the advantages of computing the compressed Jacobian matrix increase with p. This is borne
out by our results. The performance of ADIFOR for small p tends to depend on the particular
problem.

Note that the run time ratios in Figure 6.1 are independent of n. This can be explained by
noting that the run time is proportional to the number of groups p associated with the sparsity
structure; for these problems, p does not depend on the size n of the Jacobian matrix.
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FIG. 6.1. FD vs. ADIFOR timings on the Solbourne (left) and the IBM (right).

The timing comparison of the ADIFOR-generated code with the hand-coded Jacobian
matrix appears in Figure 6.2. We see that the ADIFOR-generated Jacobian code performs
somewhat worse than the hand-coded Jacobian matrix, but not by a margin of more than
roughly 2.5.

2.6

1.8

1.6

1.2

<0.

SFi, p=7

SFD, 14

2.4

2.2

1.8

1.6

1.4

1.2

FIC,p=9

IER, 18

10 12 14 16 I0 10 12 14 16
PROBLEM SIZE xl0

6pROBLEM SIZE xlO

FIG. 6.2. ADIFOR vs. hand-code timings on the Solbourne (left) and the IBM (right).

Last, Table 6.1 puts these these timings in perspective by comparing the time for computing
the Jacobian matrices (FD, ADIFOR, and MINPACK) with the time required to partition
the columns into structurally orthogonal groups (DSM), and the time required to convert the
compressed Jacobian matrix into a sparse matrix format (FDJS). Subroutines for these tasks are
described by Coleman, Garbow, and Mor6 [8], [9]. Subroutine DSM takes the sparsity pattern
of the Jacobian matrix and produces a partitioning of the columns of f’(x) into p structurally
orthogonal groups, while subroutine FDJS converts the compressed Jacobian matrix into a
sparse matrix format. Columns N, NNZ, and P show the dimension, number of nonzeros in
the Jacobian, and number of groups, respectively, for each of the problems.

Table 6.1 shows that the time required by DSM is significant when compared with the
time required to compute a Jacobian matrix by either ADIFOR or the hand-coded MINPACK
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subroutines. This is justified for most problems because DSM needs to be called only once
for each sparsity pattern. Moreover, the runtime ofDSM only depends on the sparsity pattern,
not on the expense of evaluating the function or Jacobian matrix.

TABLE 6.1
Detailed Solbourne timings.

Problem N NNZ P

SFI 14884 73932 7
FIC 16000 123987 9
SFD 14000 154981 14
IER 15003 158000 18
FDC 14884 191056 19

DSM FD

2.38 1.35 0.93
2.62 5.23 2.55
3.79 5.48 2.69
6.14 7.43 2.77
9.11 11.71 6.53

Time (seconds)
ADIFOR MINPACK FDJS

0.59 .19
1.46 .35
2.08 .43
3.16 .48
6.50 .54

We also note that the runtime of FDJS is small compared with the other times in Table
6.1 and is proportional to the number of nonzeros in the Jacobian. This was to be expected
because FDJS converts the compressed Jacobian matrix into a column-oriented sparse matrix
format, but does not perform any arithmetic operations. We also note that the time required
by FDJS becomes less significant as the number of groups p increases.

7. Conclusions. We conclude that ADIFOR-derived derivatives are certainly superior to
difference approximations. Not only does the AD approach not suffer from truncation error,
but its ADIFOR incarnation delivers code that outperforms divided differences by a factor
of up to 3.5. The other attraction of ADIFOR is that one can generate derivative code at
the touch of a button, whereas the development of a derivative code by hand is tedious and
time consuming. Whether the effort involved in computing a Jacobian by hand is worth the
modest speedup that we have observed here obviously depends on the application, but from
our perspective it is not.

Acknowledgments. We would like to thank Richard Carter for many stimulating discus-
sions and Jack Dongarra for the use of the IBM RS-6000.
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SPECIAL SECTION ON
ITERATIVE METHODS IN NUMERICAL LINEAR ALGEBRA

The 1992 CopperMountain Conference on Iterative Methods in Numerical Linear Algebra
was the seventh conference in the Copper Mountain series and the second devoted to general
iterative methods. It was attended by approximately 190 mathematicians from all corners of
the world. The meeting, held April 9-14, 1992, took place at the Copper Mountain Resort,
which is located 70 miles west of Denver, in the heart of Colorado’s famous Summit County
ski region. The setting of the conference was a cluster of buildings nestled at the base of the
resort’s ski hill. Morning and evening sessions were scheduled, leaving afternoons open for
informal discussions and recreation.

During the five days of the meeting, 109 talks on current research were presented. These
talks were organized by content and grouped into sessions. Session topics included the Theory
ofIterative Methods (two sessions), Nonsymmetric Systems (four), Preconditioning Strategies
(two), Parallel Implementations (three), Applications (four), Multigrid and Multilevel Meth-
ods (three), Domain Decomposition (two), Eigenvalue Problems (two), Integral Equations,
Nonlinear Systems (two), Indefinite and Complex Matrix Problems, Collocation Matrices,
and Software. In addition, there were workshops devoted to Scientific Computing in C++ and
Common Software Standards.

On the first day of the conference each participant was provided with a two-volume set
of Preliminary Proceedings, which contained either a short paper or an abstract by each of
the scheduled speakers. Of those, 49 speakers submitted complete papers to this special issue
of the SlAM Journal on Scientific Computing (SISC). This and the next issue of SISC contain
the results of the refereeing process. They represent a rich mix of papers on a wide variety of
topics related to iterative methods.

The following twelve papers represent the conference. The first three deal with general
iterative algorithms. The second and third involve quasi-minimal residual algorithms, a subject
that inspired much discussion at the meeting. Papers 4 and 5 analyze interesting theoretical
aspects of iterative methods. Papers 6 through 9 deal with precondition strategies. Papers 10
through 12 explore the implications for iterative methods of parallel computing environments.

In the next issue the last twelve papers again represent the conference. The first seven
of these deal with multigrid or multilevel algorithms. The first of these is a very interesting
paper that uses the tools of classical iterative methods to analyze and compare many well-
known algorithms. The second and third papers also contribute to the development of the
theory of multigrid and multilevel algorithms. Papers 4 through 6 are concerned with domain
decomposition methods, which, incidentally, fall into the structure developed in the first paper.
The final six papers in this group discuss iterative methods in the context ofspecific applications
and represent the many fine application-specific talks presented at the conference.

A special effort was made to bring students to the meeting. The vehicle for this effort
was a Student Paper Competition in which students were asked to submit an original research
paper consisting primarily of their own work. We were fortunate enough to be able to provide
all student authors participating in this competition with free lodging and registration. Out
of thirteen submissions, three winners were selected. First place went to Xian-Zhong Guo
from the University of Maryland for his work, "The Algebraic Hierarchical Basis Multigrid
Method?’ Second place was awarded to Marlis Hochbruck from the University of Karlsruhe,
Germany, for her paper, "On the Use ofTwo QMR Algorithmsfor Solving Singular Systems
and Applications in the Markov Chain Modeling?’ Third place honors were awarded to
Andrew Lumsdaine from MIT for the paper, "Accelerating Dynamic Iteration Methods with
Application to Semiconductor Device Simulation." All winners were awarded a travel stipend,
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and their papers were presented at a special session devoted to the Student Paper Competition.
We would like to thank the following members of the program committee for their help

in editing this special issue. They are: Steve Ashby, Howard Elman, Roland Freund, Anne
Greenbaum, Seymour Parter, Paul Saylor, Homer Walker, and Olof Widlund. Through their
efforts, the articles contained in this special issue were carefully refereed and brought to print
on schedule.

We would also like to extend a special thanks to Fred Howes of the Applied Mathematical
Sciences Program of the Department of Energy for generous support of this meeting. Without
his help, this meeting could not have taken place.

As this issue goes to press, planning for the next conference in this series is in its final
stages. It will be called the Colorado Conference on Iterative Methods and will be held April
4-9, 1994, in Breckenridge, Colorado. Plans again include a special journal issue in SISC. It
is our hope that the lively interaction and the fine quality of presentations and papers that have
marked the previous meetings can be duplicated at the upcoming meeting.

Conference Chairmen
Tom Manteuffel
Steve McCormick

Special Issue Editors
Steve Ashby
Howard Elman
Roland Freund
Anne Greenbaum
Seymour Parter
Paul Saylor
Homer Walker
Olof Widlund



SIAM J. ScI. COMPUT.
Vol. 15, No. 2, pp. 297-312, March 1994

() 1994 Society for Industrial and Applied Mathematics
004

RESIDUAL SMOOTHING TECHNIQUES FOR ITERATIVE METHODS*
LU ZHOU AtqD HOMER E WALKER

Abstract. An iterative method for solving a linear system Ax b produces iterates {xk with associated residual
norms that, in general, need not decrease "smoothly" to zero. "Residual smoothing" techniques are considered that
generate a second sequence {Yk via a simple relation yk (1 0k)yk- + r/kxk. The authors first review and comment
on a technique of this form introduced by Sch6nauer and Weiss that results in {Yk} with monotone decreasing residual
norms; this is referred to as minimal residual smoothing. Certain relationships between the residuals and residual
norms of the biconjugate gradient (BCG) and quasi-minimal residual (QMR) methods are then noted, from which it
follows that QMR can be obtained from BCG by a technique of this form; this technique is extended to generally
applicable quasi-minimal residual smoothing. The practical performance ofthese techniques is illustrated in a number
of numerical experiments.

Key words, iterative linear algebra methods, Krylov subspace methods, residual smoothing methods, GMRES,
CGS, Bi-CGSTAB methods, QMR methods

AMS subject classification. 65F10

1. Introduction. In recent years, there has been a great deal of interest in iterative meth-
ods for solving a general nonsymmetric linear system

where A 6 ;nn and x, b 6 n. The quality of the iterates {xk produced by a method is often
judged by the behavior of {llrll}, where rk b Axk; in particular, it is usually desirable
that {llr II} converge "smoothly" to zero.

In the widely used generalized minimal residual (GMRES) method [13], each xk is char-
acterized by

lib- Axkl[ min lib- Axll,
xxo+tEk(ro,A)

where 112 is the Euclidean norm and the Krylov subspace/Ck(r0, A) is defined by

/Ck(ro, A) span {ro, Aro Ak-’ro}.
For GMRES, then, {[[rkl[2} converges to zero optimally among all Krylov subspace methods,
for which xk 6 x0 +/Ck(r0, A). Other methods, such as biconjugate gradient (BCG) [12],
[4] and conjugate gradient squared (CGS) [15], have certain advantages over GMRES but
often exhibit very irregular residual-norm behavior. This irregular behavior has provided an
incentive for the development of methods that have similar advantages but produce better
behaved residual norms, such as the biconjugate gradient stabilized (Bi-CGSTAB) methods
[10], [17] and methods based on the quasi-minimal residual (QMR) approach [2], [3], [6]-[8].

Another approach to generating well-behaved residual norms has been pursued in [14]
and [18]. In this approach, an auxiliary sequence {yk} is generated from {xk} by a relation

Y0 X0,
(1.1)

y (1 rlk)y-i + rlx, k=l,2

*Received by the editors May 18, 1992; accepted for publication (in revised form) December 27, 1992. This
work was supported in part by United States Air Force Office of Scientific Research grant AFOSR-91-0294 and
United States Department of Energy grant DE-FG02-92ER25136, both with Utah State University.

Department of Mathematics and Statistics, Utah State University, Logan, Utah 84322-3900.
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in which each r/k is chosen to minimize lib A((1 O)Yk-1 + r/xk)ll2 over 0 6 JR, i.e.,

S_I(Fk--Sk-1)
(1.2) 0k

Ilrk s_a 112
where sk- b Ayk-1. (A weighted Euclidean norm is allowed in [18], but this is not

important here.) The resulting residuals sk b Ayk clearly have monotone decreasing
Euclidean norms, and IIs 112 _< IIr 112 for each k.

Our purpose here is to explore residual smoothing techniques of the form (1.1). In 2, we
elaborate briefly on the particular technique of 14] and 18] described above, which we refer to
here as minimal residual smoothing (MRS). In 3, we first note that the residuals and residual
norms of the QMR and BCG methods are related in certain ways, from which it follows that
QMR can be obtained from BCG by a technique of the form (1.1). We then extend this to
a quasi-minimal residual smoothing (QMRS) technique applicable to any iterative method.
We describe a number of illustrative numerical experiments in 4 and discuss conclusions
in 5.

A notational convention: When helpful, we denote iterates and residuals associated with
a particular method by superscripts indicating that method.

2. Minimal residual smoothing. Assuming we have some iterative method that gener-
ates iterates {xk and corresponding residuals {rk }, we formulate the MRS technique of 14],
18] as follows:

ALGORITHM 2.1. Minimal residual smoothing 14], 18].

INITIALIZE: SET So r0 AND Y0 x0.

ITERATE: FOR k 1, 2 DO:

COMPUTE Xk AND rk.
COMPUTE 0k by (1.2).
SET Sk Sk-1 + rlk(rk Sk-1) AND Yk Yk-1 + rlk(Xk Yk-1).

There is a potential numerical difficulty with Algorithm 2.1. In practice, when the per-
formance of an iterative method has become degraded through numerical error, the computed
value of rk can differ significantly from b Axk. When this happens, the value of sk computed
in Algorithm 2.1 can differ significantly from b Ayk. Algorithm 2.2 below is a mathemat-
ically equivalent variation that does not suffer this difficulty provided an accurate value of
Apk is available for each Pk xk xk-, which is very often the case. In Algorithm 2.2,
both Sk and Yk are determined directly from Pk and Apk; in particular, rk is not involved in
the computation at all. The intermediate quantities uk and vk are maintained so that, after the
updating in the final step, we have rk sk uk and xk Yk + vk. The comparative practical
behavior of Algorithms 2.1 and 2.2 is illustrated in 4.1.

ALGORITHM 2.2. Minimal residual smoothing.

INITIALIZE: SET So r0, Yo x0, AND u0 Vo 0.

ITERATE: FOR k 1, 2 DO:

COMPUTE Pk Xk --Xk-1 AND Apk.

SET Uk Uk-1 nt- Apk AND Vk Ok-1 -k- Pk.
T TCOMPUTE Ok Sk_lUk/Uk Uk.

SET Sk Sk-1 rlkUk AND Yk Yk-1 + rkVk.
UIIAVF U +- (1 O)u Art) v +- (1 Ok)v.

This should not be confused with the QMR squared method, designated QMRS in [8].
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In MRS, each sk is the vector of minimal Euclidean norm along the line containing
sk-1 and rk. There is an obvious extension, viz., inductively determining sk as the vector of
minimal Euclidean norm in the affine subspace containing sk-1 and rk rk-e for some .
This extension can be implemented reasonably economically (in O(n) + O(g2) arithmetic
operations for each k). However, there is no guarantee of improvement, and, in experiments
that we carried out, it was not more effective than basic MRS in reducing the residual norm.

3. Quasi-minimal residual smoothing.

3.1. How QMR smoothes BCG. We first develop certain relationships between the
QMR and BCG residuals and their norms. We recall the BCG method as follows"

ALGORITHM 3.1.1. Biconjugate gradient method [12], [4].

INITIALIZE:

CHOOSE x0 AND SET qo ro b Axo.
CHOOSE/70 7 0, AND SET 0 /70.

ITERATE: FOR k 1, 2 DO:

~T r_ /_lAq_l ANDSET Xk nt-kqk-1COMPUTE (k rk_ Xk-1
SET r r-i Aqk-1 AND/Tk /Tk-1 Ar-l.
COMPUTE /k /7rk//771_ rk-1
SET qk rk -t- ?’kqk-1 AND k /Tk + }’kk-1.

We consider the basic QMR method obtained from the general method in [7] by omitting
diagonal scaling and using the classical nonsymmetric Lanczos process [11] without look-
ahead. To discuss this, we note that r0 rk-1 generated by Algorithm 3.1.1 clearly form a
basis of/Ck(r0, A). Set Vk (Vl Vk) with vi ri-1/oi-1 and Pi-1 [Iri-1 ll2 for each i.
The columns of Vk also form a basis of/Ok(r0, A), and any x 6 x0 +/Ck(r0, A) can be written
as

(3.1.1) x xo + Vkz, z IR.

By the nonsymmetric Lanczos process, we have

(3.1.2) AVk Vk+l gk,

where H 6 ](k+l)xk is tridiagonal. From (3.1.2), the residual for x in (3.1.1) is

(3.1.3)
b Ax ro A Vkz ro Vk+l Hkz

V+l(poel- Hkz),

QMRwhere el (1, 0 0) r Nk+l The kth QMR iterate is defined by . xo + Vkzk,
where zk satisfies

Ilpoel Hzkll2 , min IlPoel Hzll2.

For later reference, we recall from [7] that

QMR(3.1.4) II,k 112 < /k + rk.

In [7], the upper bound C+ rk is used in a preliminary test for termination in QMR. We
comment further on it below.
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To develop the desired relationships between QMR and BCG, we note that q0 qk-1

generated by Algorithm 3.1.1 also form a basis of/Ck(r0, ,4). Set

and

Gk+l

We assume that Algorithm 3.1.1 can successfully carry out the kth step, in which case 31, 3k
are all nonzero and the columns of Yk form a basis of/Ck(ro, A). From Algorithm 3.1.1, we
have

(3.1.5) AYk Vk+l Gk+l Ik,

where

Since the columns of Y, are a basis for Kk(ro, A), we can write x 6 xo + Kk(ro, A) as
x xo + Yk for 6 k. Then from (3.1.5), we have

(3.1.6)
b- Ax ro AYk ro- Vk+IGk+It

Vk+l [G+I (el-/Y)]
Comparing (3.1.3) and (3.1.6), one easily verifies that

(3.1.7) r, min Ilpoel nzcz[12 min IIGk+l(el k)ll2.

The least-squares problem on the right-hand side of (3.1.7) is easily solved. Setting
(1, 2, Ck)r gives

2 min po2(1 1)2 + p2(1 2)2 q-...--t- p2 p2.2rk k-l(k-1 k)2 -I- kbk"

With a change of variables o 1, 1 1 2 k-1 k-1 k, k k, we have

k

r= min pg.e
i"

zik=o i --I i=0

The unique minimizer is given by

=0,1 k,
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and so

rk yJ __1
j=0 p}

Then the upper bound in (3.1.4) is

1
/k+ rk k-j=0

and it follows from (3.1.6) that the QMR residual vector is

(3.1.9) r?MR Vk+l (Polo Pkk)T
k L

[]jk..=0

_
2 iFBCG"

i=oPip)

These results are of interest in their own right. We summarize them in the following
theorem and then discuss some consequences.

QMRTHEOREM 3.1. With Pi IIr/BCGIla for 0 k, the QMR residual rk is given
by (3.1.9) as a convex combination of the BCG residuals rcG, rk’BCG" The upper bound

QMRx/k + 1 rk on I1 I1 in (3.1.4) is given by (3.1.8) as the square root of the harmonic mean
ofp p2

Equation (3.1.9) gives considerable insight into how QMR produces relatively smoothly
decreasing (if not monotonically decreasing) residual norms. If I[’rkBeG II is small for some

k, then BeG QMR
rk is given large weight in the convex combination (3.1.9) and I1 I1= is small.

If subsequent BCG residual norms increase, then the effect of this increase is mollified by
QMRrelatively small weights in (3.1.9) and any increase in IIr I1 is correspondingly small.

These observations are borne out in Experiments 3 and 4 in 4.2 below, in which each QMR
residual norm is roughly comparable to the best BCG residual norm obtained so far.

QMRIt follows from (3.1.8) that the upper bound /k + rkon IIr = is greater than or equal
rBcGtO minj=0 k I[rCG[[ with equality if and only if [[rCG[[ k lie. In fact, this

.QMRupper bound can be a significant overestimate of litk II, e.g., when A is nearly symmetric.
Indeed, if A were symmetric, then the nonsymmetric Lanczos process would become the
symmetric process, the vectors r/BcG would be mutually orthogonal, and we would have
.QMR[Irk 112 rk from (3.1.9).
From (3.1.9), we immediately obtain

(3.1.10)

QMR Z’ff .QMR Z’k2 BCG
r_l +rk

QMR ’ QMR .2k BCG
a’k-1 + -Xk

2 2This has two useful consequences" First, since z’ff/’_ + Z’//Pk 1, we conclude that
the QMR method is obtained from the BCG method by a smoothing technique of the form
(1.1). We generalize this technique in 3.2 below. Second, (3.1.10) gives a convenient and
economical way ofobtaining the QMR iterates and residuals from BCG. We note, however, that

2This is also implicit in results in [8] derived in a different manner. A different but equivalent way of determining
the QMR iterates from BCG is also given in [8, 3].
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if" BC6 BC6rk and b axk differ significantly because of numerical error, then, as with Algorithm
QMR QMR2.1, r and b axg computed by (3.1.10) can also differ significantly. In this case, an

analogue of Algorithm 2.2 obtained by applying the general Algorithm 3.2.2 below should
perform better. In 4.2, we describe an experiment in which (3.1.10) performs poorly while
the mathematically equivalent implementation of Algorithm 3.2.2 performs satisfactorily.

3.2. General quasi-minimal residual smoothing. Suppose we have some iterative
method that generates iterates {xk} and corresponding residuals {rk}. Since the difference of
any two residuals is in the range ofA, we can find for each k >_ 1 a wk such that rk-1 -rk Awk.
Define Yk (Wl wk) and Pi IIr 112 for 0 k. With Vk+l, Gk+l, and/Qk as in
3.1, we again have (3.1.5), and so (3.1.6) holds for x xo + YkY, e k. It follows as before
that

(3.2.1)

and, for the minimizing Y, we have, as in (3.1.9),

(3.2.2)
k 1

7ri"Sk Vk+l [Gk+l(el /-k)]-- Z=O p) i=0

In analogy with (3.1.10), we can use (3.2.2) to define "smoothed" residuals and iterates by

Sk Sk-1 -Jr- rk
U--1 -k Yk 15_1 Yk-1 -[-

Pk
Xk,

2and we can determine rk simply by 1/r 1/15k_ -4- liPS. This leads to the following
algorithm.

ALGORITHM 3.2.1. Quasi-minimal residual smoothing.

INITIALIZE: SET s0 ro, YO Xo, AND Z’o PO Ilrol12.
ITERATE: FOR k 1, 2 DO:

COMPUTE Xk AND rk.
SET Pk Ilrll2 AND DEFINE "t"k by 1/rff 1/’t’/_12 + 1/p2k.
SET sk (’g/’_l)Sk-I + (/p)rk AND Yk (r#/r#-l)Yk-I + (r#/p#)Xk.

In this algorithm, as in Algorithm 2.1, the divergence ofr and b Axk through numerical
error can cause sk and b-Ay to differ significantly. We formulate a mathematically equivalent
algorithm analogous to Algorithm 2.2 that should avoid this difficulty provided an accurate
value of Apk is available for each pk xk

ALGORITHM 3.2.2. Quasi-minimal residual smoothing.

INITIALIZE: SET So ro, YO x0, u0 Vo 0, AND "to PO Ilroll2
ITERATE: FOR k 1, 2 DO:

COMPUTE Pk Xk Xk-1 AND Apk.
SET/gk Uk-1 + Apk AND Uk Uk-1 -}- Pk.
SET/gk s_ u 2 AND DEFINE Z’k BY /r# /r#_ + 1/p.

2 2 2 2SET Sk Sk-1 (Z /Pk)Uk AND Yk Yk-1

UPDATE Uk <-- (1 (/D))Uk AND Ok <--- (1 (’/7/2/Dk2))Uk"
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It would be trivial to incorporate a diagonal scaling matrix

f2k+l diag (coo cok) 6 I(+l(k+l)

into the above developments, as is typically done in deriving QMR-type methods. In place of
(3.2.1) and (3.2.2), we would then have

rk =_ min IIf2k+lak+l(el k)l12 kk j=0

and, for the minimizing ,
k 1-1 [ak+l Gk+l (el k)] Jk:0Sk Vk+ k+ Wp ri.
i=0

Algorithms 3.2.1 and 3.2.2 would be modified by replacing each occurrence of p2k by cokpk.22
Similar remarks hold for the developments in 3.1.

As in Theorem 3.1, each sk generated by Algorithms 3.2.1 and 3.2.2 is given by (3.2.2) as
a convex combination of r0 rk. Also, (3.2.1) and (3.2.2) imply immediately an analogue
of (3.1.4) and (3.1.8), i.e.,

Ilsn 2 < /k + 1 vk k

The remarks in the two paragraphs following Theorem 3.1, with appropriate changes, are valid
here.

We mention the possibility of applying Algorithms 3.2.1 and 3.2.2 repeatedly to produce
increasingly "smoothed" residuals and iterates. However, in an experiment that we performed,
applying these algorithms twice to a BCG sequence (i.e., applying them once to a QMR
sequence) showed no practical advantages.

In the case of the CGS method, Algorithms 3.2.1 and 3.2.2 can be applied in a straight-
forward way; however, we note an interesting alternative in this specific case. We write the
CGS method as follows:

ALGORITHM 3.2.3. Conjugate gradient squared method 15].

INITIALIZE:
CHOOSE Xo AND SET Po uo ro b Axo AND Vo Apo.
CHOOSE t70 SUCH THAT/90 t70T r0 0.

ITERATE: FOR k 1, 2 DO:

COMPUTE O’k_ /7l)k_l, Ctk_ /Ok-l/Ok-l, AND
qk Uk-1 Olk-l l)k-1.

SET Xk Xk-1 + Olk-1 (Uk-1 AI- qk) AND rk rk-1 Olk-1A (Uk-1 + qk).
SET Pk
p u + k(q + p_a), v Ap.

We define auxiliary iterates and residuals as follows: For k 0, set

(3.2.3)



304 RESIDUAL SMOOTHING TECHNIQUES FOR ITERATIVE METHODS

It is not hard to verify that, if we apply Algorithms 3.2.1 and 3.2.2 (modified, if necessary, to
incorporate diagonal scaling) to the iterates {k} and residuals {t;k}, then the resulting method
is equivalent to the "transpose-free" QMR-like method derived from CGS in [6]. This is not

the same as the method obtained by the straightforward application of Algorithms 3.2.1 and
3.2.2 to CGS; in 4.3, we illustrate the practical performance of these two ways of applying
QMRS to CGS. This equivalence may help to explain experiments in [3] and also Experiments
5 and 6 in 4.3 below, in which residual norms from the method of [6] are roughly comparable
to the best CGS residual norms obtained so far. (However, an example is given in [8] in which
CGS diverges while the method of [6] converges.)

One can similarly obtain the QMRCGSTAB method of [3] by applying Algorithms 3.2.1
and 3.2.2 to Bi-CGSTAB [17]. Indeed, in addition to iterates {xk} and residuals {rk}, Bi-
CGSTAB produces {sk, pk, otk, cok such that

xk xk_ + ckpk + COkSk,

Sk r_ otkApk, rk sk wkAsk.

In this case, we define auxiliary iterates and residuals by

2k Xk, ’2k+l Xk + Ck+pk+,

/2k rk, /2k+l Sk+l,

for k 0, 1 Then the method obtained by applying Algorithms 3.2.1 and 3.2.2 (modified
to incorporate diagonal scaling, if necessary) to {k and {tk is equivalent to QMRCGSTAB.

4. Numerical experiments. We report on numerical experiments that illustrate the per-
formance of the algorithms discussed previously. The test problem used in all but one of the
experiments is a discretization of

d
ou

Au+cu+ x f inD,
(4.1)

u=0 onOD,

where D [0, 1] [0, 1] and c and d are constants. In the experiments outlined here,
we took f and used a 100 100 mesh of equally spaced discretization points in D,
so that the resulting linear systems were of dimension 10, 000. Discretization was by the
usual second order centered differences. Preconditioning, when used, was with a fast Poisson
solver from FISHPACK [16]. In all experiments, computing was done in double precision on
Sun Microsystems workstations.

4.1. Comparing Algorithms 2.1 and 2.2. We compared the numerical performance of
the mathematically equivalent MRS Algorithms 2.1 and 2.2 in the following two experiments.

Experiment 1. This was a controlled experiment in which we artificially simulated the
numerical breakdown of a convergent algorithm through exponential error growth. In each
simulation, we first generated random A and b and computed x. A-b using a direct
method; then, for k 0 kmax, we generated xk x. + 2-kuk for random uk, computed
r b-Ax, and perturbedx +-x+(k/kmax)vkandr ,-r+(k/kmax)Wforrandom

3Here, "random" means having components that are sampled independently from a normal distribution with
zero mean and unit variance. Random normal components were generated using the URAND subroutine from [5]
followed by a Box-Muller transformation; see [5, p. 247]. In the particular experiment reported in Fig. 1, the seed
2468 was used in URAND.
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vk and wk and fixed > 0 and positive integer v. We plotted log10 Ilskll2 and log10 lib Aykll2
versus k for both Algorithms 2.1 and 2.2 in a number of trials. Typical results (with n 10,

102, v 10, and kmax 50) are shown in Fig. 1. Note that in Fig. 1, the solid curve is
actually a superposition of the curves for log Ilsk 112 and log lib- Ayk]i2 generated by Algorithm
2.2; they are visually indistinguishable. In contrast, the corresponding curves for Algorithm
2.1 diverge strongly.

0.50

0.00

-0.50

-1.50

-2.50

-3.50

-4.00

-4.50

O 10 20 30 40 50

FIG. 1. Residual norms versus the number of iterations for Experiment 1. Solid curve: logl0 Ilsklt2 and
log10 lib Aykll2for Algorithm 2.2; dotted curve: logl0 Ilskll2for Algorithm 2.1; dashed curve: log0 lib Aykll2for
Algorithm 2.1.

Experiment 2. In this, we applied BCG without preconditioning to problem (4.1) with
c d 50. For insight here and in Experiment 3 below, we first plotted log10 IIrCGII2 and
log0 lib BC

Axk 112 versus k in Fig. 2. Note the divergence of II’rkBCGII2 and lib BCGII2AXk
beyond about k 280; this is apparently due to rounding errors introduced in earlier iterations
when IIrCGll2 was very large. We next plotted log0 Ilskll2 and log0 lib Aykll2 versus k
for both Algorithms 2.1 and 2.2. The results are shown in Fig. 3, in which the graphs of
log0 lib Aykll2 for Algorithm 2.1 (solid curve) and for Algorithm 2.2 (long-dashed curve)
are nearly superimposed. Note that for Algorithm 2.2, the values of log10 ]lSkl[2 stay fairly
close to the values of lOgl0 ]]b- Ayk]]2 in the later iterations, while for Algorithm 2.1, the
values of log0 Ilskll2 are wrongly forced downward by the (inaccurate) decreasing values of

IIrCGII2. In view of the superior performance of Algorithm 2.2, it was used to implement
MRS in the remaining experiments discussed below.

4.2. Smoothing methods for BCG. We compared the performance of BCG, QMR, and
MRS applied to BCG on problem (4.1) in the two experiments below. In these, MRS was
implemented as in Algorithm 2.2, and the QMR iterates and their residuals were generated
from the BCG iterates and residuals using either (3.1.10) or a mathematically equivalent
implementation of Algorithm 3.2.2. Caution: Comments below regarding the numerical
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FIG. 2. Recursive and true BCG residual norms versus the number of iterationsfor Experiments 2 and 3. Solid
curve: lo810 IlrCGll2; dotted curve: loglo lib Ax3CGI]2.
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FIG. 3. Residual norms versus the number ofiterationsfor Experiment 2. Solid curve and nearly superimposed
long-dashed curve: loglo lib Aylcll2for Algorithms 2.1 and 2.2; dotted curve: loglo Ilskllz for Algorithm 2.1" short-
dashed curve: loglo Ilslc[12for Algorithm 2.2.
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accuracy of QMR iterates are not intended to apply to the general QMR method of [7], which
uses the look-ahead Lanczos process; they only pertain to the soundness of (3.1.10) and
Algorithm 3.2.2 applied to the BCG iterates.

Experiment 3. As in Experiment 2, we considered problem (4.1) with c d 50,
without preconditioning. We first compared the accuracy of (3.1.10) and Algorithm 3.2.2 for
obtaining QMR iterates from BCG iterates. The results, which are analogous to those in Fig.

QMR3, are shown in Fig. 4, in which the graphs of log10 lib x 112 for (3.1.10) (solid curve)
and for Algorithm 3.2.2 (long-dashed curve) are nearly indistinguishable. The remarks made
in Experiment 2 about Fig. 3 are valid here, with the appropriate changes. In view of the
superior performance of Algorithm 3.2.2, it was used instead of (3.1.10) or Algorithm 3.2.1
in the remaining experiments reported below, except where noted.
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FIG. 4. Residual norms versus the number ofiterationsforExperiment 3. Solidcurve andnearly indistinguishable
.QMR for(3.1.10);long-dashed curve: logl0 lib AxQMrll2for (3.1.10) andAlgorithm 3.2.2; dotted curve: logl0 II"k 112

short-dashed curve: logl0 IIrMRII2 for Algorithm 3.2.2.

We next compared the performance of BCG, QMR, and MRS applied to BCG on this
problem. The results are shown in Fig. 5. Note that the solid curve in Fig. 5 is the recursive
residual value log10 I1 BEG 112, rather than the true value log10 lib CGx 112, cf. Fig. 2. Both
QMR and MRS were very effective in smoothing the BCG iterates. Although fine details are
hard to make out in parts of Fig. 5, the performance ofQMR and MRS was, in fact, very similar
over all iterations; of course, the MRS residual norms were monotone decreasing while those
of QMR, although trending downward fairly smoothly, were not. Note that both QMR and
MRS very effectively stabilized the iterates and residuals at about the point of greatest true

residual reduction of BCG.
Experiment 4. We applied the three methods with preconditioning to problem (4.1) with

c d 100. The preconditioning resulted in relatively well-behaved BCG residual norms,
and QMR and MRS applied to BCG performed very similarly. There was no evidence of
numerical error. The results are shown in Fig. 6.
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FIG. 5. Residual norms versus the number of iterations for Experiment 3. Solid curve: loglo IIrC6112; dotted
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4.3. Smoothing methods for CGS. In the two experiments below, we compared the
performance on problem (4.1) of CGS, the "transpose-free" QMR-like method of [6] (referred
to as TFQMR below), CGS with QMRS, and CGS with MRS. We implemented TFQMR by
applying QMRS to {k} and {?k} defined in (3.2.3); see 3.2. The implementation of CGS
with QMRS was straightforward.

Experiment 5. We applied the methods without preconditioning to problem (4.1) with
c d 5. The results are given in Fig. 7. The three smoothing methods very effectively
smoothed the very ill-behaved CGS residuals and performed roughly the same, although MRS
tended to give slightly smaller residual norms than the other two methods. Although not
shown in Fig. 7, significant divergence of IlrGs 112 and lib cGsx 112 began at about iteration
262 and, as in Experiment 3 and Fig. 5, all three smoothing methods effectively stabilized the
iterates and residuals at about the point of greatest true CGS residual reduction.
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FIG. 7. Residual norms versus the number of iterations for Experiment 5. Solid curve: lOgl0 IIrfGS 112; dotted
curve: lOgl0 of the TFQMR residual norms; short-dashed curve: lOgl0 Ilsk 112 for QMRS Algorithm 3.2.2 applied to

the CGS iterates; long-dashed curve: lOgl0 Ilsk 112 for MRS Algorithm 2.2 applied to the CGS iterates.

Experiment 6. We applied the methods with preconditioning to problem (4.1) with c
d 50. Because cs cs

rk and b remained very close throughout this experiment,AXk
we used Algorithm 3.2.1 rather than Algorithm 3.2.2. The results are given in Fig. 8. It is
evident that all three smoothing methods worked very effectively, especially in stabilizing the
iterates and residuals once the limits of residual reduction were reached. It is also notable
how similarly QMRS and MRS behaved, although MRS ultimately gave the smallest residual
norms of all methods.

5. Summary and conclusions. We have focused on two residual smoothing techniques
of the general form (1.1), minimum residual smoothing (MRS) and quasi-minimal residual
smoothing (QMRS). The former generates from given iterates a sequence of auxiliary iter-
ates with monotone dec-reasing residual norms that are no greater than those of the original
sequence. The latter generates auxiliary iterates with residual norms that typically decrease
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fairly smoothly, if not necessarily monotonically. It also provides insight into the workings
of QMR-type methods and, in particular, indicates how they are related to and smooth the
residual norms of underlying methods such as BCG and CGS.

These residual smoothing techniques provide important practical tools. Their perfor-
mance is illustrated in a number of numerical experiments in 4; these indicate that both
MRS and QMRS are reliable and very effective in smoothing the residuals of the underly-
ing method when applied as in Algorithms 2.2 and 3.2.2, respectively. The performance of
MRS and QMRS was roughly similar in our experiments. However, the MRS residual norms
were monotone decreasing while those of QMRS, although typically trending fairly smoothly
downward, were not; also, the MRS residual norms were often, although not always, slightly
smaller than the QMRS residual norms and, in some cases, tended to remain a little more
stable in the final iterations. On the basis of work to date, we have some preference for MRS
over QMRS for general use.

Having smoothly decreasing or monotone decreasing residual norms may be of real im-
portance or just a nicety, depending on the application. In fact, this can always be achieved
trivially just by saving the best iterate obtained so far; in some of our experiments, MRS and
QMRS did not produce significantly smaller residual norms than this simple technique. Thus
the good behavior of the MRS and QMRS residual norms alone may not always be enough
to justify their use. However, a strongly compelling reason for using MRS or QMRS with
methods such as BCG and CGS is their effectiveness in stabilizing the iterates and residuals
once the limits of residual reduction have been reached. This is perhaps most clearly seen in
Figs. 5 and 7, in which the recursive residuals generated by the underlying method continue to
decrease long after they have lost accuracy, while the MRS and QMRS residuals become stable
and remain fairly accurate. In addition to helping to avoid misleading results, this stabilizing
effect could be useful in obtaining further accuracy from the method. Indeed, one might be
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able to detect the onset of stability and restart the method with a fresh, more accurate residual,
thereby making further accurate residual reduction possible. We have successfully carried out
this strategy in experiments.

We conclude by noting.recent related work. In [9] it is shown that iterates produced by
certain pairs of "orthogonal error" methods can be related through (1.1), extending Theorem
4.2 of [18, p. 78]. In [1], it is assumed that two sequences {x} and {x’} are given, and an
auxiliary sequence is generated by

yk (1 O)x +
where 0k is chosen to minimize the residual at Yk. If a single sequence {xk} is given, then the

Ifchoice xk yk-1, xk xk gives MRS as a special case. Many other possibilities are explored
(m)in [1], and the possibility is raised of combining given {x(1) /xk to produce {Yk} by

(1) (1) O(km)X(km) 0
(i) 1(5.1) Yk--0k xk +" + k

i=1

In [1] it is suggested that the o(i)’s be chosen to minimize the residual at yk, but more generalk
choices may be useful. For example, the QMR squared method of [8] can be obtained from
the CGS iterates and certain auxiliary quantities through a relation of the form (5.1) in which

(1)
xk Yk-; see(4.11) of[8, p. 9].
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AN IMPLEMENTATION OF THE QMR METHOD
BASED ON COUPLED TWO-TERM RECURRENCES*

ROLAND W. FREUNDt AND NOeL M. NACHTIGALt

Abstract. Recently, the authors proposed a new Krylov subspace iteration, the quasi-minimal residual (QMR)
algorithm, for solving non-Hermitian linear systems. In the original implementation ofthe QMR method, the Lanczos
process with look-ahead is used to generate basis vectors for the underlying Krylov subspaces. In the Lanczos
algorithm, these basis vectors are computed by means of three-term recurrences. It has been observed that, in finite-
precision arithmetic, vector iterations based on three-term recursions are usually less robust than mathematically
equivalent coupled two-term vector recurrences.

This paper presents a look-ahead algorithm that constructs the Lanczos basis vectors by means of coupled
two-term recursions. Some implementation details are given, and the look-ahead strategy is described. A new
implementation of the QMR method, based on this coupled two-term algorithm, is proposed. A simplified version
of the QMR algorithm without look-ahead is also presented, and the special case of QMR for complex symmetric
linear systems is considered. Results of numerical experiments comparing the original and the new implementations
of the QMR method are reported.

Key words. Krylov subspace iteration, quasi-minimal residual method, non-Hermitian matrices, coupled two-
term recurrences, look-ahead techniques, complex symmetric matrices

AMS subject classifications. 65F10, 65N22

1. Introduction. Recently, we proposed a new Krylov subspace method, the quasi-
minimal residual (QMR) algorithm [9],/for the iterative solution of general nonsingular non-
Hermitian systems of linear equations

(1.1) Ax b.

The QMR method is closely related to the classical biconjugate gradient (BCG) algorithm due
to Lanczos 17]. The BCG method aims at generating approximate solutions for (1.1) that
satisfy a Galerkin condition. Unfortunately, for non-Hermitian matrices A, such iterates need
not always exist, and this is the source of one of the two possible breakdowns--triggered by
division by 0--that can occur during each iteration step of BCG. The second breakdown is
equivalent to the possible breakdown--also triggered by division by 0--of the nonsymmetric
Lanczos process [16]. In finite-precision arithmetic, it is unlikely that one encounters exact
breakdowns in the BCG algorithm. However, near-breakdowns can occur, which can cause
a buildup of round-off in successive iterations. Another problem with BCG is the lack of a
residual minimization property for its iterates, which leads to a typically erratic convergence
behavior, with wild oscillations in the residual norm.

The QMRmethod offers remedies for these problems. It generates iterates that are defined
by a quasi minimization of the residual norm, rather than a Galerkin condition. This eliminates
the oscillations and leads to a smooth and nearly monotone convergence behavior. In contrast
to BCG, a QMR iterate always exists at each iteration step, and this excludes breakdowns
caused by nonexistent iterates. Moreover, possible breakdowns in the underlying Lanczos
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process are prevented by using look-ahead techniques. Therefore, except for the rare event of
an incurable breakdown, breakdowns cannot occur in the QMR method.

In the original QMR algorithm [9], an implementation of the Lanczos method with look-
ahead is used to generate basis vectors for the underlying Krylov subspaces. In the Lanczos
process, these basis vectors are generated by means of three-term recurrences. It turns out
that, in finite-precision arithmetic, these three-term vector iterations are usually less robust
than mathematically equivalent coupled two-term vector recurrences. In this paper, we present
a general look-ahead algorithm based on coupled two-term recursions for constructing basis
vectors of Krylov subspaces. Based on this algorithm we then propose a new implementation
of the QMR method.

We stress that the better numerical behavior of coupled two-term recurrences is not a
characteristic of QMR only, and that this phenomenon was also observed for other Krylov
subspace methods. For instance, Joubert 15] remarked that BCG, which is based on coupled
two-term recurrences, is more robust than the mathematically equivalent Lanczos/Orthodir
and Lanczos/Orthores algorithms, which are both based on three-term vector recursions. In-
deed, Lanczos/Orthodir and Lanczos/Orthores often converge considerably slower than BCG,
or they even diverge, while BCG converges; we refer the reader to 18] for numerical examples
that illustrate this phenomenon. Finally, we remark that the standard implementation of the
classical conjugate gradient (CG) method ofHestenes and Stiefel 14] is also based on coupled
two-term recurrences. Reid [20] mentions that this version of CG is "preferable on compu-
tational grounds" to an equivalent three-term implementation of CG. Woiniakowski [24]
presents numerical examples for which an implementation of CG based on two-term recur-
rences generates approximate solutions to a higher accuracy than does a three-term version of
CG.

The remainder of the paper is organized as follows. In 2, we briefly review the Lanczos
process and the original QMR algorithm. In 3, we present a sketch ofthe proposed look-ahead
procedure for constructing Lanczos vectors by means of coupled two-term recurrences. In 4,
we discuss the look-ahead strategy for this algorithm, and in 5, we give some implementation
details. Next we combine the coupled two-term procedure with the QMR approach. In 6, we
outline the resulting implementation for the general case of QMR with look-ahead. In 7, we
present a simplified version of the QMR algorithm without look-ahead. In 8, we consider a
variant of QMR for the special case of complex symmetric linear systems. In 9, we report
results of numerical experiments comparing the original and the new implementations of the
QMR method. Finally, in 10, we make some concluding remarks.

Throughout the paper, all vectors and matrices are allowed to have real or complex entries.
As usual, Mr [mkj] and M/-/ [kj] denote the transpose and the conjugate transpose,
respectively, of the matrix M [mjk]. We use amax(M) and O’min(M) for the largest and

smallest singular value of M, respectively. The vector norm Ilxll "= is always the
Euclidean norm and IIMII := O’max(M) is the corresponding matrix norm. We denote by

the set of all complex polynomials of degree at most n. The nth Krylov subspace of CN

generated by c E CN and the N N matrix B is defined by

Kn(c, B) z= span{c, Bc Bn-lc},

and we will make use of the fact that

gn(c B) {(B)c e
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Furthermore, it is always assumed that A is an N N matrix, singular or nonsingular.
Finally, we remark that, for complex matrices, there are two equivalent formulations of

the Lanczos process, using either A T or An. In this paper, we have chosen the formulation
with Ar, for two reasons. First, it avoids complex conjugation of the scalars in some of the
recurrence relations, and, second, the recursions reduce immediately for the special case of
complex symmetric matrices.

2. The QMR algorithm. In this section, we briefly describe the QMR method and its
original implementation [9]. We remark that, in [9], QMR was proposed for nonsingular linear
systems (1.1). Freund and Hochbruck [8] showed that the QMR method can also be applied
to singular square systems, and that it always generates well-defined iterates. However, as
discussed in [8], these iterates converge to a meaningful solution of (1.1) only for consistent
systems with coefficient matrices of index 1. An important special case for which these
conditions are satisfied is consistent singular systems with a one-dimensional null space, i.e.,

(2.1) b {Ax Ix CN} and dim{x C.N lAx 0} 1.

In this paper, we always consider the QMR method for the general case of N x N linear
systems, with singular or nonsingular coefficient matrices A.

2.1. Krylov subspaee methods. Let x0 6 Cu be an arbitrary initial guess for the linear
system (1.1), and denote by r0 := b Axo the corresponding residual vector. An iterative
scheme for solving (1.1) is called a Krylov subspace method if, for any choice ofx0, it produces
approximate solutions of the form

(2.2) Xn 6 xo + Kn(ro, A), n=l,2

Clearly, the design of a Krylov subspace algorithm consists oftwo main parts: the construction
of suitable basis vectors for the Krylov subspaces Kn (ro, A) in (2.2) and the choice ofthe actual
iterates Xn. The QMR method is an example of a Krylov subspace iteration, where the basis
vectors are generated by means of the nonsymmetric Lanczos process, and the iterates are
characterized by a QMR property. Next, we describe these two main ingredients of QMR.

2.2. The Lanczos process. The Lanczos method is started with two vectors

(2.3) Vl ro/Pl, where pa lit011,

and an arbitrary second starting vector

(2.4) Wl CN with ]IWl l.

It then produces two sequences of vectors

(2.5) {)j}7__ and {wj}=1,

such that, for n 1, 2

(2.6)
span{v1, U2 Vn} Kn(Vl, A),

span{w1, W2 ton} Kn(Wl, At),

and the two sets are biorthogonal or block biorthogonal, i.e.,

(2.7) WT, V, Dn,
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where Dn is a diagonal or block-diagonal matrix. Here, and in the sequel, we denote by

(2.8) Vn ;-- 1)1 l)2 Un and W, ;"- W //)2 Wn

the matrices containing the Lanczos vectors {vj }if--1 and {wj}=1 as columns. We remark that
the conditions (2.6)-(2.7) determine the vectors (2.5) only up to scaling. Throughout this
paper, we always scale the Lanczos vectors to have unit length

(2.9) l)n Wn 1, n 1, 2

The crucial point of the Lanczos process is that vectors satisfying (2.6)-(2.7) can be
constructed by means of short vector recursions. In the classical Lanczos algorithm 16], the
vectors are generated using simple three-term recurrences:

(2.10)
)n+l Avn VnlJ,n Vn-l Pn,

Pn+l "-IIn+lll, l)n+l )n+l/Pn+l,

(2.11) Ln+ Arwn Wnl.tn Wn_l(l)nDn/n),

n+l Iltn+l II, Wn+l l)n+l/n+l,

where

rAvn/WrnVn,(2.12) /x,, w, Pn n Wn )n 1)n

In this case, the matrix Dn in (2.7) is diagonal and nonsingular:

(2.13) Dn diag(31, 2,’’’, n), where 3j := wf. vj # O.

Furthermore, we note that, by using the notation introduced in (2.8), the recurrence relations
/n+l /n+l(2.10)-(2.11) for the first n + 1 Lanczos vectors {vj Jj=l and {wj Jj=l can be written compactly

in matrix form:

(2.14)

(2.15)

A Vn Vn+ Hn,
-1A T Wn Wn+l Fn+1Hn Fn.

Here, Hn is an (n + 1) n tridiagonal matrix, and

1 if j=l,(2.16) l-’n "= diag(y1, , Yn), where ?’j "= ?’]_,o]/j if j > 1,

is a diagonal scaling matrix with positive diagonal entries. Finally, for later use, we note that
all subdiagonal elements of Hn are nonzero, and therefore

(2.17) rank Hn n

Unfortunately, in the classical Lanczos algorithm, breakdowns cannot be excluded. In-
Tdeed, by (2.12), division by 0 will occur during the construction of Vn+l and Wn+l if wn Vn O,

but Wn 0 and Vn # O. Parlett, Taylor, and Liu 19] were the first to devise a practical modi-
fication of the Lanczos procedure that uses look-ahead to skip over possible exact breakdowns
(WTnVn 0) or near-breakdowns (WTnVn is nonzero, but small in some sense). The QMR
algorithm is based on a different implementation of the look-ahead Lanczos method, recently
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developed by Freund, Gutknecht, and Nachtigal [7]. Next, we briefly sketch this look-ahead
Lanczos procedure.

As in the classical Lanczos algorithm, two sequences of Lanczos vectors {vj}= and

{wj}= are generated, starting with (2.3) and (2.4). Again, we will use the matrix notation Vn
and Wn defined in (2.8). As before, these vectors satisfy (2.6)-(2.7), but now Dn is generally
only a block-diagonal matrix, with := l(n) square blocks of dimension hj, j 1, 2 l,
on the diagonal. More precisely, we have

Dn diag(D(1), D(2) D(I)), where D(j) := (w(J))" V (j).

Here, the matrices V (j) and V(j), j 1, 2 l, are defined by partitioning Vn and Wn into
blocks, according to the look-ahead steps taken:

(2.19) V, V (1) V (2) V (/) and Wn [W
We remark that the matrices V (j) and W(j) are of size N x hj, and they contain as their columns
the Lanczos vectors constructed in the jth look-ahead step. The integer hj is called the length
of the jth look-ahead step, and in (2.18)-(2.19) is the number of look-ahead steps that were
performed during the first n steps of the Lanczos process. For later use, we introduce some
further notation. For j 1, 2 we denote by nj the index of the first vectors of the blocks
V (j) and W(j) in (2.19); hence, we have

(2.20) v(J)--’[l)nj l)nj+l ]and w(J)-’-[LOnj Lonj+l ].
Note that the indices nj satisfy

(2.21) --: n < n2 < < nl < n < nl+l.

The vectors Vnj and LOnj are called regular, while the remaining vectors in the blocks V (j) and
W(j) are called inner. We remark that, in view of (2.7) and (2.18), the regular vectors are
biorthogonal to all previous Lanczos vectors, i.e.,

(2.22) LO
TLOT Vnj njVi 0 for all 1, 2 nj 1,

while the inner vectors in the jth blocks V (j) and W(j) are biorthogonal to all Lanczos vectors
from the previous blocks, but not necessarily to the Lanczos vectors in the jth blocks. Finally,
we note that, in (2.18), the blocks D(j), j 1, 2 1, are all nonsingular, while the last
block D{t) is nonsingular if nt+l n + 1, i.e., if Vn+l and Wn+ are constructed as regular
vectors.

In the look-ahead algorithm, the Lanczos vectors (2.5) are again generated using only
short vector recurrences, which now involve vectors from the last two blocks V
and W), W(t-l, instead of just Vn, Vn- and Wn, Wn-1, as in the classical algorithm. For
example, Vn+ is computed by means of the relations

(2.23) n+l Avn v(l)lzn v(t-1)l)n,
Pn+l 115,+1 II, /)n+l )n+l/Dn+l,

where ]Jn E C.ht and 13n ._.ht-1 are suitably chosen coefficient vectors. The second Lanczos
vector LOn+l is obtained similarly. As before, the recurrence relations for the Lanczos vectors
can be summarized in the form (2.14)-(2.15). Here, Hn is now a block-tridiagonal matrix with
square blocks on the diagonal, where the jth block has dimension hj hj, j 1, 2 l.
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In addition, Hn is also an upper Hessenberg matrix. Furthermore, (2.16) and (2.17) remain
valid, and pj and j in (2.16) are scaling factors used to ensure the normalization (2.9) of the
Lanczos vectors; see (2.23).

We would like to stress that the look-ahead strategy (see [7] and also 4 below) is such that
the algorithm performs mostly standard Lanczos steps, i.e., look-ahead steps of length hj 1
with blocks V (j) and W(j) that consist of only single Lanczos vectors. True look-ahead steps,
i.e., steps of size hj > 1, are only used to avoid exact and near-breakdowns. Typically, except
for contrived examples, only few true look-ahead steps occur, and their size is usually small,
mostly hj 2. We note that, if only steps of length hj 1 are performed, then the look-
ahead Lanczos algorithm reduces to the classical algorithm. Finally, we remark that so-called
incurable breakdowns [23], [13] can occur in the Lanczos process. Such breakdowns cannot
be remedied by look-ahead, and indeed, in such a case, the look-ahead Lanczos algorithm
would build a block of size h cx. Fortunately, incurable breakdowns are extremely rare,
and they do not present a problem in practice.

The look-ahead Lanczos algorithm is intimately connected with formally orthogonal
polynomials; see, e.g., [13], [7]. In particular, we will use the fact that each pair of Lanczos
vectors vj and wj can be expressed in the form

(2.24) 1)j j-1 (A)Vl and Wj gjdt)j_l (AT)tol,

where 4j-1 70j-1 is of exact degree j and yj > 0 is defined in (2.16).
For further details and properties ofthe look-ahead Lanczos algorithm, we refer the reader

to [7].

2.3. The QMR property. In the QMR method, the vectors {vj}= generated by the
look-ahead Lanczos algorithm are used as a basis for the Krylov subspace Kn (ro, A) in (2.2).
The nth QMR iterate Xn is then defined by

(2.25) Xn xo + VnZn,

where Zn Cn is the unique solution of the least-squares problem

(2.26) Ilfn+l -2n+lHnznll min Ilfn/a ’n+lHnZll.
ZECn

Here

(2.27) fn+l :--- 091/91 1 0 0 ]r E In+l,

with/91 given in (2.3), and

(2.28) ’2n+ := diag(col, 092 On+l) O)j > 0, j 1, 2 n + 1,

is an arbitrary diagonal weighting matrix. Note that, in view of (2.17) and (2.28), the (n + 1) x n
matrix 2n+l Hn has full rank n. This guarantees that there always exists a unique solution
of (2.26). Furthermore, we remark that the standard choice for the weights in (2.28) is

(2.29) coj 1 for all j.

However, there are instances (see [11]) where the use of different weights is crucial, and
therefore we formulate the QMR method in the general setting (2.28).

From (2.25), (2.14), (2.27), and (2.3), it follows that the residual vector rn := b Axn
corresponding to Xn satisfies

(2.30) -1 (fn+l ’n+l nnzn).rn Vn+ "2n+
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Hence, in view of (2.26), the nth QMR iterate Xn is characterized by a minimization of the
second factor in (2.30); this is just the quasi-minimal residual property. The relation (2.30)

-1 in theshows that the scaling (2.29) is very natural, in the sense that all columns of Vn+l 2n+
representation (2.30) of rn are treated equally. We remark that the QMR iterates Xn can be
easily updated from step to step. Due to the block-tridiagonal structure of Hn, this update
can be implemented with only short recurrences; see [9] for details. Finally, we note that the
QMR property can be used to derive convergence results for the QMR method; we refer the
reader to [9] and [6].

3. A coupled two-term procedure with look-ahead. In this section, we consider a
different approach to constructing the Lanczos vectors. The basic idea is to break up the
three-term recurrences in the Lanczos process into coupled two-term recurrences, by using (in
addition to the Lanczos vectors) a suitable second set ofbasis vectors for the underlying Krylov
subspaces. In 9, we will illustrate that QMR based on this coupled two-term procedure has
better numerical properties than the original implementation of QMR based on three-term
recurrences.

3.1. The general setting. In the following, let {vj}= and {wj}ff._ always denote the
sequence of vectors generated by the look-ahead Lanczos algorithm as described in 2.2. We
assume that we are also given a second set of basis vectors

(3.1) {Pj}=I and

for the Krylov subspaces Kn(vl, A) and gn(L01, AT). More precisely, we consider vec-
tors (3.1) that, in analogy to (2.24), are of the form

(32) Pj /fj-1 (A)vl and qj jj-1 (At)w1,

where ?,j > 0 is given by (2.16), and rj_ E j-1 is of exact degree j with the same
leading coefficient as the polynomial Pj-1 in (2.24). To distinguish between the two bases,
we will often refer to the Lanczos vectors {vj}= and {wj}= as the V-W sequence and to the
vectors (3.1) as the P-Q sequence.

From (2.24) and (3.2), we conclude that, for each n 1, 2

(3.3)

(3.4)

n-1

Pn On X piUin

i=1

n-1

qn Wn qi Uin (’n/’i),
i=1

with suitable coefficients Llin C, 1, 2 n 1.
(2.24), (3.2), and (2.16), we have

Similarly, in view of (2.23),

(3.5) n+l Apn Uilin, Pn+l IIn+lll,
i=1

Yn+ n+1/Pn+ 1,

(3.6) tn+l ATqn toilin(’n/’i),
i=1

n+l IIn+lll, UOnq_ Onq_l/nq_l,

with suitable coefficients [in C, 1, 2 n. Note that (3.3)-(3.6) are coupled recur-
rences for generating the P-Q and V-W sequences: first, Pn and qn are computed by means
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of (3.3)-(3.4), and then, the next Lanczos pair l)n+ and Wn+ is obtained from (3.5)-(3.6).
Of course, it remains to specify the actual choice of the P-Q sequence. In order to minimize
work and storage of previous vectors, the goal here is to select these vectors such that the
recurrences (3.3)-(3.6) are as short as possible.

In addition to (2.8), it will be convenient to use the notation

Pn :-- Pl P2 Pn and Qn :-- [ql q2 qn ].

n+l ,n+lThe recurrences (3.3)-(3.6) for the vectors {P}=I, {q}=l, {vb=l, and {w,= can then be
written compactly in matrix form:

(3.7) Vn en Un A en Vn+ Zn

(3.8) W,, Q,,F;1U,,Fn, Ar Q, Wn+lI-’nlLnI-’n.
Here, Un is an upper triangular matrix and Ln is an upper Hessenberg matrix given by

111 112 lln
1 U12 /’/ln

/92 /22
(3.9) Un := 0 ". and Ln := 0 P3

bln-l,n
0 0 1 ". ". lnn

0 0 On+

respectively, and Fn is the diagonal matrix defined in (2.16). Note that, by eliminating Pn
in (3.7), we obtain

(3.10) A Vn Vn+l LnUn.

By comparing (3.10) with (2.14), it follows that

(3.11) Hn LnUn,

i.e., the matrices (3.9) define a factorization of the block-tridiagonal Hessenberg matrix Hn
generated by the look-ahead Lanczos algorithm.

Recall from (2.7) and (2.18) that the Lanczos vectors are block biorthogonal. These
biorthogonality relations determine the coefficients lin in (3.5)-(3.6). For example, consider
the case that Vn+l and Wn+l are constructed as regular vectors. Then, in view of (2.22), we
have the condition Wnr Vn+ 0, which, by (3.5), is equivalent to

n

(3.12) 0 WTn Apn E WTn ’oilin"
i=1

Using (2.7), (2.8), and the first equation in (3.8), we deduce from (3.12) that

(3.13) D;1FnUrnF; QrnApn.

Recall from (2.18), (2.16), and (3.9) that the matrices D-1, Fn, and Un are block diagonal,
diagonal, and lower triangular, respectively. Hence the relation (3.13) implies that the vector

Qn Apn determines the length of the recurrences (3.5)-(3.6). In particular, in order to obtain
recursions that are as short as possible, the P-Q sequence should be chosen such that the vector
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QApn has as many leading zeros as possible The same conclusion also holds for the case
that Vn+l and Wn+l are constructed as inner vectors.

Motivated by this discussion, we require that the vectors in the P-Q sequence be A-
biorthogonal or block A-biorthogonal, in the sense that the matrix

(3.14) En := OrnAPn
should be diagonal or block diagonal. Note that the vector QVn Apn is just the nth column of
En. Furthermore, we remark that qVn A Pn, the nth row of En, has the same zero structure as
QVnApn. This is a consequence of relation (3.16) in the following lemma, which we will also
need later on.

LEMMA 3.1. Let {l) n n n n}i=1 {//3i}i=1 and {Pi}i--1 {qi}i=l be vectors satisfying (2.24) and
(3.2), respectively, and let Fn diag(?’l, ’2 9In). Let Dn and En be the matrices given
by (2.7) and (3.14), respectively. Then

(3.15) OnFn (DnFn)T,

(3.16) EnF (EnFn)T.

Proof. Using the polynomial representation (2.24) for the V-W vectors and the fact that
polynomials in a matrix commute, we obtain

WVjj ’i ll)(i_l (A))j_l (A)Vl )/j ’jll)j_l (A))i_l (A)yl ’i

and thus (3.15). The relation (3.16) follows similarly.

3.2. The coupled algorithm without look-ahead. Next, we briefly consider the case
that the V-W sequence consists of the vectors generated by the classical Lanczos algorithm
without look-ahead. Recall from (2.13) that here the matrix Dn in (2.7) is diagonal, and that
the Lanczos vectors are biorthogonal:

,,,TVn=IO if j#n,(317) J n #0 if j =n.

Suppose that it is possible to construct the vectors in the P-Q sequence such that the matrix

En in (3.14) is also diagonal:

(3.18) En diag(l, 2,..., Cn), where Cj "= qfApj O.

By (3.14) and (3.18), the P-Q vectors are then A-biorthogonal:

(3 19) qfApn [0 if j #- n,
n #0 if j=n.

With (2.13), (3.9), and (3.19), we deduce from (3.13) that

(3.20) lin 0, 1, 2 n- 1, and lnn [n :--" 6n/n

Furthermore, by multiplying (3.3) from the left by qfA and by using (3.19), (3.6), and (3.17),
we obtain that, for j 1, 2 n 1,

O-- qf Apn qf. Av,
(3.21) (ATqj)TVn jUjn

j+l LOf+l Un jbljn.



322 ROLAND W. FREUND AND NOEL M. NACHTIGAL

With (3.17), it follows from (3.21) that

(3.22) Uin 0, 1, 2 n 2, and Un_l,n nn/.n_l

In view of (3.20) and (3.22), all but the last terms vanish in each of the sums in (3.3)-(3.6),
and hence (3.3)-(3.6) reduces to a coupled two-term procedure for generating the P-Q and
V-W sequences.

The nth iteration of the resulting algorithm can be summarized as follows.

ALGORITHM 3.2 (nth iteration of the coupled algorithm without look-ahead).
1. If fn-1 0, then stop.

Otherwise, compute n TLOn Un.

If 6n 0, then stop.

2. Compute

Pn On Pn-l(nn/.n-1),

qn ll)n qn- ([gnn/n- ).

3. Compute 5n qn Apn, n -n/n, and set

n+l APn l)nn,

tn+l ATqn ll)nn,

4. If/gnq.. 0 or nq-1 0, then stop.

Otherwise, set

Pn+ IIn+lll,

n+l IIn+ II.

Un+l )nw1/Pn+l, LOn+l Vn+l/n+l.

We remark that the vectors in the P-Q and V-W sequences are, up to scaling, just the search
directions and the residual vectors generated by the BCG method [17], [4]. In particular,
Algorithm 3.2 can be viewed as the nth iteration of a rescaled version of BCG, where the
computation of the BCG iterates is omitted.

In exact arithmetic, one of the termination checks in steps 1 or 4 of the coupled two-term
procedure will be satisfied after at most N iterations. Normally, the algorithm stops due to

Pn+l 0 or n+l 0, and then the procedure has constructed a basis for the invariant
subspaces Kn(Vl, A) or Kn(Wl, A’), respectively. This is called regular termination. If
Sn-1 0 or n 0 occurs, then the algorithm has to be stopped to avoid division by 0. This
is referred to as an exact breakdown. Recall from 2.2 that 3n 0 signals a breakdown in the
classical Lanczos algorithm. Note that, like BCG, the coupled two-term procedure now has a
second source of breakdown, namely, the case en-1 0. It can be shown that the condition

n-1 0 corresponds to a breakdown in the BCG algorithm due to an nth iterate not being
defined by the Galerkin condition.

In finite-precision arithmetic, exact breakdowns are rather unlikely. However, near-
breakdowns, where 3n or e,-1 is nonzero, but small in some sense, may occur, leading to
numerical instabilities in subsequent iterations. Next, we sketch a coupled two-term proce-
dure that uses look-ahead in the construction of both the V-W and P-Q sequences to avoid
exact and near-breakdowns.



QMR BASED ON COUPLED TWO-TERM RECURRENCES 323

3.3. The general algorithm with look-ahead. For describing the look-ahead in the V-W
sequence, we will use the notations (2.18)-(2.21) introduced in 2.2. In particular, the integer
:= (n) denotes the number of look-ahead steps that were performed during the construction

of the first n vectors {re}in___1 and {wi}in__l in the V-W sequence, and the nj’s in (2.21) are the
indices of the regular vectors. Recall that, by (2.7) and (2.18), the V-W vectors satisfy the
block-biorthogonality conditions

(w(i)) T V(j [ 0 if 7 j,
i, j 1 2,(3.23) ID(J) if i=j,

Here, the blocks D(j) are all nonsingular, except for possibly D). However, we have that
necessarily

(3.24) Dt) is nonsingular, if nl+l n + 1.

Next, we introduce similar notations for describing the look-ahead in the P-Q sequence.
We denote by k := k(n) the number of look-ahead steps that were performed during the
construction of the first n vectors {Pi n-1 n-1}i=1 and {qi }i=1 in the P-Q sequence. In analogy
to (2.19), we partition these vectors into blocks, according to the look-ahead steps taken:

(3.25) Pn-1 p(1) p(2) p(k)] and Qn-1 Q(I) Q(2) Q(k)].
Recall from (3.14) that the P-Q vectors are constructed to be block A-biorthogonal. More
precisely, we have

En-1 diag(E(1), E(2) E(k)),

or, equivalently,

(3.26) (Q(i))TA P(J I 0 if 7 j,

[ E(j) if =j,
i,j-- 1,2 k.

Here, the blocks E(j) are nonsingular, except for possibly the last block E(k). In analogy
to (2.21), we denote by mj the indices of the first vectors of the blocks P(J) and Q(J) in (3.25).
Hence, for j 1, 2 k, we have

(3.27) P(J)--[Pmj Pmj+l ]and O(J)--[qm qm+l ].
Furthermore, the indices mj satisfy

(3.28) 1 =: m < m2 < < mk < n < mk+l.

We remark that, by (3.26) and (3.27), the vectors Pmj and qmj are A-biorthogonal to all previous
P-Q vectors, i.e.,

qApmj --qmApi ---0 for all 1, 2 mj- 1.

Therefore, using the same notation as for the V-W sequence, we refer to the vectors Pm and
qm as regular vectors, while the remaining vectors in (3.27) are called inner. Finally, it turns
out that, in (3.26), the last block Ek has to be nonsingular, if Pn and qn are constructed as
regular vectors. This means that, in analogy to (3.24),

(3.29) Ek is nonsingular, if mk+l n.
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After these preliminaries, we can now sketch the actual algorithm. Let n > 1, and assume
that we have already generated the first n vectors {Pi n-1 }i=ln-1}i=1 and {qi of the P-Q sequence,

nand the first n vectors {vi}in=l and {Wi}i= of the V-W sequence.
First, the next pair of P-Q vectors, Pn and qn, is constructed, using the recurrences (3.3)-

(3.4). Here, the coefficients Uin need to be chosen such that Pn satisfies the corresponding
A-biorthogonality conditions (3.26). We note that, in view of (3.16), the A-biorthogonality
relations for the vector qn are then also fulfilled. With (3.6) and (3.23), one readily verifies
that

q’Avn (ATqi)TVn --0 foralli 1,2 nt--2.

By rewriting this in terms of the blocks O(J), we obtain that

(3.30) (Q(j)) vA Vn 0 for all j 1, 2 k* 1,

where k* := k*(n) is given by

(3.31) k* max {Jl _< j < k and mj <_ max{l, nl- 1}}.
The orthogonality conditions (3.30), together with (3.26), imply that, in (3.3), we have Uin 0
for all < mk,. Thus the recurrences (3.3)-(3.4) reduce to

(3.32)
n-1

Pn Vn pi tl in

i--mk,

(3.33)
n-1

qn Wn- Z qiUin(Yn/’i).
i-’mk*

Now we need to determine the coefficients Uin for mk, < < n 1. This is done by enforcing
the remaining A-biorthogonality conditions (3.26) for Pn and the vectors qi, namely,

(3.34) qiT Apn 0 for all mk,, mk, + 1 m*.

Here, rn* :-- n 1 if Pn and qn are constructed as regular vectors, and rn* :-- rn k 1 otherwise.
Note that, in view of (3.28), we always have mk 1 < m*. First, we consider (3.34) for the
indices in the range mk, < < mk 1. Using (3.32) and (3.26), we deduce from (3.34) that

(3.35) Umk,:mk-l,n (diag(E(k*) E(k-1)))-I Q(k*) Q(k-1) ]T Avn.

Here, and in the sequel, we use the notation

Mi:j,n min mi+l,n mjn ]T

for vectors consisting of successive elements of the nth column of the matrix M rn ij ]. If

Pn and qn are constructed as regular vectors, then we also have to ensure that (3.34) holds for
with rn < < n 1, and this gives

(3.36) Umk:n-l,n (E(k)) -1 (Q))r Avn.

We remark that, by (3.29), the matrix E(k) in (3.36) is necessarily nonsingular since the
vectors Pn and qn are regular. If Pn and qn are constructed as inner vectors, then rn* rnk 1,
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and (3.34) yields no conditions for the choice of the coefficients Uin with mk < < n 1. In
this case, we set

(3.37) Idin (in for rnk, rnk + 1 n 1,

where (in E C can be chosen arbitrarily. Finally, if Pn and qn are regular, we update the
"regular" indices (3.28) by setting mk+l := n and k := k + 1. This completes the construction
of the Pn and qn vectors.

In a second step, we now compute the next pair of V-W vectors, 1)n+ and Wn+l, using
the recurrences (3.5)-(3.6). Here, we have to determine the coefficients lin such that Vn+l
satisfies the corresponding biorthogonality conditions (3.23). Note that, in view of (3.15), the
relations (3.23) for Wn+l are then fulfilled automatically. Weproceed similar to the construction
of Pn and qn. By using (3.26) and the fact that the columns of the matrices Qi and Wi span
the same space, it is easily verified that

(3.38) (w(J)) r Apn 0 for all j 1, 2 l* 1,

where l* "= l* (n) is given by

(3.39) l* max {Jl 1 < j < and nj < m}.
From (3.38), we conclude that the recurrences (3.5)-(3.6) reduce as follows"

(3.40) n+l Apn- Vilin,
i’-nl,

(3.41) n+l Arqn- wilin(’n//i)
i--nl,

The recurrence coefficients lin in (3.40)-(3.41) are determined by enforcing the remaining
biorthogonality conditions (3.23) for the vectors Vn+t and wi, nt, < < n. This gives

(3.42) Znt,:nt-l,n (diag(Dl* DI_I)))_I WI, WI_I) ]r Ap,,.

Moreover, if Vn+l and Wn+ are constructed as regular vectors, then

(3.43) tnl:n,n (D(/))-1 (W(I)) T Apn.

Note that, by (3.24), the matrix Dl) in (3.43) is necessarily nonsingular since Vn+l and Wn+l
are regular. If Vn+l and Wn+l are built as inner vectors, then we set

(3.44) lin rlin for Hi, nl -+- 1 n,

where Oin E C can be chosen arbitrarily. Finally, if Un+l and L0n+ are regular, then we update
the indices (2.21) by setting nt+ := n + 1 and := + 1.

The resulting coupled procedure for generating the P-Q and V-W sequences can be
sketched as follows.

ALGORITHM 3.3 (Coupled algorithm with look-ahead).
0. Choose Vl, w 6 Cv with Ilvl IIw 1.

Set V1) Vl, W1 w, D1 WVl.
Setk 1, m 1, 1, nt 1.
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For n 1, 2 do:

1. Determine k* from (3.31).
2. Decide whether to construct Pn and qn as regular or inner vectors
and go to step 3 or 4, respectively.

3. Compute Pn and qn by means of (3.35)-(3.36) and (3.32)-(3.33).
Set rnk+l n, k k + 1, p(k) Q(k) 0 and go to step 5.

4. Compute Pn and qn by means of (3.35), (3.37), and (3.32)-(3.33).
5. Set

p(k)= [p(k) Pn ], Q(k)= [Q(k) qn ], E(k)= (Q(k))TAp(k).

6. Determine l* from (3.39).
7. Decide whether to construct Vn+l and Wn+l as regular or inner vectors
and go to step 8 or 9, respectively.

8. Compute fin+l and tbn+l by means of (3.42)-(3.43) and (3.40)-(3.41).
Set nt+ n + 1, + 1, V (t) W(t) 0 and go to step 10.

9. Compute Sn+ and tbn+l by means of (3.42), (3.44), and (3.40)-(3.41).
10. Compute Pn+l IIn/lll and n/l Iltbn/l[.

If Pn+ 0 or n+l 0, then stop.

Otherwise, set

l)n+l )n+l/Dn+l, Wn+l ffl)n+l/n+l,

v(l) v(l) /)n+l ], m(l) m(l) LOn+l ], O(i-i (m(l)) T V(l)

We remark that Algorithm 3.3 reduces to the coupled two-term procedure described in 3.2 if
all vectors in the P-Q and V-W sequences are built as regular vectors. Note that in this case,
we havek(n) n 1, n, n 1, l(n) n, and nt, n for all n.

4. The look-ahead strategy. As described in 3.2, there are two possible breakdowns in
the coupled two-term procedure without look-ahead: one associated with the V-W sequence,
and another associated with the P-Q sequence. In particular, Algorithm 3.2 will encounter an
exact breakdown in the V-W sequence if wn Vn 0, or in the P-Q sequence if qnv_ 1Apn-1 O.
The exact breakdowns of the two sequences are not independent of each other, as was pointed
out by Gutknecht in [12]. For a full description of the structure and coupling of the exact
breakdowns, we refer the reader to [12] and [2], and the references given there. However, in
practice one is also concerned with avoiding near-breakdowns; that is, situations when wn Vn
or q T Apn are not exactly zero, but are small in some sense.n-1 -1

In the coupled procedure with look-ahead, which we sketched in 3.3, exact and near-
breakdowns in the P-Q, respectively V-W, sequence are prevented by building the next pair
of vectors Pn and qn, respectively Vn+l and Wn+ 1, as inner vectors. In this section, we describe
the look-ahead strategy that is used to decide in steps 2 and 7 of Algorithm 3.3 whether vectors
are constructed as regular or inner vectors.

n+l and {win+ in the look-ahead Lanczos algorithmRecall from 2.2 that the vectors {/)i Ji=l Ji=l

satisfy a block three-term recurrence that can be written compactly as (2.14)-(2.15). By
eliminating Vn and Wn in (3.7) and (3.8), one obtains a similar recurrence relation for the
vectors {Pi }in= and {qi }in_-a of the P-Q sequence:

(4.1) APn-1 PnUnLn-1 and AT Qn-1 QnI-"lUnLn-lI-’n-1.
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By using the A-biorthogonality of Pn and qn, it is easy to show that the recurrences for
the P-Q sequence are also three-term recurrences, or, in the general case, block three-term
recurrences. We note that, in (4.1), the matrix UnLn_ of recurrence coefficients is obtained
by multiplying the factors Ln-1 and Un from the decompositions (3.11) of Hn- and Hn,
respectively, in reverse order. This was first remarked by Rutishauser [21 for the special case
of no look-ahead, and recently by Gutknecht 12], for the general case.

The look-ahead strategy consists of monitoring breakdowns in the two sequences inde-
pendently. For the V-W sequence, the criteria used are the same as those proposed in [7]:

(4.2) ffmin(D(1)) > eps,

(4.3) n(A) > I(ZnUn)in],

(4.4) n(A) ’n i(ZnUn)in]
’i

where eps is machine epsilon, and n (A) is an estimate for the norm of A. The Lanczos vectors

Vn+l and Wn+l are built as regular vectors only if all three ofthe above checks are satisfied. The
check (4.2) ensures that the diagonal blocks D(j are nonsingular, while the checks (4.3)-(4.4)
ensure that the size of the coefficients//,n and v, in (2.23) and in the corresponding relation for

tbn+l do not exceed an estimate n(A) for the norm of A. The first condition is needed since the
inverse of D(l) appears in/Zn, while the second and third conditions attempt to ensure that the
components from K,(ro, A) and from Kn(Wl, AT) do not dominate the Avn and ATWn terms,
respectively. Another motivation for these checks is as follows. The symmetric Lanczos
process for Hermitian matrices A generates tridiagonal matrices Hn that satisfy

(4.5) nn IIA for all n.

For the classical nonsymmetric Lanczos algorithm, the relation (4.5) does not hold in general.
Indeed, formally, we have Itn if a breakdown occurs. As David Day has pointed out
to us, an "ideal" look-ahead Lanczos procedure would ensure that (4.5) also holds for non-
Hermitian matrices. The criteria (4.3)-(4.4) can be viewed as a cheap way of modeling the
conditions (4.5). We remark that the checks (4.3)-(4.4) take advantage of the normalization
(2.9) of the Lanczos vectors.

For the P-Q sequence, the criteria are similar: the diagonal blocks E(j) must be nonsin-
gular, and the size of the last columns of Un Zn- and of F- Un Ln- 11-’n- must not exceed the
estimate n(A) for the norm of A. Singularity of E(k is once again checked from its smallest
singular value:

O’min (E(k)) > eps.

However, for the second and third checks, it is no longer sufficient to compute just the norm
of the last column of the matrices of recurrence coefficients, as the vectors Pn and qn are not
normalized to unit length. Instead, one must check

n(A)llPn]l > l(UnZn-1)i,n_ll Ilpll(4.6)

and

(4.7) n(A)llqnll > ’------L I(UnLn-)i,n_] Ilqill.
/i

1Private communication, Berkeley, March 1992.
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This means that the look-ahead strategy for the P-Q sequence requires the computation of
the two norms IlPn and Ilqn at each step, work that would otherwise not be needed by the
algorithm. Once again, the vectors Pn and qn are built as regular vectors only if all three of
the above checks are satisfied. We remark that the look-ahead strategy presented here builds
regular vectors in preference to inner vectors and will therefore build as few inner vectors as

possible.
Finally, we note that other look-ahead strategies are also possible. For example, Gutknecht

12] proposed a look-ahead strategy that assumes that the near-breakdowns encountered in the
two sequences have the same structure as the exact breakdowns. We have chosen to monitor
the two sequences independently; nevertheless, our strategy will recover the exact-breakdown
structure if only exact breakdowns are considered.

5. Implementation details. In this section, we discuss some of the details of an imple-
mentation of Algorithm 3.3. The nth iteration of Algorithm 3.3 updates the matrices En-1,
Ln-1, Un-1, Pn-1, On-l, Vn, mn, and Dn, to En, Ln, Un, Pn, On, Vn+l, mn+l, and Dn+l,
respectively. We are interested in obtaining an implementation that requires only two inner
products per iteration to compute all the coefficients of the recurrence formulas. Recall that
the look-ahead strategy (4.6)-(4.7) for the P-Q sequence and the normalization (2.9) require
a total of four norm computations, so that the implementation will require two inner products
and four norms per iteration.

Let us introduce the auxiliary matrices

Fn WTn APn and Pn QTnAVn,

whose columns are needed in (3.42)-(3.43) and (3.35)-(3.36). It turns out that these two
matrices are essentially the transpose of each other.

LEMMA 5.1. The matrices Fn and fin satisfy Fn I’n tn I’n T

Proof. The proof is similar to the proof of Lemma 3.1.
At the beginning of each iteration, we will have available the n x (n 1) matrix Fl:n,l:n_l,

which we will update to Fl:n+l,l:n.
To compute the coefficients uin needed in (3.32)-(3.33), ffl:n- 1,n is obtained by Lemma 5.1.

The vectors Pn and qn are then computed from (3.32)-(3.33). To obtain En from En-1, the
diagonal term qrn Apn is computed directly, requiring one inner product. Then, using

(5.1) F,, WnrAPn FnUVn F;aQnAPn FnUrn F;IEn,
the remainder of the last row of En is computed from En-1, Fn,l:n-1, and Un-. The last
column of En is obtained by symmetry, using (3.16) from Lemma 3.1. One then computes
Fl:n,n, using (5.1) and the new column El:n,n. The vectors Vn+ and LUn+ are then computed
from (3.40)-(3.41).

T is onceNext, we consider the update of Dn+a from Dn. The diagonal term Wn+lvn+l
again computed directly, thus requiring the second inner product per iteration. Next, using

(5.2)
Fn WnTAPn mTn Vn+lLn

DnLl:n,a:n + ln+l.nDl:n,n+l 0 0 1],

the remainder of the last column of On+l is computed from Dn, Fn, and Ln. The last row of

Dn+l is obtained by symmetry, using (3.15) from Lemma 3.1. One then computes Fn+l,l:n,
using (5.2) and the new row Dn+l,l:n+ 1.

Thus, the coupled Lanczos Algorithm 3.3 requires the computation of two inner products
and four vector norms per iteration. We conclude this section by noting that, in Algorithm 3.3,
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the choice of the inner recurrence coefficients (3.37) and (3.44) is arbitrary. In our implemen-
tation of the algorithm, we used

Un-l,n 1,

Un-2,n when mk < n- 2,

lin --0 for/ =mk n--3,

1,

ln-l,n 1 when nt < n 1,

lin 0 for n n 2,

for the inner-vector recurrence coefficients.

6. An implementation ofQMRwith look-ahead. We now return to linear systems (1.1)
and the QMR method. In this section, we propose an implementation of the QMR method
based on the coupled two-term look-ahead Algorithm 3.3.

Recall that the nth QMR iterate Xn is defined by (2.25)-(2.26) in terms of the matrices

Vn and Hn generated by the look-ahead Lanczos algorithm. In the original implementation
of QMR, the solution Zn of the least-squares problem (2.26) is computed by means of a QR
decomposition of the matrix f2n+X Hn.

Here we consider the case that the Lanczos vectors are constructed using the coupled
two-term Algorithm 3.3. Recall that Algorithm 3.3 yields as a by-product the factors Ln and

Un in the decomposition (3.11)of Hn. Using the factorization (3.11) and setting Yn := UnZn,
we can rewrite the definition (2.25)-(2.26) of Xn as follows:

(6.1) Xn Xo + VnU yn

where Yn is the unique solution of the least-squares problem

(6.2) Ilfn/l f2n+lLnYnll min Ilfn/l f2n+lLnyll.
yECn

Here, as before, fn+l is given by (2.27) and f2n+l is defined in (2.28). We remark that the
least-squares problem (6.2) is actually cheaper to solve than the original one (2.26). The reason
is that the matrix Ln in (6.2) has fewer nonzero elements than Hn in (2.26). For example, if
no look-ahead steps are taken, then Hn is tridiagonal, while Ln is a lower bidiagonal matrix.
This special case will be considered in more detail in 7. We remark that, typically, the
coefficient matrix "n+l Ln of (6.2) is better conditioned than the matrix "2n+1Hn in (2.26).
Consequently, the least-squares problem (6.2) usually can be solved to higher accuracy than
the original one (2.26); see the examples in 9. This is another advantage of the coupled
two-term implementation of QMR.

As discussed in [9], solutions of least-squares problems of the type (6.2) can be easily
updated from step to step, using the QR decomposition of 2n+l Ln,

(6.3) Qn+ltn-- QHn [Ron],
where Qn is a unitary (n + 1) x (n / 1) matrix, and Rn is a nonsingular upper triangular n x n
matrix. With this, the least-squares problem (6.2) becomes

mien "L+I- ’n+ltny" mien OHn (anL+l- JROnly)yE y

mien Ilanfn+ - [RO ] II.y
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For Yn this gives:

(6.4) Yn R21tn where tn tn := Qnfn+l.n+l
Zn

Finally, we note that it is possible to update the QMR iterate at each step, as was done in
the original QMR algorithm. Full implementation details were given in [9, 4], and we will
not repeat them here. The point is that the QMR iterates have an update formula of the form

(6.5) Xn Xn-1 -3
t- dn rn.

Here, rn is given by (6.4), and dn is an auxiliary search direction defined as the last column
of the matrix VnU-1R enR1, which appears in (6.1) after inserting Yn from (6.4). The
vectors dn are also updated with short recurrences: the recurrence for dn involves only as many
vectors as the recurrence for Vn+l. For full details of the update procedure for dn, we refer the
reader to [9].

The basic outline of the resulting implementation ofQMR based on the coupled two-term
Algorithm 3.3 is then as follows.

ALGORITHM 6.1 (QMR based on coupled recurrences).
0. Choose x0 6 CN and set ro b Axo, Pl IIr011, v ro/.
Choose Wl 6 CN with Ilwl 1,

For n 1, 2 do:

1. Perform the nth iteration of the coupled two-term Algorithm 3.3.

This yields matrices Ln, P,, Un, and V+I, which satisfy (3.7).
2. Update the QR factorization (6.3) of "n+l Ln and the vector tn in (6.4).
3. Update the QMR iterate Xn by means of (6.5).
4. If Xn has converged, then stop.

In [9], various properties of the QMR method are given. For example, it is shown how
existing BCG iterates can be easily recovered from the QMR process and how estimates
for the QMR residual norms can be obtained at no extra costs. We would like to stress
that these properties also hold true for the particular implementation of QMR sketched in
Algorithm 6.1. Finally, recall from (2.29) that we recommend the use of unit weights coj 1
in "n+l diag(wl, co2 O)n+l).

7. An implementation of QMR without look-ahead. In this section, we present the
simplification of Algorithm 6.1 to the case where no look-ahead is used. We also briefly
address the issue of preconditioning.

LetMbe a given nonsingularN Nmatrix that approximates in some sense the coefficient
matrix A of (1.1). Suppose further that M is decomposed as

(7.1) M M1Me.

Then, one applies the QMR algorithm to the system

(7.2) A’y b’,

where A’ M-1AM1, b’ M- b, and x’ M2x. It is easy to see that the linear systems
and the(1.1) and (7.2) are equivalent, and that one can transform back from the iterates xn
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residuals r’ of the system (7.2) to the iterates xn and the residuals rn of the system (1.1). For
example, while applying QMR to the preconditioned system (7.2), it is possible to write the
resulting algorithm in terms of the quantities corresponding to the original system (1.1); this
is what is done below.

We now present a version of the QMR algorithm based on the coupled Algorithm 3.2,
which does not have look-ahead. We remark that in this case, by (3.22) and (3.20), the matrix
U in (3.9) is upper bidiagonal, and Zn is a lower bidiagonal matrix. We also implement
preconditioning, as discussed above. The resulting QMR algorithm is as follows.

ALGORITHM 7.1 (QMR based on coupled recurrences without look-ahead).
0. Choose x0 6 CN and set ro b Axo.
Compute Pl IIM-ar011 and set Vl ro/Pl.
Choose L0 CN with IIMTwlll 1.

Set P0 q0 do 0, co 0 1 1, L0 0,/’/0 -1.

For n 1, 2 do:

1. If n-1 0, then stop.

TM-1Compute n Wn Vn. If n O, then stop.

2. Compute

Pn M-lvn Pn-l(nn/n-1),

qn M-TtOn qn-l (Pnn/n-1).

3. Compute -n qVn Apn, in -n/n, and set

n+l Apn Ynn,

tbn+l A 7qn Wnfln,

4. Compute

O)n+ Pn+ 1 Pn C2nOn Cn On On- --’----’-OAnCn-1 [in v/1 + L92n inCn_

dn pni"]n 21- dn-1 (On-lCn)2, Xn Xn-1 -J- dn.

5. If Pn+l 0 or n+l 0, then stop.

Otherwise, set

l)n+l )n+l/Dn+l, ll)n+l lt)n+l/n+l.

As pointed out in 3.2, the vectors computed in steps 2 and 3 of Algorithm 7.1 are rescaled
versions of vectors used in BCG. Freund and Szeto 11 used this connection to derive an im-
plementation ofQMR without look-ahead that is directly based on BCG. Their Algorithm 3.1
in 11] and Algorithm 7.1 are mathematically equivalent.

8. QMR for complex symmetric matrices. In this section, we briefly discuss the ap-
plication of the QMR Algorithm 7.1 to the solution of complex symmetric linear systems, i.e.,
systems with

A A" CNxN.
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We note that the QMR approach was originally proposed by Freund in [5] for exactly this
class of linear systems. We stress that the implementation of complex symmetric QMR in [5]
is based on the three-term Lanczos recurrence. Here we present a different implementation
based on coupled two-term recursions.

The benefit of applying a Lanczos method to complex symmetric systems is that the
underlying Lanczos algorithm simplifies naturally. Recall that in the coupled Algorithm 3.3,
the second starting vector wl is arbitrary. In the case of a symmetric matrix, if wl is chosen
equal to vl, then it is easy to show that Wn Vn and qn Pn for all n. Thus, the recurrences
for Wn and qn can be eliminated, saving roughly half the amount of work and storage.

However, we remark that, in contrast to the Lanczos algorithm for Hermitian matrices
where breakdowns are excluded, the Lanczos process for complex symmetric also requires
look-ahead to avoid exact and near-breakdowns. This is discussed in detail in [5].

The only other issue in the case of complex symmetric systems is that the preconditioner
M in (7.1) must also be symmetric, i.e.,

(8.1) M-- M1M2 (MM2)T My.

For example, this is always guaranteed if the decomposition (7.1) is "symmetric" in the sense
that

(8.2) M2 M.
However, we stress that the condition (8.2) is not necessary, and M1 and M2 can be arbitrary
matrices satisfying (8.1). We remark that standard preconditioning techniques, such as incom-
plete factorization, yield symmetric preconditioners (8.1) when applied to symmetric matrices
A.

In this case, one can apply the QMR Algorithm 7.1 to the resulting preconditioned sys-
tem. Once again writing everything in terms of the quantities corresponding to the original
system (1.1), one obtains the following iteration.

ALGORITHM 8.1 (QMR without look-ahead for complex symmetric systems).

0. Choose x0 6 CN and set ro b Axo.
Compute p IIM-lr011 and set v ro/p.
Set P0 do 0, co 0 1, O0 0, 00 -1.

For n 1, 2 do"

1. If ?n-1 0, then stop.

TM-1Compute n l)n

2. Compute

l)n If n 0, then stop.

Pn M-lvn Pn-1 (Pnn/n-1).

3. Compute n pApn, fin :n/Cn, and

n+l APn l)nin,

4. Compute

Pn+l "-IlMj-lOn+lll.

O)n+l/gn+ 1

O)nCn-11fln vii+ 02n
dn PnOn ql_ dn_l (Lgn_lCn)2, Xn Xn-1 + dn.

2pnCn
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5. If Pn+l 0, then stop.

Otherwise, set

l)n+l )n+l/Pn+l.

9. Numerical experiments. In this section, we present a few numerical examples. We
compare the original and the new implementation of the QMR algorithm, as well as illustrate
an application of the coupled QMR algorithm to the solution of complex symmetric linear
systems.

In Figs. 9.1-9.3 below, we always show the true relative residual norm IIr. II/llr011 plotted
versus the iteration index n. All examples were run on a Sun SparcStation 2 using double
precision, with machine epsilon of order (.9(10-16). In all cases, we used unit weights ooj 1
for all j in the least-squares problems (6.2), respectively (2.26).

100

10-3

10-6

10-9

10-2

10-15
0 20 40 60 80 100 120 200

2 X 2-term

140 160 180

FIG. 9.1. Convergence curvesfor Example 9.1.

Example 9.1. This example is taken from and is meant to illustrate the typical behavior
that can be expected from the new implementation of QMR when compared to the original
implementation. We consider the partial differential equation

(9.1) Lu=f on(0,1) (0,1),

where

Zu "."- e-Xy eXy

Ou
+20(x + y)--- + 20--- ((x + y)u) +ox ox

1

l+x+y
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FIG. 9.2. Convergence curvesfor Example 9.2.
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FIG. 9.3. Convergence curvesfor Example 9.3.

with Dirichlet boundary conditions u 0. We discretized (9.1) using centered differences on
a 30 x 30 grid with mesh size h . This leads to a linear system Ax b, where A is a
nonsymmetric matrix of order N 900 with 4380 nonzero entries. We ran the original and the
new implementations of QMR, both with look-ahead and with the same starting conditions,
until the true residual norm ][rn was not reduced any further. The vectors b and W were



QMR BASED ON COUPLED TWO-TERM RECURRENCES 335

random vectors, the initial guess x0 was zero, and the example was run without preconditioning.
The original QMR algorithm is plotted in Fig. 9.1 with a dotted line; it stagnated at 6.7e- 14,
and it built six look-ahead blocks of size 2. The coupled QMR algorithm is plotted in Fig. 9.1
with a solid line; it stagnated at 8.3e-15, and it built four blocks of size 2 in the V-W
sequence and seven blocks of size 2 in the P-Q sequence. Recall from 6 that the coupled
two-term QMR algorithm solves the least-squares problem (6.2) with coefficient matrix Ln,
while the original three-term implementation is based on the least-squares problem (2.26) with
coefficient matrix Hn. The Euclidean condition numbers of these matrices at step n 165,
respectively n 173, when the original QMR algorithm, respectively the coupled QMR
algorithm, begins to stagnate, are cond(Ln) 5.2+0 3 and cond(Hn) 7.3+0 3 for both
n 165 and n 173. Thus the least-squares problem (6.2) is slightly better conditioned
than (2.26).

The behavior in Example 9.1 seems to be fairly typical, in that usually the new implemen-
tation is better than the original implementation, but the difference is not very large. However,
there are cases where the coupled implementation is significantly better than the original QMR
implementation. The next example is of this type.

Example 9.2. This is a linear system that arises in performance modeling ofmultiprocessor
systems, using Petri-net analysis. In such applications, one obtains large sparse singular
matrices A with null spaces of dimension 1, and one needs to compute a nontrivial basis vector
for this null space. This leads to a linear system of the form Ax 0, and thus condition (2.1)
is satisfied. We used a matrix .4 of size N 3663 with 23397 nonzero elements. The vector
b was zero, while the initial guess x0 and the starting vector Wl were both random. The linear

system is a difficult one, and iterative methods do not converge easily without preconditioning.
We used the variant described in [9] of Saad’s ILUT preconditioner [22], with no additional
fill-in allowed and a drop tolerance of 0.001, which generated a preconditioning matrix
M with 23397 elements. The original QMR algorithm is plotted in Fig. 9.2 with a dotted
line; it stagnated at 2.9e-05, and it built two blocks of size 2. On the other hand, the
new implementation, plotted in Fig. 9.2 with a solid line, stagnated at 1.2 e-"t 2, and it built
one block of size 2 in the V-W sequence and three blocks of size 2 in the P-Q sequence.
The Euclidean condition numbers of the coefficient matrices Ln and Hn of the least-squares
problems (6.2) and (2.26) at step n 58, when the original QMR algorithm begins to stagnate,
are cond(L58) 4.5e+) 6 and cond(H58) 2.4+10. At step n 113, when the coupled
QMR algorithm begins to stagnate, we have cond(Lll3) 4.9e+06 and cond(Hll3)
3. Be+ 10. Thus the least-squares problem (6.2) is considerably better conditioned than (2.26).

Example 9.3. Here .4 is the complex symmetric YOUNG1C matrix from the Harwell-
Boeing test collection of sparse matrices [3]. The matrix arises in a scattering problem in
aerodynamics research; it is of dimension N 841 with 4089 nonzero elements. We ran
Algorithm 8.1 without look-ahead, with various complex symmetric ILUT preconditioners.
In all cases, the iteration was started with the same random vector for b and zero initial
guess x0. This system is also a difficult one, and, if not preconditioned, the QMR algorithm
requires around 700 iterations to reach the stagnation level of 2.5-14; the corresponding
convergence curve is plotted in Fig. 9.3 with a dotted line. However, the ILUT preconditioner
is quite effective in this example, especially at higher levels of allowed fill-in and/or drop
tolerance. In Fig. 9.3, we show, in order of solid lines from right to left, ILUT with no additional
fill-in and 0.0 01 drop tolerance (2375 nonzero elements), ILUT with five additional fill-in
and 0.001 drop tolerance (5171 nonzero elements), ILUT with 10 additional fill-in and
0.0 3

_
drop tolerance (9320 nonzero elements), and finally ILUT with 16 additional fill-in

and 0.0 drop tolerance (13329 nonzero elements). As can be seen, all variants reach roughly
the same stagnation level, around 1. 3 e-14. However, as shown in Table 9.1, they do so in
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TABLE 9.1
Total execution times (sees) for Example 9.3, average offive rurt.

Preconditioner no prec ILUT
0/0.oo1

Iterations 7 5 0

Time (secs) 14 4.5

ILUT
5/0.001

ILUT
i0/0.001

ILUT
16/0.0

450 400 200 55

111.4 123.3 75.9 44.4

fewer and fewer iterations, and, in fact, for this example, the additional time spent computing
the denser preconditioners was almost always made up by faster convergence.

10. Concluding remarks. We presented a new look-ahead algorithm for constructing
Lanczos vectors based on coupled two-term recurrences instead of the usual three-term recur-
rences. We then discussed a new implementation of the QMR algorithm, using the coupled
process to build the basis for the Krylov space. While the theoretical results derived for the
original algorithm carry over to the new one, the latter was shown in examples to have better
numerical properties. We also briefly covered an implementation of the new QMR method
without look-ahead, as well as the application ofthe QMR algorithm to the solution ofcomplex
symmetric linear systems, where the underlying Lanczos process naturally simplifies. Finally,
an extended version of this paper, with a more detailed implementation section, is available
as a RIACS Technical Report [10].

FORTRAN 77 codes for the proposed coupled-two term look-ahead procedure and the
resulting new implementation of the QMR algorithm can be obtained electronically from the
authors (freund@research.att.com and na.nachtigal@na-net.ornl.gov). We note that FOR-
TRAN 77 codes for the original implementation of QMR and the underlying look-ahead
Lanczos algorithm are available from netlib by sending an email message consisting of the
single line "send lalqmr from linalg" to netlib@ornl.gov or netlib@research.att.com.

Acknowledgments. The authors wish to acknowledge the fruitful discussions held with
Martin Gutknecht and Tedd Szeto. Marlis Hochbruck and Uwe Seidel provided the matrix for
Example 9.2.
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A QUASI-MINIMAL RESIDUAL VARIANT OF THE BI-CGSTAB ALGORITHM
FOR NONSYMMETRIC SYSTEMS*

T. E CHANt, E. GALLOPOULOSt, V. SIMONCINI, T. SZETOt, AND C. H. TONG

Abstract. Motivated by a recent method of Freund [SLAM J. Sci. Comput., 14 (1993), pp. 470-482], who
introduced a quasi-minimal residual (QMR) version of the conjugate gradients squared (CGS) algorithm, a QMR
variant of the biconjugate gradient stabilized (Bi-CGSTAB) algorithm of van der Vorst that is called QMRCGSTAB,
is proposed for solving nonsymmetric linear systems. The motivation for both QMR variants is to obtain smoother
convergence behavior of the underlying method. The authors illustrate this by numerical experiments that also show
that for problems on which Bi-CGSTAB performs better than CGS, the same advantage carries over to QMRCGSTAB.

Key words, conjugate gradients, Lanczos algorithm, iterative methods, BCG, CGS, QRM, Bi-CGSTAB, non-
symmetric linear systems
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1. Introduction. In this note we propose a variation of the Bi-CGSTAB algorithm of
van der Vorst 18] for solving the linear system

(1) Ax b,

where A is a nonsymmetric sparse matrix of order n.
Various attempts have been made in the last forty years to extend the highly successful

conjugate gradient (CG) algorithm to the nonsymmetric case [4]. One such natural extension
is what is currently called the biconjugate gradient algorithm (BCG) [9], ]. Although BCG
is still quite competitive today, it also has several well-known drawbacks. Among these are
(i) the need for matrix-vector multiplications with Ar (which can be inconvenient as well as
doubling the number of matrix-vector multiplications compared to CG for each increase in the
degree of the underlying Krylov subspace), (ii) the possibility of breakdowns, and (iii) erratic
convergence behavior.

Many recently proposed methods can be viewed as improvements over some of these
drawbacks of BCG. The most notable of these is the ingenious CGS method proposed by
Sonneveld [14], which cures the first drawback mentioned above by computing the square of
the BCG polynomial without requiring A r. Hence whenBCG converges, CGS is an attractive,
faster converging alternative. However, this relation between the residual polynomials also
causes CGS to behave even more erratically than BCG, particularly in near-breakdown situa-
tions for BCG [8], [18]. These observations led van der Vorst [18] to introduce Bi-CGSTAB,
a more smoothly converging variant of CGS. The main idea is to form a product of the BCG
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polynomial with another, locally defined polynomial. The Bi-CGSTAB method was further
refined by Gutknecht [7] to handle complex matrices and also lead to better convergence for the
case of complex eigenvalues. Nevertheless, although the Bi-CGSTAB algorithms were found
to perform very well compared to CGS in many situations, there are cases where convergence
is still quite erratic (see, for example, 4 and [12]).

In a recent paper [3], Freund proposed a new version of CGS, called TFQMR, which
"quasi-minimizes" [6] the residual in the space spanned by the vectors generated by the
CGS iteration. Numerical experiments show that in most cases TFQMR retains the good
convergence features of CGS while correcting its erratic behavior. The transpose-free nature
of TFQMR, its low computational cost, and its smooth convergence behavior make it an
attractive alternative to CGS. On the other hand, since the square of the residual polynomial
for BCG is still in the space being quasi-minimized, in many practical examples CGS and
TFQMR converge in about the same number of steps. We note however that in contrast to

CGS, the asymptotic behavior of TFQMR has been analyzed [2]. It is also well known that
the CGS residual polynomial can be quite polluted by round-off error [16]. One possible
remedy would be to combine TFQMR with a look-ahead Lanczos technique as was done
for the original QMR method [5]. In this paper, we take an alternative approach by deriving
quasi-minimum residual extensions to Bi-CGSTAB. We call the basic method QMRCGSTAB
and illustrate its smoothed convergence by means of numerical experiments.

It may appear redundant to combine the local minimization in Bi-CGSTAB with a global
quasi-minimization. However, our view is that the local minimization is secondary in nature
and is only used as a way ofgenerating residual polynomials in the appropriate Krylov subspace
over which the residual is being quasi-minimized. In fact, this view allows us some flexibility
in modifying the local minimization step in Bi-CGSTAB, which leads to other quasi-minimal
residual variants. Although we use extensively notation introduced in [18] for algorithm
Bi-CGSTAB, for the sake of brevity we refer to that paper for a description of the method.

2. The QMRCGSTAB algorithm. The algorithm proposed in this paper is inspired by
TFQMR in that it applies the quasi-minimization principle to the Bi-CGSTAB method, in the
same way that TFQMR is derived from CGS. During each step of Bi-CGSTAB, the following
vector relations hold:

(2) Si ri- oli Api, r s o)i Asi,

where O/i is the same as the analogous coefficient in BCG, and O) is chosen by a local steepest
descent principle. Note that xi is completely determined by O/i and coi. Instead, our algorithm
uses Bi-CGSTAB to generate the vectors Pi and si, but chooses xi by quasi-minimizing the
residual over their span. Let Yk {Yl, Y2 yk}, where Y21-1 Pt for 1 [(k+ 1)/2]
and Y21 sl for 1 [k/2] ([k/2] is the integer part of k/2). In the same way, let W+
{w0, Wl wk} with w2 rt for/= 0 [k/2] and w2l- sl for/= [(k+l)/2].
We also define {1, 32 6k}, as 62l col for [(k + 1)/2] and 32-1 or1 for

1 [(k + 1)/2]. In this case, for each column of Wk+ and Yk, (2) may be written as

(3) Ayj (LOj-1 Wj)( j 1 k

or, using matrix notation,

AYk Wk+ Ek+l,

where E+I is a (k + 1) k bidiagonal matrix with diagonal elements )- and lower diagonal

elements -8}- 1.
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It can easily be checked that the degree of the polynomials corresponding to the vectors
ri, si, and Pi are 2i, 2i 1, and 2i 2, respectively. Therefore, span(Yk) span(Wk) K-I,
where K is the Krylov subspaceofdegree k generated by r0. The main idea in QMRCGSTAB
is to look for an approximation to the solution of (1), using the Krylov subspace K_I, in the
form

x xo + Ykg with gk C:_ ][,n.

Hence, we may write the residual r b Ax as

rk ro AYkgk ro mk+l Ek+gk.

Using the fact that the first vector of W+ is indeed ro, it follows that

rk Wk+l(el Ek+lgk),

where el is the first vector ofthe canonical basis. Since the columns of Wk+l are not normalized,
it was suggested in [3] to use a (k + 1) x (k + 1) scaling matrix Ek+l=diag(rl crk+l),
with cri wi II, to make the columns of Wk+l to be of unit norm. Then

-1 ]k+l (el E/+lgk) Wk+l(4) rk Wk+l Ek+ ]k+l (fflel Hk+lgk)

with Hk+ Y]k+ Ek+1.

The quasi-minimal residual approach consists of the minimization of [Iolel Hk+lgll
for some g 6 k. In 3 we introduce a variant of QMRCGSTAB that generates Wk+l with
pairwise orthogonal columns.

The least squares minimization of IIrl el Hk+ g]l is solved using QR decomposition of

Hk+l. This is done in an incremental manner by means of Givens rotations. Since Hk+ is
lower bidiagonal, only the rotation of the previous step is needed. We refer to [3] for a detailed
description of the QR decomposition procedure.

The pseudocode for the QMRCGSTAB algorithm is as follows, in which the Givens
rotations used in the QR decomposition are written out explicitly:

ALGORITHM QMRCGSTAB(A, b, xo,
(1) Initialization

ro b- Axo
choose :o such that 07o, ro) 0
po=vo=do=O
P0 or0 coo 1; r lit0 II, 00 0, 00 0

(2) for k 1, 2 do

Pk (tO, r/-l); flk (pkOlk-1)/(Pk-lcok-1)
pk rk-1 + flk(Pk-1 --cok-11)k-l)
v Ap

p/(o, v)
Sk l’k-1 OlkUk

(2.1) First quasi-minimization and update iterate

0 IIsll/r; c l/V/1 + 0;
k C20lk
l pk + O-lOk-1 dk_

Olk~
Yk xk-1 +
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(2.2) compute tk, wk and update rk
tk ASk
w (s, t)/(tk, t)
rk s

(2.3) Second quasi-minimization and update iterate

Ok Ilrll/f; c l/V/1 + 0; r fOkc
Ok C200k

d s + --xk +
If xk is accurate enough, then quit

(3) end

To check the convergence, the estimate I111 -< /k + llvl was used, where k denotes
the QMRCGSTAB residual at step k [3].

Note that the cost per iteration is slightly higher than for Bi-CGSTAB, since two additional
inner products are needed to compute the elements of Ek+l. A more detailed discussion on
computational costs is given in 4.

3. Some variants of QMRCGSTAB. The use of quasi-minimization in the "product
algorithms" (such as CGS and Bi-CGSTAB) introduces some flexibility. For example, the
underlying product algorithm need not be constrained to generate a residual polynomial that
has small norm since, presumably, the quasi-minimization step will handle that. Instead,
the basic .iteration can be viewed as only generating a set of vectors spanning the Krylov
subspace over which the quasi-minimization is applied. This leads us to several variants of
QMRCGSTAB, which we will briefly describe. Note however that only one of these variants
will be used in the numerical experiments.

We make two observations on the QMRCGSTAB method:
1. It is not crucial that the steepest descent step reduces the norm of the residual as long

as it increases the degree of the Krylov subspace associated with Wk+l.
2. If Wk+l were orthogonal, then quasi-minimization becomes true minimization of the

residual.
Therefore, it is natural to choose wi to make Wk+l "more orthogonal." For example, one can
choose O) tO make ri orthogonal to si and Wk pairwise orthogonal. This leads to the formula:

(si si
O)i

(si, ti)

which replaces the corresponding formula in Algorithm QMRCGSTAB. We call this variant
QMRCGSTAB2. We note that since the inner-product (si, si) is already needed to compute
0i, we save one inner product compared to QMRCGSTAB.

We also note that similarly to Bi-CGSTAB, both QMRCGSTAB and QMRCGSTAB2
break down if (si, ti) O, which is possible if A is indefinite (in fact it is always true if
A is skew symmetric). This is an additional breakdown condition over that of BCG. One
possible strategy to overcome this is to set a lower bound for the quantity I(si, ti)1. However,
for matrices with large imaginary parts, Gutknecht [7] observed that Bi-CGSTAB does not
perform well because the steepest descent polynomials have only real roots and thus cannot
be expected to approximate the spectrum well. In principle, it is possible to derive a quasi-
minimal residual version of Gutknecht’s variant of Bi-CGSTAB, but we shall not pursue that
here.
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4. Numerical experiments. We next compare the performance of the QMRCGSTAB
variants with that of Bi-CGSTAB, TFQMR, and CGS.

Table shows the cost per step of the methods under discussion, excluding the cost for
computing the residual norm which is the same for all methods.

TABLE
Cost per stepfor each method.

Bi-CGSTAB
CGS
QMRCGSTAB
QMRCGSTAB2
TFQMR

Inner DAXPY
products operations

4 6
2 7**
6 8
5 8
4 10

Matrix-vector
multiplications

In the sequel we present experiments to show that QMRCGSTAB indeed achieves a
smoothing of the residual compared to Bi-CGSTAB. Note however that, because the Bi-
CGSTAB method already improves the erratic residual convergence of BCG, the effect of
QMRCGSTAB is not as impressive as the one of TFQMR on the residual of CGS.

Unless stated otherwise, in all examples, the right-hand side b was generated as a random
vector with values distributed uniformly in (0, 1), and the starting vectorx0 was taken to be zero.
All matrices arising from a partial differential operator were obtained using centered, second-
order finite differences. The methods were compared on the basis of the number of iterations
necessary to achieve relative residual IIrll/llroll < 10-8 with rk b Axk being the true
residual. Hence, the figures were built with the abscissae representing the number of iterations
and the ordinates representing IIr I1! lit0 graded with a logarithmic scale. Experiments were
conducted using a Beta test version of Matlab 4.0 10] running on a Sun Sparc workstation.

Example 1. This example was taken from [14] and corresponds to the discretization of
the convection-diffusion operator

(5) L (u) --eAu + cos(ot)Ux + sin(ot)uy

on the unit square with homogeneous Dirichlet conditions on the boundary and parameters
e 0.1 and ot 30, using 40 grid points per direction, yielding a matrix of order n 1600.
Figure 1 shows the convergence histories, from which we can see the smoothing effect of
quasi-minimization on the CGS and Bi-CGSTAB residuals. We see that Bi-CGSTAB and its
smoothed counterparts converge slightly faster than CGS and TFQMR, with QMRCGSTAB2
showing the best performance by a small margin.

Example 2. This example was taken from 17] and corresponds to the discretization of

(6) (Dux)x (Duy)y 1

on the unit square with homogeneous boundary conditions. We used a coarser grid than the
one considered in 17]; that is, 50 grid points per direction yielding a matrix of order n 2500.
Parameter D takes the value D 105 in 0 < x, y < 0.75, D 0.1 in 0.75 < x, y < 1, and
D 1 everywhere else. Left diagonal preconditioning was applied. In [17], this matrix was
used to illustrate the better convergence of Bi-CGSTAB over CGS. We see from Fig. 2 that
this advantage carries over to the smoothed versions. Furthermore, even though the matrix
is symmetric positive definite and hence CG is applicable, as shown in Fig. 2, the method

Strictly speaking, one of the operations is a simple vector addition. This must be taken into account if floating
point operations were to be counted.
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FIG. 1. Example 1: Two-dimensional convection-diffusion operator (5).

stagnates. This is due to the fact that for this operator, the computed direction vectors of CG
methods rapidly lose orthogonality 16]. We note that to make cost comparisons meaningful,
the CG curve was plotted so that each "iteration" corresponds to two true CG iterations, i.e.,
two matrix-vector multiplications.

Example 3. This example comes from the discretization of the convection-diffusion
equation

(7) L(u) --Au + V(XUx + ytty) + flu

on the. unit square where 9/ 100,/3 -100, for a 63 x 63 grid, yielding a matrix of order
n 3969. No preconditioning was used. In this example, we see the CGS-based methods
converge a little faster than Bi-CGSTAB and QMRCGSTAB, but the pairwise orthogonal
variant, QMRCGSTAB2, is the fastest. See Fig. 3.

Example 4. Figure 4 shows the results of a three-dimensional version of Example 3
without preconditioning:

(8) L(u) --Au + ’(XUx + yUy -+- ZUz) + flu

on the unit cube where/3 -100, and ), 50 for a 15 x 15 x 15 grid, yielding a matrix of
order n 3375.

We note that in this example the improvement caused by Bi-CGSTAB over CGS and
TFQMR is impressive. Therefore it is not surprising that there is only little additional im-
provement brought by the variants proposed in this paper. We note that for this operator, the
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FIG. 2. Example 2: Two-dimensional operator with discontinuous coefficients. Every point on the CG curve

refers to two CG iterations.

use of centered differences and large values of ?, are unfavorable for Bi-CGSTAB-type meth-
ods, since the resulting matrices would have pronounced skew-symmetric components and
eigenvalues with large imaginary parts [7]; different discretization methods would be more
attractive 13].

Example 5. The next example illustrates how all methods can be affected by the condi-
tioning of the generated polynomial. Matrix A is a modification of an example presented in
[111,

(9) A In -25 100

i.e., A is an n x n block diagonal matrix with 2 x 2 blocks and n 40. We chose b
(1 0 1 0 ...)v and 0 r0. For such a b the norm of the resulting BCG polynomial satisfies
[[Pn O(e-1). Thus, IltPnZl[ O(e -2) in the squared methods and we can foresee numerical
problems when e is small.

Each entry of Table 2 shows (i) the number of correct digits, d, in the relative residual
obtained after running each algorithm until the relative residual dropped below 10-8 but
without exceeding 20 matrix vector multiplications, and (ii) in parentheses, the number of
matrix vector multiplications, mv, that is a number, not greater than 20, needed to achieve a
relative residual of 10-d.

In exact arithmetic, finite termination occurs after the second BCG polynomial q92 is
computed in both the CGS and Bi-CGSTAB algorithms. We see from Table 2 that all methods
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FIG. 3. Example 3: Two-dimensional convection-diffusion operator (7).

TABLE 2
Example 5: Correct digits and matrix vector multiplications at termination: d(mv). A maximum 20-matrix

vector multiplications allowed.

Method

CGS

TFQMR

Bi-CGSTAB

QMRCGSTAB

QMRCGSTAB2

1.0 10-4

14(4) 5(4)t

13(3) 5(4)

16(3) 12(3)

16(3) 12(3)

16(3) 12(3)

* Oscillatory behavior observed.

10-8 10-2

-3(20), -1(43]

1(20) 1(20)

7(3) 3(3)

7(3) 3(3)

7(3) 3(3)

Residual stagnates before maximum number of mv’s was reached.
Iterations stopped when division by zero was encountered.

behave equally well for 1.0. As decreases, round-off error causes CGS and TFQMR,
which are based on squaring, to fail or not to converge within the expected time. Furthermore,
both CGS and TFQMR lose about twice as many digits as Bi-CGSTAB and its quasi-minimal
variants. We also mark the instances of the quasi-minimal variants whose residuals stagnate
before the maximumnumber ofiterations has been reached. We note that although the example
is contrived, it does justify the implementation of a QMRCGSTAB-type method.
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FIG. 4. Example 4: Three-dimensional convection-diffusion operator (8).

We finally observe that experiments using several of the methods discussed herein, albeit
using another naming convention, were presented in [15].

5. Conclusions and future work. We have derived two QMR variants of Bi-CGSTAB.
Our motivation for these methods was to inherit any potential improvements on performance
that Bi-CGSTAB offers over CGS, while at the same time to provide a smoother convergence
behavior. We have shown numerically that this is indeed true for many realistic problems.
Although in their present form, the two proposed methods still suffer from some numerical
problems, they have many desirable properties: they are transpose-free, they use short recur-

rences, they make efficient use of matrix-vector multiplications, and they demonstrate smooth
convergence behavior.
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MAX-MIN PROPERTIES OF MATRIX FACTOR NORMS*
A. GREENBAUM AND L. GURVITS

Abstract. Given a set of real matrices Co, C1 Ck, conditions are considered under which the equality

min max Co + Oli Ci w
oq ok Ilwll--1

i--1

max min
Ilwll---10tl tk

Co + otiC to

i=1

holds. It is shown that if the matrices Ci, 0, k are normal and commute with one another, then the equality
holds. In particular, this implies that if Ci .h or Ci .hk-i, where .h is a normal matrix, then the equality holds.
An example is given to show that the equality may fail for noncommuting matrices, when k > 1. It is shown that the
equality holds for arbitrary matrices if k 1.

Key words. GMRES, Arnoldi, matrix approximation problem, normal matrix, minmax

AMS subject classifications. 65F10, 49K35

1. Introduction. The following problem arises in the analysis of iterative methods for
solving linear systems and computing eigenvalues. To solve a linear system, Ax b, given
an initial guess x for the solution, the generalized minimal residual (GMRES) method [7]
generates approximate solutions xk, k 1, 2 of the form

k

xk xO At Z OlikAi-lrO’
i=1

where r =_ b Ax is the initial residual. The residual vectors r =_ b Ax are of the form
k

Olik Air0l
k F

0

i=l

and the coefficients Otlk Ckk are chosen to make the 2-norm of rk as small as possible. A
bound on the 2-norm of the residual at any step k is given by

Ilrll <_ min I- ZotiAi IIrll.
Otl k

i--1

The question arises as to whether this bound is ever attained; that is, whether there is an initial
residual r, such that

min I OliA r min I OliA IIrll.
oq otk

i=
t tk

i=

In other words, we have the following max-min problem: Is the inequality

max min I oli A r0 <_ min max I oli A r0

i=1

actually an equality?
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A similar question arises in analyzing the Arnoldi method 1 for computing eigenvalues.
Given an initial vector q with IIq 1, the Arnoldi iteration constructs a sequence of monic
polynomials Pk, k 1, 2 whose coefficients are chosen to minimize pk(A)q over all
monic polynomials pk of degree k. The roots of these polynomials are taken as approximate
eigenvalues of the matrix A. The question arises as to whether, for each k, there is an initial
vector q such that the monic polynomial Pk constructed by the Arnoldi process also minimizes
IIP(A) II. A similar max-min statement of the problem asks if the inequality

(2) max min
Ilqll=l oq ok ( k )Ak Z Oli Ak-i q

i=1

< min max
ck Ilqll=l

Ak Z Oli Ak-i q
i=1

is actually an equality.
In this paper, we consider a somewhat more general question: Given an arbitrary sequence

of real matrices Co, C1 Ck, under what circumstances will the equality

(3) min max
oq a, Ilwll-1

CO + ol C to

i=1

max min
Ilwll=l oq k

CO + oliC 11)

i=1

hold? It is shown that if the matrices Ci, 0, 1 k are normal and commute with
one another, then (3) holds. This result has actually been known for some time, in a slightly
different form [6, p. 292]. We include a proof of the result here, since it is not widely known
in the numerical analysis community and we point out how our theorem is equivalent to
an established result in approximation theory. In particular, this implies that if Ci A or
Ci Ak-i, where A is a normal matrix, then the equality holds. This generalizes some known
results showing that equality holds in (1) and (2) when the matrix A is normal [2], [4], [5].
An example is given to show that (3) may fail for noncommuting matrices, when k > 1. It
is shown that the equality (3) holds for arbitrary matrices if k 1. The question of whether
equality holds in (1) and (2) when k > 1 remains open, as does the question of more general
conditions on the matrices Co, C1 Ck that would ensure that (3) holds.

Throughout this paper, we assume that the matrices and vectors appearing in our max-min
statements and related theorems are real (though, of course, the eigenvalues and eigenvectors
ofthese matrices may be complex). We will use the notation A > 0 to mean that the symmetric
matrix A is positive definite. For a vector w, Ilwll will always denote the 2-norm, and for a
matrix A, IIA will denote the corresponding matrix norm, maxllwll_ IIAw ll.

The next section gives the main theorems and examples.

2. Main theorems. The first theorem gives conditions under which some linear combi-
nation of given symmetric matrices is positive definite.

THEOREM 2.1. Let A1 Ak be real n-by-n symmetric matrices. There exist scalars
c otk such that

(4)
k

oli Ai > 0
i=1

ifand only iffor every set {w tOm} m < n, of real nonzero orthogonal n-vectors (Wp
wj O, for p j), there is an such that

(5)
m

(AitOj, tOj) # O.
j=l
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If the symmetric matrices A1 Ak commute: A Aj AjAi, i, j k, then there
exist scalars oil,..., otk for which (4) holds if and only iffor every individual real nonzero
n-vector w, there is an such that

(6) (Aiw, to) O.

Proof. To see the necessity of (5), note that if, for some orthogonal set {w Wm }, we
have

Z(Aiwj, wj) 0
j=l

for all i, then also

oliAitoj, wj tr Wr otiAi W 0
i=1 i=1

for any ot otk, where W is the matrix whose columns are w wk. But since every
principal submatrix of a positive definite matrix is positive definite, this implies that z/k__ ol Ai
cannot be positive definite.

To see the sufficiency of (5), suppose that no linear combination Y/=I oti Ai is positive
definite. Then the linear subspace spanned by A Ak and the convex cone of positive
definite matrices can be separated. That is, there is a symmetric matrix B such that

(7) tr B oli Ai 0
i=1

for all otl otk and

(8) tr(BP) > 0

for all positive definite matrices P. Write B in the form B QDQr, where D is the diagonal
matrix of eigenvalues of B and Q is the orthogonal matrix of eigenvectors. Then (8) implies
that

(9) tr(QDQr P) tr(D Qrp Q) > 0.

Since the diagonal elements of QVpQ can be any positive numbers, (9) implies that the
diagonal elements of D are nonnegative, with at least one of these being positive. But from
(7) it follows that

tr(BAi) tr(QDQrAi) tr((QD1/2) r Ai(QDI/2)) 0

for all i. Taking wl Wm to be the nonzero columns of QD/2, this says

m

j=l

which contradicts (5).
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The second part of the theorem can be proved similarly, using the fact that if the matrices
Ak commute, then they can be simultaneously diagonalized. That is, there exists an

orthogonal matrix Q such that

Ai QAiQT, QQT QT Q I, Ai diag(.il in).

Again, the necessity of (6) is clear, and to see that it is sufficient, we note that if no linear
combination ofA Ak and hence ofA Ak is positive definite, then there is a diagonal
matrix D diag(d dn) such that

(10)

for all O Ogk and

tr D o/i Ai 0,
i=1

(11) tr(DP) > 0

for all positive definite diagonal matrices P. From (11) it follows that the diagonal ele-
ments of D are nonnegative, with at least one being positive. Define w to be the vector
(4-1 ,/’n) r. From (10) we have for each i,

tr(DAi) djij (zAxiLu Lu) 0,
j=l

which contradicts (6). fi
The second part ofTheorem 2.1 is really a result about vectors rather than matrices: Given

a set of n-vectors, 4() 4(k (corresponding to the diagonal matrices A1 Ak in the
theorem), there is a linear combination of these vectors that has all positive elements if and

2 not all zero, there is an such thatonly if for every set of nonnegative numbers w wn,

(b!i) 2
s wO.

j--1

In this form, th scond part of Theorem 2.1, as wll as Theorem 2.3, which is giwn later, ar
known. S, for xampl, [6]. W includ proofs of ths theorems hr for completeness.
W now us Theorem 2.1 to stablish conditions under which th optimal coefficients

o on both sides of quality (3) ar zro.
THEOREM 2.2. Let C Ck be real square matrices such tfiat eacfi pair (C +C and

(C / Cf commute. Suppose

(12) min max I -- OliC W 1.

rheH

(13) max min I -- ol C UO
IIwll=l ot otk

i--1
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Proof. For a given vector w, we have

I + oliC 11)

i=1

=1

if and only if Ci w, w 0 for all i; i.e., if and only if (C + CiT)w, w 0 for all i. Suppose
(13) does not hold. Then for any vector w 0 there is an such that

((C -- ciT)w, W) O.

From Theorem 2.1, there is a linear combination

k

Z li(Ci -at- CiT)
i=1

that is positive definite. For sufficiently small, then,

. oliC
i=l

k

[ . - ol C -- ci=1

which contradicts the assumption (12).

(14)

+ 0(2) < 1,

Theorem 2.2 is now used to establish certain conditions under which equality (3) holds.
THEOREM 2.3. Let Co, C1 Ck be nonsingular normal matrices that commute. Then

min max Co + oliC w max min Co --[- oliC 113
Oel ok Ilwll--1 i=1 Ilwll--1 cq otk

i=1

Proof. Suppose O k minimize IIC0 + Y]dk--1 oeiCill. We can assume without loss
of generality that this minimal norm is 1. We will consider two cases.

1. First, suppose all singular values of U --- Co + Y=I liCi are equal. Then U is a
real orthogonal matrix and it commutes with each matrix Ci. The same holds for the inverse
matrix Ur. We can write

min Co -t- olifi min Ur Co + Z(iaoi -1
t- ii)Ci

oq otk
i=1

/1 /3k
i=1

min I+ iUrCi =1.
/31

i=1

Because the matrices Ci are normal and commute with each other and with U and Ur, each
pair (UrCi + Cir U) and (UrCj + C:U) commute. Therefore, from Theorem 2.2, we have

max min I+ iUrCi w =1,
Ilwll=l 11 k i=1

and from this the desired result follows.
2. Now suppose some singular values are less than 1. We can write the real Schur

decomposition of each matrix Ci in the form

Ci QDiQr, QQr= QrQ=I,
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where each Di is a block diagonal matrix with 1-by-1 or 2-by-2 blocks on the main diagonal.
It suffices to consider the block diagonal matrices Oi. Define Do 4- -/=1 li Di, and

order the elements so that is of the form

0 K

where U is, say, a t-by-t matrix whose eigenvalues are all equal to in magnitude and K is an
(n t)-by-(n t) matrix whose eigenvalues are all less than in magnitude. Note that each
matrix Di has this same block structure

since any off-diagonal block X in Di would have to satisfy the homogeneous Sylvester equa-
tion: UX- XK 0 in order that Di and/} commute. Since the spectrum of U does not
intersect the spectrum of K, this equation has only the trivial solution X 0. We can write

k k

4- -oliD min Do + y(li 4- ii)Oimin Do
i=1 i=1

(15)

min(UO)-(Dil+ ii O)0 K i=1 0 Di2

Since IIUII > IIKII, the same coefficients/1 /k that minimize the norm of the matrix in
(15) (namely, /i 0, 1 k) also minimize the norm of the upper left t-by-t block,
and we have

min
k

U fli Dil
i=1

Since the singular values of the minimal norm matrix of this form are all equal to and since
the matrices Dil are normal and commute with each other, it now follows from part that
there is a t-vector tb with such that

k

/i t l/imin U Di min U Di
fl flk i=1

/31 fl,
i=1

Defining tb to be the n-vector whose first elements are equal to those of tb and whose
remaining elements are zero, we find

k

Do + yotiDi
i=1

from which the desired result follows.

Do + oti Di
i=1

Stated in terms of vectors, Theorem 2.3 states the following. Let f denote the vector
consisting of the eigenvalues of Co, and let g(1) g(k) denote the vectors consisting of the
eigenvalues ofC C,. The left-hand side of (14) is the distance between f and the closest
vector to f in the infinity norm from the space G spanned by g(),..., g(). The right-hand
side of (14) is the difference between f and the closest vector to f in some weighted L2 norm
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from the space G. The weights are the squared components of the vector w in the direction
of each eigenvector of Ci. With this notation, Theorem 2.3 can be stated as follows.

There exists a vector to in Rn with IIw I1= such that

min IIf- gll IIf- 11 IIf- llw min IIf- gllw,
gG geG

nwhere Ilvll 20 Ei=I vwi
A more general version of this theorem can be deduced from [6, p. 292]. Corollary in

that reference states that for any p, q with < p < q < c, the vector , minimizes some
weighted Lq norm of f g if and only if it minimizes some weighted Lp norm of f g. To
obtain the additional result that IIf 11 liT llw, we must use the fact that If i[
attains its maximum value at each of the points for which toi is nonzero [6, p. 302]. These
facts form the basis of Lawson’s algorithm for computing L approximations by solving a
sequence of weighted L2 (or Lk) approximation problems [3].

Note that the assumption of commutativity in the second part of Theorem 2.1, and hence
in Theorems 2.2 and 2.3, is necessary. Consider, for example, the symmetric matrices

1 0
A=(16) A

0 -1 -1

For any vector w, we have

{AlW, w} w2 w, (Azw, w)= w21 + 2WlW2- w22,
and if the first inner product is zero and w and w2 are not both zero, then the second inner
product cannot be zero. Yet there is no linear combination ofA and A2 that is positive definite.
We have

min III+ otlA1 + ot2Azll 1,
Ofl ,Of2

but for any vector w,

min I1(I + otlA1 / ot2A2)wll 0.
Ofl ,Of2

In the next lemma we consider general real m-by-n matrices Co, C1 Ck. Suppose
o ok minimize

CO+ Z oliCi
i=1

Define f Co + =1 liCi and write the singular value decomposition of as

vzv
where U is an m-by-m real orthogonal matrix, V is an n-by-n real orthogonal matrix, and E
is an m-by-n matrix of the form

( o-

or E

ffl 0 0

O’rn 0 0
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accordingly as m > n or m < n. Assume that the singular values O’i, min{m, n
satisfy

o1 at > at+l >...,

and let Vt be the n-by-t matrix consisting of the first columns of V, while Vt+l: is the
n-by-(n t) matrix consisting of columns + 1 through n of V.

The following lemma is used to prove Theorem 2.5, but it is also of significant interest in
itself.

LEMMA 2.4. Using the above notation, the coefficients 1 dtk that minimize

(17)
k

CO " Z oliCi
i=1

also minimize

(18) CO --[- oliCi Vt
i=1

Proof. Suppose 1 Ok do not minimize (18). Then there are coefficients o71
such that

CO "at- Z l C l/rt
i=l

CO -0t- liCi Vt
i=1

We will show that for sufficiently small values of 6, the coefficients (1 ?)i -[- edi satisfy

Co + -((1 )i ’ li)Ci
i=l

k

CO + liCi
i=1

which contradicts the assumption that O Ok minimize (17).
For any e in (0, 1) we have

(19)
( )C0 -+- ((1 6)l "3t- zli)C V

i=1

(1-6) Co -- l Ci Vt
i=1

C0 --[- liC V < o" O(5).
i=1

For sufficiently small 6, we also have

(20)

Co + ’5((1 .){i -- li)Ci Vt+l:n _< (1 6)
i=l

CO + iCi Vt+l:n
i=1

"q"- Co -Ji- Z liCi Vtwl:n
i=1

1
< O’t+l -[- =(0"1 --fit-t-l).

Z
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Define the matrix K (K1, Kg.) by

( k )K1 Ur Co + Z((1 -6.)i .qt_ 6.(li)Ci Vt
i=1

I Ur(1 6)0
0 - 6. C "OV liCi Vt’

i=1

( k )K2 Ur Co + ((1 6.)i + 6.(li)Ci Vtwl:n
i=1 .. 6. Co + l f Vt+ :n
]’t+l:n i=1

where Et+l:n - diag(at+l an). We would like to show that IIKII < cr or, equivalently,
that the matrix

(21) or? I KrK ( r?I KK1

Kf K1

is positive definite. From (19) and (20) it follows that the diagonal blocks are positive definite,
so it suffices to show that

(a21 1 KK1)- Kr Kz(a?I- KfK2)-IKK1 > O.

It is easy to check that

]]Krl K2(aal I KK2)-I KKI[]

while the eigenvalues of o-21 K1r K1 are of order 6.. For sufficiently small 6., then, the matrix
(21) is positive definite, and this gives the desired contradiction. [3

Using this lemma and Theorem 2.2 we can now prove equality (3) for general matrices,
when k 1.

THEOREM 2.5. Let Co and C1 be arbitrary real m-by-n matrices. Then

(22) min max II(Co + C1)wll max min II(Co + C1)wll.
c Ilwll=l Ilwll=l

Proof. We will use induction on the number of columns n. If n 1, the result is clearly
true. Assume it is true for matrices with n columns, and now consider matrices with n
columns. Suppose c minimizes IIC0 / oC II. Define ( =-- Co + cC1 and write the singular
value decomposition of as

( UEVr

where U, V, and E are as defined earlier. Assume that the singular values oi, 1 min{m, n
satisfy
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O’1 =fit > O’t+l "’’,

and let Vt be the n-by-t matrix consisting of the first columns of V, while Vt+l:n is the
n-by-(n t) matrix consisting of columns + through n of V.

We will consider two cases. In the first case, assume that < n. According to the lemma,
o minimizes

II(C0 + ac1)vt II,

and so, by the induction hypothesis,

(Co + C1) Vt max min (Co + C1 Vt ul)

Ilwll=l

If tb is the t-vector for which this maximum is attained and if we define the n-vector tb to be
Vt v, then we have the desired result

IIC0 + oC111 min II(C0 + otC1)ll.

Now suppose n. We can assume without loss of generality that crl 1, and then we
have

mn IIC0 + C, ll- mn IIuT(Co + (3 + o)C)V

min

Un+I:mC1V
=1,

where Un consists of the first n columns of U and Un+l:m consists of columns n + through
rn of U. The same coefficient/ that minimizes the norm of the entire matrix also minimizes
the norm of the top n-by-n block of this matrix and so we have

min IlZ +/3UnC VII 1.

From Theorem 2.2 it now follows that

max min I1(I + IUTnC1 V)wll
[Iwll--1 /

and hence that (22) holds.
Special cases of this theorem, as well as Theorem 2.3, were derived independently and

proved in a different way by Joubert [5].

3. Further discussion. Extensive numerical testing of the inequalities in (1) and (2) for
a variety of matrices suggests that they are, indeed, equalities. Theorem 2.5 proves this is so
for k 1, but we have been unable to prove (or disprove) this result for k > 1. The example
(16) shows that the proof must rely on special properties of polynomials, since the result is
not true for arbitrary noncommuting matrices, even if they are normal.
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GMRES/CR AND ARNOLDI/LANCZOS AS MATRIX APPROXIMATION
PROBLEMS*

ANNE GREENBAUM AND LLOYD N. TREFETHEN

Abstract. The GMRES and Arnoldi algorithms, which reduce to the CR and Lanczos algorithms in the symmetric
case, both minimize p(A)b over polynomials p of degree n. The difference is that p is normalized at z 0 for
GMRES and at z x for Arnoldi. Analogous "ideal GMRES" and "ideal Arnoldi" problems are obtained if one
removes b from the discussion and minimizes p(/l)II instead. Investigation of these true and ideal approximation
problems gives insight into how fast GMRES converges and how the Arnoldi iteration locates eigenvalues.

Key words. GMRES, CR, Arnoldi, Lanczos, matrix approximation problem, normal matrix

AMS subject classifications. 65F10, 49K35

1. Introduction. Since the 1950s it has been recognized that matrix iterative methods
are naturally connected with approximation theory. The most familiar connections are be-
tween polynomial approximation and the numerous iterative methods that make use of Krylov
subspaces, including the Richardson, Chebyshev, conjugate gradient, biconjugate gradient,
CGNR, GMRES, CGS, Bi-CGSTAB, and QMR iterations. Sometimes rational approxima-
tion problems also arise, notably in the analysis of ADI iterations, circulant-preconditioned
Toeplitz iterations, and Krylov subspace algorithms via Pad6 approximation. Recent refer-
ences on these matters include [4], [8], [16], [25].

The approximation problems that are discussed in the linear algebra literature almost
invariably involve scalar functions defined on subsets of the complex plane or, if the matrix
.4 is symmetric, the real axis. The set in question is the spectrum A (.4) or an estimate of the
spectrum. If .4 is normal, such reductions are sometimes exact in the sense that the behavior
of the matrix iteration is determined exactly by the properties of the approximation problem.
If .4 is not normal, however, they are always approximate. GMRES, for example, does not
exactly solve any known approximation problem in the complex plane, when .4 is not normal.
Between the approximation problem and the convergence of the matrix iteration there is a
gap of size x(V), the condition number of a matrix of eigenvectors of .4. When x(V) is
large, predictions based on the approximation problem may have little bearing on the actual
convergence of the matrix algorithm 16], [25].

The purpose of this paper is to explore a different kind of approximation problem that
can also be associated with iterative linear algebra, involving matrices instead of scalars.
Instead of asking how small a polynomial p(z) can be on the set A (.4), we ask how small the
norm p(.4) can be. Matrix approximation questions are implicit in much of the literature of
matrix iterations; we certainly do not claim to be the first to consider them. However, they have
received no discussion in print that we are aware of. We believe it is important to investigate
these problems if one’s goal is an understanding of matrix iterations that does not depend
upon hidden assumptions of near-normality. At the same time, the consideration of matrix
approximation problems preserves a familiar feature of scalar approximation problems, the
removal from the analysis of the effects of the starting vector. Since most of the phenomena
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work of both authors was performed while visiting the Institute for Mathematics and its Applications at the University
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This work was supported by National Science Foundation grant DMS-9116110.
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of greatest interest in iterative linear algebra depend mainly on the matrix, not the starting
vector, this is a valuable simplification for most applications.

We shall concentrate on two algorithms for nonsymmetric matrix problems: GMRES,
which solves systems of equations Ax b, and Arnoldi, which computes eigenvalues of A.
Our matrix approximation analogues of these processes are called the "ideal GMRES" and
"ideal Arnoldi" problems. Mathematically, the new result presented here is a proof of the
existence and uniqueness of ideal GMRES and Arnoldi approximants. (Existence is trivial,
but uniqueness is surprisingly tricky.) In the final section we propose five questions whose
answers might further advance our understanding of matrix iterations.

2. GMRES and Arnoldi. Throughout this paper N and n < N are integers, A is an
N x N matrix, b is an N-vector, I1" is the 2-norm, and

Pn {polynomials of degree < n with p(0) },

pn {monic polynomials of degree n }.

The difference between Pn and pn is that P is normalized at z 0 and pn at z cxz.
GMRES [4], [23] is an algorithm that solves the following approximation problem suc-

cessively for n 1, 2, 3
GMRES APPROXIMATION PROBLEM. Find p, Pn such that

(1) p,(A)b minimum.

An equivalent statement is

(1’) b (Ab, A2b Anb),

where "y V" denotes the problem of finding the best approximation with respect to
to the point y in the space V. This characterization of GMRES is well known. To explain it
one notes that GMRES finds a vector xn in the Krylov subspace 1Cn < b, Ab An-1 b >
such that the residual rn b Axn has minimal norm over all x 6/Cn. This vector xn can
be represented in the form xn q (A)b for some polynomial q (z) of degree n 1, and (1)
comes upon writing rn p,(A)b with p,(z) 1 zq(z) Pn"

The Arnoldi iteration 1 ], [4], [20]-[22] is an algorithm that solves the analogous problem
involving pn instead of Pn"

ARNOLDI APPROXIMATION PROBLEM Find p* pn such that

(2) P* (A) b minimum.

Equivalently,

(2’) Anb (b, Ab An-lb).
The vector b is no longer the right-hand side of a system of equations, but an arbitrary initial
vector. This characterization is also known, but perhaps not as widely known as it should
be. It can be readily proved as a consequence of the usual formulation of the Arnoldi process
in terms of orthogonality. The Arnoldi iteration "finds p*" in the sense that it constructs a
Hessenberg matrix Hn of which p* is the characteristic polynomial.

1Nothing essential changes if we take N cx and let A be a bounded operator.
aWe have assumed that the initial guess for the iteration is x 0. Arbitrary initial guesses can be handled by

an easy modification.
3See Theorem of [22]. The symmetric (Lanczos) case of this result was stated by Lanczos himself 11, p. 34]

and also appears as Corollary 12-3-7 of 18], unfortunately with a typographical error.
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If A is real and symmetric, the GMRES and Arnoldi iterations reduce to the conjugate
residual (CR) and Lanczos iterations, respectively. Everything said in this paper about GMRES
applies also to CR, and everything said about Arnoldi applies also to Lanczos.

A comparison of (1) and (2) suggests that from an approximation point of view, the
difference between the GMRES and Arnoldi algorithms is slight. This analogy is rarely
brought out in accounts of these algorithms, partly for historical reasons and partly because
the usual applications of the two algorithms are different. Whereas GMRES is applied to solve
systems of equations Ax b, so that (1) comes quickly to mind as a description of it, the
Arnoldi iteration is traditionally thought of as a method for estimating eigenvalues of A. The
"Arnoldi eigenvalue estimates’’4 at step n are the eigenvalues of Hn, that is, the roots of p*.
But what the Arnoldi iteration actually does is solve (2); its connection with eigenvalues is
indirect and approximate.

The formulations (1) and (2) provide elegant proofs of certain well-known properties of
the GMRES and Arnoldi iterations. For example, one sees immediately from (1) and (2) that
both of these iterations are essentially invariant under changes of scale (A ot A, ot 6 C) and
under unitary similarity transformations (A -+ UAU*, U* U-l). The Arnoldi iteration is
also translation-invariant (A -- A + ot I, oe 6 C), since x is translation-invariant, but GMRES
is not, since 0 is not 11 ]. In these statements and throughout this paper, we ignore the effects
of rounding errors.

3. Ideal GMRES and ideal Arnoldi. The GMRES and Arnoldi iterations depend on
the starting vector b. However, one may remove b from the discussion and pose the following
"ideal" approximation problems.

IDEAL GMRES APPROXIMATION PROBLEM. Find q. Pn such that

(3) q, (A) minimum.

Equivalently,

(3’) I (A, A2 An).

IDEAL ARNOLDI APPROXIMATION PROBLEM. Find q* pn such that

(4) q (A) minimum.

That is,

(4’) A (I, A An-l).

Whereas (1) and (2) are vector approximation problems, (3) and (4) involve matrices. Proce-
dures for computing these polynomials, either actual or in our imaginations, might be called
ideal GMRES and ideal Arnoldi algorithms. Some computations of this kind are discussed in

6.
We believe that studying these idealized problems may be a fruitful way to gain insight

into the properties of Krylov subspace iterations in linear algebra. Our reasoning is as follows.
The behavior ofa GMRES or Arnoldi iteration is determined by two things: A and b. However,
though the special properties of b are occasionally important, more often the features that one
cares about do not differ very much from one choice of b to another. It is the properties of A

4The roots of p* are Ritz values of A with respect to the Krylov subspace (2 ’). The roots of p, have been called
"pseudo-Ritz values" [4] and "roots of kernel polynomials" [14]. The Ritz values lie in the field of values of ,4, and
the pseudo-Ritz values lie in the inverse of the field of values of A- 1; see 14].
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that usually decide between an iteration that converges in 10 steps and one that requires 100
or 1000 (which in practice means it is time to look for a better preconditioner). By passing
from (1)-(2) to (3)-(4) we disentangle this matrix essence of the process from the distracting
effects of the initial vector and end up with a pair of elegant mathematical problems in the
bargain.

The solutions to (1)-(2) and (3)-(4) are related by the following bounds. The proof of
this theorem is easy; the four inequalities follow from the minimality properties (1), (3), (2),
and (4), respectively.

THEOREM 1. The true and ideal GMRES polynomials are related by

(5)
Ilp,(A)bll

<_ q,(A)ll _< IIp,(A)II,
Ilbll

and the true and ideal Arnoldi polynomials ate related by

(6) P* (A) b _< q* (A)II _< P* (A)II.
Ilbll

These two pairs ofbounds are identical in form, but from the point ofview of applications,
the nature of the relationship between (4) and (2) is quite different from that between (3) and
(1). The purpose of GMRES is to solve (1), not (3). The relevance of (3) is that it gives an
upper bound on how slow the convergence may be, thanks to (5), and if the right-hand side b
is "random enough," one may expect that this bound may be close to sharp. For an Amoldi
iteration aimed at estimating eigenvalues, the logic is reversed. One can take the view that the
essence of the process by which an Arnoldi iteration locates eigenvalues is the solution not of
(2) but of (4). The iteration solves (2) because that is what is computationally tractable, but the
implicit hope is that if b is "random enough," the solution to (2) will be agood approximation
to the solution to (4). It would be interesting to investigate how this point of view can be
related to the existing theory of convergence of the Arnoldi iteration as developed by Saad
[20], [22].

The ideal Amoldi polynomial q* might be called the degree n Chebyshev polynomial of
A, in analogy to the notion in approximation theory of a Chebyshev polynomial of a subset
of the complex plane, which is a monic polynomial that achieves minimal sup-norm on that
set. Another way to view q* is as a pseudo-annihilating polynomial for A, i.e., a monic
polynomial that maps A to a matrix of norm 0. According to the usual definition, an
annihilating polynomial is a polynomial that annihilates A exactly. This is a fragile concept,
however, ill posed with respect to perturbations of A and with little quantitative force. Krylov
subspace iterations in numerical linear algebra are founded on the observation that for practical
purposes, a pseudo-annihilating polynomial with parameter 10-10 or 10-2o is as useful
as an exact annihilating polynomial and may be of vastly lower degree,

4. The special case when A is normal. When A is normal, problems (1)-(4) reduce to
standard problems of approximation theory. For any vector b we have

N

p(A)b cojp()j)vj, coj vf. b,
j=l

where {;j} and {vj} are a set of eigenvalues and corresponding orthonormal eigenvectors of
A, and therefore

p(A) b Icoj IP()j)

5See Chapter 16 of [9]. This analogy becomes an identity if A is normal; see 4.
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Thus the Amoldi and GMRES problems (1)-(2) are equivalent to weighted least-squares
approximation problems in the complex plane: find an appropriately normalized polynomial
p(z) that has minimal weighted 2-norm on A(A) with respect to the discrete weight function

{Io)jl2}. As for the ideal Amoldi and GMRES problems (3)-(4), the identity

IIP(A) sup IP())I
6A(A)

(for normal matrices only) shows that they are are equivalent to Chebyshev approximation
problems in the complex plane: find a polynomial that has minimal supremum norm on A (A).
In particular, the ideal Amoldi polynomial q, is exactly the same as the Chebyshev polynomial
for the set A (A), mentioned in the last section.

Both weighted least-squares and Chebyshev approximation problems in the complex
plane are well understood and discussed in many books. Existence and uniqueness of best
approximations are easily proved (we defer a precise statement to the next section). In the
Chebyshev case the computation ofbest approximations can be carried out by various methods
such as linear programming, variations ofthe Remes algorithm, the Lawson algorithm, or other
ideas; see [24] and the references therein. In the least-squares case the computation of best
approximants is a matter of routine linear algebra. One can use a QR decomposition, for
example, and that is exactly what GMRES does.

There are two reasons to pay special attention to the case in which A is normal. First,
some matrices are normal or close enough to normal that the results one obtains are some-

times applicable in practice. In particular, the CR and Lanczos iterations fall in this category
since symmetric matrices are normal. Second, most people’s intuitions about the behavior of
matrices are based on the normal case [26]. By studying how the normal case differs from the
general case we obtain a valuable check on our intuitions.

5. Existence and uniqueness. We return now to problems (1)-(4) for matrices A that
are arbitrary, i.e., not necessarily normal. The most fundamental questions to be asked about
(1)-(4) are those of existence and uniqueness. For (1) and (2) the answers to both are straight-
forward and well known. For (3) and (4), existence is straightforward but uniqueness is not.
So far as we are aware, though this seems surprising, the uniqueness of the solutions to (3)
and (4) is a new result.

THEOREM 2. The optimal polynomials p,, p*, q,, q* all exist. Provided that the minima
in (1)-(4) are nonzero, and provided in the cases of GMRES and ideal GMRES that A is

nonsingular, they are unique.
Proof. Consider the formulations (1’)-(4’). In each case we have a problem of the form

y V, where V is a finite-dimensional subspace of a vector space W and y 6 W. (For (1)
and (2), V and W are spaces of N-vectors, whereas for (3) and (4) they are spaces of N N
matrices; generically we can speak of "vectors" in either case.) Existence of a closest point
v 6 V to y follows by a standard compactness argument that can be found in any book on

approximation theory. See, for example, [2, p. 20] or [13, p. 17].
The question of uniqueness of the polynomials p,, p*, q,, q* can be divided into two

parts:
(a) Is the closest point v 6 V to y unique?
(b) Does it have a unique representation as a linear combination of the n vectors indicated

in (1’)-(4’)?
Part (b) can be dispatched as follows. What we have to show is that the n vectors in

question are linearly independent. Consider first the ideal Amoldi problem (4’), and suppose
to the contrary that I, A An-1 are linearly dependent. Then by multiplying by a power of
A ifnecessary we can find a linear combination ofthem that is zero and in which the coefficient
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of An-1 is nonzero. Thus An-1 E (I, A An-2), which implies An (A, A2 An-l)
and therefore q* (A) 0, contradicting the assumption that the minimum in (4) is nonzero.
An analogous argument applies to (2 ’). For the GMRES problem (3 t), suppose A, A2 An

are linearly dependent, which by a similar argument implies A (A, A2 An-l) and thus
again q*(A)[I 0. If the constant term of q* is nonzero, then dividing by that constant term
yields a properly normalized GMRES polynomial q, with q, (A)[[ 0. On the other hand
if the constant term is zero, then since A is nonsingular we can multiply by A-1 one or more
times until it becomes nonzero. An analogous argument applies to (1’).

This brings us to part (a) of the proof of uniqueness. For problems (1’) and (2 t) the
uniqueness of v follows by another standard result in approximation theory, since the vector
norm 11. is strictly convex. See, for example, [2, p. 23] or [13, p. 17]. The matrixnorm [[. 1[,
however, is not strictly convex, and, in general, matrix best approximation problems posed in
this norm do not have unique solutions [6], [27]. The following proof of uniqueness for (3 ’)
and (4’) depends on the special property that these problems concern approximation by matrix
polynomials, not by arbitrary linear combinations of matrices.

Consider first the ideal Arnoldi problem (4). Suppose that q and q2 are two distinct
solutions to (4), and let the minimal norm they attain be

Ilql(A) l[- Ilq2(A)II- C.

If we define q (z) (ql (z) + q2 (z)), then q (A) _< C, so we must have q (A) C since
q and q2 are minimal. Let w wj be a set of maximal right singular vectors for q(A),
i.e., a set of orthonormal vectors with

Ilq(A)wjll C, 1 <_ j < J,

with J as large as possible. For each wj we must have

Ilql(A)wjll [Iqz(A)wjll C

and

ql (A)wj q2(A)wj,

for otherwise, by the strict convexity of the vector norm I[, we would have q (A) wj < C.
Thus

(q2 ql)(A)wj O, < j < J.

Now since (q2 q l)(z) is not identically zero, we can multiply it by a scalar and a suitable
power of z to obtain a monic polynomial Aq pn such that

Aq(A)wj- O, 1 < j < J.

For e 6 (0, 1), consider now the polynomial q, pn defined by the convex linear combination

q (z) (1 e)q (z) + e Aq (z).

If wj+ WN denote the remainder of a set of N singular vectors of q(A), with corre-
sponding singular values C > rj+ > > o-N 0, then we have

IIq,(A)wj [ (1 )C

/ (1 )rj/ / Aq(A)II

(1 <j< J),

(J+I<j<N).
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The first row is < C for arbitrary , and the second row is < C for sufficiently small e, since
orj+ < C. Since the singular vectors w wN form an orthonormal basis for RN, this
implies that q, (A)II < C for sufficiently small e, contradicting the assumption that qa and
q2 are minimal.

For the ideal GMRES problem (3), the argument is the same except that from q2 ql we
need to construct Aq 6 Pn rather than Aq 6 pn. If the constant term of q2 ql is nonzero,
we do this by dividing by that term. If it is zero, we make use of the assumption that A is
nonsingular and multiply by a suitable power of z-1 q

6. Computations. If A is normal, the ideal Arnoldi and GMRES polynomials q* and
q, are simply Chebyshev polynomials for the set A (A), as noted in 4, and can be computed
by various algorithms. If A is not normal, however, we know of no simple algorithm that is
guaranteed to compute q* and q,. For simplicity, from now on we shall consider the ideal
GMRES polynomial q,; our remarks carry over straightforwardly to the ideal Arnoldi problem.

We have found that in many cases, q, can be computed by using an optimization code to
determine an initial vector b, with [Ib 1, for which P, (A) b is maximal at the prescribed
step n. From Theorem we have

(7) ItP,(A)bll < IIq,(A)ll < IIP,(A)II

for any b with Ilbll 1. If a choice of b can be found for which ]lp,(A)bll IIp,(A)II, it
follows that p, q,. It is not known whether such a b always exists, but we conjecture that
it does (see the first question of the next section). Maximizing the left-hand side of (7) seems
to be easier in practice than minimizing the right-hand side, presumably because the latter
problem is nonsmooth. We have carried out our computations using the Matlab optimization
routine fra+/-nu [15] coupled with a GMRES subprogram to compute IlP,(A)bll for a given
vector b. Although several attempts with different initial guesses b are often required for the
optimization code to succeed, it usually does so eventually.

Figure 1 illustrates the behavior of the ideal vs. true GMRES polynomials by a simple
example--a matrix ofLenferink and Spijker 12], [26]. This is a nonnormal tridiagonal matrix
of the form zr+/-d+/-ag((i + 1) -1, -3 2i, + 1), 1 N. For the Lenferink-Spijker
matrix of order N 16, we computed the ideal GMRES polynomials q, of degree 1 through
15 as well as the true GMRES polynomials p, for five different random initial vectors. The
thick curve in the figure represents the norms Ilq,(A)II as a function of n, and the thinner
curves represent P, (A) b for the various vectors b. The GMRES curves lie below the ideal
GMRES curve, as they must, but exhibit qualitatively the same shape. Our experiments have
not been sufficiently extensive to draw conclusions about how GMRES and ideal GMRES
convergence curves compare in general.

It is interesting to note that while the norm of the ideal GMRES polynomial for this
problem decreases strictly monotonically, this does not always happen. For many problems,
q, (A)II remains exactly equal to 1 for a number of steps before it begins to decrease. The

case n 1 of this phenomenon is fully understood: one can show that q, (A)I[ < at step
if and only if the field of values of A lies in an open half-plane with respect to the origin

in C (see [3] and [16, 6]). For some problems, Ilq,(A)II 1 for steps 1 through N 1.
This happens frequently with random matrices, for example. For such problems there is a
right-hand side vector b for which the GMRES algorithm makes no progress whatsoever until
step N.

A difference we have observed between the ideal GMRES polynomials for normal and
nonnormal matrices is the following. If A is normal, then q,(A) must have at least n + 1 equal
maximal singular values. This follows from the fact that the degree n Chebyshev polynomial
for a set in the complex plane always takes on its maximum-absolute value in at least n + 1
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FIG. 1. Convergence curves for the 16 x 16 Lenferink-Spijker matrix. The upper curve corresponds to ideal
GMRES and the lower curves to standard GMRES withfive different random initial vectors b.

distinct points. In contrast, when A is not normal, our experiments indicate that after the initial
phase with q, (A) just mentioned, q, (A) usually has only one maximal singular value.

7. Open questions. Our work on ideal GMRES and Arnoldi approximations has raised
more questions than it has answered. We shall close with a list of five questions that we consider
particularly interesting. In each of the following, A is a matrix, b is a vector-normalized by
Ilbll 1, and the convergence curve is the curve of IIP,(A)bll or IIq,(A) as a function of
the step number n. The questions are posed for GMRES, but they all have Arnoldi analogues.

1. Is the envelope attained? Theorem asserts that the GMRES convergence curve
lies below the ideal GMRES convergence curve, as illustrated in Fig. 1. Given n, does
there exist an initial vector b such that these two curves intersect at step n, i.e., such that
Ilp,(A)bll ]lq,(A)]] .9 Theanswer is known to be yes for symmetric matrices [5] and
more generally for normal matrices [6], [10], and for arbitrary matrices at step n [6],
[10]. It is also yes in the "generic" nonnormal case in which the maximal singular value of
q, (A) is simple. Whether it is yes in all cases is not known. If it is, then the ideal GMRES
convergence curve can be described as the upper envelope of the GMRES convergence curves
corresponding to all initial vectors b.

2. How close is the average case to the worst case? Assuming that the envelope is attained
in the sense above, there is still the question of how closely the GMRES and ideal GMRES
convergence curves agree for typical starting vectors. If A is normal, it is easily argued that
two agree typically to within a factor on the order of /. We do not know what can be said
for general A.

3. What convergence curves are possible? At step n, q, (A)II must be at least as small
as minl<k<n-1 IIQk(A)II [[qn-k(A)II, where q denotes the ideal GMRES polynomial for A at
step k. Geometrically this means that the ideal GMRES convergence curve is convex when
plotted on a logarithmic scale. Are all convergence curves that satisfy this convexity constraint
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possible? If not, how can one characterize those convergence curves that are possible?
4. Can any matrix be simulated by a normal matrix? Short of a full characterization of

convergence curves, one may naturally ask if the possibilities for normal matrices are more
restricted than for nonnormal matrices. In other words, are there convergence curves that can
only be generated by a nonnormal matrix? For standard GMRES the answer has recently
been proved to be no; any sequence p,(A)b as a function of n can be duplicated by another
sequence p,(A)b where A is normalmin fact, unitary [7]. For ideal GMRES, the answer
is unknown.

5. Is there a variant of Lawson’s algorithm for ideal GMRES approximation? In our

experience the "brute force" use of a general optimization program such as frn+/-nu to compute
p,, as described in the last section, is neither efficient nor reliable. As an alternative we have
found that one can sometimes maximize the left-hand side of (7) by means of an iteration
modeled on Lawson’s algorithm, which is a method of iteratively reweighted least squares
that has been proved convergent for problems of scalar L approximation [19]. We have
obtained good results this way in many cases, but have not succeeded in developing a method
of this kind that converges consistently (and consequently we will not provide details here).
Can a matrix variant of Lawson’s algorithm with guaranteed convergence be devised for the
ideal GMRES problem?

Acknowledgments. We are happy to acknowledge discussions with Michael Overton,
who showed us how the ideal Arnoldi and GMRES problems relate to more general problems
of minimization of singular values of functions of matrices 17].
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Abstract. Preconditioning strategies based on the application of the alternating direction implicit (ADI) method
to large systems of linear equations of the form

(H+ V)u f,

where both H and V can be "easily inverted," are presented and analyzed. Besides other applications, such systems
arise naturally from finite difference discretizations of two-dimensional elliptic boundary value problems. The
emphasis here is on the case where H and V are nonsymmetric.

The use of alternating direction preconditioning is especially attractive for massively parallel computers since,
during each iteration, a large number of tridiagonal systems must be solved simultaneously. Numerical experiments
are presented comparing ADI with other preconditioners for some examples of discretized nonselfadjoint elliptic
boundary value problems including nonseparable cases.

Key words. ADI, nonsymmetric linear systems, elliptic boundary value problems, preconditioning, parallel
computing

AMS subject classifications. 65F10, 65N30

1. Introduction. We consider systems of linear equations of the form

(1.1) (H + V)u f,

where H and V are large, sparse, and, in general, nonsymmetric matrices. Moreover, both H
and V are assumed to be "easily invertible," in the sense that the solution of linear systems with
H and V is cheap compared to the solution of the original system (1.1). Such linear systems
arise in connection with Lyapunov and Sylvester matrix equations in control theory and from
finite difference and finite element discretizations of elliptic boundary value problems.

Our purpose in this paper is to study the use of the alternating direction implicit (ADI)
method, which was originally proposed by Peaceman and Rachford [23] in 1955, as a precon-
ditioning technique for Krylov subspace methods for nonsymmetric linear systems. It turns
out that this leads to a very effective preconditioner, especially for two-dimensional elliptic
difference equations. For separable nonselfadjoint elliptic equations, it can be shown that
the number of iterations required to achieve a certain accuracy is proportional to O(h-1/2)
as h 0 for the stationary ADI method. Moreover, using different parameters in a cyclic
fashion, the iteration count can be reduced to O(h-1/4) for 2 and to O(logh -1) for

log h -1 similarly to the selfadjoint case. ADI preconditioning can, in contrast to many
other techniques, e.g., symmetric successive overrelaxation (SSOR) or fast direct solvers, be
implemented on a variety of parallel architectures in a straightforward way.

The idea to use ADI as a preconditioner goes back to the 1960s. In 1961, D’Yakonov [7]
studied the combination of ADI and the Chebyshev method in an inner-outer iteration fashion.
To solve symmetric positive definite linear systems, ADI was used as a preconditioner for the
conjugate gradient method and was studied by Wachspress ([32, pp. 214], see also [33]). There,
a number of steps of the ADI method, applied to a model problem (e.g., the Poisson equation),
were used to precondition more general diffusion equations. Chin, Manteuffel, and de Pillis
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used ADI as a preconditioner for nonsymmetric systems that arise from convection-diffusion
problems. Recently, a number of papers focused on the performance of the ADI method on
different parallel architectures (for a survey and a list of references, see Johnsson, Saad, and
Schultz [19]). A new approach to alternating direction preconditioning on multiprocessors
for symmetric positive definite systems was presented by Jiang and Wong 18].

Our approach to the construction of an ADI preconditioner for nonsymmetric systems
of the form (1.1) is motivated by the one in Chin, Manteuffel, and de Pillis [3]. There, the
stationary ADI method is used to precondition the Chebyshev iteration, i.e., instead of solving
the original system (1.1), the left preconditioned system

(V 4- tI)-l(H 4- pI)-I(H 4- V)u (V 4- tI)-(H 4- 0I)-f

or the right preconditioned system

(H + V)(V + apI)-l(H + 0I)-v f, u (V + tI)-l(H + oI)-v

are considered. In 2 this type of alternating direction preconditioning will be introduced and
generalized to higher degree, i.e., using polynomials

pt(H) (H 4- pI) (H 4- ptI) qt(V) (V 4- tlI)... (V 4-

instead of H 4- 0I, V 4- t I, respectively. Furthermore, we point out relations between the
preconditioned matrices and corresponding ADI iteration operators. After that, in 3, we
discuss the question of how to choose the parameters p; pt and q tt to get a
well-preconditioned system. Convergence bounds for Krylov subspace methods (which exist,
e.g., for the generalized minimal residual (GMRES) and the quasi-minimal residual (QMR)
algorithms) will be used to show that it is a good idea to choose the parameters in such a way
that the spectral radius of the associated ADI iteration operator is minimized. If H and V
commute, this leads to a classical minimization problem for rational functions, the so-called
"rational Zolotarev problem" (see, e.g., [27]). In the noncommutative case, only weaker
bounds based on norm estimates are possible.

From 4 on, we will restrict ourselves to the modelproblem offinite difference discretiza-
tions of second-order elliptic equations on rectangular two-dimensional domains to illustrate
our analysis and to test our techniques. We will, however, allow nonseparable and nonselfad-
joint problems. Following Elman and Schultz ([12], see also Elman [10]), we consider elliptic
equations of the type

(1.2) (aUx)x (buy)y 4- CUx 4- (cu)x 4- duy 4- (du)y 4- eu f

on a rectangular region f2 c__ R2 (let, without loss of generality, f2 be the unit square (0, 1) x
(0, 1)) with Dirichlet boundary conditions on 0f2. The functions a(x, y), b(x, y), c(x, y),
and d(x, y) are assumed to be in C(f2) N C() and e(x, y) to be continuous on . The
discretization of this elliptic boundary value problem by finite differences on an n x n grid
leads to a linear system ofthe form (1.1), where H and V are the parts ofthe difference operator
that arise from the derivatives in the x- and in y-direction, respectively. Both matrices, H and
V, are usually large and sparse with a very regular structure. For example, if we use centered
differences for the second-order terms as well as for the first-order terms, then H is a block
diagonal matrix with tridiagonal blocks Hii E Nn’n n, and V is a block tridiagonal
matrix where the blocks are diagonal matrices of order n.

It was already observed by Peaceman and Rachford in [23] that, for the solution of
Poisson’s equation on a rectangle, parameters for the ADI method can be found such that the
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number of operations that is necessary to approximate the solution to a given accuracy is of the
order O (n2 log n) (log n is the required number of ADI iterations, each of which consists of
the solution of n tridiagonal systems of order n). In 4, we will show that the same complexity
can be achieved for general separable elliptic problems, i.e., if we have

(1.3)
a(x, y) =_ a(x), b(x, y) =_ b(y), c(x, y) =_ c(x), d(x, y) =_ d(y), e(x, y) el (x) + e2(y),

in (1.2). In practice, however, we might not want to increase the degree of the ADI precondi-
tioner with n. Instead, it is often sufficient to choose 2, which already leads to an iteration
count of O(nl/4).

A lot of research has been done in the last 30 years to apply the alternating direction idea
to more general problems than (1.2). Alternating direction methods in three dimensions were
studied by Douglas [5], and the application to mixed finite element methods was discussed by
Douglas, Durfin, and Pietra [6]. Mixed derivatives in (1.2) can be treated with the technique
proposed by Beam and Warming [1 ]. The use of the ADI method for the numerical solution
of Navier-Stokes equations is described in Beam and Warming [2]; a variant for nonlinear
variational problems is described in Glowinski 16]. The ADI method as an iterative method
for the solution of Lyapunov matrix equations has been investigated by Wachspress in [34]
(see also [17] for the application of the techniques presented in this paper to such matrix
equations).

Fast direct algorithms for the solution of separable elliptic equations that also require
O(n2 log n) operations have been designed in the last 20 years (see, e.g., Swarztrauber [29] for
block cyclic reduction, which is also applicable to nonselfadjoint problems). For nonseparable
(and nonselfadjoint) problems, preconditioning by a"nearby" separable problem that is solved
by a fast direct method was studied by Concus and Golub [4], Widlund [36], and Elman and
Schultz 12].

Our motivation for this work is the fact that the ADI method is especially attractive for
parallel computers. In contrast to other preconditioners that are currently used in this context,
such as SSOR or the above mentioned fast methods, this technique has the advantage of be-
ing very easy and straightforward to (massively) parallelize on a variety of architectures. In
each iteration, we first perform operations (multiplication by tridiagonal matrices and solving
tridiagonal systems) independently on each column of the grid, and then, in the second half
of the iteration, we do the same independently on each row. An architecture that seems to
be perfectly suited for this method is the arrangement of the processors in a two-dimensional
grid. There is, however, a bottleneck in the transfer between the half-steps since we must
switch from rowwise to columnwise communication or vice versa. Techniques to overcome
this problem on different multiprocessor architectures are discussed in Johnsson, Saad, and
Schultz [19]. In any case, routines for the efficient solution of a large number of indepen-
dent tridiagonal systems are now available in software libraries on parallel machines (see
[30, Chap. 11 for the CM-5).

Finally, in 5, we present numerical experiments for some examples of discretized el-
liptic boundary value problems, including nonselfadjoint and nonseparable cases. Besides
comparing ADI to other preconditioners, we will also use different Krylov subspace methods
as acceleration schemes.

2. Alternating direction preconditioning. In this section we will show how to construct
effective preconditioners, based on the ADI method, for linear systems of the form (1.1). Let
us first consider the stationary case that was studied earlier by Chin, Manteuffel, and de
Pillis in [3]. Their preconditioning strategy has the form

(2.1) (V + pI)-l(H+99I)-I(H+ V)u (V + grI)-l(H+99I)-f
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(left preconditioning) or

(2.2)
(H + V)(V + 7rI)-I(H + qgI)-lv f,

u (V + I)-(H + 0I)-v

(right preconditioning).
When using one of the Krylov subspace methods for nonsymmetric systems (like bicon-

jugate gradient (Bi-CG), conjugate gradient squared (CGS), QMR, GMRES), the goal is to
get the preconditioned problem "as close as possible" to the identity operator, in the sense
that the eigenvalues of the operator approximate a positive constant. This can be motivated
heuristically by the fact that the preconditioned operator being close to the identity means,
roughly speaking, that we have already "inverted most" of the linear system. This will be
discussed, in more detail, in terms of error bounds for Krylov subspace methods in 3.

Our aim is to choose the parameters p and in such a way that the spectrum of the
preconditioned matrix

(2.3) S2 := o-((V + I)-(H+99I)-I(H+ V)) cr((H+ V)(V + I)-1(H+99I)-)

is as close as possible to a positive constant. The following theorem provides a connection
between the distance of the preconditioned matrix to the identity and the spectral radius of the
ADI iteration operator, which is given by

(V + pI)-I(H pI)(H + 99I)-1(V pI)

(see [27]).
THEOREM 2.1. With the constant c p + , we have

(2.4) max{ll -crl’r 6 } p((H+ pI)-l(H- I)(V + I)-(V -qgI)).

Proof The relation (2.4) follows directly from

(2.5)
I (p + )(V + ti)-1 (H + pI)- (H + V)

(V + I)-I(H + oI)-(H I)(V -qgI),

and

(2.6)
I (99 + )(H + V)(V + I)-(H + oI)-(H- I)(V -pI)(V + I)-(H + qgI)-

It will turn out to be important for the analysis of this ADI preconditioning technique that,
from (2.5) and (2.6), instead of multiplying a vector x with the preconditioned matrix, one can
compute

(2.7) x (V + I)-I(H + pI)-I (H I)(V pI)x

in the case of left preconditioning and

(2.8) x (H I)(V qgI)(V + I)-(H + pI)-lx

for right preconditioning, respectively. It is obvious that this requires exactly the same amount
of work as the application of the preconditioned operator to x. This implies that we could as
well implement the preconditioner in this way as acceleration of the ADI iterative method.
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Because of this representation of the ADI preconditioned matrix as a rational function in H
and V, we will also use the term rational preconditioning.

In what follows, we restrict our attention to preconditioning from the right as in (2.2).
Rational preconditioners of higher order can be constructed in the following way. Let the
polynomials pt(z) (z + q91)... (z + qgt) and qt(z) (z + )... (z + 7rt) be given, then
the operator

(2.9) I q(-H)p(-V)[qt(V)]-[pt(H)]-
is the natural generalization of (2.2). Note that, for the construction of these alternating
direction preconditioners, we did not make any assumption on commutativity of the matrices
H and V.

3. Convergence bounds. Convergence bounds for conjugate gradient (CG)-like meth-
ods for nonsymmetric systems usually involve the size of the residual polynomial on the
spectrum of the (preconditioned) operator. For example, for the GMRES algorithm (see Saad
and Schultz [25]), if the corresponding coefficient matrix A can be diagonalized such that
A TAT- one obtains

(3.1) Ilrmll2 _< IITII2 lIT-1112 min max [m(Z)l
IIr0112 ]Pm GI’Xm ,Cm (O)--1 zff A)

Here, Flm denotes the polynomials of degree _< rn. A weaker bound for the error reduction
that also involves

(3.2) min max Im (z)l
l)mEl-Im,fm(O)=l ZEO" (A)

holds, under certain assumptions, for the QMR algorithm by Freund and Nachtigal 15]. If A is
not diagonalizable, then similar bounds are valid that involve derivatives at certain eigenvalues
(where the corresponding Jordan blocks have size > 1). A convergence result that depends
on the size of (I)m (2) and (z) was shown for the transpose-free QMR method proposed by
Freund in 14] (see 13, Thm. 6]). In any case, the convergence of these iterative methods is
governed by (3.2).

Since, for nonnormal matrices, the condition number T 112 T- 112 (or the corresponding
expression for the QMR bound) can be quite large, it is important that convergence bounds
are known that are not based on eigenvalues. These bounds are based on polynomial approx-
imations on sets containing the spectrum of A like the e-pseudo-spectra (see [22, Thm. 4]) or
the field of values (see [9, Thm. 1]). We will not pursue this further and instead will follow
the approach based on (3.1).

Our goal is to choose the parameters 99 and p in such a way that

(3.3) min max [m (z)l
mI’Im,m(O)’-I Z.

with

f2 cr((H + 99I)-(H + V)(V + i)-1)
o’((H + pI)-l(H pI)(V 99I)(V + grI)-)

(see (2.3)) is as small as possible. In the case that f2 is a real interval (which is fulfilled, for
example, if the eigenvalues of H and V are real and H and V commute), this leads to the
problem

(3.4) min p((H + qgI)-l(H 7rI)(V pI)(V + i)-1),
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i.e., minimizing the spectral radius of the corresponding ADI iteration matrix. If S21 is not
contained on the real line, and if we do not have any further information about the shape of 1,
our aim is still to choose 99 and 7z in such a way that f21 is as far away from the origin as possible.
This again leads to (3.4). We remark that, for complex f21, it is not rigorously justified that
choosing the parameters 99 and p in this way leads to the best possible f21 for (3.3). Instead,
it might be advantageous to minimize the largest imaginary part of f21, although this would
lead to a smaller distance to the origin. It was actually observed by Chin, Manteuffel, and de
Pillis [3] that choosing the parameters according to (3.4) does not necessarily lead to the best
(overall) convergence for ADI accelerated by the Chebyshev iteration in the case of complex
spectra. For simplicity, we will, however, determine 0 and p from (3.4). Analogously, for
> 1, (2.9) leads to

(3.5) min p([pl(H)]-lql(-H)pl(-V)[ql(V)]-l).
pt,qtFIt

If H and V commute, we can transform H and V simultaneously into Schur form (see,
e.g., Marcus and Minc [21, p. 77]), i.e., there exists a unitary matrix U such that UI4HU
and UI4vU are both upper triangular. This assumption about commutativity is fulfilled, e.g.,
for discretized elliptic boundary value problems if the differential operator is separable (see
(1.3)), and for Lyapunov and Sylvester matrix equations. Under these circumstances, we have

p([pl(H)]-1 q(-H)pl(-- V)[ql(V)]-l
p([UI4pl(H)U]-1UI4ql(-H)UUt-Ipl(-V)U[UI-Iql(V)U]-I

< maxze(v/
pt(-x/

maxe(/-// pt(iq())

leading to the rational minimization problem

I Pl(--)) ql(-#) ](3.6) min max max
p,qr [_zr(v) ql()) ur(H) Pl(lZ)

If (V) and (/4) are replaced by arbitrary compact subsets of the complex plane, this is the
so-called rational Zolotarev problem. For different approaches to this approximation problem,
see [27] and references therein. The results in [27], and the numerical experiments in 5 of this
paper, indicate that the main improvement ofthe convergence rate takes place when we use two
parameters instead of one, especially for nonsymmetric problems. Explicit formulas for the
optimal parameters for 2 are known for special regions, e.g., rectangles, enclosing a (H)
and cr (V) (see, again, [27]). On the other hand, these parameters can also be computed cheaply
in many situations using minimization procedures. It is also possible to use the generalized
Leja points discussed in [27] that solve the rational Zolotarev problem in an asymptotic sense.
ADI with these Leja points as parameters could then be combined with the adaptive Chebyshev
iteration [20] or iterative methods based on Faber polynomials (see [8] and [28]).

In the noncommutative case we can still get bounds for the location of the spectrum of
the preconditioned operator using norm estimates. Obviously,

P([Pl(H)]-lql(-H)Pl(-V)[ql(V)]-1) <_ [[[pl(H)]-ql(-H)[[2 [[Pl(-V)[ql(V)]-1112.
If H and V are symmetric, we have

tl[pl(H)]-ql(--H)ll2 p([pl(H)]-lql(-H)) max
ql(--#)

Pl(#)

and

[[Pl(-V)[ql(V)] -1112 P(Pl(--V)[ql(V)]-1) max
Zc(V) ql(k)
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which again leads to the rational expression (3.6) as an upper bound for the spectral radius of
the ADI operator. It should be remarked that these norm estimates for the noncommutative
case depend on the fact that we apply the ADI preconditioner in the form (2.9), i.e., in such a
way that the terms with H and V are separated.

If H and V are nonsymmetric (and do not commute), then only much weaker results can
be obtained. For the case 1, with real parameters 9 and , we get

II(H / 91) I(H- aPI)II22 max
II(H apI)xll 2

Ilxl12-1 II(g / 9I)xll 2
2

xT(HT pI)(H- apI)x
max
IIx112=1 xT(HT + 9I)(H + 9I)x

IIHxll22 xr(H + Hr)x + ape
max
Ilxll2=l Hxll + oxr (H + Hr)x + 92

IIHxll2 2p min ReW(H) / lp2 IIHII2 2 minReW(H) / lp2
< max <

Ilxll2-m nx 2 / 29 min ReW(H) + 992 H 22 + 299 min ReW(H) + 992
where W(H) and W(V) denote the field of values of the matrices H and V. Analogously, we
obtain

VII 29 min ReW(V) + 992
II(v 9I)(V + 7I)-11122 _< v I]2 + 2 min ReW(V) + p2’

which leads to

p((H + 9I,)-1(H I)(V 9I)(V + i)-1)
(3.7) IIHII 2p minReW(H) + 7t2 [IVII 29minReW(V) + 92<

H 22 + 29 min ReW(H) + 92 VII 2 + 27t min ReW(V) + ap2

4. Application to elliptic boundary value problems. We now apply the bounds derived
in the last section to the elliptic boundary value problem (1.2). We use centered difference
approximations for all the derivatives, which means that the operators H and V are defined
by

(4.1)

[Hu]i,j (ai,j+l/2 / ai,j-1/2)bli,j ai,j+l/2bli,j+l ai,j-1/2ui,j-1

+ [(ci,j + ci,j+l)ui,j+l (ci,j + ci,j-1)ui,j-1]h/2 + ei,jui,jh2/2,
[Vbl]i,j (bi+l/2,j / bi-1/2,j)bli,j bi+l/2,jbli+l,j bi-1/2,jbli-l,j

+ [(di,j + di+l,j)Ui+l,j (di,j + di-l,j)Ui-l,j]h/2 + ei,jui,jh2/2,

where h 1/(n + 1). Let the numbers a, , b_, b, 5, and d be given such that

O < a < a(x, y) <-d,

Ic(x, y)l _< , O < b < b(x, y) < b,

Id(x, Y)I < d

on (0, 1) x (0, 1). With these bounds we obtain, for any matrix representation ofthe difference
operators defined by (4.1),

(4.2)

Recr(H)C_ReW(H)C_cr((H + Hv)/2)___ [2a_(1 cos zrh), 2(1 + cos zrh)] =: [O/H,/H],
Recr(V)C_ReW(V)C_r((V + vT)/2)c_[2b_(1 coszrh), 2(1 + coszrh)] =: [O/v, fly],

Imr(H)

_
ImW(H)

__
r(i(H- HT)/2)

_
[-2h, 2h] =: [-?’/4, ?’/4],

Imr(V)

_
ImW(V)

__
r(i(V Vr)/2)

__
[-2h, 2h] =: [-?’v,
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In what is to follow, we will also use

a := min{aH, tv 2 min{a, b_} (1 cos rr h),

/3 := max{fill, flz} 2max{a, b}(1 + coszrh),
y := max{yH, Fv} 2h max{T, d}.

Note that ot O(h2) and , O(h)for h --+ 0.
We are interested in the location of the eigenvalues of the preconditioned operator as

h --+ 0. It can be shown that the matrices H and V can be transformed into real symmetric
matrices if h < and hd < 1, respectively. This implies that, for sufficiently small h, the
spectra of H and V will be contained on the real line, more precisely,

a(H) [or, fl], a(V) _c [or, fl].

Let us first investigate the separable case, i.e., we assume that (1.3) is fulfilled. In this
case, it is well known that H and V commute (see [31, 7.3] and [27] for a different point
of view in terms of matrix equations). Let qg* and !/t* denote the optimal ADI parameters
with respect to o-(H) and a(V) (see the following section for questions on how to find these
parameters); then, for 0 7t v/--fl, we have

max max
/z6o-(H)

< max
a(V)

< max

max
bteo’(H)

Hence, by (2.3), we have, for sufficiently small h, for the spectrum f2 of the ADI precondi-
tioned operator,

4a + 4a + + +
By straightforward computation of the size of the associated Chebyshev polynomial, this leads
to

min max Im (z)
]Pml-Im,dPm(O)--’l Z’21

2(V/_ ,/c)2m
[(/-fl AV c)2 ..[_ /-(0//)1/4 (0/ ._[_ /)l/21m _[_ [(-fl _. )2 (0/)1/4(0/ _[_. /)l/2]m

,1-- [(4 /)m q-- m2] ()
1/2

Using (3.1), we observe that, to ensure that the residual norm is reduced by a factor of e,

(4 .,,/)m+/m2< 8. )o T 112 T- 112
must be fulfilled. Since ot O(h2), this implies that the number of GMRES iterations rn
is proportional to n /2 (compared to n if we use ADI as an iteration scheme). Similarly, for
/- 2, ifp*, *

2 q2 6 I’I2 are the optimal polynomials for (3.6), then

p(-.) q*2(--//,)
max max
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< max
z[o,/]

Z2 %/(0//)1/4 (0/ -J- fl)l/2z --]-

Z2 + "/(0//) 1/4(0/ -- fl)l/2z "-]--0/ 12 ((0/ "]- fl)l/2 "-(0//)1/4)
2

(19/ -[- /)1/2 _[_ %/(0//)1/4

Hence, for the spectrum "22 of the corresponding preconditioned system, we have

(19/ + fl)l/2 /-(Otfl)l/4 )
2

(0/ +/)1/2
__

%/-(0//)1/4 ( (0/ qt- /) 1/2 ’(0//) 1/4 ) 21/3)1/2 + x/(otfl)i/4

4/-(0/)1/4(0/ -Jr- fl)l/2 2[/-d + x/’-fl] 2

[(IY + fl)l/2
__

/-(1yfl)1/412 [(0/ -’1-- fl)l/2 -i’- /-(O/fl)l/4]2

In the same way as for 1, we derive that the number of GMRES iterations rn needed to
reduce the error by a given factor is proportional to n 1/4 (compared to n 1/2 if we use two-
parameter ADI as an iteration scheme). Generally, if we use 2k optimal parameters, the
number of required iterations is of the order n 1/2’ for the ADI method and of the order n 1/2k+l

for GMRES (or CG in the symmetric case) with ADI preconditioner. If we choose log n
parameters for a problem of size n, it is even possible to bound the number ofADI cycles (and
the number ofGMRES steps using this ADI preconditioner of degree log n) by a constant.
This means that we are able to get the same asymptotic operation count of O (n2 log n) as we
can with fast direct methods.

Let us investigate the nonseparable case when the elliptic equation is selfadjoint. At the
end of 3, we showed that

p([pt(H)]-lqt(-H)p(-V)[qt(V)]-1) <_ max
a(V)

also holds under these circumstances. Using the above analysis, this implies that the spectrum
of the ADI preconditioned matrix for 1, f21, is contained in a circle with center and
radius

O(h) for (h -- 0).

Therefore, the number of required ADI iterations is of the order n, and, using this bound,
the same order is obtained for GMRES with ADI preconditioning. Analogously, for 2,
the number of iterations is proportional to n 1/2, and, using log n parameters, an iteration
count of log n is achievable. Again, the above norm estimates for the noncommutative case
are only valid because we apply the ADI preconditioner in the form (2.9) such that the terms
with H and V are separated. If we use the cyclic form of ADI (as an iterative scheme or
as preconditioner), the situation is different. In fact, Price and Varga [24] constructed an
example of a diffusion equation, where the cyclic ADI method with two parameters fails to
converge. Using the technique by Widlund [35] of appropriately scaling the diffusion equation
or, equivalently, varying the ADI parameters with the space variables, it is possible to bound
the number of iterations by O (log n) also for the cyclic ADI version.

In the nonselfadjoint (and nonseparable) case, using the bounds (4.2) in (3.7), we obtain

p((H + 99I)-1 (H I)(V qgI)(V + /I)-1)
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(/ + y)2 2otp + 12 (fl + y)2 2ot0 + q92
(/3 + V)2 + 2otq9 + q92 (fl + /)2 + 2ot7 + 1fir2

This quantity is minimized for q9 p =/3 + , leading to

\

Using this bound, no improvement of the O(n2) dependence of the number of iterations for
GMRES, applied directly to (H + V)u f, can be guaranteed. Our numerical experiments,
however, indicate that ADI preconditioning works as well in the separable case as it works for
many nonseparable examples.

5. Numerical experiments. This final section contains numerical experiments ..carried
out for certain examples of elliptic boundary value problems (1.2) including nonselfadjoint and
nonseparable cases. In all the examples and for all preconditioners, we will precondition from
the right. All the tables show the number of iterations that is needed to reduce the Euclidean
norm of the starting residual by a factor of 10-6. The entries of the right-hand side of the
matrix problem are chosen randomly with coefficients uniformly distributed in the interval
[-1, ]; the initial guess is always the zero matrix.

Example 1. We first consider the Poisson equation, i.e., a(x, y) b(x, y) and
c(x, y) d(x, y) e(x, y) =_ O.

The following conclusions can be drawn from a glance at Table 5.1. First, ADI can
obviously be accelerated significantly by the CG method. Note that the additional work per
iteration step of CG with ADI(I) preconditioning compared to ADI(I) consists in two scalar
products ofvectors of size n 2, which we may assume to be a fraction ofthe work required for the
matrix-vector multiplication and tridiagonal linear system solving. Second, the convergence
becomes significantly faster as we increase the number of parameters. The work for one
iteration step of CG with ADI(2) preconditioning is essentially twice as much as for CG with
ADI(1) preconditioning (actually a little less since the CG scalar products are only computed
once). But the number of required CG/ADI(2) iterations is less than half the CG/ADI(1)
iteration counts and remains almost constant as the number of unknowns increases (actually,
the dependency of the number of iterations on n 1/4 can be observed quite nicely). While the
step from two to four parameters still pays for the ADI iteration, this is not the case when
using ADI as a preconditioner.

TABLE 5.1
Iteration countsfor Example 1.

CG CG CG
h CG ADI(1) ADI(2) ADI(4) ADI(1) ADI(2) ADI(4)

1/16 39 32 7 3 15 6 3
1/32 77 70 11 4 21 7 3
1/64 157 139 16 4 28 9 4
1/128 309 255 20 6 46 12 5

Example 2. Let us now turn to the nonsymmetric (but still separable) problem

(5.1) Au + r(XUx + yUy) + flu f
in (0, 1) x (0, 1) with Dirichlet boundary conditions. This is Example 6.1 in 14] and is obtained
from (1.2)ifwe seta(x, y) b(x, y) 1, c(x, y) -x,d(x, y) -y, ande(x, y) rl-r.
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The linear system, resulting from discretization by central differences, is symmetrizable when
h < 1" otherwise we get (some) complex eigenvalues. For our experiments, we did not2
only use different preconditioners (ADI(1), ADI(2), block SSOR and a fast Fourier transform
(FFT)-based fast Poisson solver (FPS)) but also different acceleration schemes; in particular,
GMRES (without restarts) [25], CGS [26], and TFQMR (transpose-free QMR) [14]. We first
choose r r/- 200. Figures 5.1 and 5.2 show the convergence behavior for different iterative
methods and different preconditioners, respectively. The relative residual norm Ilrll/llr0l[ is
plotted versus computational work. The latter is measured in units equivalent to the number
of operations required for one half-step of the ADI iteration, i.e., the solution of n tridiagonal
systems of order n plus n matrix-vector products with matrices of size n.

l0

10o

10-5

0 10 20 30 40 50 60 70 ADI half-steps

FIG. 5.1. Example 2 (h 1/64) ADI(1 preconditioning, different iterative methods.

From Table 5.2 and Fig. 5.1, we see that, although all the methods seem to work well
with ADI preconditioning, using GMRES gives the fastest convergence (note that one step
of GMRES involves only one multiplication, while one CGS iteration requires two multipli-
cations with the preconditioned matrix). However, since, for the full GMRES algorithm, the
number of SAXPY operations and inner products per GMRES step is growing linearly with
the iteration count, this part of the computation amounts to a significant part of the work.
Although the behavior of the residual norm is much more erratic, CGS reaches the desired
accuracy after about the same time as TFQMR. (The amount of work is about the same for
one CGS iteration and two TFQMR iterations.)

Let us now turn to the performance of the different preconditioners (see Tables 5.2, 5.3,
and 5.4 and Fig. 5.2). Since (block) SSOR preconditioning involves the same amount of
work per iteration as ADI(1), the results show that SSOR is preferable for any size of h in this
example. Obviously, the results obtained by using an FPS as preconditioner are not satisfactory
in this example (note that not only is the iteration count higher, but also that each iteration step
requires more operations).

The iteration counts in Tables 5.2, 5.3, and 5.4 should be sufficient to illustrate that
the dependence of the rate of convergence on the preconditioner is essentially the same for
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10o
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10-2

10-3

104 DI(2)

10-5

10-6

SSOR ""1
10.7

0 50 100 150 200 250

FIG. 5.2. Example 2 (h 1/64) TFQMR, different preconditioners.

TABLE 5.2
Iteration countsfor Example 2, r r/-- 200.

ADI half-steps

GMRES GMRES GMRES GMRES
ADI(1) ADI(2) ADI(1) ADI(2) SSOR FPS

1/16 37 18 27 13 99 67
1/32 31 15 23 13 51 79
1/64 35 20 30 16 30 86
1/128 62 25 34 19 41 93

TABLE 5.3
Iteration countsfor Example 2, r r/= 200.

CGS CGS CGS CGS
CGS ADI(1) ADI(2) SSOR FPS

1/16 49 19 9 93 69
1/32 71 14 8 34 75
1/64 133 20 10 20 79
1/128 253 24 13 33 81

TABLE 5.4
Iteration countsfor Example 2, r r/-- 200.

TFQMR TFQMR TFQMR TFQMR
TFQMR ADI(1) ADI(2) SSOR FPS

1/16 98 38 18 181 134
1/32 153 28 15 62 144
1/64 258 40 20 40 150

1/128 502 47 24 64 160



ALTERNATING DIRECTION PRECONDITIONING 381

GMRES, CGS, and TFQMR. From now on, we will restrict ourselves to TFQMR as our basic
iterative method.

The results in Table 5.5 were obtained for the same example with the choice ofparameters
as in [14, Ex. 6.1] (r 100 and 0 -200) to show that ADI preconditioning also works
well if the linear system has (some) eigenvalues in the left half-plane. Note that, as h gets
smaller, the iteration count for the unpreconditioned method increases much faster than the
one for ADI(1). On the other hand, preconditioning by an FPS and, for some h, also SSOR
did not show any signs of convergence at all after a reasonable number of iterations.

TABLE 5.5
TFQMR iteration countsfor Example 2, r 100, r/= -200.

h No prec. ADI(1) SSOR FPS

1/16 130 102
1/32 360 69 76
1/64 292 78 84
1/128 842 104

Example 3. Let us now turn to the nonseparable problem

--Au + vy(1 x2)Ux vx(1 y2)bly f,

which has the physical interpretation of modelling circular flow of a fluid around a point (see
Elman and Golub 11 ]). To derive this equation from the general formulation (1.2), we set
a(x y)= b(x y)= c(x y)= y(1-x2) d(x y)= -Tx(1 y2), and e(x, y) O.
Again, we consider the elliptic differential equation on (0, 1) (0, 1) with Dirichlet boundary
conditions. For r 200, the convergence behavior is illustrated in Table 5.6 and Fig. 5.3.

TABLE 5.6
TFQMR iteration countsfor Example 3, r 200.

h No prec. ADI(1) ADI(2) SSOR FPS

1/16 76 19 15 102 109
1/32 133 40 26 78 132
1/64 235 82 24 62 124
1/128 466 123 30 80 131

Example 4. In our final example, we look at the nonseparable equation

--(e-2Xyttx)x (e-2Xyuy)y + "c(xttx + yUy) f,

where we also have variable diffusion coefficients. The corresponding computational results
are shown in Table 5.7 and Fig. 5.4. We see that while SSOR does not lead to convergence at
all, ADI preconditioning still works quite well.

6. Conclusions. In this paper, we have studied, both analytically and numerically, the
performance of ADI preconditioning for finite difference discretizations of elliptic boundary
value problems in two dimensions. One of the advantages of this approach is that it can be
easily parallelized on a variety of architectures. For separable, not necessarily selfadjoint,
problems, we proved that the number of iterations required to reduce the norm of the residual
by a certain factor is proportional to h -/2 ifwe use ADI(1) preconditioning and is proportional
to h -1/4 for ADI(2). In our numerical experiments we compared these ADI preconditioners
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FIG. 5.3. Example 3 (h 1/64)" TFQMR, different preconditioners.

ADI half-steps

I(2)

ADI(1)

0 20 40 60 80 100 120 140 ADI half-steps

FIG. 5.4. Example 4 (h 1/64)" TFQMR, different preconditioners.

with other approaches for a number of different iterative methods. These numerical results
illustrate the analysis which implies that, at least for small h, ADI(2) should be preferred to

ADI(1). Moreover, ADI frequently performs better than preconditioning by SSOR or an FPS.
This is particularly true for SSOR for small h or for problems where the underlying matrix
has large imaginary eigenvalue components.
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TABLE 5.7
TFQMR iteration countsfor Example 4, r 200.

h No prec. ADI(1) ADI(2) SSOR

1/16 419 122 98
1/32 80 40
1/64 69 36
1/128 74 38
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SEMICIRCULANT PRECONDITIONERS FOR FIRST-ORDER
PARTIAL DIFFERENTIAL EQUATIONS*

SVERKER HOLMGREN’ AND KURT OTTO

Abstract. This paper considers solving time-independent systems of first-order partial differential equations
(PDEs) in two space dimensions using a conjugate gradient (CG)-like iterative method. The systems of equations
are preconditioned using semicirculant preconditioners. Analytical formulas for the eigenvalues and the eigenvectors
are derived for a scalar model problem with constant coefficients. The main problems in constructing and analyzing
the numerical methods are caused by the numerical boundary conditions required at the outflow boundaries. It is
proved that, when the grid ratio is less than one, the spectrum asymptotically becomes two finite curve segments that
are independent of the number of gridpoints. The same type of result for a time-dependent problem has previously
been established. For the restarted generalized minimal residual (GMRES) iteration, a slight reduction of the grid
ratio from one substantially improves the convergence rate. This is also predicted by an asymptotic analysis of the
eigenvalues.

Key words, first-order PDE, finite difference discretization, preconditioners, spectra, convergence analysis
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1. Introduction. In this paper we consider solving first-order PDEs in two space dimen-
sions. The systems of equations arising are solved using a CG-like iterative method combined
with semicirculant preconditioners. Eventually we intend to use the methods presented here
in the process of solving the Euler and Navier-Stokes equations.

We first give a brief description of semicirculant preconditioners. Then we present scalar
model problems with constant coefficients. We mainly consider a steady-slate hyperbolic
equation, but results for a related time-dependent problem are included for comparison. For
the model problems we give analytical formulas for the eigenvalues of the preconditioned
coefficient matrices. The eigenvectors of the steady-state problem are also studied.

Using a grid in which the number of gridpoints in one space direction is greater than
in the other, it is proved [Otto92] that the spectrum for the time-dependent model problem
asymptotically resides on two finite curve segments in the complex plane. The curves are
well seParated from zero and independent of the quotient c between the time- and space-steps.
These results should be compared to those presented in [HoOtto91 ]. There Holmgren and Otto
analyze a similar model problem, but with periodic boundary conditions in one space direction
and the same number of gridpoints in both directions. The results for that problem imply that
the spectrum is independent of the number of gridpoints, but that max/I.i[/mini [)il

Generalizing the results in [Otto92], we are able to prove that asymptotically the spectrum
for the steady-state problem resides on the same curve segments as for the time-dependent
problem, provided a weak artificial viscosity is added in one space direction. Also, the grid
ratio must be less than one to guarantee a bounded spectrum. This is the main topic of this
paper. The theoretical arguments are verified by numerical experiments.

2. Notation. We solve

(1) M-1Bu M-lb

where M is the preconditioner matrix. The matrix B arises from a discretization of a system
of nc PDEs in two space dimensions using a standard five-point operator. The solution is

*Received by the editors May 18, 1992; accepted for publication (in revised form) April 23, 1993. This work
was supported by the Swedish National Board for Industrial and Technical Development (NUTEK).

tDepartment of Scientific Computing, Uppsala University, Box 120, S-751 04 Uppsala, Sweden
(sverker@tdb.uu.se, kurt@tdb.uu.se).
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unknown in m rn2 gridpoints, hence u has n ncmlm 2 components. The only restriction
on the difference approximation at the boundaries is that it must not be wider than the five-point
operator used in the interior. The matrix B is assumed to have the following structure:

(2) B tridk,m2 (Bk,-1, Bc,o, B:,I),

where

Bk,-1 diagj,ml (1)j,k,-2),
Bk,0 tridj,ml (Pj,k,-1, l)j,k,O, 1)j,k,1),
B/c,1 diagj,ml (vj,/c,2).

Here vj,,,., r -2 2, are nc nc matrices. Hence, 5non memory cells are required
to store B, and lOncn arithmetic operations are required to perform the matrix-vector
multiplication y Bx. Above, we .have used the notation

/1 /1 }/1

diagj,m (flj) tridj,m (orj, [3j, }/j) or2 ". ".

". ". }/m-1
3m O/m /m

We will also denote circulant tridiagonal and periodic tridiagonal matrices by

,3 y ot ,31 }/1 Oil

ctridm (o, 3, }/) o ".
ptridj,m (oj, 3j, }/j) c ". ".

"" "" }/ ". ". }/m-1

’ 3 ’m m 3m
The Kronecker product, denoted by (R), will be used extensively. The mth-order Fourier matrix
Fm is given by

[Frn]j,k m -1/2" co"-1)(k-1) j, k m

where (.0m exp(i2zr/m).

3. Semicirculant preconditioners. For a more complete discussion on semicirculant
preconditioners and some numerical results, see [HoOtto91], [Holm93], and lOtto93]. Cir-
culant preconditioners are discussed in [TChan88], [RChSt89], [RChan89], [RChJin91], and
[TChO192]. A semicirculant preconditioner M for B is defined by

(3)

where

M ptrid,m2 (Mk,_l, Mk,o, Mk, 1)

mk,-1 Im (R) Pk,-2 mk,O ctridml (Pk,-1, lOk,O, ,Ok, l), mk,1 Im (R) IOk,2.

Here Pk,r are n x n matrices. When Pl,-2 and Pm2,2 are zero, M is nonperiodic block-
tridiagonal just like B. However, the diagonal blocks in M are circulant matrices, whereas the
corresponding blocks in B are tridiagonal. Notice that the preconditioning matrix M is almost
as sparse as B, and it is completely described by the 5m2 nc x nc matrices pk,r. Different
choices of these parameters result in different preconditioners. In this paper we use

1 ml

(4) Pk,r Z v-J’k’ k 1 m2, r -2 2.
ml j=l
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The matrix entries Tj, k,r, j 1 m l, k 1 rn2, r -2 2, form the matrix
/ corresponding to the difference approximation of the original problem, but with periodic
boundary conditions in the x1-direction. Most of the entries j,k,r will be equal to the entries

vj, k,,. in the matrix B. Especially, pl,-9, and IOm2,2 become zero, and consequently M becomes
block-tridiagonal. The choice of parameters for circulant and semicirculant preconditioners
is discussed in [TChan88], [Tyr92], and [HoOtto91].

The reason for introducing circulant matrices in the preconditioner is that such matri-
ces are diagonalized by using discrete Fourier transforms, which are performed by the fast
Fourier transform (FFT) algorithm. The derivation of the preconditioner solve is based on the
observation that M-1 may be written as

(5) M-1 (Im2 ( Fml (R) Inc)(ptridk,m2 (Mk,-1, Ak, Mk,1)) -1 (Im2 (R) F*ml ( Inc),

where Ak diagj ml (Aj k) and Aj k Pk,O -- O)(mJi-1) -(j-l)
IOk, q- O)m Pk,-1. Details are given

in [HoOtto91 ]. In [Holm93] some savings in arithmetics, generalizations, and parallel imple-
mentations are discussed. An algorithmic formulation of the preconditioner solve follows"

PRECONDITIONER SOLVE

for k to ncm2 do (in parallel):
Perform an FFT of length m 1/2.

endfor
for j to m/2 + do (in parallel):

Solve a (possibly periodic) block-tridiagonal system of equations
with blocksize n x nc and ncm 2 unknowns.

endfor
for k to ncm2 do (in parallel)"

Perform an FFT of length rn 1/2.
endfor

For the implementation used in this paper, 6ncn memory cells are required to store the
factorized reduced systems and for workspace. To form the preconditioner and to factorize the
reduced systems (32n2 16n+3)n arithmetic operations are required. Each preconditioner
solve requires (5 log2 rn 1-3

c- 24nc +2)n arithmetic operations. Both the memory requirement
and the arithmetic complexity is increased if m is not a power of two, since the discrete
Fourier transforms are then computed according to thefractional Fourier transform algorithm
[BaSw91]. The semicirculant framework can be extended to three space dimensions; see
[Holm93] and [Otto93]. The three-dimensional preconditioner solve is based on FFT methods
in two dimensions and the solution of block-tridiagonal systems in the third dimension.

In [Otto93] and [Holm93] standard incomplete LU (ILU) and block ILU preconditioners
are considered for the type of problems presented in the next section. Analysis of the spectra
for the preconditioned systems shows [Otto93] that no significant improvement is obtained
compared to the unpreconditioned system. Furthermore, some preconditioners exhibit stability
problems [Holm93]. For large, nondiagonally dominant problems the convergence properties
are poor. The conclusion is that ILU and block ILU preconditioners are not beneficial for the
problems of interest here.

4. The model problems. We present a hyperbolic model problem in both a time-
dependent and a steady-state setting. The time-dependent problem is analyzed in [Otto92].
We present it here since it is instructive to compare the coefficient matrices and the results for
the two problem settings.
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The time-dependent problem. We consider the scalar (n 1) two-dimensional problem

Ou Ou Ou
(6) 0--- + -x--- + =-- g,

OXl ox:z

on the unit square for > 0. Here u (0, x2, t), U(Xl, 0, t), u(xl, x2, 0), and g are chosen so
that the analytical solution is known. The time discretization is performed using the second-
order accurate trapezoidal rule. The space discretization is performed on a uniform grid with
(m + 1) x (m2 + 1) gridpoints, where the space-steps are given by h 1 /ma, d 1, 2. Let
uj,k denote the approximate solution at the point (jhl, kh2), j 0 ml, k 0 m2.
Observe that u0,k for k 0 me and uj,o for j 0 m are given directly by the
boundary conditions for the PDE problem. This means that we have to solve for m x m
unknowns in each time-step. The spatial derivatives in (6) are approximated using second-
order accurate centered differences in the interior of the domain. For the numerical boundary
conditions required at the outflow boundaries, we use one-sided differences. Now define

K1 At/hi and x2 At/h2, where At is the time-step. The solution vector is defined as
uN (ul uN uN u u )r Introducing the discretizations in (6) yields the

2,1 1,1 1,2

following system of equations for the unknowns at time level N + 1:

(7) (Im (R) B1 + K292 @ Iml)UN+I b.

Here b contains known quantities and

4 K1
--K1 4 K1

B1 ".. ".. "..
-Xl 4 Xl

-2xl 4 + 2tq

0
-1 0 1

-1 0
-2 2

The steady-state problem. Here we consider the steady-state version of (6):

Ou Ou
(8) Ox-- + g"

The boundary conditions are of the same form as for the time-dependent problem. The
boundary data and g are again chosen so that the analytical solution is known. The space
discretization is performed on the same type of grid as for the time-dependent problem, and
the derivatives in the PDE are approximated using centered differences in the interior of the
domain. However, we add a weak artificial viscosity in the x1-direction. The difference
operator in the interior is given by

(9) DO,xl .-Jr- Do,xz h- D+,xlD-,xl,

(D+,xl +where D+,xlUj,k h-{l(uj+l,k--Uj,k), D-,xlUj,k D+,xlUj-l,,andfinally Do,xl -D-,xl). The constants ot and ?, are chosen so that ot 6 [0, 1) and ?’ 6 (0, 1). The order of
accuracy for this operator is 2 ot in the x1-direction and 2 in the xv.-direction.
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Adding artificial viscosity is customary when using centered differences for flow prob-
lems. Normally, a stronger artificial viscosity like the difference operator f(Vu)?’lhl D+,xl
D-,xl + v2h (D+,xl D-,xl ): is added. The function f is large when the gradient of u is large,
i.e., in a shock, and small otherwise. It would be interesting to perform the analysis using
an artificial viscosity of the form ’2h (D+,xl D-,xl )2, which preserves second-order accuracy.
However, we have not yet pursued this approach. Artificial viscosity could also be added in
the x2-direction. The solution method presented here would still be defined, and reasonably
the performance should be enhanced.

For the numerical boundary conditions we again use one-sided differences. The difference
operators at the outflow boundaries are given by

D-,xl + Do,x2,
D-,xl + D-,x2,

Y 2-orDo,x1 + D-,x2 -h D+,xl D-,xl

Define the grid ratio/3 and 6 by

j=ml, k=l m2-1,

j=ml, k=m2,

k=m2, j=l ml-1.

t =- hl/h2 6 yhl

We then have the following system of equations:

(10) Bu (Im2 @ 1 -{- [3B2 Iml)U b.

Here b again contains known quantities and

26 6
-1 -6 26 1 -6

-1 -6 26 1 -6
-2 2

The difference between the two problem settings lies in the difference between B1 and/} 1. The
study of the steady-state problem was initiated by an examination of the quotient between the
diagonal and off-diagonal entries in these matrices. When the number ofgridpoints is large, the

2 2y-1 c-Isteady-state problem is closely related to a time-dependent problem with X h

Asymptotically the matrix/1 approaches the "true" wave propagation matrix. This is not the
case for the standard form of artificial viscosity with ot 1, since the main diagonal does not
vanish.

5. Two lemmas. In this section we state two fundamental lemmas. The first lemma
concerns the location of the eigenvalues of the matrix B2. Let g(a, b) denote the closed
ellipse centered at the origin with semimajor axis b oriented along the imaginary axis and
semiminor axis a. Also let +(a, b) denote the region {zlz g(a, b) and e(z) > 0}.

LEMMA 1. The eigenvalues )k,2 of B2 satisfy:
(i))k,2 6 )j,2 k j.

(ii))’k,2 +(4m3/4 2 + 4m-3/2) k-- 1 m2
(iii) kk,2 > ln(mz)/m2 when m(&k,2) 0.

The proof is based on difference equation theory and is available in [Otto92].
Lemma 2 concerns the evaluation of certain sums in the proof of Theorem 2.
LEMMA 2. Assume that d > 1. Let denote a complex number satisfying

.(d-1 d+l) and e()>0
2 2
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Then

.p(j-1)
tom1

Crp m
2 nt- O-)("-l)nJ1 dO)-(j-1)m[ Sp nt- rp, p =-ml + 1, ml- 1,

where

(-dz-1)p
z+dz-1

p<0,

zp

z+dz-l’
p>_O,

Zp zml (_dz-1)p (-d-lz)ml
-Ji-

z + dz-1 1 Zml Z + dz-1 1 (-d-1Z)ml’

and

Z +- v/d -}- 2

The proof is available in [Otto93]. It is based on the Poisson summation formula, residue
theory, and geometric series.

6. The steady-state problem. A semicirculant preconditioner, with parameters chosen
according to (4), for the coefficient matrix in (10) is given by

(11) M- Im2 1 -- fiB2 Im
where

1 ctridm, (-1 6, 26, 6).

Theorem 1 establishes the existence of M-1 for all finite grids.
THEOREM 1. The matrix M is diagonalizable and nonsingular.
Proof. Since 1 is a circulant matrix we have

FII Fm A1 diagj,ml (j,1), )vj, 26 + (1 6)O)(m-1) (1 + a)j-l).

From Lemma we conclude that there exists a nonsingular matrix V2 diagonalizing B2, i.e.,

V B2 V2 A2 diagk,m2 (k,2).

This implies

(V @ FI)M(V2 Fml) (V @ Fl)(Im2 1 + fiB2 Iml)(V2 Fm)

Im2 F* dlFm + VC1B2V2 Imml

Imz @ A + flAz @ Im A.

Thus, M is diagonalizable. The eigenvalues ofM are the diagonal entries of A, i.e., j, +Xk,2,
k m2, j 1 m . We prove by contradiction that these eigenvalues are nonzero.
Assume that j, + flk,2 0 for some j and k. Then we have

0 2a + (1 )w-1) (1 + )W;j-l) + flk,2

2(1 -cos((j 1)2/ml)) + fle(,2)
+ i(2 sin((j- 1)2/m1) + flm(,2)).
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Now 3,/3 > 0 and 9e()k,2) > 0 according to Lemma 1. Then the only possibility is j 1,
9e(.k,2) 0, and m(),2) 0. But )k,2 0 contradicts Lemma 1, and consequently the
assumption is false. [3

The convergence analysis in 8, for GMRES applied to (1), is based on the spectral
decomposition of M-lB. For the rest of this section, we therefore examine the eigenvalues
and the eigenvectors of M-lB. Now define the error matrix E B M. Observe that
E In2 (R) El, where

(12) E1 =/1 1

0 0 0 0 10 0 0 0

0 0 0 0 0
-1+3 0 0 -1+3 2-23

We obtain

(13) M-B M-I(M + E) I + M-E.

Theorem 2 provides analytical formulas relating the eigenvalues of M-1E to the eigenvalues
of B2.

THEOREM 2. Let ),2, k 1 m2, denote the eigenvalues of B2. Define and d by

[,k,2 1%- 6
=-- and d =-

1 a 2(1 3) a

Then the matrix M-E has the eigenvalue zero with multiplicity at least m 2(m 2), and 2m2

eigenvalues given by

(sc)
(1,ml),k

2 (2 d-1)zk + RI (zk) 4- ,/-(4d-1 d-2)z 4(2 d-1)zk 4(d 1) + R2(zk)

2(zk %- dz1)
k 1, m2,

where

Rl(Zk) ((d 1)a-1%- 2 za:) 1 --- + ((d-1 1)z + 2 + dz- 1) (--d-lzk)ml
1 (--d-lzk)ml’

Z?R2(zk) (- 6d-lz (12 4d-)z. 8d + 6 2d

%- (_ (6d-1 -2 22d )z. (12 8d- )z 8d + 10 + 4dz-1) (--d-lzk)ml
1 (-d-1Zk)ml

%- (z 4zk 2d %- 6 %- (4d 4)z-1%- (d 1)2z-2)
1 z

( (--d-lzk)m, )2%- ((d-1 1)2z %- (4d-1 4)z 2d + 6 + 4dzZ + d2a-2) 1 (--d-lzk)ml
%- (-- (2 %- 6d-1)z (8 -4d-1)za: 12d %- 4- 2d-1

Z, (--d-lzk)ml
%- (Sd- 4)z-1 (2d2 %- 6d)z-2)

1 zn (-d-lzc)m’



392 SVERKER HOLMGREN AND KURT OTTO

andfinally

z - + x/d +C.

Proof. First we construct a sparse block-diagonal matrix having the same eigenvalues as
M-1E. Using the notation from Theorem 1 we introduce

D (Im2 (R) A1 --[-/A2 (R) Iml) -1 diagk,m2 (Dk),

where

D diagj,ml (dj,k) diagj,m ((2a + (1 a)Og(m-1) (1 --[- a)o)lJ-1) + )k,2)-l).

Employing the transformation of M from Theorem 1, the spectral decomposition of M-1

becomes

M-1 (V2 (R) Fml)D(V (R) Fr).
We now consider the matrix T given by

T (V2 (R) Iml)-IM-1E(2 (R) lml
(1 (R) Iml)(2 (R) Fm,)D(V (R) Fl)(lm (R) E1)(V2 (R) Iml)
(lm (R) Fml)diagk,m(Dk)(Im (R) Fm*l El) --diagk,m(Tk),

where Tk Fml DkFn]IE1. Since M-1E and T are similar, and T is block-diagonal, the

eigenvalues of M-1E equal the eigenvalues of Tk, k 1 rn 2.

Due to the structure of E1 displayed in (12), we see that Tk has only three nonzero
columns tp,1, tp,ml-1, tp,m P m 1. Performing the matrix multiplication and using

.(p+ml) O)mPl we obtainthe periodicity win1

ml

tp, m- o)mP(lJ-1)(--1 -]- )dj,k
j=l

ml
--1 Z O’)mP(lJ-- 1)

1)--m
2B+flLk,2 (mJ1j--1 1- - O)

tp,ml-1 tp, --tip,
ml

1+ -(j-l)
1- O)ml

--1
ml Z (9-1)(j-1)(1 + $) + --mrP(J-1)(21 2a))djk,

j=l
p(j- 1)ml do)(mP-l)(j-1) ._]_ ZO)m-1 E =drip_ + 2O’p,rnl 23+flzk,2 ].. o)(Jml 1) 1+3 -(j-l)

j=l 1-3 1-30)ml

where

ml .p(j-1)
-1 E O’)ml

O’p m
(j-l) dc--(J-1)"mlj=l 2, + OOml

Using the periodicity 7p4-ml 7p, the characteristic equation for Tk becomes
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0 det(.I- Tk) )ml-3
, tl,1 --tl,ml-1 --tl,m
--tmi-l,1 )v tm-l,m-I --tml--l,ml
--tm,l --tm,ml-1 , tml,ml

, -ac- al al -dao 2o’1
a-1 )v + a-1 -da_2 2o’_1
if0 o’0 , do’_l 2a0

)vm-2()v2 ((d 1)o-_ + 2ao Ol)Z + d(o-( 0-21 010_ -+- 0-00_2)

Thus, Tk has at most two nonzero eigenvalues

x(sc) (d- 1) O"

(1,ml),k--T0"-1 -- 0"0 --T -]-

(d- 1)O-o2 +
(d + 1) 2 (d + 1)

4 0"21 + 2
ala_ ffl aO daoff-2 + (d 1)aoa_ 1.

Now

3 /k,2 d 1 fl,k,2
Ck= 1--6 2(1--,)- 2 2(1--6)’

and due to Lemma we get 9e(k) > (d 1)/2 > 0, and 9e(k) > (d 1)/2 when
m(k) 0. From Lemma 2 we then obtain formulas for ap. Inserting those formulas into

the equation above and rearranging terms, the final formulas for sc) follow. ]
"(1,m),k

We now determine the eigenvectors of M- B.
THEOREM 3. Assume that there are constants 0 > 2 > 0 and 03 > 0 such that

(sc) (sc) (sc)
01 > t’"(a,m),k[ > /’12 and I’l,k "ml,kl > 03. Then the matrix M-1B has a nonsingular
eigenvector matrix

WM-1B (V2 ( Iml)diagk,m2 (Ok).

V2 is the eigenvector matrix of B2. The columns (j),k of Ok are given by

/(1),k U(1),k/llU(1)’akl]2,
(j),k ej, j 2 m 2,

/(ml-1),k (el eml-1)/N/,
b(ml),k U(ml),k/[[U(ml),k[[2.

The vector ej denotes the jth canonical vector. The entries of hi (l’ml)’k are given by

(1,ml),kUp
.(sc) (_d-lzk)(1,ml),k

m )+ 1

(zk + dzl)(l zl)(1 (--d-mzk)ml)
(SC) ml ml

_[..
"(1,ml),k(1 zk zk (_d-lzk)ml-p,

(zk + dz-)(1 znl)(1 (--d-lzk)ml)
p=l m,

where zk is defined in Theorem 2.
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Proof. Lemma 1 yields that V2 is nonsingular. In Theorem 2 we derived

(V2 (R) Iml)-IM-1E(V2 Iml) diagk,m(Tk),
asc) asc and zero with multiplicity rn 2 Only columnswhere the eigenvalues of Tk are "l.k "m,k,

(1), (m1-1), (ml) of Tk are nonzero and (1) (ml-1).
We now investigate the eigenvector matrix t)k of Tk. Due to the structure of Tk, we con-

m1-2 /,,/-} null(T). Co-,sequently, those m 2 orthonorrnalclude that {{ej,j=2 (el--em-l)
vectors are eigenvectors of T corresponding to the eigenvalue zero.

(sc) (sc)The assumption I,l,k "ml,kl >- 03 implies that the corresponding eigenvectors u

and u(ml)’k are linearly independent. Furthermore, a(sc)
I-(1,ml),k J2 leads to H(l’ml)’k null(Tk).

(sc)Thus, Tk has m linearly independent eigenvectors. Using the assumption I)(1,ml>,kl > 72,

r0 0, and the formulas for the entries of Tk given in Theorem 2, the two nontrivial eigen-
vectors become

U(pl,ml),k ,(SC)(1,m),kffp -]-- d(o’0O’p_ G_lOp), p 1 ml.

By substituting Crp with formulas from Lemma 2, the formulas for U(l’ml)’k follow. We then
obtain

_f-l Tk-fk Ak diagm, (,(SC) O, O, i.ml,k)(SC) k 1 m21,k

Now the matrix WM-e (V2 (R) Im)diagk,m2 (0k) is nonsingular and

-1 M-1BWM-1B
I + diagk,m2(Ok)-I (V2 (R) Im)-IM-1E(V2 (R) Iml)diagk,m(Ok)
I + diagk,m (Ol)diagk,m2 (Tk)diagk,m (]k) I + diagk,m2 (Ak),

i.e., Wt-e is the eigenvector matrix of M-1B. [3

Later (in Corollary 1) it is established that the assumptions in Theorem 3 are valid,
when m and rn2 are sufficiently large. Later we will study the condition number reduction

7z cond(Wt- e)/condz(We), where We is the eigenvector matrix of B. For the moment
we just state the following theorem.

THEOREM 4. Under the same assumptions as in Theorem 3,

max llll2" max ll-lll2/cond2(l?l)1/r 1/r0
l<k<m2 l<k<m2

where I21 is the eigenvector matrix of 1.
Proof We obtain

condz(Wm- B) WM- B II;Zll Wm_e
II(V2 (R) Iml)diagk,mz((Jk)llzlldiagk,mz((Jl)(v (R) Im1)112

_< IIV2 (R) In, 11211V-1 (R) Im 11211diag,m()ll211diag,m2(-l)ll2
=cond2(V2). max 11112" max 11-1112,

l<k<m2 l<k<m2

We also have We V2 (R) 11 implying

cond2(We) IIV2 (R) I9111211V2-1 (R)/?]-111 -IlV2112lll)lll2llv2-1ll2ll/’7]-lll
cond2 V2)" cond2 ’ ).
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Employing these results yields

cnd2(WM-1B)<cond2(WB)-l<k<m2max 11112" l<k<m2max ll-lll2/cond2(Il) 0. U

Using the information on the spectrum of B2 given in Lemma 1 and a condition on the grid,
it is possible to give asymptotic expressions for the eigenvalues of M-1E.

THEOREM 5. Assume that

0<ot<l

and

m2(1 q- 2m-3/2)
ml(1-ym-1)

<qg’

Then, in the limit m l, m2 --+ cxz, the nonzero eigenvalues of M-1E approach two curve

segments given by

2 /1 02 + iO V/-3 + 602 4/1 02 --l- i0(4 + 6/1 02)

4/1 02
-q)_<O < O,

2 / 02 nt- iO + V/-3 + 602 4x/1 02 "1-- i0(4 + 61 02)

0<0 <q),

z C (o) sc (o), <_ o <_

or-1Proof. Using 3 ym and fl m2/ml, k can be rewritten

ymo-1 m2)k,2 Ym-1

+ =_
o-I 2ml(1 ym-11- ym 1- ym-1 -I- Wk.

Exploiting that )k,9. 6 g+(4m-3/4, 2 + 4m-3/2) yields

1/4 )W/ g+ 2m2 m2(1 + 2m-3/2)
ml(1 gm-l) ml(1 gm-1)

k= ,m2.

By assumption we have m2/ml < o(1 yml )/(1 -]- 2m-3/2) < 1 yielding

1/4. -1 2m-3/42m2 ml .<
?’m-ll vm

which implies wk g+(2mi-3/4/(1 Fm-l), 99). Thus,

k nt- Ok, --q9 <_ Ok <_ 99,

oe-1 -3/4
e Fm -]- 23kml 0 < 6k < 1.

1 Fm-1
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For m >> 1 we have 0 < 6 << 1, and a Taylor expansion yields

-t- 0(62).

Using d (1 + ym-1 c-i V/1)/(1 ym we obtain zk, lim zk 0ff iOk and
m ----x

v/a_o 
2ym-1 (1 --..___--1m v/cl

-3/4

1 4&’ml + 0(m-16 + 62).
(1 Fm

We now .determine limm,--, Re(zk), e 1, 2. First consider the case 0ff > 0. Choose
or-1 c-1 0/2.0 > 0 arbitrarily small. For ml sufficiently large we have 2Fml /(1 Fm _<

For 0 < 0 < o2, we obtain

0"2-" + d- 1 .20__v_o +2 2
2Fm-’ <0<0ff

F-m-1

implying

1 ]-1> -1>1- 1_0 > O
v/d-O: /1- Og/2 2 4

This yields

Izkl 2 _< 1 2vm-’ 0-- + O(m-16 + 62) 1 --mYO o1- + O(mql)

q=max 2ot-2, ot
4’ 2

0 < ot < 1 leads to ot 1 > q implying

2 )ml/2YOom-Ilim 1- +O(mq)
2ml--+o

=0,

and consequently limml zn 0. This and d-1 < 1 implies limml (--d-lzk)ml 0,
which yields

lim Rl(Zk)= lim R2(zk)--0.
m x

Now consider the case 0k 0. We obtain m(wk) 3m (k,2) 0 and

yma-1= +wk =6,
1 =-1ym
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and consequently d + 2ym-1/(1 ym-1) 1 -+- 2e 2Wk. This yields

Iz, - + v/1 + 2e 2wk + 52 -- -t’- (1 + )V/1 2wk(1 + :)-2

< -e + (1 + )(1 wk(1 + .)-2) Wk

=1-- 1+ +
2m1(1 Fm-1) ym- 2m1(1 Fm-1)

/(m2k,,2)m2)k,2 +
2rnl 2rnl 1 + rn2)k,z/(2rnl)

Using )k,2 > ln(m2)/m2 from Lemma 1, we obtain

1

(1 + ln(m2)/(2ml))ml 1 + ln(m2)/2

implying

1
lim Izklma lim

m,--, m2o 1 + ln(m2)/2

Izkl < 1 leads to d-lzkl < d-1 < 1 ym-1 implying limm,- d-lzklm O. This
yields

lim Rl(Zk)-- lim R2(zk)--0.
m ---cx m 1---x

With limml--,oo d 1, we now obtain

lim )(sc)
m--cxz (1,ml),k- 2(zk, +

2- /l O: + iOk 4- -3 + 60:-4/1-0: + i0(4 + 6v/l-

Exploiting -p < 0k < p and distinguishing the branch cut of the square root function, we can
conclude that the nonzero eigenvalues of M-1E approach the two curve segments, )sc)(0)
and .c) (0).

We restate the following corollary originally established in [Otto92].
COROLLARY 1. It holds that

1 + k]sc) (-p) X1 -’[’- O(V/1 9),

1 + )sC)(o) 5 + /ffi

1 + .sc)(p) X2 + O(V/1
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where

5 sc> ,/3 +
28 41 2

< I (0)1 <
14 41 _2
a(sc) a(sc)lim 1,,, "’ml,l > k m2,

ml--+Cx 2

4+2i
5

2+i 7+4i
X2 2v/1 992 10

Proof The formulas for 1 + Xsc) (0) and + Xsc) (4-99) are directly derived from the
formula for Xsc (0) and Taylor expansions. Using the triangle inequality, we obtain

12- /1 -02 / iOI / /I- 3(/1 -02 iO)2 --4(/1 -02 iO)l
’(,X1sc (O)l <

4/1 02

v/5 4/i 02 + /3 + 4 + vq
4/1 --02 49/1 --q92

and consequently

I + xsco1 < +

Introducing /1 -02 0 < _< 1, we get

[1 + )]sC(O)

4v/1

12 + 34’1 02 / iO[ /1 3 + 602 4V/i 02 / i0(4 + 6/1 02)1

4/1 -02

We also obtain

+ 12/1 -02 / 8(1 --02) (25 + 24x/1 02) 1/4

4/1 --02

24 1/4/5 + 2 + 8ea ,/( + )

6./- 15

25 28

/5 + 12 + 8 x/’(1 + 5)
4 4e

ixxc(0)l X/I- 3 + 602 4/1 02 + i0(4 + 6/1 02)1- 12 /1 02 / iOI
4x/1 -02

6e 54e(25 / 24e) 1/4 X/5 --4e
>

.q/(l q
25 625 .q/(l 2.5 2e225 4e3125

4e 4e

( )4 52--
>+ 625 14
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Finally, we have

lim a(sc) a(sc)
I’l,k ""ma,k[

m o

2-3zLo 4zk,o
-1

[- 3 + 60: 4V/1 0 + iOk(4 + 6V/1 0)1

2V/1 --0
(25 + 24k) 1/4 rff> k= 1, m2.

2ek 2

We make the following important observations:
(i) In the limit ml, m2 --+ o, the restriction on the grid can be reduced to/ m2/ml

99<1.
(sc)(ii) The curves -1,o (0), and hence the estimates in Corollary 1, are independent of ot and

?,.
(iii) The convergence ofthe eigenvalues (sc) (sc)

"(1,ml),k to the curves "1, (0) essentially depends
on that d (1 + ?,m 1-1)/(1 ym --+ 1 and R1,2(Zk) -+ O. Depending on the choice of
parameters, these processes occur with different relative speed.

(iv) The interesting case ot 0 is excluded from the theorem, since the remainder terms
asc) will not converge toR1 (Zk) and Rz(zk) will not vanish as rn oo. This means that "l,,nl),k

(sc)
1,oo

50

.100
0

lOO

50

-50

-10o
0

FIG. 1. Spectrafor B when ot O. and y 0.5.

In Fig. 1 we show spectra of the unpreconditioned coefficient matrix B for two problem
sizes. The parameters chosen for the artificial viscosity are ot 0.1 and y 0.5. It is
clear that the spectrum of B grows approximately linearly with the number of gridpoints in
the fastest growing space direction, since B is a discretization of a first-order differential
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operator. In Theorem 5 we have proved that this growth is removed by using the semicirculant
preconditioner M. In Figs. 2-4 we show numerically computed spectra for three different
choices of parameters. For each parameter set, the eigenvalues of M-1B for two different
problem sizes are plotted together with the asymptotic curves + )(sc)

1,cx (0). The eigenvalues
are computed using the formula in Theorem 2, where we have used "exact" eigenvalues of

15 (sc)B2. For all spectra below, we have used/3 0.9375. Hence, the curves 1 +-1, (0)
(which are not straight lines) are identical in all graphs. We note that:

(i) The multiplicity of the eigenvalue at 1 is 3720 for the 64 60 problems and 244800
for the 512 480 problems.

(ii) For ot 0.9, R1,2(zk) converges to zero much faster than d converges to one. Hence,
(sc)the spectrum quickly becomes two "simple" curves, which slowly converge to +-1,c (0).

(iii) For ot 0.1, R1,2(zk) converges to zero slower than d converges to one. Hence, the
(sc)spectrum centers around + "1, (0), but the oscillations of Rl,.(z) are still present in the

spectrum for the large problem.
(iv) For ot O, R1,2(Zk) will not converge to zero. However, in Fig. 4 we see that the

spectrum is contained in a finite region well separated from zero, even for large problems. We
have so far not been able to prove this.

ml--64 m2=60

0 2 3 4 5 6

FIG. 2. Spectrafor M-1 B when a 0.9 and , 0.05.

7. The time-dependent problem. For comparison we restate here the results from
[Otto92] using the theorems in 6. A semicirculant preconditioner, with parameters chosen
as prescribed in (4), for the coefficient matrix in (7) is given by

(14) M Im (R) C1 --K292 ( Imp,

where

C1 ctridml (-K1,4, K1).
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m1=64 m2=60

0 .o..o,
-2 6

-4’
0 2 3 4 5 6

m1=512 m2=480

0 2 3 4 5 6

FIG. 3. Spectrafor M-1B when ot O. and y 0.5.

m1=64 ,m2=60
4

2 g’" g

0 ;....

-2

-4
0 2 3 4 5 6

m1=512 m2=480
:Oo

o o"
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FIG. 4. Spectra for M- B when c 0 and y 0.5.

We again define the error matrix E B M. Now put d 1 and define Ck by

4 + K2.k,2
2K1

where Zk,e are the eigenvalues of Be. Now Theorem 2 applies to this problem too. With some
technical changes in the proof, Theorem 5 is also applicable provided

At =ch, O < et < 1, c > O,
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and

m2(1 + 2m-3/2)
_<qg, qg<l.

ml

The case ot 0 could be allowed, since the remainder terms would be bounded.

8. Convergence rate. We solve (1) using GMRES(e), i.e., the restarted GMRES iteration
[SaadSch86]. IfGMRES is not restarted it is a minimal residual iteration [FrGoNa91 ]. Hence,
in iteration we have

Ilri 112 min [Ipi(M-1B)r0[[2,
Pi E79i, Pi (0)=1

where ri M-l(Bui b) and b/i is the approximation of u computed in iteration i. Since
M-1B is diagonalizable by Theorem 3, we obtain

11ri[12
(15) < cond2(Wt-1 B)

Ilr0112
min max Ipi(Xe)l : cond2(WM-1B) 6i,

piET2i, pi(0)-’l l<e<n

where WM-1 is the eigenvector matrix and Xe the eigenvalues of M- B. 79i is the set of all
polynomials of maximal degree i. For our model problems Theorem 2 yields that {Xe }=1

asc) m2 It is normal to define the asymptotic convergencefactor by{1 [,.J + "(l,m,),k}k=l"

(16) 0 --= lim e]/i

The points X1 and X2 defined in Corollary determine a circle C(c, q) with center on the
positive real axis. Here c denotes the distance from the origin to the center, and q is the radius.

asc 15 The points X1, )1, X2, )2 are denotedIn Fig. 5 the curves 1 + "1, (0) are plotted for p .
by an asterisk (,), and the circle C(c, q) is drawn as a dotted line.

2.5

1.5

0.5

-0.5

-1.5

F6. 5. Circle C(c, q).

Convincing results from numerical experiments [Otto92] corroborate that the curves
(sc)+ "1, (0) lie inside C(c, q), i.e.,

(17) [1 + X(sc),(O)-cl <q, -q9<0_<99, 99< 1.
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In [Saad81] it is shown that, if the spectrum of M-1B is enclosed by C(c,.q) then O < .
Exploiting this result we can prove that, for sufficiently large problems, is bounded by a
quantity less than one.

THEOREM 6. Presume that the assumptions in Theorem 5 are fulfilled and (17) holds.
Thenfor 6 > 0 arbitrarily small, there are integers rhl (6) and th2(6) such that is bounded
by

when m > rh (6) and m2
Proof. The proof follows the technique presented in [Otto92]. Using v v/1 -92,

0<r< 1, wehave

4+2i

The circle C(c, q)is uniquely determined by q2 (e(x1)_c) 2+ (m(x1))2 (9e(x2)_c)2

+(m (X2)) 2, which results in

C
25 + 36r 3z"2 C 8 4

4r(10 r)
q 2-- C%-

A simple analysis of c yields

58

C- < 2-Z" 18
6161 +-r 29

After some careful analysis we obtain

q2 8 4C-2 32r(10- r)(25 + 16V .g2) 1%- v

c2
1 c- %-

5(25 + 36v 3Z’2)2 --<
1%- 5_5v616

implying that q < c. Choose 6 > 0 arbitrarily small. According to Theorem 5 and (17),
there exist th (6) and rh2(6) such that, the spectrum ofM-1B is enclosed by C(c, q %- 6) when
m > rhl and m2 > h2. Some algebra yields

1862) 3662) z"(q + 6)2 q2 v58 <
1 + (25 + -566 +

616 616C2
< -+ 26+- + -5v 1

and the desired result follows.
Directly we establish that, for 0 < 6 < (/1417 29)/18 0.48, 0,(qg) < 1. So there

is a margin to enclose the spectrum, when the number of gridpoints is large but still finite.
Wenow study the upperbound lp0 ofthe condition numberreduction defined in Theorem

154. Figure 6 shows !/0 for problems of size 2p x gg 2P, P 4 10. The solid line represents
problems with ot 0.9 and , 0.05, the dashed line represents ot 0.1 and / 0.5, and
finally the dashed-dotted line represents ot 0 and / 0.5. We see that for increasing
problem size, t0 is less than one and decreases dramatically for all values of ot examined.
Thus, the condition number in estimate (15) is lower for the preconditioned system than for
the unpreconditioned system. Also, the gain increases with problem size. So it is clear that
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applying the semicirculant preconditioner improves both the spectrum and the behavior of the
eigenvectors of the iteration operator. On the other hand, Theorem 4 yields

(18) cond2(Wt-l)_< 7ro.cond2(V2(R)/?l) max II0kll2" max ll0-lll2.cond2(V2).
l<k<m2 l<k<m2

An analysis shows that maxl<k<m2 11011112 x when ml, m2 -- cxz. However, numerical
experiments indicate that this growth is slow, whereas cond2(V2) grows significantly with m2.
This is expected since V2 is the eigenvector matrix of B2, which corresponds to a discretization
of a PDE lacking eigenfunctions. Therefore, the upper bound of cond2(Wt-18) grows mainly
due to the "degenerate" eigenvectors of B2.

0
0.5

0.4

0.3

0.2

0.1

0
3 4 5 6 7 8 9 10 11

FIG. 6. 0 as afunction ofproblem size.

In Fig. 7 the solid line is the graph of the function 00(/), which is the upper bound of 0
and is defined in Theorem 6, in the limit rn 1, rn 2 -- cx. The figure also shows the empirically
derived convergence factors using the GMRES(20) iteration for some problems where ot 0.9
and ?, 0.05. The symbols x, o, and mark problems with 128 128/3, 256 256/3,
512 x 512/3 unknowns, respectively. We see that, at least for large problems, a substantial
improvement in the convergence factor is achieved when reducing/3 from to 0.9. Hence,
we do not have to use many more points in the x1-direction than in the x2-direction to attain
good convergence. The relatively high convergence factor, for small problems and low grid
ratios, seems to be an effect of the finite problem size. Also, the growing upper bound of
cond2(Wt-) for increasing problem size seems to have little effect on the convergence
factor. For practical computations, the bound on the asymptotic convergence factor derived
in Theorem 6 governs the convergence.

For nonnormal matrices there is, to our knowledge, no theory that reduces the study of
convergence for polynomial iterations with the matrix M-1B to a study ofpolynomials at O(n)
"easily" computable points such as the eigenvalues {)i }in_-l. No strict convergence estimates
are available for "closely nonnormal" or "asymptotically nonnormal" coefficient matrices.

9. Numerical experiments. We show the number of GMRES(6) iterations required to
attain Ilri 112/11r0112 _< 10-6 for the steady-state problem. The initial guess is u0 0, and
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Convergence factor

0.7 ""i:k " "0.6 x

li0.5
0.5 0.6 0.7 0.8 0.9

m2/ml

FIG. 7. The convergencefactor as afunction of m /m 1.

15problems of size 2p ]Z 2P, P 4 9, are studied. We present the results for the same
parameter sets as in Figs. 2-4. The solid line represents problems with cr 0.9 and ?’ 0.05,
the dashed line represents ot 0.1 and , 0.5, and finally the dashed-dotted line represents
ot 0 and , 0.5.

In Fig. 8 we see that for ot > 0, the number of iterations required does not grow with
problem size for large problems. Similar results for the time-dependent problem presented in
[Otto92] show that the number of iterations is indeed independent ofproblem size and to. Note
that also for ot 0, there is no large growth in the number of iterations when the problem size
is increased.

Iterations
50

45 i"i’.’:...... .-..’.."..i.i.i’..i’...’.:.’.::..-...

40 ;:,’:

35

30

25

20

5

0
3 6 10

FIG. 8. The number ofGMRES(6) iterations required.

We have also used other iterative methods such as CGS [Sonne89] and transpose-free
quasi-minimal residual (TFQMR) [Freund91]. The performance (in terms of the number
of matrix-vector multiplies and preconditioner solves) for these methods is similar to the
performance for GMRES(6). The restarting length 6 gives a storage requirement for GMRES,
which is comparable to those of CGS and TFQMR.

Each preconditioner solve requires quite a large number of arithmetic operations. Hence,
we compare the performance obtained when using the semicirculant preconditioner to the
performance without preconditioner. In Fig. 9 we show the speedup in CPU time obtained on



406 SVERKER HOLMGREN AND KURT OTTO

a Sun-4/470 using the semicirculant preconditioner combined with the GMRES(6) iteration
152p 4 9,compared to the unpreconditioned iteration. Again, problems of size 2p p

are studied. It is clear that the speedup is large for large problems. Note that the speedup
is greater than one also for small problems. Heuristically, we expect the speedup to grow as
O(m/log2 m), when rn ml m2 is large.

Speedup (CPU-time)
20

16

14

12

I0

8

4

P
03 6 7 8 9 10

FIG. 9. CPU time speedup as afunction ofproblem size.

10. Conclusions. We have used the restarted GMRES iteration combined with a semi-
circulant preconditioner for solving systems of equations arising from a time-independent
hyperbolic PDE in two space dimensions. In the discretization a weak artificial viscosity is
added in the x1-direction. The numerical results indicate that the number of iterations required
to solve the systems is independent of problem size. If no preconditioner is used, the number
of iterations grows with problem size.

We have proved that, provided the ratio/ of gridpoints in the x2-direction to gridpoints
in the Xl-direction is less than one, the spectrum of the preconditioned coefficient matrix
asymptotically resides on two finite curve segments separated from zero. The spectrum of
the unpreconditioned system asymptotically grows linearly with the number of gridpoints in
the x1-direction. Also, we have demonstrated that the eigenvectors of the preconditioned
system are "improved" compared to the unpreconditioned system. The condition number of
the eigenvector matrix is dramatically reduced. For practical computations, we have found
that the convergence for the GMRES iteration is governed by a bound derived only from
properties of the spectrum of the preconditioned coefficient matrix.
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ON ADAPTIVE WEIGHTED POLYNOMIAL PRECONDITIONING
FOR HERMITIAN POSITIVE DEFINITE MATRICES*

BERND FISCHERt AND ROLAND W. FREUND*

Abstract. The conjugate gradient algorithm for solving Hermitian positive definite linear systems is usually
combined with preconditioning in order to speed up convergence. In recent years, there has been a revival of
polynomial preconditioning, motivated by the attractive features of the method on modem architectures. Standard

techniques for choosing the preconditioning polynomial are based only on bounds for the extreme eigenvalues. Here a

different approach is proposed that aims at adapting the preconditioner to the eigenvalue distribution of the coefficient
matrix. The technique is based on the observation that good estimates for the eigenvalue distribution can be derived
after only a few steps of the Lanczos process. This information is then used to construct a weight function for a

suitable Chebyshev approximation problem. The solution of this problem yields the polynomial preconditioner. In
particular, polynomial preconditioners associated with Bernstein-Szeg6 weights are studied. Results of numerical
experiments are reported.

Key words, linear systems, Hermitian positive definite matrices, conjugate gradient algorithm, polynomial
preconditioning, Chebyshev approximation problem, Bemstein-Szeg6 weights

AMS subject classifications. 65F10, 41A10, 65N22

1. Introduction. One of the most powerful iterative schemes for solving Hermitian pos-
itive definite linear systems

(1.1) Ax b

is the conjugate gradient (CG) algorithm of Hestenes and Stiefel [16], especially when it is
combined with preconditioning [5]. In recent years, there has been much interest in polynomial
preconditioning. The basic idea is as follows: instead of solving the original system (1.1) by
the CG algorithm, the CG iteration is applied either to

(1.2) (A)Ax (A)b

(left preconditioning) or to

(1.3) ATt(A)y- b, x (A)y

(right preconditioning). Here is a suitably chosen polynomial of small degree. Moreover,
it is required that none of the zeros of p coincides with an eigenvalue of A. This guarantees
that the preconditioned systems (1.2) and (1.3) are both equivalent to (1.1).

Polynomial preconditioning goes back to the 1950s. It seems that Lanczos [21] was the
first to mention the idea; interestingly, his paper is never referenced. Stiefel [28] used poly-
nomial preconditioning techniques to accelerate eigenvalue computations. Rutishauser [25]
proposed an inner-outer iteration process, with CG as the outer iteration and the Chebyshev
semi-iterative method 14] as the inner recursion. The motivation for his approach was to re-
duce roundoff in the classical CG algorithm. In the 1980s, starting with the work of Johnson,
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Micchelli, and Paul [18], there has been a revival of Rutishauser’s method and polynomial
preconditioning in general; see [2], [9], [23], [26], and the references given there. The main
reason for this renewed interest is that polynomial preconditioning is an attractive technique
on vector and parallel computers; see, e.g., [27]. Each CG iteration involves the computation
of inner products, which constitutes a bottleneck on many modern architectures. Polynomial
preconditioning reduces the number of CG iterations and thus the total number of inner prod-
ucts, since the preconditioning step itself, i.e., multiplication by the preconditioner 7r (A), does
not require inner products.

For the Chebyshev iteration in Rutishauser’s method, estimates ot and/3 for the smallest
and largest eigenvalues of A are needed. Often, good upper bounds/3 can be obtained easily,
using simple techniques such as Gershgorin’s theorem [26]. It is far more difficult to estimate
the smallest eigenvalue. Saad [26] proposed a polynomial preconditioning technique that only
requires an upper bound for the largest eigenvalue, while the trivial bound ot 0 is used for the
smallest eigenvalue of the positive definite matrix A. His technique is based on least-squares
polynomials associated with the family of Jacobi weights [29]. Ideally, one would choose
the weight function in the Jacobi class such that CG for the preconditioned systems (1.2) and
(1.3) converges as fast as possible. However, the problem of finding such an optimal Jacobi
weight is not addressed in [26]. Another way to avoid the computation of ot and/3 is to use
the CG polynomial itself as preconditioner. This approach was investigated by O’Leary [23].
The disadvantage of this technique is that the preconditioned system is not guaranteed to be
positive definite. Ashby, Manteuffel, and Otto [2] demonstrated in a variety of numerical
examples that the effectiveness of Chebyshev and least-squares polynomial preconditioners
depends on the eigenvalue distribution of the coefficient matrix A.

Another option is to construct polynomial preconditioners via weighted Chebyshev ap-
proximation problems. This was proposed by Freund [9] who also suggested a heuristic for
adapting the weight function to the eigenvalue distribution of A. The technique exploits the
observation that eigenvalue distributions of Hermitian matrices can be surprisingly well es-
timated, using only a few steps of the Lanczos method. Actually, spectral estimation based
on the Lanczos process is a widely used technique in applications; see, e.g., [24] and the
references given there. The obtained estimated eigenvalue distribution is then used to con-
struct a weight function, and finally the polynomial preconditioner is computed by solving the
corresponding approximation problem.

In this paper, we further study polynomial preconditioning based on weighted Chebyshev
approximationproblems. In particular, we investigate the use ofBernstein-Szeg6 weights [29].
For such weights, the solutions ofthe associated approximation problems are known explicitly.
Therefore, the construction ofpreconditioning polynomials based on Bernstein-Szeg6 weights
does not involve the numerical solution of an approximation problem.

The remainder of this paper is organized as follows. In 2, we recall some basic properties
ofCG, and we discuss Chebyshev polynomial preconditioning. In 3, we present our approach
to polynomial preconditioning based on weighted Chebyshev approximation problems, and
we propose a procedure for obtaining a suitable weight function from the Lanczos process.
This technique involves the construction of a monotone interpolant. In 4, we briefly describe
a procedure for monotone piecewise cubic interpolation. In 5, we consider polynomial
preconditioners based on Bernstein-Szeg6 weights. In 6, results of numerical experiments
are reported. Finally, in 7, we make some concluding remarks.

Throughout the paper, it is always assumed that A in (1.1) is a Hermitian positive definite
N N matrix, with real or complex entries. As usual, M/-t denotes the conjugate transpose
of a matrix M, and the vector norm IIx is the Euclidean norm. Finally, we denote
by
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]’)n ".-- {() O’0 -1-" o’1) Ac" -1- finn or0’ O’1 o"n E C}

the set of all complex polynomials of degree at most n.

2. CG and Chebyshev polynomial preconditioning. In this section, we collect some
basic facts about CG, and we review Chebyshev polynomial preconditioning.

2.1. The CG algorithm. Let x0 E CN be any initial guess for the solution of (1.1), and
let r0 :-- b Axo be the associated residual vector. The CG algorithm generates iterates of
the form

(2.1) Xn Xo -[- Xn(A)Fo, where Xn TAn-l, n 1, 2

The corresponding residual vectors are given by

(2.2) rn )n (A)ro, where n () ZXn ().

In exact arithmetic, the CG algorithm terminates after a finite number of steps with the exact
solution xL A-lb of (1.1). In the sequel, L always denotes this termination index. We
remark that L isjust the minimalnumber ofcomponents in any expansion of r0 into orthonormal
eigenvectors vj of A, and thus we have

(2.3)
L

j=l

where crj - 0 for all j.

In particular, L < N. In the following, we always assume that the vectors vj have been scaled
such that crj > 0 in (2.3). Furthermore, we denote by )j the eigenvalues corresponding to the
eigenvectors vj in (2.3), and thus we have

(2.4) A vj ,j vj.

Since the number of terms in the representation (2.3) is minimal, it follows that the )j’S are
distinct. From now on, we assume that they are numbered in increasing order:

(2.5) )1 < )2 <’’" < )L.

The CG iterates are optimal, in the sense that rA-lrn is minimal for all possible iterates
of the form (2.1). This minimization property can be shown to be equivalent to the following
orthogonality relations:

(2.6) rnI4rk=O forall n,k=O, 1 L, n#k.

Using (2.2), (2.3), and (2.4), we can rewrite (2.6) in the form

(n,)k) =0 foralln, k --0, L, n - k,

where

(2.7)
L

<(])n, (/)k) rIdpn(A)dpk(A)ro Z J (/)n(ZJ)(/)k(J)"
j=l

We remark that--even for complex Hermitian Anall CG polynomials n have real coeffi-
cients, and hence no complex conjugation of 4n is needed in (2.7).
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It is well known (see, e.g., [13]) that the CG method and the Lanczos process [20] for
tridiagonalizing A are mathematically equivalent. Using this connection, it can be shown that,
for each fixed n 6 1, 2 L }, the residual polynomials q0, 41 n are also orthogonal
with respect to the inner product induced by Jn. Here, Jn denotes the n n tridiagonal matrix
generated by the first n steps of the Lanczos process. Before we state these orthogonality
relations, we introduce some more notation. Let n 6 1, 2 L be fixed, and let Oj "= O)n),
j 1, 2 n, denote the eigenvalues of Jn. The Oj’s are called the nth Ritz values of A.
They are all distinct, and we assume that they are numbered in increasing order:

(2.8) 01 < 02 <’" < On.

Let sj be a set of corresponding orthonormal eigenvectors, i.e.,

JnSj OjSj, Ilsjll 1.

Moreover, we assume that the sj’s are normalized such that their first components, rj "= esj,
are all real and nonnegative. Here, el denotes the first unit vector in n. With these notations,
the orthogonality relations can be stated as follows:

(i, k)n 0 for all i, k 0, 1 n, # k,

where

(2.9) (*i, *kin :--" eHdpi(Jn)*k(Jn)el Zls)i(Oj))k(Oj)
j=l

From now on, we assume that ot and/3 are given real numbers satisfying

(2.10) 0 og )1 and )L </3.

The condition (2.10) guarantees that the eigenvalues (2.5) of A and all Ritz values (2.8)
are contained in the interval lot,/3]. In the sequel, we will make frequent use of the linear
transformation

(2.11) "= e00 -=
2.- (/3 +

which maps [u, fl] onto the unit interval [- 1, ]. In particular, it will turn out to be convenient
to rewrite, by means of (2.11), the inner products (2.7) and (2.9) in terms of [- 1, ]. We set

/’j (;kj) and tj := g.(Oj). From (2.7) and (2.9), we obtain

(2.12)

L

)n d/)k ZO’j2" )n j k )j
j=l
L

ZOj2. (n(e-l (j))d/)k(e-l (ij)) f4)n(e-l (t)lg)(e- (t)) da(t)
j=l

and

(2.13)

n

()i, *kin Z72j2" (/)i (Oj)(/)k(Oj)
j=l
n

i(e-l(t)),(e-(t))dr(t),
j=l
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respectively. The distribution functions or(t) and r(t) in the Riemann-Stieltjes integrals de-
fined in (2.12) and (2.13) are step functions, and they are given by

and

respectively.
We now turn to polynomial preconditioning. For simplicity, we will focus only on right

preconditioning (1.3), but all statements in this paper essentially remain true for left precon-
ditioning (1.2). From now on, it is always assumed that p > is a given integer, and we
consider preconditioning polynomials 7t Pp_ in (1.3).

2.2. Chebyshev polynomial preconditioning. The standard approach for the design of
preconditioners is to choose the polynomial 7t in (1.3) such that A(A) is, in some sense,
as close as possible to the identity matrix I. For instance, one could attempt to minimize
the Euclidean norm I A (A)II- However, the solution of this problem would require the
knowledge of all eigenvalues of A. Therefore, one usually substitutes for the spectrum of A
an interval [or, fl] that is known to contain all eigenvalues of A. In addition, it is required
that ot > 0. This approach then leads to a Chebyshev approximation problem on the interval
[or,/3]. After rewriting, by means of the transformation (X) in (2.11), this problem in terms
of the unit interval [-1, 1 ], we obtain the Chebyshev approximation problem

min max IP (t) I.(2.16)
o7:’: p()--1 t[-1,1]

Here, := (0) and p(()) )aP00. It is well known that the optimal solution tpp
of (2.16) is just the suitably scaled pth Chebyshev polynomial of the first kind, Tp, and we
have

(2.17) 99p(t) =-- Tp(t).

Note that the spectrum of the preconditioned matrix Ap(A) is contained in the interval

(2.18) lap,/p], where Op :-- 1 and tip := 1 +
[Tp()l [Tp()[

As in (2.2), let rnp qbnp(A)ro denote the residual vector obtained after np steps of CG
applied to the original system (1.1). Similarly, let rnP) (/)nP)(A@p(A))ro be the nth residual
vector generated by CG applied to the preconditioned system (1.3). In view of the optimality
properties of the CG algorithm, we have

rnHpA-lrnp min ((A)ro)HA-((A)ro)
TAnp: (0)--1

__< (tn(P) (Ap(A))ro)4A- "--(P)(A (P) HA-1{,(/)n kp(A))ro) tr; rn(P)

As a result, n steps of CG applied to (1.3) can at best give the same residual vector as np
steps of CG applied to (1.1). Therefore, Chebyshev polynomial preconditioning is indeed
best possible, provided that the residual polynomials qbnp and (P) satisfy

(2.19) (np(i,) tn(P) (,l/rp(,)).

L / fort>0,
(2.14) or(t) =_ Z trJ H(t -J)’ where H(t)

J= / 0 otherwise,
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Next, we show that (2.19) is fulfilled if the distribution function a(t) defined in (2.14) corre-
sponds to the worst-case distribution for the interval [-1, 1 ].

The function a(t) is a step function with jumps at the translated eigenvalues ’j g(kj)
of A. For our discussion, we treat a (t) as a continuous function, and we denote by

da(t)
(2.20) 3(t) _=

dt

the associated density function. Actually, since the dimension N of A (and thus L) is usually
large, the step function "looks like" a continuous function; see Fig. 3.1 for an example. From
potential theory, it is known that the worst-case distribution is just the equilibrium distribution,
and for the case of the unit interval, it is given by

(2.21) a)(t) arcsint, 6 [-1, 1].

Furthermore, the orthogonal polynomials with respect to the corresponding inner product are
the Chebyshev polynomials of the first kind, and we have, for all integers n, k > 0, n k,

(2.22) Tn (t) T(t)(F (t) dt 0, where ((t)
/1"

We remark that (2.22) can be evaluated by means of Gaussian quadrature. This gives

f__l "2 (j)k(j) n k t.Tn(t)Tk(t)6(E)(t) dt ffjTn
j=l

In other words, for the distribution function defined by (2.21) the CG residuals correspond to
Chebyshev polynomials. We remark that in this case the standard error bounds for the CG
iterates are sharp; see [15]. Finally, we show that for the worst-case distribution (2.21) the
relation (2.19) is satisfied, and hence Chebyshev polynomial preconditioning is optimal in this
case.

LEMMA 2.1. Let ep denote the linear mapping that maps [Otp, tip] (cf (2.18)) onto the
unit interval [-1, 1], and let p :’-" .p(O). Let np()) Tnp(g(Z))/Tnp( and bnP)(,k)
Tn gp ;k / Tn p be the shifted and normalized Chebyshevpolynomial on [, fl and [Otp, tip],
respectively. Then the identity (2.19) is satisfied.

Proof. From (2.18) and (2.17)one readily obtains

Tn Tp(e ())n(p) ()l/rp(Z))
Tn(rp())

Equation (2.19) then follows from the well-known identity Tnp(t) = Tn (Tp(t)). [3

3. Weighted polynomial preconditioning. As discussed in the previous section, Cheby-
shev polynomial preconditioning is optimal for matrices A, for which the function a(t) in
(2.14) is the worst-case distribution. However, in practice, linear systems, especially those
arising in the numerical treatment of partial differential equations, have eigenvalue distribu-
tions that are far from the worst case. For those, Chebyshev polynomial preconditioning is
not optimal. Furthermore, it is known that repeated application of Chebyshev polynomials
will transform any given distribution into the worst-case distribution. This behavior is also
reflected in Chebyshev polynomial preconditioning. If A has a favorable eigenvalue distribu-
tion, then the eigenvalue distribution of the preconditioned system is usually much closer to
the worst case.

In this section, we propose a heuristic for adapting the preconditioning polynomial to the
actual eigenvalue distribution of A.
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3.1. Weighted Chebyshev approximation problems. Instead of (2.16), we now con-
sider weighted Chebyshev approximation problems of the form

min max Iw(t)q)(t)], where (0).(3.1)
weTp: W(’)=I te[-1,1]

Here, w is a continuous weight function on the unit interval [-1, 1 ], and it is always assumed
that w(t) > 0 on the open interval (-1, 1). Standard results from approximation theory (see,
e.g., [22]) guarantee that there exists a unique optimal polynomial 0p for (3.1). In general,
pp is not known explicitly, and one needs to solve (3.1) numerically, for example, using the
Remez algorithm; see, e.g., [22], [12]. Note that, for w(t) -_- 1, the problem (3.1) reduces to

(2.16), and the scaled Chebyshev polynomial (2.17) is the solution of (3.1).
The ideanow is to use--instead ofthe Chebyshev polynomial (2.17)--the optimal solution

pp of (3.1) as a polynomial preconditioner, where the weight function to is chosen based on
an estimate for the density of the eigenvalue distribution of A.

It remains to give a heuristic for the choice of the weight function to in (3.1). If the
estimated density of A happens to be the worst-case density (E) defined in (2.22), then the
solution of (3.1) should yield the optimal preconditioner for the worst case. As shown in 2,
Chebyshev polynomials are optimal in this case. Therefore, the weight function should be
constructed such that w(t) 1 if 3(t) 1//1 2. Motivated by this consideration, we
propose the choice

(3.2) w(t) =-- 3(t)v/1 2,

where 6(t) is an estimate for the eigenvalue density defined in (2.20). We stress that the
connection between to and in (3.2) is very natural. Indeed, it is known that, for certain
families of densities 8, the weighted L2-approximation problem

f_’min [p(t)12(t) dt

and the weighted Chebyshev approximation problem (3.1) with to given by (3.2) have the
same optimal solution q)p. For example, this is true for the worst-case density (E) and for the
more general class of densities associated with Bernstein-Szeg5 polynomials; this was first
observed by Bernstein [3].

3.2. Estimating the distribution function. Usually, a good estimate for the eigenvalue
distribution o" in (2.14) can be derived from the quantities generated by relatively few steps
of the Lanczos process. Actually, since the Lanczos algorithm is equivalent to CG, we can
extract all necessary information from a few steps of the CG algorithm applied to the original
system (1.1).

Suppose we run CG for n steps. The process then has generated the entries of the n x n
tridiagonal Lanczos matrix /n. The Ritz values Oj for rn and the first component rj of the
corresponding orthonormal eigenvectors define the inner product (., ")n in (2.9). It can be
shown that (., ")n and the inner product/’, ") in (2.7) have the same moments up to degree
2n 1, i.e., for all real polynomials p of degree at most 2n 1, it holds that

(1, ))n (1,

This condition implies, roughly speaking, that the distribution r(t) of the Ritz values has to
be close to the eigenvalue distribution cr (t). This statement can be made more precise, in the
sense of the following theorem due to Karlin and Shapley [19, Thm. 22.2].
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THEOtEM 3.1. Let r(t) and r(t) denote the distribution functions defined in (2.14) and
in (2.15), respectively. Then the difference function tr(t) r(t), if not identically zero, has
exactly 2n 1 sign changes in the interval [-1, 1].

Next, we illustrate this result for the case of Example 6.1 described in 6. We only
consider the case h 4, which leads to a matrix A of order N 3844. In Fig. 3.1, the
"continuous-looking" curve is the eigenvalue distribution cr (t) of A, while the step function is
the Ritz-value distribution r(t) obtained after n 10 steps of the CG algorithm. Note that the
horizontal and vertical steps of r(t) intersect or(t) exactly 19 times in [-1, 1], in accordance
with Theorem 3.1.

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 1
-1 -6 -4 -oo o ’4 ’6 o’o 

FIG. 3.1. Distribution z(t) of the Ritz values corresponding to n 10 and eigenvalue distribution tr(t) for
Example 6.1 with h -.

We remark that, in Fig. 3.1, the midpoints of the vertical steps of r(t) are very good
approximations to points on the unknown curve cr (t). This behavior is rather typical, and it was
also observed by others [24, p. 6]. This suggests using interpolation at the vertical midpoints of
r (t) to construct an estimate, denoted by f(t) in the sequel, for the true eigenvalue distribution
a(t).

More precisely, we proceed as follows. First, we need to choose numbers o and/3 that
satisfy (2.10). We stress that the lower bound ot is only required to be nonnegative. In
particular, the trivial choice ot 0 is feasible, and this is one of the strengths of our approach.
Of course, if there are better lower bounds for the smallest eigenvalue at hand, one should
use these. However, we stress that overestimating the smallest eigenvalue may slow down the
convergence rate. Typically, the largest Ritz value 0, is a good approximation for the largest
eigenvalue of A, and therefore we usually set/3 :-- 0,. This choice is not critical. Indeed, if
there are a few eigenvalues larger than/, the preconditioning polynomial amplifies them, and
the CG iteration will rapidly suppress components corresponding to these large eigenvalues.
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Once c and/3 are chosen, we define the interpolating points by setting

-1 forj =0,

tj’= e(Oj) for j=1,2 n-l,

1 forj =n,

and

0

Oj’- j2/2 + y’ r/2
i=l

forj =0,

forj 1,2 n- 1,

Here, e0v) is again the linear map given by (2.11). Finally, the estimated distribution is then
chosen as a monotone function f 6 C [-1, 1] satisfying

(3.3) f(tj) Oj, j O, 1 n.

4. Monotone piecewise cubic interpolation. One obvious choice for the interpolating
function f is a monotone piecewise cubic interpolant. In this section, we briefly describe how
to construct such a function. We follow the derivation of Fritsch and Carlson 11 and Fritsch
and Butland [10].

Let- to < tl < < tn and 0 O0 < tgl < < t}n be given. The goal is
to construct a piecewise cubic function f C1[-1, 1] such that f(ti) 0i, 0, n,
and f is monotone on [-1, 1]. To this end, one expresses f, on any subinterval [ti, ti+], in
terms of the derivatives di f’ (ti), O, 1 n, as described in 11]. This leads to the
representation

( ) (-2di-di+l-+-3Ai)f(t) =-- di -+- &+l 2Ai
(t ti) -+- (t ti) 2 -+- di(t ti) q- Li,

h2i
where hi :--- ti+l ti and A := (Li+ Lgi) / hi, 0, n 1.

By construction, any choice of the free parameters di leads to a function f 6 C [-1, 1]
that fulfills (3.3). The remaining step is to adjust the di’s such that f is monotone on [-1, 1 ].

Note that the di’s are not uniquely determined, and various choices have been discussed
in the literature. Here, we use a formula proposed by Brodlie [4] and Fritsch and Butland 10]:

Ai-1 mi for Ai_ m > 0,
(4.1) di iAi-t-(1--i)Ai-1 1,2 n- 1,

0 otherwise,

where i ".= (hi-1 -+- 2hi)/(3(hi-1 + hi)). In addition to (4.1), we still need to choose the
boundary conditions do and dn. Since, in our case, no information about the derivatives at the
endpoints is available, we select a weak version of the so-called "not-a-knot" condition; see
De Boor [6, p. 54]. Here one chooses do and dn such that f is twice continuously differentiable
on [to, t2) and (tn-2, tn ], respectively. One obtains

(4.2)
do hi--h (3A1- (2dl + d2)) + 3AO 2dl,

dn hn-1 (3kn-2 (24-1 + d.-2)) + 3kn_ 2dn-1.
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However, this special choice of do and dn does not necessarily produce a monotone f on
the subintervals [to, tl] and [tn-1, tn], respectively. Note that the additional requirements
do 6 [0, 3A0] and dn [0, 3An_l] will lead to a monotone function. Thus, if, for example,
do (computed by (4.2)) turns out to be negative or bigger than 3 A0, we simply set do 0 or

do 3 A0, respectively.
We would like to mention thatFORTRAN codes for the described procedures are available

in NETLIB (PCHIP package).
Finally, in analogy to (2.20), we set

(4.3) (t) =_ f’(t),

where f is the computed monotone interpolant, and we define the weight function w(t)
w(t; f) by (3.2). Note that w(t; f) is continuous on [-1, 1]. The desired polynomial pre-
conditioner is then obtained by solving the resulting weighted Chebyshev approximation
problem (3.1) numerically, using the Remez algorithm. One might ask why we did not use the
simpler approach of constructing f as a monotone piecewise linear or quadratic interpolant.
In both cases, the resulting weight function w(t; f) would no longer be continuous in general.
As a result, the standard Remez algorithm, which requires that the weight function is contin-
uous, could not be used for solving (3.1). Therefore, we did not pursue the use of linear or
quadratic interpolants.

5. Bernstein-Szeg6 weight t’unetions. The approach described so far consists of two
steps: first, one approximates the distribution function, and second, the polynomial precondi-
tioner is obtained by solving the resulting approximation problem (3.1) numerically. In this
section, we propose a different procedure that eliminates the second step. The idea is to restrict
the weight functions to a class for which the solution of the Chebyshev problem (3.1) is known
explicitly. We consider three classes of weight functions that fulfill this requirement.

Let Pk be any real polynomial of degree k with pk(t) > 0 on [-1, 1], and define

so(t) =- 1, Sl/Z(t) =- /1 + t, Sl(t) =- v/1 2.

Then (3.1) can be solved explicitly for the so-called Bernstein-Szeg6 weight functions

wj(t)=_sj(t) { 1 }/pc(t)’ J 0,,1
see Szeg6 [29], Freund [8], and the references given therein. More precisely, the solution 0p

1 }, is explicitly known for p > pj, whereof (3.1) with respect to wj, j {0, 7,

0 if j= landk=0,
PJ /(k + 1)/2- j/ otherwise.

For convenience, in the sequel, we allow pk to have simple zeros at the endpoints 4-1, i.e.,
the cases j 0, are now included in the case j 1. Therefore, we will only investigate
weight functions of the form

(5.1) w(t) =-- w (t) =_

From (4.3), (3.2), and (5.1), it follows that

(5.2)

/1 2

/p(t)

f_r f_ w(t)2
f(x) =-- 3(t) dt

/1--t2
dt l /1 2

J_ p(t)
dt.
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It remains to choose the polynomial Pk in (5.2) such that f fulfills the interpolatory conditions
f(tj) Oj stated in (3.3). Note that any f defined by (5.2) is "automatically" monotone on
[-1,1], and that f(-1) 0.

It turns out to be advantageous to express pk in terms of its zeros:

m

pk(t) am+l H(t aj) H(t zj)(t j),
j--i j--I

k=m+21.

Here, aj, j 1, 2 rn, are the real zeros, and zj xj + iyj, yj > 0, j 1, 2 l, are
the complex zeros in the upper half-plane. The partial-fractions expansion of (5.2) reads

f(x)
am+l j=l aj j=l (t Zj)(I 5j)

F( y)X, al, am+l, Xl, Xl, Yl,

where

Aj p, j= 1,2 m,
k(aj)

p!(2j)(t 2j.) + p(zj)(t zj)
Bjt+Cj =_ j=l 2 1.

pc(zj)pk(2j

It is readily verified that all integrals in (5.3) have an explicit antiderivative. We omit these
routine, but somewhat lengthy, calculations.

Now the interpolation conditions (3.3), together with the positivity requirement

(5.4) p>0 on (-1,1),

lead to the following nonlinear interpolation problem with constraints:
Find real numbers aa am+l, xl Xl, yl Yt such that

F(tj; al am+l, Xl Xl, y Yt) tj, j 1, 2 n,

lajl >_ 1, j-- 1,2 m,

(5.5) m

sgn(am+l) (- 1)m H sgn(aj),
j=l

yj>O, j=l,2 1.

Apart from the sign conditions, the problem (5.5) can be viewed as a nonlinear system of n
equations in k + 1 rn + 1 / 2l unknowns. Therefore, a natural choice of the polynomial
degree is k n 1. Also, we would like to mention that (5.5) does not address the problem
of the possible occurrence of multiple zeros at +1. However, in our experiments, we never
encountered such multiple zeros.

The success of any nonlinear solver applied to (5.5) depends strongly on good starting
values. We now describe a linear procedure for computing starting values. In view of (5.2),
we have

p(x)f’ (x) =-- v/1 x

and, consequently,
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(5.6) (pk(x)f(x))’ =-- Pk(X)’f(x) + q/1 x2.

By integrating (5.6) and using f(-1) 0, we obtain the identity

(5.7) k(x)f(x) =- k(t)’f(t) dt + g(x),

where g(x) =-- fx 1 dr. Now we parametrize ,ok in the form

k

(5.8) pk(X) =-- Z bjxJ’ with bj e N,
j=o

and we set

,j(x; f) =- j-if(t) dt.

Then, the relation (5.7) can be rewritten as follows:

k

(5.9) E bj (xJf(x) j,j(x; f )) =_ g(x).
j=0

We consider (5.9) only at the interpolation points x tj, j 1, 2 n. Together with the
positivity condition (5.4), we obtain the following semi-infinite problem for computing the
unknown coefficients b0, bl bn in (5.8):

Find real numbers bj, j 0, k, such that

(5.10)

where

G(ti; bo bk) O,

k

j=O

i--1,2 n,

x (-1, 1),

k

G(ti; bo bk) (tloi jlj(ti; f )) g(ti).
j=o

Note that problem (5.10) is linear, but there are infinitely many constraints. In addition,
we must evaluate the integrals yj, which involve the unknown function f. To this end, we
approximate f by a monotone piecewise cubic function S, as described in 4. Clearly, the
resulting integrals ?’j(x; S) are easy to compute.

A standard approach for solving semi-infinite problems is to replace the infinitely many
constraints by a finite number, say M. Finally, after relaxing the interpolatory conditions
slightly, we obtain the following linear programming problem:

Find real numbers bj, j 0, k, such that

G(ti; b0 bk) min!,
i=1

G(ti; bo ,bk) > O, 1,2 n,
k

Z bj/ >. O, i (-1, 1),
j=O

i=1,2 M.
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Here i, 1, 2 M, are given distinct points in (-1, 1). In our experiments, we always
chose the i’s as Chebyshev knots.

It is not hard to check that the feasible set of (5.11) is not empty, and hence (5.11) always
has a solution p*(t;k M) Y=0 btj. The second parameter M indicates that p*k depends on
the number M ofpositivity constraints. Unfortunately, it is possible that p (t; M) has zeros in
(-1 1) Here, one basically has to distinguish between the cases that p* (t" M) has one zerok

/z in the first (respectively, last) interval (-1, 1) (respectively, (M, 1)), or two zeros/Zl,

in (i, i+1), E {0, 1 M}, where 0 := -1 and M+I := 1. Such zeros cannot be used
as starting values for the nonlinear problem (5.5). Therefore, we replace/z by -1 or 1, and
the real zeros/Zl and/z2 by the complex zeros z (/z +/z2)/2 + ie and 2, where e is some
small positive number. Notice that

1
(t -/Zl)(t -/z2) (t z)(t 2) (/Zl -/2)2 + e2 < Ii i+ll 2 --For sufficiently large M and sufficiently small e, this "substitution of zeros" perturbs p (t; M)

only slightly.
In our experiments, we always chose M :-- 200. The corresponding linear solution

p(t; M) always yielded a good starting guess for the nonlinear solver applied to (5.5). In
fact, quite frequently, the solution of (5.11) was such a good approximation that there was no
need for applying the nonlinear solver.

6. Examples. In this section, we discuss some practical implementation details of the
preconditioned CG method, and we describe some numerical examples.

6.1. Implementation. The basic outline of our preconditioned CG algorithm is as fol-
lows.

ALGORITHM 6.1 (Outline of CG with polynomial preconditioning).

1. Start: choose xo CN and compute ro b Axo.
2." Estimate the distributionfunction:

Perform n steps of the Lanczos algorithm starting with qo ro/IIr0 II.
Compute the Lanczos distributionfunction r(t) given by (2.15).
Set up the interpolation problem (3.3).

3. Determine the polynomial preconditioner p
Compute the monotone piecewise cubic interpolant, as described in 4.
Either solve the associated weighted Chebyshev approximation problem (3.1), or
compute the Bernstein-Szeg6 weightfunction, as described in 5.

4. Iterate: apply the CG method to the polynomial preconditioned system Ap(A)y b.

Recall from (2.14) that the distribution function cr (t) depends on the eigenvalues of A and
the starting guess x0. Therefore, in step 4 of Algorithm 6.1, we start the CG method with x0,

rather than the iterate Xn that can be constructed from quantities generated by the n Lanczos
iterations in step 2. It is worth noticing that the n matrix-vector products with A, which are
computed in the course of the n Lanczos steps, can be reused for the first [n/pJ iterations
with the preconditioned CG method in step 4. However, this requires the storage of all n + 1
Lanczos vectors q0, q qn generated in step 2.

In each step ofthe preconditioned CG algorithm, we mustcompute a matrix-vectorproduct
of the form Ap(A) v. To this end, in our implementation, we represent the polynomial
;kp() in Newton-form
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(6.1)
p j-1

oo +
j=l k=0

Here, the interpolation points k are chosen as Chebyshev points shifted to the interval [or,/],
and they are ordered using van der Corput’s sequence. This leads to a stable implementation
for computing Aapp(A) v, even for polynomials pp of high degree; see, for example, [7].
Finally, the evaluation of Agrp(A) v is performed by a Homer scheme applied to (6.1).

6.2. Performance. In all our examples, we use coefficient matrices A that result from a
finite-difference discretization of the diffusion equation

on the unit square in with Dirichlet-Neumann boundary conditions. Equations of this type
arise, for example, in connection with groundwater flow problems; see 17].

In order to ensure continuity of fluid flux even for highly discontinuous coefficient func-
tions/z and v, one uses the following five-point stencil:

--i"}i-l,jUi-l,j ijl,li+l,j Ki,j-lUi,j-1 KijUi,j+l @ Pijij h2gij,

where h is the distance between adjacent nodes. Moreover, we set

Flij 8(ll.’ij; /i+l,j),

Kij 8(l)ij Ui,j+I),

where

2cd/(c +d)
3(c; d)

0

ifc+d #0,
otherwise,

and

17i-l,j "-]" r]ij -Jr- Ki,j-1 + Kij
Pij

1

if this sum # 0,

otherwise.

Neumann boundary conditions are enforced by setting appropriate and x to zero.
We have tested the preconditioned CG method extensively for different cases. Here, we

present three examples that show the typical behavior of the various polynomial
preconditioners.

In addition to the Chebyshev polynomial preconditioner and the weighted Chebyshev
preconditioner, we also implemented a preconditioner based on least-squares polynomials.
For the latter, the Chebyshev norm in problem (3.1) is substituted by a weighted L2-norm

(6.3) min o(t)2w(t) dt.
o79p: o()=1

We have used the Legendre weight w(1) 1. For this special case the solution of (6.3) can
be found in [18] (see also [2]).
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All three examples were run for two different step sizes h" first with h 4 and then
with half the step size h T-g" In the following, numbers without brackets always correspond
to h 4, while numbers for h 17-g are given in brackets. For instance, the matrix in

Example 6.1 is of order N 3844 [158761 if h 4 [28]"
In all examples, the initial vector x0 0 is chosen, and the right-hand side b is a random

vector with entries 6 [-1, 1]. The algorithm is stopped as soon as the kth residual satisfies

IIrll/llroll <_ 10-1 [10-6]. All computations were carried out in double-precision arithmetic,
i.e., with approximately 16 significant decimal digits.

For the definition of/z and v, we decompose the unit square into four parts, R0, R 1, R2,
and R3, as indicated in Fig. 6.1.

A B

R0

D C
FIG. 6.1. Decomposition ofthe unit square.

In step 2 of Algorithm 6.1, we always performed n 20 Lanczos steps. Note that, in this
case, the Bernstein-Szeg6 preconditioner is then known explicitly for p > 9, where p is the
degree of tOp(t). The weighted Chebyshev preconditioner (referred to as Remez or Bernstein,
respectively) and the least-squares polynomial preconditioner (referred to as Legendre) are
computed for the interval [0, On ], where On is the largest Ritz value. The Chebyshev polynomial
preconditioner (referred to as Chebyshev) is based on the "true" spectrum [)1, )L].

Example 6.1. Here we consider (6.2) with/z v 1 on R0t2 R1 t.) R2U R3 and Dirichlet
boundary condition u const on AB, BC, CD, and DA. Note that, in this case, (6.2) just
reduces to Poisson’s equation. The order of the resulting system is N 3844 [15876],
and the Euclidean condition number of A is about 1600 [6560]. The CG method, without
any preconditioning, converged after 229 [286] steps. The iteration counts for the various
polynomial preconditioners are listed in Table 6.1.

For the case p 5 and h , the Chebyshev polynomial Ts(t)/T5() (dashed line),
the solution q)5(t) of (3.1) (solid line), and the functions -t-ds/w(t) (dotted lines) are plotted
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TABLE 6.1
Polynomial preconditioningfor Example 6.1.

p 5 10 15

Bernstein [-] 31 [33] 23 [27]

Remez 62 [74] 32 [41 25 [30]

Chebyshev 95 116] 48 [59] 33 [40]

Legendre 121 [149] 86 [104] 70 [85]

in Fig. 6.2. The number d5 denotes the minimal deviation ofproblem (3.1) with corresponding
Bernstein-Szeg6 weight function. The Chebyshev polynomial is based on [0.005, 7.995] and
o5 (t) is based on [0, 7.995]. The underlying distribution function r(t) is shown in Fig. 3.1.
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FIG. 6.2. Chebyshev polynomial, weighted Chebyshev polynomial, and Bernstein-Szeg6 weight function for
Example 6.1 and p 5.

Example 6.2. In this example, we choose continuous nonconstant coefficient functions
in (6.2). More precisely, we setlz(x,y) v(x,y) x +yon ROUR1 U R2UR3.
Furthermore, we have Dirichlet boundary conditions on DA and no-flow Neumann boundary
conditions on AB, B, and CD. The matrix A has been symmetrically scaled to have unit
main diagonal. The order of A is N 4032 [16256], and the condition number of A is about
21000 [56180]. The CG method, without any preconditioning, converged after 370 [569]
steps. The iteration counts for the various polynomial preconditioners are listed in Table 6.2.

Example 6.3. In this example, the coefficient functions in (6.2) are highly discontinuous.
They have different values on all four components of the unit square:
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TABLE 6.2
Polynomial preconditioningfor Example 6.2.

p 5 10 15

Bemstein [-] 54 [65] 35 [49]

Remez 100 [148] 55 [80] 38 [58]

Chebyshev 334 [367] 168 [184] 113 [124]

Legendre 198 [3001 141 [211] 115 [172]

lz(x, y) v(x, y)

for (x, y) e R0,

1000 for(x,y) R1,
0 for (x, y) e R2,

100 for (x, y) e R3.

Again, we choose Dirichlet boundary conditions on DA and no-flow Neumann boundary
conditions on AB, BC, and CD. The matrix A has been symmetrically scaled to have unit
main diagonal. The order of A is N 4032 16256], and the condition number of A is about
450000 [1905837]. The unpreconditioned CG method converged after 395 [678] steps. The
iteration counts for the various polynomial preconditioners are listed in Table 6.3.

TABLE 6.3
Polynomial preconditioningfor Example 6.3.

p

Bernstein

Remez

Chebyshev

Legendre

10 15

[-1 57 [921 40 [651

104 [176] 55 [96] 42 [70]

1000 [> 1000] 769 [958] 526 [648]

210 [357] 148 [252] 121 [205]

The results demonstrate the effectiveness of the proposed weighted "Bernstein-Szeg6"
and "Remez" polynomial preconditioners. Moreover, they show that these preconditioners
are usually superior to the other considered preconditioners. In particular, both precondi-
tioners perform very well for ill-conditioned problems. Furthermore, we note that, for the

the "Bernstein-Szeg6" preconditioner is consistently better than the "Remez"case h -,
preconditioner.

7. Concluding remarks. On modern architectures, it is attractive to combine the CG
algorithm with polynomial preconditioning. In this paper, we have presented an approach for
adapting polynomial preconditioners to the actual eigenvalue distribution of the coefficient
matrix of the linear system. Our technique is based on the observation that good estimates for
the eigenvalue distribution can be derived after only a few steps of the Lanczos process. We
then use this information to construct a weight function for a suitable Chebyshev approximation
problem. The solution ofthis problem yields the polynomial preconditioner. We have explored
the use of Bernstein-Szegti weights.

Wehave presented some numerical examples that demonstrate the effectiveness ofthe pro-
posed polynomial preconditioner. Our results suggest that the adaptive weighted polynomial
preconditioner is superior to other polynomial preconditioners.
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A ROBUST GMRES-BASED ADAPTIVE POLYNOMIAL PRECONDITIONING
ALGORITHM FOR NONSYMMETRIC LINEAR SYSTEMS*

WAYNE JOUBERTt

Abstract. In this study a hybrid generalized minimal residual (GMRES) polynomial preconditioning algorithm
for solving nonsymmetric systems oflinear equations is defined. The algorithm uses the results from cycles ofrestarted
GMRES to form an effective polynomial preconditioner, typically resulting in decreased work requirements. The
algorithm has the advantage over other hybrid algorithms in that its convergence behavior is well understood: the
new algorithm converges for all starting vectors if and only if restarted GMRES converges. The results of numerical
experiments with the algorithm are presented.

Key words, iterative methods, nonsymmetric linear systems, GMRES, polynomial preconditioning

AMS subject classification. 65F10

1. Introduction. A desirable method for solving the linear system

(1) Au =b,

where A E CNxN is nonsingular, is the minimal residual method

(2a) u(n u() + qn-l(A)r(, degqn-1 < n 1, qn-1 such that [Ir(nll minimized,

or, alternatively,

(2b) U (n) E u(0) -+- Kn (r(), A), Ar(n -J- Kn (r, A),

where U(i)
i>0 denote the iterates, r (i) b-AU(i) denotes the associated residuals, K, (v, A)

span{Airn-1 is the associated Krylov space, and I1" II is the standard 2-norm of vectors. WeJi=0

also let Pn (z) 1 zqn-1 (z), so that r(n) Pn (A)r, which condition identifies (2a), (2b)
as a polynomial method.

When A is Hermitian positive definite (HPD) or possesses a similar property, the poly-
nomial qn-1 may be determined by only n matrix-vector products A v along with 2n inner
products. This fact leads to effective iterative methods such as the conjugate residual method.
On the other hand, to form qn-1 in the general case requires at least n2/2 inner products, a
requirement that appears insurmountable and that renders standard iterative methods such as
full GMRES for performing (2) prohibitively costly due to long recurrence relations [2], [3],
[12], and [9, 2.5].

A typical remedy to the order-n2 work problem is to restart (2) periodically every s
iterations. This is the basis of the GMRES(s) algorithm, for example, [18]; see [11] for
a survey of restarted methods. Choosing s large improves the convergence of the method;
however, an increased average work per iteration results (see [10]).

A further remedy to the long recurrence problem comes in the form of hybrid methods.
These methods typically apply GMRES until sufficient information is extracted from A, typ-
ically in the form of eigenvalue information, so that an effective polynomial method such as
polynomial preconditioning or Chebyshev acceleration may be applied based on this infor-
mation (see, e.g., 15], 1 ], 16]). This approach has the advantage of using short recurrences

*Received by the editors May 18, 1992; accepted for publication (in revised form) April 12, 1993. This work
was supported in part by National Science Foundation grant DCR-8518722, and Department of Energy grant DE-
FG05-87ER25048, With the University of Texas at Austin. This work was also supported in part by Department of
Energy grant W-7405-ENG-36 with Los Alamos National Laboratory.

Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (wd @ 1an1. cAov).
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for the sections of the algorithm not using GMRES. On the other hand, the composite na-
ture of these algorithms often makes it difficult to prove rigorous convergence results for the
algorithms or to predict their behavior compared to other iterative methods.

In this study, an alternative hybrid algorithm is proposed. For this algorithm, the basic
framework of restarted GMRES is maintained, but for each restart cycle the (s 1) degree
polynomial that would normally be calculated by (2) is optionally replaced by a polynomial
preconditioner of the same degree that is based on information from previous GMRES cycles.
The new algorithm has the advantage of converging for exactly the same class of matrices
as restarted GMRES, and often at significantly less cost. The savings are even greater on
parallel machines and other architectures for which inner product computations are particularly
expensive.

The remainder of this paper is organized as follows. In 2 we consider the theoretical
feasibility of replacing GMRES cycles with polynomial preconditioning. Then in 3 the new
algorithm is defined. In 4 the results of numerical experiments are presented.

2. The feasibility of polynomial preconditioning. In this section we consider the rela-
tive convergence behavior of (2) compared to the best fixed polynomial preconditioning that
can be applied to solve (1). We assume throughout that A is nonsingular.

We begin with definitions of basic convergence bounds for polynomial methods. Follow-
ing [10], for K denoting the reals or the complex numbers C, and A Kuu and n > 0,
let

e (A)rl IIrCn>ll1/tn,K (A) sup inf sup
rKN degPn <-n Ilrll r(O)KN IIr()ll
rg:0 P. (0)=1 r(0) g:0

IIPn(A)rll
gOn,K(A) inf sup

degPn <n r6Kv Ilrll
Pn(0)=l

where r(n) refers to the nth residual generated by the minimal residual method (2), and Pn (z)
zqn-1 (z) is a polynomial over C. When the field K is omitted in the notation, it is assumed

to be C. Here and throughout, lvll v-, where v* denotes the conjugate transpose of v,
and IMII denotes the induced matrix norm.

The quantities n,(A) and gOn,(A) are bounds that denote the possible residual norm
decrease for two particular polynomial methods. They differ in the following important re-
spect. The first quantity gives a sharp bound for the convergence of GMRES or any other
algorithm implementing (2). In this case the polynomial Pn is chosen as a function of r(>.
On the other hand, the second quantity denotes the performance of the best polynomial pre-
conditioner (defined here as qn-1) that is chosen independent of r( and that must be effective
for all such vectors in KN. The main concern of this section is the relationship between these
two quantities; in particular, it is of interest to determine when they are equal.

Basic results on these quantities are set forth in 10]. Ofinterest to us here are the following
properties for A 6 ]KNxN:

(i) 0 < n,K(A) < On,(A) < 1 for all n.
(ii) 0,(A) o0,(A) 1, while n,(A) qgn,K(A) 0 for any n satisfying

n > d(A)= min{deg P" P monic, P(A)= 0}.
(iii) When A ]1uxu, 1]rn,(A < n,c(A), while qgn,(A) On,c(A).
(iv) For fixed n, n,(A) and pn,(A) are each continuous in A.
(v) rn,K(A)2 SUPrKN Fn(r) holds for A ]NxN, where Fn(r) is defined to be zero

for r satisfying d(r, A) < n and elsewhere Fn (r) is defined to be
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(3) 1 r*AKn(r, A)[Kn(r, A)*A*AKn(r, A)]-lKn(r, A)*A*r/r*r.

Here, d(v, A) min{deg P P monic, P(A)v 0} denotes the degree of a vector, and
Kn(v, A) v Av An-lv isthestandardKrylovbasismatrix. Notethat Fn(r))
IIr(n)llz/llr()ll 2, where rn is defined by (2), which gives the square of the residual decrease
from n steps of GMRES applied to a vector.

(vi) The map Fn of (3) is the zero map when d(A) < n. Otherwise it is continuous, and
in fact it is C on the complement of the closed measure-zero set {r d(r, A) < n}, where

Fn is considered as a map on I2N. The latter fact follows directly from the fact that Fn (r) is
a rational function of the entries of Re r and Im r.

From the standpoint of iterative methods, it is desirable that one or both of the following
conditions be satisfied.

Condition 1. For given A xNN, s,K(A) < 1 <= qgs,K(A) < 1. If this property holds,
then a convergent polynomial preconditioner of degree s 1 necessarily exists (in the sense
that qgs,(A) < 1) if and only if GMRES(s) is guaranteed to converge for all r) 6 Ku.

Condition 2. For given A INN, l[ts,(A q3s,]K(A ). If this stronger condition holds,
then not only does a convergent polynomial preconditioner exist if and only if GMRES(s)
must converge, but one exists that has the same convergence bound Ilr(ms) ll/I Ir()ll <_ s(A)m

as GMRES(s).
It is not. clear whether generally n,(A) qgn,K(A). However, the following results do

hold.
THEOREM 1. For K or C, and A ]I(NxN, I,K(A) 91,K(A).
Proof. Let P be a minimizing polynomial for 991,(A). As shown in [10], it is possible

to choose P with coefficients in K.
We first show that for any nonzero ot 6 K, there exists nonzero v within V, V here defined

to be the eigenspace (over K) associated with the maximal eigenvalue of P(A)* P(A), such
that Reot*v*A*P(A)v > O. Note that for any v and c, and any > 0, [[[P(A) + otA]vl[ 2

IIP(A)vll 2 + 2 Re[ot*v*A*P(A)v] + 21ot1211Avl12. If the result is false, then for some
or, Reot*v*A*P(A)v < 0 for all nonzero v 6 V, in which case there exists ?1 > 0 with
2Reot*v*A*P(A)v < -I[IP(A)vllz for all v 6 V.

Let/5(z) P(z)+eotzandw vcosO+v+/-sinO, v V, v +/- V +/-, Ilvll IIv+/-ll 1.
We seek to show for some , II P(A)w ll < II P(A)II for all w, a contradiction to P being a
minimizer. Note that

IIP(A)wll 2 cos2 011/3(A)vll 2 + 2cos0 sin0 Re v* [-’(A)* #(A)v+/- + sin2 011/3(A)v+/-ll 2
cosz OIIP(A)vllz + 2 cos2 0 Re*v*A*P(A)v

+2 cos0 sin0 Re[cv*P(A)*Av+/- + u*v*A*P(A)v+/-]
+ sin20IIP(A)v+/-II 2 + 2 sin2 0 Reot*v+/-*A*P(A)v+/- + O(2).

Thus there exist constants 2, 3, 4, and c5 (with c5 > 0, such that the condition P(A)v+/-II 2 <
IIP(A)vll2

c5 is satisfied, by definition of V), such that for any v, v +/- as defined above,
11/5(A)wll2 is bounded by

cos2 0(1 el)llP(A)vll 2 + 6C2 COS 0 sin0 + ec3 sin2 0 + sin20IIP(A)v+/-II 2 + 624

< IIP(A)vll 2
eci cos2 0 + ec2 cos0 sin0 + c3 sin2 0 c5 sin2 0 + 2c4,

where Cl IIIP(A)II 2. It is sufficient to find > 0 such that for all 0,

t5(--C1 COS20 +c2cosOsinO + c3 sin2 0) c5 sin20 -t- 52c4 < 0.
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But the left-hand side of this inequality equals

-c5 sine 0 + ec4 eCl + e sin 0(Cl sin 0 + ce cos 0 + c3 sin 0)
< -c5 sine 0 + eec4 ecl + c6 sin 0

for some c6, for all 0. Letting z sin0 yields the quadratic -csz
which can be made negative for all real z by choosing e sufficiently small.

This establishes that for any ot K there exists a nonzero v V such that Reot*v*A*.
P(A)v > O. We now show that for any c ]K there is nonzero v V such that
Re[c*v*A*P(A)v] 0. Otherwise, letting ot +c yields Vl, ve V such that

*A*P(A)vl] > 0 and Re[c*vA*P(A)ve] < 0. Note Vl and ve must be linearlyRe[c*v
*A*P(A)vl 1I2vA*P(A)v2, a contra-independent; otherwise, vl re, 6 IN, yields v

diction. Setting vt .tvl + (1 t)v2, 0 _< < 1, yields by a continuity argument some such
that Re[c*v’[A*P(A)vt] 0, giving the result.

Let V be a matrix whose columns form a basis over IN of V. We have shown for any
c 6 IN there existS nonzero u 6 INIimv such that Re[c*u*V*A* P(A)Vu] 0. When
takee 1 to giver Vu 7 0withr*A*P(A)r 0. WhenlK C, we have shown
0 F(H(c*VA*P(A)V)) for any c 6 C, where H(M) (M+M*)/2denotesthe Hermitian
part.,of a matrix M and F(M) {x*Mx x CN, Ilxll 1} the field of values [8]. This

implies that0 6 F(VmA* P(A)V): otherwise, by the convexity ofthe field ofvalues, there exists
c ei such that H(c*VA* P(A)V) is positive definite, i.e., 0 F(H(c*VA*P(A)V)). Thus
there exists nonzero r Vu 6 V such that r*A* P(A)r O.

Thus, for either the real or complex case, Ar _1_ P(A)r for nonzero r 6 V. It is easily seen
that this P(z) 1 -zqo(z) satisfies (2b) for this r, and in fact lpl,IK(A)2 >_ IIP(A)rllZ/llrll 2

IIP(A)II 2 >_ qgl,K(A)2. [-]

THEOREM 2. For A NNxN, P2,(A) < 1 p2,(A) < 1.

Proof. Letn 2. It is clear from (3) that n,R(A) < 1 implies that for all real v satisfying
d(v, A) > n and Ilvll 1, v*Agn(v, A) O, The same is true when d d(v, A) < n and

lvll 1" in this case, we have

0 v*v v*AKa(v, A)[Ka(v, A)*A*AKa(v, A)]-1Ka(v, A)*A*v,

so that 0 7 v*AKa(v, A), a subvector of v*AKn(v, A). Defining

.T’n,K(A) {v*AKn(v, A) v IN, Ilvll- 1} _c ]n

for A
_
Iuxu, we thus have that 0 YCn,(A). According to [7, p. 86], .T’e,(A) is convex in

I[2 when N > 3.
When N < 2, Pe,(A) q)z,R(A) 0. When N > 3, since 0 Un,(A), by the Hahn-

Banach theorem there is a hyperplane through zero that does not intersect f’z,(A). Letting
c [Clce] r denote the appropriate normal vector to this hyperplane, we have that c*f’z,(A)
consists only of positive numbers. Thus clv*Av + c2t)*A2v is bounded above zero for all
real v satisfying Ilvll 1. Now let P(z) 1 ot(clz + C2Z2). Then ]lP(A)vll2/llvll 2

2cv*(clAV + c2A2)v/v*v + 211(ClAV + c2A2)vll2/v*v which, for ot sufficiently small,
is bounded beneath one for all nonzero v.

THEOREM 3. For A NNxN HPD, n,(A) pn,(A).
Proof. See [4].
THEOREM 4. For IN or C and A ]NxN normal, n,IK(A) qgn,lK(A).
Proof. See [5] for an alternate proof for the lK IR case. If n >_ d(A) then we are done.

Otherwise for r, s 6 ]U and > 0 small, let

r’ (1 52)1/2r nt- ss (1 2/2)r -+- s nt- (Q(54)
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withd(r, A) > n. Alsolet Ilrl[ Ilsll 1 andr 2- s, so IIr’ll 1. Let Pr betheleast squares
polynomial (2a), (2b) of degree not greater than n associated with r, and let Kr Kn (r, A),
Ks Kn(s, A). Note that Pr(A)r r AKr[KA*AKr]-1KA*r, and Pr is a polynomial
over K. Note also that:

(i) K, =-- Kn(r’, A) (1 .2/2)Kr + Ks + O(3);
(ii) K*,A*AKr, (1-2)K*A*AK+KA*AK,+KA*AKr+2K*A*AK,+O(3);
(iii) [K,A*AKr,]-1 (1 + 2)K*A*AK-I

-KA*AK-I[KA*AK, + KA*AKr]K*A*AK7
+2K*A*AK-a[K*A*AKs + K*A*AKr]

KA*AKTa[K*A*AKs + K*A*AKr]KA*AK--2K*A*AK-I[K*A*AKs]K*rA*AK-I + O(3).
Then, since s AK,[K*A*AK]-1KA*r P(A)s, we have after some manipulation

Fn(r’) [r* Pr(A)* Pr(A)r] + 2 Re[s* Pr(A)* P(A)r]

+2]s*P(A)*Pr(A)s r*Pr(A)*P(A)r [K*A*Pr(A)s + KA*P(A)r]*

+ K*A*Pr(A)r]] + O(3).

If r is a (global) maximizer for Fn (and thus a local maximizer), then Fn is smooth near
r, so we must have

(4a) Re s* Pr(A)* Pr(A)r --0,

(4b)
s*Pr(A)*Pr(A)s r* Pr(A)*Pr(A)r

-[KA*.P(A)s + K*A*Pr(A)r]*[KA*AKr]-1

[KA*P(A)s + KA*P(A)r] < 0

for any s 2- r.
Now Res*Pr(A)*Pr(A)r 0 for any s I r. If K , then s*P(A)*Pr(A)r O;

otherwise, by replacement of s with the quantity (is), we obtain Ims* Pr(A)* Pr(A)r O, and
thus s* Pr (A)* Pr (A)r 0 for all s 2- r. Thus Pr (A)* Pr (A)r is a scalar multiple of r, namely,

r*Pr(A)*P(A)r
Pr(A)*Pr(A)r r.

,*,

Thus r is a (fight) singular vector of P(A).
If r is a maximal singular vector (in the sense that its associated singular value is maximal

among the singular values), then for all v KN,

o.,z(A) <_
IIe(A)vll IIPr(A)rll

1/tn,]K(A 0n,K(A),

and thus P is a minimizer for On,(A) and we are done. Otherwise, there exists s 2_ r a
maximal singular vector for P (A), and r is not a maximal singular vector.

Since A is normal, then A UAU*, with U unitary and A diagonal. Then U*r is
an eigenvector of A*A, and is thus composed of a linear combination of standard unit basis
vectors e;j, and similarly U*s is composed of a set of vectors eik all distinct from eij. Since
then r and s are contained in the linear spans of distinct (orthogonal) eigenspaces of A, it
follows that At..r 2_ Ams for any l, m. Then (4b) reduces to

s*Pr(A)*P(A)s r*P(A)*P(A)r < 0
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or
r*Pr(A)*Pr(A)r > s*Pr(A)*Pr(A)s

which contradicts the maximality of s over r.
The results of this section have the following significance. In certain cases such as when

A is normal, a fixed polynomial preconditioning of degree (s 1) exists independent of r(),
which has the same convergence bound as a cycle ofGMRES(s). In such cases it is reasonable
to seek a polynomial preconditioner to replace (2) so that inner products need not be computed.
Of course, since (2) finds the best polynomial for each r(, the average behavior of (2) may
be better than the average behavior of the best polynomial preconditioner, though the worst
case behavior for a cycle applied to a given vector is the same.

It is not clear whether n,K(A) qgn,K(A) holds for general A, though numerical exper-
iments suggest that it does hold for cases other than A normal and n 1. The exact behavior
of these functions is an open area of research.

The algorithm presented in 3 takes advantage of the cases when a fixed polynomial
preconditioning of degree s can be found that yields a convergence rate as good as that of the
restarted GMRES algorithm with restart frequency s.

3. Definition of the hybrid algorithm. We wish to define a modification of the restarted
GMRES algorithm that allows for alternate means of calculating the polynomial Pn of (2)
besides the least squares minimization of (2a), (2b).

To make use of the relevant inner product information from the Krylov spaces obtained
from GMRES cycles in the history of a run, we define a fixed polynomial basis to be used
to represent the Krylov space at each cycle. The use of a fixed polynomial basis simplifies
the recording of Krylov space inner products for each cycle. In particular, we define the
polynomials {Pi }’=0 that are fixed independent of the cycle number, and use these to represent
the Krylov space ofeach cycle by the matrix 79s+1 (r) [po(A)r... Ps (A)r] and the associated
inner product matrix 79s/1 (r)*79s+1 (r). Means of choosing the polynomials so that the basis
is well conditioned are described in [1 1]. Here we employ Chebyshev polynomials which
possess a three-term recurrence.

The idea of the algorithm is as follows: given rtms), the Krylov basis vectors 79s+1 (r(ms))
may be generated, and then a decision can be made as to whether r(ms+s) is calculated by
(2) or alternatively by some polynomial preconditioner represented in the basis 79s+1 (rms).
The polynomial preconditioner may be based on information from the history of the run, in
particular, the previous cycles that were performed in GMRES mode (2).

The structure of the algorithm is shown below. Here m denotes the cycle number, $
denotes the set of cycles performed in GMRES mode, and the parameter is a user-supplied
tolerance, 0 < < 1.

1. Initialize. m --0.
2. Perform the stopping test.
3. Compute r<s via a cycle of GMRES. m - 1.
4. Determine well-conditioned basis polynomials {Pi }.
5. Determine 79s+1 (r))*79s+ (r) from the GMRES Arnoldi vector information

from the first cycle (see below). Initialize S +-- {0}.
6. Perform the stopping test.
7. Select a polynomial preconditioner q, based on the information in {79s+l (r(iS)) *

7)s+l (r(is)) }ieS, and represented in the basis {Pi }.
8. Compute y(m+ [I Aq(A)]r(m and its norm.
9. Test: If II(m+sll/llr(mll <_ [max/es IIr(i+sll/llr(ill]. (1 t) + [1]. (t),

then set r(ms+s) F(ms+s); else, add rn to S, calculate the inner products
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T)s+l(r(ms))*Ps+l(r(ms)), and then compute r(ms+s) via the minimal residual
method (2) using the existing basis vectors 79s+1 (r(mS)).

10. Form u(ms+s corresponding to r(ms+s).
11. Increment m; go to 6.

The details of executing the minimal residual component of step 9 are found in 11 ]. In
particular,

U(ms+s) U(ms) + 79s (r(ms)) [79s (r(ms)) * A* A79s (r(ms))]-179s (r(mS)) * Ar(mS)

r(ms+s) r(ms) A79s (r(mS))[79s (r(mS))* A*A79s (r(mS))]-179s (r(mS)) Ar(ms)

The parameter controls how good the polynomial preconditioner is required to be in
order to be used. If 0, then the polynomial preconditioner applied to the current cycle must
do at least as well as the worst GMRES cycle in the history of the run; set closer to 1 allows a
worse preconditioner to be tolerated, while any < 1 insures convergence unless GMRES(s)
can stagnate for this matrix (i.e., 7rs,K(A) 1). This equivalence of the convergence behavior
of the new method to that of GMRES(s) assumes, of course, that the Krylov basis for each
cycle is well conditioned; for a full discussion of such considerations, see 11 ].

The calculation of the inner product information of step 5 from the GMRES information
of that first cycle requires a more detailed description. Let A Qs Qs+l Hs+l, where Hs+l is
the upper Hessenberg matrix from the Amoldi sequence of the first GMRES cycle, with
the associated matrix of Amoldi vectors, Q*+I Qs+l I. We seek a new basis Os -= 79s(r()
such that A Os Os+ Ts+l, where Ts+l is upper Hessenberg (for the Chebyshev basis case,
tridiagonal) and defines the set of recurrences associated with {Pi (see [1 1] for complete
details). Let Os+ Qs+ 7, so that 7 is the change of basis matrix. We seek *+10s+
7*. Note is upper triangular. After some manipulation we have

where Is is the identity. By applying the standard unit basis vector ei to the right side of each
side of the equation, we obtain a recursion for the columns of ?. Specifically, we let i ei
and Ts+ ti, j }, and then

ti+l,i{i+l ms+l []*{i Ztj,i{j.
j=l

Finally,/’1 is a multiple of el based on the scaling relationship between the initial basis vectors

Os+ el and Os+ el
It should be emphasized that the algorithm presented thus far makes no restriction on the

type of preconditioner used. Any type of preconditioner may be applied, and the mechanism
of the algorithm insures that if the residual decrease is not adequate, then the cycle can be
completed using GMRES. Furthermore, the cost of the algorithm when in GMRES mode is
only slightly greater (about one SAXPY operation per step) than a standard GMRES-type
algorithm for computing (2), due to the computation of yms+s.

We now define a particular preconditioner to be used in this study. This preconditioner is
based on the inner product information from past GMRES cycles of the run and approximates
the minimizing polynomial of

Given a set of vectors {ri ]N, for A IKNN, it is assumed that the inner product
information contained in the matrices Ks+l (ri, A)* Ks+l (ri, A) is known. Then we note
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inf sup
e’c=l ri IIr/ll

Ilgs+l(ri, A)cll [gs+l (r, A)cl[
< inf sup

eTc-l rKv Ilrll
IIP(A)rll

inf sup 0s,K(A),
Ps(0)=l riKN Ilrll

where Ps(z) =o(e[+,c)zi. Since each Fi(c) [[g+l(ri, A)cll/[lril[ is convex (and in
fact Fi is quadratic), the function F(c) sup/Fi (c) is convex. Optimization routines may
be used to find the minimizer of F numerically. Furthermore, when the set {ri is sufficiently
expanded, infec=l F(c) becomes closer to q),(A).

The algorithm considered here, then, uses a polynomial based on the minimizer of F
sup/Fi, which yields a polynomial that in some sense is optimal for all previous GMRES
cycles.

Let us consider for a moment the computational cost of this algorithm. Following the
analysis techniques of [10], let Wmv, Wsax, and Wdot represent the computational cost on a
given computer of the matrix-vector product A v, SAXPY y -- y + otx, and dot product
u’v, respectively. The cost for an s-step cycle in polynomial preconditioning mode using
Chebyshev basis polynomials is [SWmv + Wdot -t- (4S -t- 2)Wsax], while a cycle in GMRES
mode adds [(s + 1)(s + 2)/2]Wdot q- (s -t- 1)Wsax to this. The number of cycles to converge to

]lr(ms)ll/llr()ll <_ is approximately log(’)/log((1 t)q)s,K(A) + t), assuming 0 _< _<
for this analysis, since IIr(m/ll _< ((1 t)q),(A) + t)llr(mll is assured. If cycles in
GMRES mode are required, then the total work for solution is approximately

(5)

F (s + 1) (s + 2)
2

Wdot @ (S @ 1) WsaxI
-Jc’[SWmv -JI- Wdot + (4s + 2)Wsax]

log(C)
log[(1 t)o,r;(A) + t]

For comparison purposes we consider the case when A is HPD. Then q)s,K(A) may be
approximated using Chebyshev polynomials to yield

(6) q)s, (A)
csh (s lg \ vr+l))

where x lAll A-1II is the condition number of A. This approximation is most valid
when the spectrum r(A) does not have large gaps.

For the purpose of this analysis we assume is fixed independently of x; this may not
hold in practice, depending in part on the strategy used to determine the preconditioner. Let
s ctc and assume x is large. Now, if > , then (5) grows at least as fast as a multiple
of x. Otherwise, when 0 < < g, we expand by Taylor series for x large and after some
manipulation and dropping of low order terms, we obtain from (5) the estimated asymptotic
total cost,

(7)

x [Wmv @ 4Wsax] lg-IWoo =-- 1S2- nt- 7 2(l-t)

lC2K2 Wdot K 1- log .-1-- -!-
C

[Wmv -l- 4Wsax] -(i t)

It is clear that setting 5 minimizes the maximal exponent of tc and thus the growth rate

of this quantity. In this case, s grows at a rate proportional to x 1/3, and the total work estimate
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woo grows at a rate proportional to K2/3 Under these assumptions, minimizing the asymptotic
total work estimate (7) over choices of the constant c yields after some manipulation

[ Wmv + 4Wsax log -I ]
1/3

s
2Wdot l(1tt

3 1/3[ ilog-I ]2/3-t)
x2/3woo (/Wdot) (Wmv 4- 4Wsax)

These results show that for the HPD case under these assumptions, it is desirable to let
the restart frequency s for this algorithm grow in proportion to tc 1/3 to get best performance,
and the resulting total work required (measured in vector operations) grows in proportion to
K2/3

This compares favorably with a total work growth rate proportional to tc for standard
restarted GMRES with the best choice of s (see [10]), while it is not as good as the conjugate
residual method whose growth rate is proportional to x 1/2 due to its short recurrence. In other
words, the new method under the given assumptions is able to recover part of the effective
performance of short recurrence methods.

The algorithm presented here is similar to the hybrid GMRES algorithm of 16] but has
significant differences. Both algorithms apply a cycle of GMRES to the linear problem and
use the resulting polynomial as a preconditioner. However, if the polynomial is not adequate,
the algorithm of 16] increases the value of s, in an attempt to form a better polynomial. On
the other hand, the algorithm presented here keeps s fixed but uses more GMRES cycles to
improve the preconditioner.

4. Numerical experiments. We now present the results of numerical experiments with
the new algorithm. For these experiments we consider the model problem

-Uxx(X, y) Uyy(X, y) + Dux(X, y) g(x, y) on f2 [0, 1] 2,

u(x, y) l + xy onOf2.

Here D is constant, and g is chosen so that the true solution is u (x, y) 1 4- xy on f2. Five-
point central differencing is applied, with uniform mesh spacing h 1/nh in each direction.
No preconditioning is used.

Initial guess u( 0 is used, and aThe mesh size for these experiments is h 12-g"

vector of random entries is used for b. In practice, a random vector may be used for u(, as
described in [16]. The stopping test ]lr(n)ll/llr(l]l < 10-8 is used.

The experiments are run in double precision on a Sun 4/330 Sparcstation with 25 Mhz
clock speed. The optimization to find the polynomial preconditioner is performed by the
GRG2 package of 13], 14], which uses a generalized reduced gradient technique for convex
optimization. For each run, the approximation to the best polynomial for the previous cycle
is used as the initial guess to the next call of the optimizer package to find an improved value.

The timings in Tables 1-6 are in seconds and the optimizer time is not counted. The
case of -cxz denotes the case when GMRES mode forced for every cycle. In these
instances, the least squares polynomial (2) is used for each cycle, and the method reduces
to the GMRES/Chebyshev basis algorithm described in 11 ], which typically gives the same
iterates as standard GMRES at reduced cost. The performance values for these instances are
indicative of the performance for the standard restarted GMRES algorithm for these cases.

Several conclusions may be drawn from these results (cf. [16], [17]):
1. In most cases only a couple of GMRES cycles are required to form an adequate

preconditioner.
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TABLE
Timings; case ofs 20.

Meth \ Dh: 0 2-3 2-2 2-1 20 21 22 23 24 25
=-o 1703 405 255 196 200 199 213 199 174 273

.2 724 446 262 192 163 143 122 122 150 236

.5 559 446 255 186 159 139 118 118 146 228

TABLE 2
Total cycles/GMRES cycles; case ofs 20.

Meth \ Dh: 0 2-3 2-2 2-1 2 21 22 23 24 25
-cx 143/143 33/33 21/2i 16/16 16/16 16/16 17/17 16/16 14/14 22/22
.2 86/25 61/3 35/2 25/2 21/2 18/2 15/2 15/2 19/2 31/2
.5 62/24 63/2 35/2 25/2 21/2 18/2 15/2 15/2 19/2 31/2

Meth \ Dh:

t=-o
.2

--.5

0 2-3

1354 498
748 404
681 418

Meth \ Dh:

--.2
--.5

TABLE 3
Timings; case ofs 40.

2-2 2-1 20 21 22 23
406 477 412 412 421 360
294 253 229 201 188 187
302 262 238 207 195 191

TABLE 4
Total cycles/GMRES cycles; case ofs 40.

24
354
201
201

0 2-3 2-2 2-1 20 21
40/40 15/15 12/12 14/14 12/12 12/12
37/12 25/2 17/2 14/2 12/2 10/2
33/10 25/2 17/2 14/2 12/2 10/2

22
12/12

9/2
9/2

25
385
244
246

TABLE 5
Timings; case ofs 60.

23 24 25
10/10 10/10 11/11

9/2 10/2 13/2
9/2 10/2 13/2

Meth\ Dh: 0 2-3 2-2 2-1 2 21 22 23 24 25
=-cx 1343 603 665 740 798 758 763 617 604 671

.2 798 443 423 403 423 423 402 402 261 323

.5 733 424 383 320 301 281 240 241 261 323

TABLE 6
Total cycles/GMRES cycles; case ofs 60.

Meth \ Dh: 0 2-3 2-2 2-1 2 21 22 23 24 25
-oo 21/21 9/9 10/10 11/11 12/12 11/11 11/11 9/9 9/9 10/10
.2 21/8 15/2 14/2 13/2 14/2 14/2 13/2 13/2 8/1 11/1
.5 31/1 16/1 14/1 11/1 10/1 9/1 7/1 7/1 8/1 11/1

2. The run times for the new method are typically better than those for the pure GMRES
method (denoted by -cx), sometimes by as much as a factor of three, which is a substantial
savings. This is coupled with the fact that the GMRES/Chebyshev basis algorithm 11 used
here for the -cxz case is up to twice as fast as the standard Arnoldi-based GMRES
implementation, leading to solution time reductions of up to a factor of six.

3. It is easier to determine a good polynomial when s is chosen larger. This is consistent
with the results of [16]. Of course, if s d(A) d(r), A), then the polynomial from the
first cycle matches the spectrum of A exactly (in exact arithmetic).
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4. For the cases for which only one GMRES cycle is performed, the result ofthe algorithm
applied here is identical to that of the hybrid algorithm of [16], assuming the value of s
is forced to be fixed for that algorithm. For the cases for which more than one GMRES
cycle is performed, the algorithms are different. In these cases, the polynomial Ps from
the first cycle of GMRES is found by this algorithm to be inadequate, and if used would
lead to slower convergence or to divergence (cf. [17]). This is because a single GMRES
cycle may yield insufficient information to insure that IIe(1)rll/llrll _< for all r, even
though IIe(l)rll/llrll _< 1 is imposed. Such problems may occur when r lacks a
representative distribution of eigencomponents. In such cases, the algorithm of [16] with
fixed s may diverge.

5. In the HPD cases, many GMRES cycles are required to obtain an effective polynomial.
This is due in part to the fact that for the HPD case it is especially critical to estimate the smallest
eigenvalue accurately, which is difficult. Furthermore, the polynomial preconditioner used
here does not take advantage of the fact that for the HPD case, effective polynomials may be
found based solely on the endpoints of the spectrum. Therefore, the algorithm spends a large
amount of time making the polynomial small throughout the interior of the spectrum. On
the other hand, when the matrix is nonnormal, the behavior of polynomials on the spectrum
is less determinative of the convergence behavior of the polynomial preconditioner, and the
approach used here has greater merit.

6. For these problems, s 20 generally gave the best timings. This indicates a tradeoff
between choosing s large to keep small the required number of GMRES cycles for the pre-
conditioner calculation, and choosing s small to avoid the need to do even a single very large
GMRES cycle. Furthermore, the aspect of GMRES which makes its average performance
better than its worst case performance may be more pronounced when s is large.

7. These experiments do not shed light on the growth rate of the best value of s as the
problem size grows, since only one problem size is used. The earlier asymptotic analysis
suggests that at least for the HPD case, the best value of s grows for larger problem sizes.
However, this may not always occur in practice due to such factors as superlinear convergence
of GMRES due to gaps in the spectrum of A, or the need for differing numbers of GMRES
cycles as the problem size grows, factors not accounted for in the model given earlier.

8. Though the timings for the new algorithm are generally less than those for the -cxz
(pure GMRES(s)) case, the difference is not as dramatic as might be expected. This is because
more overall cycles are often required by the hybrid algorithm: the true minimal residual
algorithm for each cycle has an average performance which may be better than the average
performance of a good polynomial preconditioner, though the worst case bounds may be the
same. The reasons for this are a topic of further study.

Next, in Table 7 the execution times for the convex optimizer are compared to the total
run times, for the s 20 case shown in Table 2.

It should be emphasized that this study does not fully investigate the issue of fast convex
minimization algorithms for this problem. Alternate algorithms might give faster results; this
is a topic for further research. On the other hand, it can be expected that for sufficiently large
problems, the time for the optimization relative to the time for the rest of the algorithm will
be small, since the optimization does not require the use of long vectors of size N. Thus, for
many practical problems, an extremely fast minimizer may not be necessary.

The optimization times shown in Table 2 are fairly small compared to the total time,
except for the HPD (Dh 0) case. Even for the s 60 case, the optimizer time did not.
exceed approximately 20% of the total time, except for the HPD case. On the other hand,
when A is HPD, as noted earlier, many cycles are executed in GMRES mode, requiring a large
number of calls to the optimizer to revise the preconditioner. One possible remedy to avoid
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Meth \ Dh: 0

.2 407/1131

.5 2055/2614

TABLE 7
Optimizer times /total times (seconds) case ofs 20.

2-3 2-2 2-1 20 21 22 23 24 25
10/456 5/267 8/200 5/168 5/148 7/129 8/130 10/160 7/243
6/452 5/260 7/193 5/164 5/144 7/125 8/126 10/156 7/235

such cases is to set an upper limit on the number of optimizations done, and when this number
is exceeded the algorithm could revert to using standard restarted GMRES for every cycle.
In any case, it should be emphasized that performing even a few optimizations yields a better
polynomial than the simple first-cycle polynomial, which is employed by the fixed-s version
of the algorithm of 16].

In short, the algorithm shows benefit in terms of CPU savings over restarted GMRES,
particularly for large values of s. Even greater savings may be expected on computer architec-
tures such as distributed memory machines for which inner product operations are particularly
costly.

5. Conclusions. In this paper we have shown results on the effectiveness of replacing
GMRES with a polynomial preconditioning, defined an algorithm for safely adapting be-
tween GMRES and polynomial preconditioning, and defined a new preconditioning which
approximates the minimax polynomial preconditioning for a given matrix.

The algorithm is shown to be effective compared to restarted GMRES for a number of
cases. Further research is needed to shed more light on the behavior of polynomial methods
for nonsymmetric problems.
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Abstract. Many complex physical processes are modeled by coupled systems of partial differential equations
(PDEs). Often, the numerical approximation of these PDEs requires the solution of large sparse nonsymmetric
systems of equations. In this paper the authors compare the parallel performance of a number of preconditioned
Krylov subspace methods on a large-scale multiple instruction multiple data (MIMD) machine. These methods
are among the most robust and efficient iterative algorithms for the solution of large sparse linear systems. In this

comparison, the focus is on parallel issues associated with preconditioners within the generalized minimum residual
(GMRES), conjugate gradient squared (CGS), biconjugate gradient stabilized (Bi-CGSTAB), and quasi-minimal
residual CGS (QMRCGS) methods. Conclusions are drawn on the effectiveness of the different schemes based on
results obtained from a 1024 processor nCUBE 2 hypercube.

Key words, linear systems, nonsymmetric, parallel algorithms, Krylov methods, preconditioners, multilevel
methods, MIMD
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1. Introduction. A wide variety of complex physical systems are modeled by three-
dimensional partial differential equations (PDEs). Often, numerical formulations of these
PDE problems give rise to systems of large sparse nonsymmetric equations. Unfortunately,
the slow asymptotic performance and large storage requirements of direct solvers make them
impractical for the increasingly larger systems that scientists need to solve. For these systems
robust and fast iterative solvers must be used.

In this paper, we focus on performance and implementation issues for preconditioned
Krylov methods on large-scale multiple instruction multiple data (MIMD) machines. These
machines utilize many independent processors, each with their own local memory and a
message-passing capability for communicating between processors. The Krylov methods we
consider (GMRES, CGS, Bi-CGSTAB, and QMRCGS) are relatively easy to program and
work well on a wide variety of meaningful problems. A number of highly parallel precon-
ditioners are implemented including classical methods such as Jacobi, Gauss-Seidel, and
polynomial preconditioners, as well as more sophisticated (though sometimes more problem-
atic) preconditioners such as multigrid and multilevel filtering. Based on results obtained on a
1024 processor nCUBE 2, a number of general conclusions are drawn about the effectiveness
of the underlying Krylov methods as well as the parallel performance of the preconditioners.

2. Iterative solvers. Krylov algorithms are among the fastest and most robust iterative
solvers for a wide variety of applications (e.g., computational fluid dynamics). In this paper,
a representative group of nonsymmetric Krylov solvers are considered: conjugate gradient
squared (CGS) [26], biconjugate gradient stabalized (Bi-CGSTAB) [29], generalized mini-
mum residual method, (GMRES) [21], and a transpose-free variant of the quasi-minimum
residual method (QMR) [8] referred to in this paper as QMRCGS.

The basic process in each of the Krylov solvers is the projection of the original set of
equations onto a subspace. The resulting set of equations is then solved and the subspace

*Received by the editors May 11, 1992; accepted for publication (in revised form) February 16, 1993. This
work was supported by the Applied Mathematical Science Program, U.S. Department of Energy, Office of Energy
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solution is used to correct the solution to the original problem. The Bi-CGSTAB, CGS, and
QMRCGS methods are based on the Lanczos biorthogonalization method. Their correspond-
ing projection operators are computed using short recurrence relations. Unfortunately, the
resulting projection operator is not orthogonal. By contrast, GMRES is based on the Arnoldi
method. Its projection operator is much more expensive to compute (in terms of time and
storage) as short recurrences cannot be used. However, the corresponding projection operator
is orthogonal. To avoid excessive growth in storage and computations, a restarted version of
GMRES is considered. Specifically, the iteration is terminated after a modest number of steps
and then reinitiated using the previous solution as an initial guess. We note that all the methods
considered in this paper are transpose-free schemes. In many engineering applications, the
matrix-vector product corresponds to a complex and lengthy set of subroutines (where the the
matrix is not explicitly stored). Thus, methods that do not require the use of the transpose of a
matrix are more generally applicable. Figures 1-4 depict preconditioned (see 3) versions of
CGS, Bi-CGSTAB, GMRES, and QMRCGS methods corresponding to our implementations.

CGS(x0, A, b
ro b Axo; q0, p-1 0;
Choose ?o so that r70 0;
/9_ 1; n=0;
while (not converged) do

[gn rn p,_
u =rn +flqn;
p, u + fl(q, + flp,_);
Solve" M/3 p,; /* M is the preconditioning matrix. */
v= A/3;

Pn/ ;SV ;
qn+l tt

Solve: M (u + qn+l);
rn+l rn
x+ x +
n-n+l;

end
end

FIG. 1. CGS Algorithm.

2.1. Parallel issues. In this comparison we report on the relative performance of parallel
solvers developed for systems of equations arising from PDE discretizations on regular two-
dimensional domains. Specifically, parallelization is accomplished by spatially decomposing
the computational domain and assigning subdomains to individual processors. Each processor
updates only those variables internal to its subdomain. In addition to these internal variables,
each processor contains internal boundary components. The internal boundaries are copies
of components that are updated on other processors, but which are needed to compute local
operations. Currently, we have implemented only rectangular subdomains. In this case, each
processor contains an extra border around its subdomain that contains the additional variables.
Similar to the variables, the discrete equations are also partitioned among the processors. In
particular, the matrix is stored using a parallel generalization of the standard modified sparse
row (MSR) format [20]. This format requires that two arrays be maintained: one array to store
the nonzeros of the matrix and the other array to describe their location. A parallel version of

N variablesthis format is defined as follows. Let us assume (for clarity of presentation) that T
have been assigned to P processors. We decompose the matrix into P submatrices (each with
N rows) such that each processor is assigned a submatrix whose nonzero columns correspondP
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Bi-CGSTAB(x0, A, b)
ro b Axo; vo, Po 0;
Choose Yo so that roT Yo :/: 0;
po, o, coo 1; n 1;
while (not converged) do

Pn

Pn r._ + (Pn- -w._ v._);
Solve" Mfi p.; /* M is the preconditioning matrix. */
Vn Aft;

S Fn_
Solve" M s;. (tVs)/(tvt);

rn S nt;
n=n+l;

end
end

FIG. 2. Bi-CGSTAB Algorithm.

GMRES(xo, rn, A, b)
while (not converged) do

/* Arnoldi process */
ro (b- Axo);

V/o; o/;
for j rn do

w AM-lvj /* M is the preconditioning matrix */
fori-- j do hi,j-vi w; end

j+l U [=1 hi,j Ui;

hj+l,j lVj+l; 1)j+l hj+l,j.’
end
Let Ym be the value of y minimizing

/* H is (m + 1) rn upper Hessenberg
matrix with nonzeros given by hi,j
and el [1, 0 0] T. */

xo xo + M-1VmYm /* Vm [Yl, Vm].
end

FIG. 3. Restarted GMRES Algorithm (Gram-Schmidt orthogonalization).

to the variables stored in the processor. Each submatrix is then stored using an MSR format
in conjunction with a local numbering of the variables. More details of the distributed sparse
matrix and the subdomain partitioning can be found in [24].

The majority of the solvers are implemented using only basic linear algebra subroutine
(BLAS) kernels such as dot products and vector addition routines (supplied and optimized
by the vendor, nCUBE). Additionally, a matrix-vector kernel is needed. Since this kernel is
only a few lines long, it was written in assembly code (with the help of the vendor). Our
implementation of this kernel runs at 1.3 Mflops per node. This performance for an indirectly
addressed sparse matrix-vector multiply compares well with the maximum nCUBE 2 double
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QMRCGS(x0, A, b)
rgGs b Axo;
Po uo M-1 ryOS
v0 Ap0; r0 [[r0CGS[[;
Choose F0 so that Fr0cGs 0;
po
d0 0; V0 0; 0 0;
forn 1,2 do

qn n-1 n-lm-lvn-1;
ros r _A(u,_, +
for m =2n-l,2ndo

if m even then

Om+l IlrffSll; Ym qn;
else

Om+l 11" cs rGS-n- IIII II,"
endif

m Om+l/rm--1; C 1/1 +
2rm Tm-lmCm Om Cmn-1;

am Ym + (V_Om-/.-am-;
Xm Xm- + Omdm;
if (converged)stop;

end

u. M-rs + .q.;
p. u. + .(q. + .p._);
v Ap;

end

/* M is the preconditioning matrix */

Ym bin-l;

FIG. 4. QMRCGS Algorithm.

precision computation rate of about 2.5 Mflops per node [23], [24]. The only communication
procedures are a local exchange border routine (used by the sparse matrix-vector multiply
requiring four messages to be exchanged per processor) and a global summation routine (used
in the dot product algorithm requiring log2 (P) messages to be exchanged per processor on a
hypercube with P total processors).

Parallel versions of Bi-CGSTAB, CGS, and the QMRCGS require only parallel imple-
mentations of the above-mentioned kernels. However, for GMRES the orthogonalization
procedure needs to be reevaluated. Typically, GMRES orthogonalization is performed by a
modified Gram-Schmidt process on scalar and vector computers. This choice is motivated by
the superior stability properties of the modified scheme relative to the classical Gram-Schmidt
method. However, from a parallel efficiency perspective, the classical Gram-Schmidt algo-
rithm is superior. Specifically, m log2 P messages per processor are needed to orthogonalize

Unless noted otherwise, the results we present are for double precision computations using the assembly-coded
matrix-vector multiply routine.
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a vector with respect to m previous vectors by a modified Gram-Schmidt method. In contrast,
the classical Gram-Schmidt method requires only log2 P messages per processor (though
these messages are now of size m). For large Krylov subspace dimensions, m, this difference
can be significant. Both orthogonalization schemes have been implemented on the nCUBE 2.

Finally, we note that redundant work is performed (on all processors) in our imple-
mentation of the Hessenberg solver. That is, each processor performs the plane rotations
corresponding to the factorization of the Hessenberg matrix along with the resulting triangular
solve. Though this might appear to be inefficient, the actual time required for these operations
is insignificant (for example less than .3% of the total solution time for the results given in
Table 1, 4) and thus there is no advantage in parallelizing this step.

3. Preeonditioners. It is well known that the overall performance ofKrylov methods can
be substantially improved when one uses preconditioning [6]. The basic idea is that instead of
solving the system Ax b, the system AM-1 y b is solved where M-1 is an approximation
to A- and is easily computed. Since only matrix-vector products are needed, it is not necessary
to explicitly form AM- (only a subroutine to solve My y is needed). We note that
the preconditioning described here corresponds to "right" preconditioning and that it is also
possible to precondition on the "left" (i.e., M- A). In this paper, only right preconditioning
is considered as the comparisons are somewhat more straightforward. Specifically, when left
preconditioning is used the computed residual corresponds to a preconditioned residual. Thus,
if convergence is based on the size of the residual, changing the preconditioner effectively
changes the convergence criteria.

Currently, a wide variety of preconditioners are available. The proper choice of precon-
ditioner is both computer (or architecture) dependent as well as problem dependent. This
research continues in a number of areas. It is, therefore, impossible to give a complete survey
of all preconditioners. Instead, we attempt to investigate some of the more common precon-
ditioners currently in use. It is expected that further advances in preconditioners will yield
improvements in terms of both robustness and performance.

3.1. Local preeonditioners. In this section we consider preconditioners that use infor-
mation only within a local neighborhood to update the value of the solution at a grid point.
This local data dependency is the result of the numerical approximation method (e.g., finite
difference or finite element techniques) as well as the particular iterative procedure that is used
as a preconditioner.

Classical iterative schemes. Two classical schemes are considered in this paper: Jacobi
and Gauss-Seidel. Jacobi preconditioning amounts to rescaling the matrix and is thus easily
parallelizable. For Gauss-Seidel, however, the ordering of the points must be considered.
On sequential computers, points are often updated in an order that corresponds to counting
across the rows of the grid (natural ordering). On vector and parallel machines this ordering is
inefficient due to data dependencies. Instead, a "multicolor" ordering of the grid points is used
that partitions the grid points into disjoint sets ], [31 ]. These sets are selected so that update
operations for each grid point are independent of all other grid points in the same set; thus
points within a set can be updated in parallel. Of course, different orderings imply different
numerical convergence properties. Thus, there is often a tradeoff between parallelism and rate
of convergence.

Polynomial preconditioners. These methods use a polynomial expansion in the matrix A
to approximate A- Since these methods require only the standard matrix-vector kernel, no
new communication routines are necessary to produce a parallel polynomial preconditioner.
The major difficulty is choosing the polynomial coefficients properly. One choice based on

(1) min [[I- P(A)A[[2,
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where

M-1 P(A)- Oti Ai
i=0

leads to the least squares polynomial. The ot’s are easily approximated when an approximation
to the convex hull of the spectrum of A, cr (A), is available (e.g., within GMRES) [18]. Since
the convex hull is not always easily available, we approximate (1) by assuming that all the
eigenvalues of A lie on the real axis between 0 and IAII. When A is close to symmetric
positive definite (SPD), this approximation is quite good.

A second choice for the ot’s corresponds to first defining

(2) G -= I--A

and using a truncated Neumann series

(3) A_I= _1 Gi(I-G) ,
/=0

[7], [30]. To ensure.convergence of the infinite series,/ must be chosen so that the spectral
radius of G is less than one. For a real positive definite matrix A, this corresponds to

IXI 2(4) /3 > max
2 A) Re(X)’

where Re(X) is the real part of X. When A is SPD, (4) reduces to/3 > L . Rather
than computing/ from (4) for the nonsymmetric case, we use/ 1.111AII/2, and have
found this suitable for a wide range of problems.

Finally, we note that in our implementation, a row sum scaling is first performed (i.e.,
aij aij/_,= Ilaijll) before the polynomial preconditioner is constructed for the resulting
matrix.

3.2. Global preconditioners. Global preconditioners use information across the domain
to update each point. In PDE discretizations this corresponds to using information from distant
grid points to update an unknown. Since A- is dense in most applications (i.e., the solution at
a point depends on information from all points), it is not surprising that global schemes often
converge in many fewer iterations than local ones. Unfortunately, global preconditioners are
often much harder to implement and have a somewhat more limited range of applicability.
In this paper, we discuss alternating line Gauss-Seidel, incomplete LU factorization (ILU),
multigrid, and multilevel filtering.

Alternating line Gauss-Seidel. We consider the alternating line Gauss-Seidel method
[31]. Specifically, the grid is colored into red and black horizontal lines and one iteration
of line Gauss-Seidel is performed. The procedure is then repeated with vertical lines. To
update a line, a matrix containing all coupling within that line is factored. For five-point
discretization of a single PDE this corresponds to factoring a tridiagonal matrix. Thus, a
series of tridiagonal (or block tridiagonal) matrices must be solved in one direction and then
solved in the other direction. Our parallel implementation proceeds as follows. Consider a

2Row sum scaling is explicitly performed on the matrix before using all of the preconditioners except the Jacobi
scheme (where diagonal scaling is already incorporated) and the multigrid method where consistent scaling must be
used on different grid levels to properly implement multigrid.
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p p array of processors that corresponds to an n n computational grid. We perform p line
solves in parallel (assuming n >_ 2p) until all the line solves in the x direction are complete.
We then repeat the procedure for the y direction solves. Thus, each line solve is assigned p
processors. A multitude of parallel tridiagonal algorithms have been studied [10], [13]. In
our implementation we use block cyclic reduction. This algorithm proceeds by eliminating all
the even unknowns within a line. The remaining unknowns are renumbered and the resulting
even unknowns are eliminated. This process is repeated until only two unknowns remain
(which can be solved directly). Since each of the log2 n stages in the elimination process
requires two messages to be communicated, a total of 2 log2 n messages are sent during the
process. It should be noted that our implementation of the tridiagonal solvers is fairly crude.
In part, this explains the poor results that are presented in 4. In particular, a number of issues
must be addressed to improve the tridiagonal solver: the slower serial performance of cyclic
reduction, inactive processors, and high communication requirements. There are, of course,
many other possibilities for solving tridiagonal systems in parallel. One could keep a full line
in each processor and solve all the tridiagonals in parallel. However, this approach would
require a matrix transpose algorithm to perform the line solves in the other direction as well
as require that the grid has sufficiently many points in each direction (e.g., at least 2048 grid
lines in each direction when using a system with 1024 processors). Overall, we believe that
improvements can be made to our tridiagonal solver (perhaps even by a factor of three or

more). Even with significant improvements, however, the line scheme would still lag behind
the other preconditioners (see 4).

ILU. We consider incomplete factorization as a preconditioner 15]. An incomplete fac-
torization can be thought of as performing a Gaussian elimination procedure without storing
all of the elements (i.e., restricting the fill-in). In our implementation we require the approx-
imate LU factors to have the same sparsity pattern as in A. Most ILU schemes use a natural
ordering of the unknowns. Since standard ILU does not parallelize well, we consider a local
ILU method (LILU) in which the boundary interface values for each subdomain are taken as
known quantities. Each processor then appends a set of boundary interface equations to its
local sparse matrix. These equations have unit diagonal with a right-hand side corresponding
to the boundary interface value. An ILU factorization is performed on the expanded matrix
and the triangular solves are used to generate an approximate inverse within each subdomain.
It should be noted that the LILU method requires the same type of communication as the
polynomial preconditioners, i.e., at each iteration updated interface values from neighboring
processors must be communicated. One disadvantage of this approach is that the resulting
preconditioner may yield slower convergence as it now uses information only within its sub-
domain. More sophisticated techniques that globally couple the interface equations exist (e.g.,
[25], [27]). We are currently investigating these approaches.

Multigrid. Multigrid methods are among the fastest iterative solvers for elliptic PDE
problems [3]. One iteration of a simple multigrid V cycle consists of smoothing steps (e.g.,
Jacobi, Gauss-Seidel) along with projection and interpolation operations on a hierarchy of
grids with different mesh sizes. In our Krylov solvers we use one multigrid V cycle as a pre-
conditioner (recursively coarsening the grid down to a 4 4 grid). Coarse grid discretizations
are obtained using the same scheme (in fact the same subroutine) as for the fine grid and storing
the coarse grid operators using the MSR format. Within the V cycle, bilinear interpolation
and full weighting restriction is used to transfer between grids. Unless otherwise stated, it
should be assumed that one Gauss-Seidel iteration is used before and another Gauss-Seidel

3Multicolor orderings are also possible. However, the overall convergence is often much less reliable for hard
problems than with the natural ordering scheme [4].
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iteration is used after the coarse grid correction.
Multilevelfiltering. Motivated by the success of multigrid and hierarchical basis precon-

ditioners, the multilevel filtering preconditioner 14] (similar to the BPX preconditioner, see
[2]) approximately decomposes the residual into different frequency components, selectively
scales these components, and then recombines them to form the preconditioned residual. In
particular, a projection operator is used to project the residual onto a series ofcoarser grids. The
projected residual on each grid is then scaled by differing amounts. This scaling represents an
approximate inverse in Fourier space and is chosen optimally for the Poisson equation. Finally,
the residual components are interpolated and combined to form the preconditioned residual.
From an implementation perspective, multilevel filtering corresponds to a multigrid V cycle
where the relaxation operation is replaced by a subroutine that scales the right-hand side, and
the projection and interpolation operators are applied to the right-hand side (as opposed to the
residual and solution).

In both the multigrid and the multilevel filtering preconditioners, each grid is processed
in sequence. Each grid is partitioned among the processors corresponding to a particular
decomposition of the domain. On coarser grids (where there are fewer grid points than
processors) the subdomain assigned to a processor may not contain grid points. In this case
the processor simply performs redundant work, in parallel, to the useful work proceeding
on other processors. It should be noted that when a binary reflected Gray code is used
in conjunction with the multigrid algorithm, not only are adjacent subdomains assigned to

neighboring processors, but on coarse grids (with fewer points than processors) it is possible
to shuffle the data (using nearest neighbor communication) so that only nearest neighbor
communication is needed to exchange boundary information between those processors that
contain valid grid points. This is due to the extra interconnections present on a hypercube that
are not available on a mesh-connected architecture [5].

4. Numerical results. The remainder of this paper considers the performance of the
solvers and preconditioners, discussed in the previous sections, on massively parallel machines.
In this examination we focus on two questions:

Which methods and preconditioners are best suited to parallel machines?
What performance can be expected from current massively parallel MIMD machines?

To perform this evaluation, a number of test problems have been solved. In the process
of our numerical experiments, a significant effort has been made to accurately reflect the
relative performance of the different schemes. That is, numerous tests and variants (different
algorithms, implementations, and convergence criteria) have been examined in an effort not
to favor any one method over another. However, given the nature of the task, these results (as
with any comparisons of this kind) should only be taken as an approximate guide of expected
performance on similar problems. A 1024 processor nCUBE 2 hypercube was used for all of
the tests. This machine is a distributed-memory MIMD machine with 4 Mbytes of memory
per node and a maximum double precision computation rate of about 2.5 Mflops per node.
We describe below the four test problems used in this paper.

PROBLEM 1.

(5) x--5 + x + + y) --y + f(x, y)

defined on the unit square with Dirichlet boundary conditions and right-hand side such that

(6) u(x, y) ex+y 4- x2(1 X)2 ln(1 + y2).

4Numerous experiments were performed with different smoother combinations. For isotropic problems, two
Gauss-Seidel iterations are typically among the most efficient. Only one V cycle was chosen for preconditioning.
Obviously, as more V cycles are used, the more the method behaves like pure multigrid.
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This convection-diffusion PDE is taken from [28] and is discretized using central differences.
The resulting algebraic system is positive definite and represents a relatively easily solved
nonsymmetric system.

PROBLEM 2.

(7) [b(x, y)uxlx [c(x, y)Uyly "t- [b(x, y) c(x, y)ulx -at- [d(x, y)Uly -t- e(x, y)u f

defined on the unit square with

b(x, y) e-xy,
d(x, y) y (x + y),

/3 .01,

c(x, y) (x + y),

e(x, y) (1 + xy)-1,
9/= .01,

Dirichlet boundary conditions and right-hand side such that the solution is given by

(8) u(x, y) xexy sin(n’x) sin(n’y).

This PDE is anisotropic in that the amount of diffusion varies significantly in the different
coordinate directions. In addition, by varying the magnitude of the , parameter it is possible to
produce a more strongly convected system. The problem is taken from [26] and is discretized
via central differences.

(9)

PROBLEM 3.

Ax

This PDE system corresponds to the incompressible Navier-Stokes and thermal energy equa-
tions (given in stream-vorticity formulation) describing buoyancy-induced natural convection
in an inclined two-dimensional rectangular cavity over the computational domain (-1, 1)
(-1, 1). In the above equations,

Ra cos (R)
I-I2 (Ax)2 Ra sin (R)

(10) 1-I1 =-Ax----, 2

where Ax is the aspect ratio of a rectangular cavity, (R) is the angle of inclination, and Ra is the
Rayleigh number. In this formulation the Prandtl number has been assumed to be infinite so
that the inertial terms in the momentum equation can be neglected. In our specific example

r and Ra- 103. Dirichlet boundary conditions are usedproblem, we take Ax 1, (R) ,
for the stream function, q, a mixed Dirichlet/Neumann condition for temperature, , and
a first-order approximation of the stream function-vorticity relationship at the boundary is
used for the vorticity boundary conditions (see [22]). A discrete nonlinear set of equations is
obtained using central difference approximations. The resulting nonlinear system is solved
by Newton’s method requiring a series of linear subproblems to be solved. As the Rayleigh
number is increased the system becomes more strongly convected and nonlinear.

PROBLEM 4.

(11)
02U 02U
OX2 Oy2 V (X2 0u y2

0u )+ 5--}y -u= y(x,
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defined on the unit square with Dirichlet boundary conditions and right-hand side such that the
vector of all ones is the exact solution. This problem is discretized using centered differences
on a uniform mesh, the parameter 9/= 100, and the parameter/3 is varied to make the problem
more indefinite.

4.1. Krylov solvers. In this subsection we focus on the four Krylov solvers. Due to the
large number ofpossible preconditioner/solver combinations, we limit ourselves to polynomial
preconditioning and use the notation LSn to denote an n term least-squares polynomial expan-
sion. A similar notation is used for the Neumann series. Studies of the various preconditioners
are deferred to the next section.

Before comparing Krylov solvers, it is necessary to first address two algorithmic issues
associated with the GMRES method. The first issue (unique to the parallel environment) is the
choice of orthogonalization procedure: classical Gram-Schmidt or modified Gram-Schmidt.
The second issue corresponds to choosing the Krylov subspace size so that the convergence
rate and the time per iteration are balanced to yield the fastest overall solution time (see
2). Figure 5 illustrates the GMRES results using both modified and classical Gram-Schmidt
orthogonalization with a variety of subspace sizes for Problem 1. The results shown in the
figure are typical of GMRES behavior. Specifically, we have not encountered a PDE problem
that required significantly fewer GMRES iterations using modified Gram-Schmidt as opposed
to classical Gram-Schmidt. Thus, when comparing CPU times, the classical Gram-Schmidt
procedure requires less time per iteration and therefore outperforms the modified Gram-
Schmidt procedure (1.5 times faster for rn 150 in Fig. 5). Unless otherwise stated, the
GMRES results in the remainder of the paper correspond to using classical orthogonalization.
When we wish to distinguish between the two schemes, we use the notation GMRESc and
GMRESM to denote the use of classical and modified Gram-Schmidt, respectively. While
our examples do not indicate a need for a more stable orthogonalization procedure, it may be
worthwhile to consider some combination of classical and modified Gram-Schmidt to obtain
better stability properties without significantly increasing the time per iteration. We, however,
do not pursue this topic any further.

Unfortunately, the situation is not as clear for the choice ofKrylov subspace size. In partic-
ular, the optimal size is problem dependent, preconditioner dependent, and grid size dependent.
Thus, it is difficult to find a nearly optimal subspace dimension without experimentation. For
the problem corresponding to Fig. 5, the optimal subspace size is approximately 50 for the
least-squares preconditioner, while the Neumann series works best with a subspace size of 90.
From our experience we have generally found that a Krylov subspace size of 64 works well
on a variety of problems. However, there are some situations that require bigger subspace
sizes to reduce CPU time and in some cases to obtain convergence. In the remainder of the
comparison we attempt to present representative results for the restarted GMRES method by
selecting appropriate values for m.

We now consider the performance of the different Krylov algorithms using representative
preconditioners. In these examples we select the initial guess as the zero vector and take the

0 vector as a random vector in the CGS, Bi-CGSTAB, and QMRCGS methods. To determine
convergence we require the residual normalized by IIAII to be less than 10-6. This choice
was influenced by the nonlinear problem, since requiring a significant reduction in the initial
residual can be problematic when the initial guess is quite accurate. In the CGS and Bi-
CGSTAB solvers we use the naturally occurring Ilrl12 measure of the residual, and in the
GMRES method we use the estimate suggest by Saad and Schultz [21 ]. In QMRCGS, we use

It is possible, however, to create linear systems illustrating the superior numerical properties of modified Gram-
Schmidt.
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FIG. 5. Convergence ofGMRESfor Problem on a 256 x 256 grid with 256 processors.

the bound lrmll _< m / rm to estimate this quantity at the mth iteration as suggested by
Freund [8]. After satisfying the above criteria we compute the value of the true residual to
verify convergence of the solver.

In Tables 1-4 we present timings for the four parallel Krylov methods on the different
PDE test problems. The times given in the tables correspond to the time needed for the
solution algorithm as well as the scaling. However, it should be noted that the time to create
the matrices (whose entries are computed locally in parallel on each processor) is insignificant.
With the possible exception of GMRES using modified Gram-Schmidt orthogonalization, all
the solvers are highly parallelizable. In Table 1, speedups are given corresponding to Problem
1. Most of the solvers attain speedups between 5 and 6 where speedup is defined relative to
the 128-processor run time as
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T128

and Tp is the time required using p processors. These speedups compare quite favorably
with the theoretical maximum of 8 (especially when one takes into account that the grid size
is quite modest compared to a three-dimensional application). Unfortunately, the GMRES
method using modified Gram-Schmidt attains a speedup of only 2.6 due to the large number
of message startups. In the remainder of the tables we consider only the classical GMRES
method. It should also be noted that the QMRCGS, CGS, and the Bi-CGSTAB methods
are rather sensitive to roundoff error. As a consequence, the number of iterations required
for convergence changes as the number of processors changes. This behavior explains the
apparent superlinear speedup shown in Table 1. If the speedups for CGS and Bi-CGSTAB
are calculated using the time per iteration (instead of entire solution time), the superlinear
speedups do not appear.

TABLE
Time (CPU seconds) and speedups (relative to 128 processors) using LS3 preconditioning on a 512 x 512 grid

for Problem 1. GMRES using a Krylov subspace size of64 before restarting.

Procs\ Solver

128
256
512
1024

CGS

Time Sp
72.1 1.0
34.5 2.1
19.8 3.6
12.1 6.0

Bi-CGSTAB

Time Sp
59.5 1.0
28.2 2.1
17.9 3.3
10.9 6.0

QMRCGS

Time Sp
66.0 1.0
35.3 1.9
20.6 3.2
13.2 5.0

GMRESc

Time Sp
181.9 1.0
96.2 1.9
53.9 3.4
32.5 5.6

GMRESM

Time Sp
215.3 1.0
135.6 1.6
98.9 2.2
82.8 2.6

TABLE 2
Time (CPU seconds) and iterations using LS preconditioning for Problem 2 on a 256 x 256 grid with 256

processors. The GMRES method uses a Krylov subspace size of 128 before restarting.

Solver

0.01
0.1
1.0
10.0
100.0

CGS

Time Its.

7.0 342
6.8 331
16.2 792
18.3 897
17.6 861

Bi-CGSTAB

Time Its.

4.7 207
5.0 221
10.2 445
18.8 832
30.5 1258

QMRCGS

Time Its.

7.0 291
7.7 322
17.9 754
22.0 931
16.7 707

GMRES

Time Its.

14.8 291
16.3 325
32.2 620
62.5 1216
68.4 1327

TABLE 3
Time (CPU seconds) and iterations using LS9 preconditioning for Problem 3 on a 256 x 256 grid with 1024

processors. The GMRES method uses a Krylov subspace size of 175 before restarting.

Ra \ Solver

103
104
5 x 104

CGS

Time Its.

90.8 872
215.8 2094
658.1 6436

Bi-CGSTAB

Time Its.

63.8 590
179.4 1692
681.1 6496

QMRCGS

Time Its.

75.8 697
176.9 1647
571.0 5374

GMRES

Time Its.

308.1 3254
619.9 6219
1823.2 18271
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T,BtE 4
Time (CPU seconds) and iterations using LS3 preconditioning for Problem 4 on a 256 256 grid with 256

processors. The GMRES method uses a Krylov subspace size of 175 before restarting.

Solver

100.0
200.0
300.0
400.0
500.0

CGS

Time

7.5
10.8
22.5
22.9
8.7

Its.

216
313
654
665
1124

Bi-CGSTAB

Time Its.

13.3 363
16.9 461
18.4 499
26.8 731
45.1 1237

QMRCGS

Time Its.

7.9 209
9.8 259
22.3 591
22.5 597
25.1 666

GMRES

Time Its.

18.4 268
21.7 305
38.7 516
50.6 682
> 600 > 9000

In terms of overall solver performance GMRES is usually the slowest. In fact, it is often
two or three times slower than the other methods. Additionally, large Krylov subspace sizes
are sometimes needed to obtain any convergence. For example, in Table 3 the solution times
are given for the nonlinear convection problem with increasing Rayleigh numbers. Increasing
the Rayleigh number effectively makes the problem more nonlinear and more convective in
nature. Even for the smaller Rayleigh numbers, a Krylov subspace size greater than 100
is needed to obtain convergence in a reasonable number of iterations. Furthermore, for a
Rayleigh number of 5 x 104, convergence is still not obtained using a Krylov subspace size
of 175. That is, the GMRES method is not only slower, but it often does not converge when
the subspace size is not large enough. We should note, however, that the time differential
between GMRES and the other solvers drops substantially (see Table 10) as more effective
preconditioners are used.

For many problems we have observed that the Bi-CGSTAB method is slightly faster than
both the CGS and the QMRCGS schemes. However, there are situations where Bi-CGSTAB
performs noticeably worse. For example, in Table 4, we see that the Bi-CGSTAB method
deteriorates as the magnitude of/ is increased. This increase in/ effectively makes more
of the eigenvalues associated with the discrete operator negative. The net result is that all
the methods degrade as/3 increases. However, the degradation is most pronounced with the
Bi-CGSTAB scheme. Similar behavior is observed in Table 2 where Bi-CGSTAB is almost a
factor of two slower than QMRCGS for V 100.0. In this case, the large value of V produces
an unstable discretization. While this instability does not greatly affect CGS and QMRCGS, it
causes a large deterioration in the Bi-CGSTAB performance. Though unstable discretizations
should generally be avoided, this example illustrates the greater sensitivity of the Bi-CGSTAB
method to the specific nature of the equations.

Overall, there is no clear winner between the iterative solvers. For the most part, the GM-
RES method is the slowest. Typically, Bi-CGSTAB is slightly faster than CGS and QMRCGS
(though it can sometimes be a lot slower on some hard problems). Finally, the run times of
CGS and QMRCGS are usually quite close and in the worst case are only slightly longer than
the fastest overall run time.

4.2. Preconditioning. The overall performance of a variety of preconditioners is de-
picted in Tables 5-8 using the Bi-CGSTAB method. In the tables, the following notations are
used for different preconditioners: Jac, Jacobi; RBGS, red-black Gauss-Seidel; mg[rbgsl],
V cycle multigrid with one pre- and post-Gauss-Seidel sweep; mf, multilevel filtering; LILU,

6Only the Bi-CGSTAB method is used to simplify the presentation. The Bi-CGSTAB results are representative
of preconditioner performance. However, it should be noted that the performance of the GMRES method is usually
improved more substantially by preconditioning than the other schemes.
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local ILU; and lineGS, alternating red-black line Gauss-Seidel. The time for the Jacobi pre-
conditioned system essentially corresponds to the time for just using Bi-CGSTAB without
preconditioning since the time required to diagonally scale the matrix is insignificant. While
the results vary significantly, it is still possible to draw some general conclusions. The most
important of these is that preconditioning does strongly influence the overall solution time.
Overall, the global multilevel schemes frequently provide the "best" performance boost. In
particular, the multigrid and multilevel filtering schemes often reduce solution times drasti-
cally when compared to local schemes (even though they require more communication and are
somewhat more difficult to efficiently parallelize). This reduction is evident in Table 5 where
the run time for Problrm drops from 961.3 to 66.0 seconds when comparing Jacobi versus
multigrid preconditioning on 64 processors. Unfortunately, the parallel efficiency associated
with multigrid preconditioning can be rather 10w on problems with small grids. For exam-
ple, the time per iteration using multigrid preconditioning in Table 7 is quite high relative to
that for Jacobi. This is essentially due to the inherent inefficiency associated with processing
the coarse grids. Additionally, multilevel methods attain their speed by making assumptions
about the underlying structure and behavior of the differential operator (e.g., that the PDE
operator is elliptic). Even for elliptic problems with irregular behavior, the performance can
drop off significantly unless more "specialized" techniques can be incorporated (e.g., near
boundaries, interfaces, boundary layers, singularities, etc.). Therefore, it is not surprising that
the multiple level methods do not perform well on problems such as Problem 2 (Table 6) for
large 9/and Problem 4 for large/3 (Table 8). Further line relaxation techniques are often used
to produce more robust multigrid algorithms. Unfortunately, implementation of an efficient
parallel tridiagonal solver (see 3) is quite difficult. Thus, the resulting multigrid method with
line relaxation is slow (see Table 6, , < 1.0) as the time per iteration is large. We are currently
looking into some promising new multigrid algorithms which make use of semicoarsening
techniques (see [16] and [17]) to produce a more efficient parallel robust multigrid method.

TABLE 5
Time (CPU seconds)for Bi-CGSTAB on a 1024 1024 gridfor Problem 1.

Precond\procs 64 256 1024 1024"
Jac 961.3 325.2 73.7 114.3
RBGS 1324.4 346.0 108.0 129.2
LS1 984.0 279.6 61.3 97.9
LS3 735.9 185.0 53.9 89.4
LS9 774.7 188.4 51.5 89.0
NS1 1011.9 252.5 61.7 94.7
LILU 355.2 101.2 116.7
mg[rbgs 66.0 18.5 6.1 6.5
mf 99.4 27.9 8.9 9.5
Not enough memory

* Without assembly coded matrix-vector multiply

Although local preconditioners are sometimes much slower than the multilevel schemes,
their performance is much more uniform over a wider range of problems; they are easier to
implement for a broad class of problems; and they can still reduce the overall run time by
a substantial amount. For example, in Tables 6-8, it is apparent that a number of the local
schemes perform well in comparison with the standard multilevel methods on these difficult
problems. In addition, from Table 5 it is clear that as the number of processors increases, the

7There is some debate as to whether multigrid is best used alone or as a preconditioner. In this paper, we ignore
this debate and simply illustrate the multigrid preconditioning results.
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TABLE 6
CPU time (iterations) for Bi-CGSTAB for Problem 2 on a 256 256 grid with 256 processors.

Precond\V 0.01 1.0 10.0 100.0

Jac 6.8(443) 14.0(895) 22.1(1468) zero inner*
RBGS 15.5(445) 11.9(351) 23.1(689) 38.2(1110)
LS0 5.9(395) 12.5(815) 21.8(1460) 91.7(5508)
LS1 4.7(207) 10.2(445) 18.8(832) 30.5(1258)
LS9 5.3(67) 9.4(119) 18.2(232) zero inner
l’qS1 4.8(194) 10.5(425) 18.5(762) 30.3(1171)
LILU 9.8(180) 14.9(277) 17.4(323) 12.2(224)
LineGS 50.8(70) 90.0(124) 97.9(135) 93.6(129)
mg[rbgsl] 7.7(29) 10.8(41) 35.8(136) failed

mg[LineGS] 11.1 (4) 19.4(7) failed failed
mf 7.1(49) 14.8(104) 32.3(226) failed

Indicates that the method breaks down with a zero inner product resulting
in a divide by zero. Freund and Nachtigal [9] have proposed look-ahead
techniques that overcome this problem within the QMR algorithm.

TABLE 7
CPU time (iterations) for Bi-CGSTABfor Problem 3 on a 128 128 grid with 256 processors.

Precond\ Ra 103 10 5 10 105
Jac 37.6(1736) 82.8(4101) 128.7(6540) 318.9(16000)
RBGS 38.4(879) 73.3(1705) 140.9(3315) 283.9(6722)
LS9 41.7(384) 112.2(1059) failed failed
NS1 35.8(1160) 105.8(3570) 413.3(14193) 732.0(25386)
LILU 77.9(928) 98.4(1492) 182.5(2813) 234.5(3655)
mg[rbgsl] 24.6(62) 40.1(118) failed failed

TABLE 8
Time (iterations) for Bi-CGSTABfor Problem 4 on a 256 256 grid with 256 processors.

Precond\/3 100.0 200.0 300.0 400.0 500.0

Jac0bi 22.2(1511) 48.9(3329) 64.0(4340) 112.1(7617) failed
RBGS 24.4(732) 39.4(1181) 58.5(1755) 68.3(2043) 77.9(2339)
LS0 17.9(1214) 58.4(3962) 49.3(3326) failed failed
LS1 14.1(627) 28.0(1243) 36.3(1616) 63.5(2796) 91.1(4049)
LS9 11.6(147) 11.3(143) 25.3(322) 26.1(333) zero inner
NS1 11.9(4911) 25.6(1059) 36.2(1496) 48.9(2023) 57.2(2371)
LILU 28.1(531) 39.4(747) 76.5(1446) 78.5(1492) 151.5(2894)
LineGS 269.0(371) 313.2(432) 412.5(569) 514.1(709) 933.7(1288)
mg[rbgs 1] 16.4(62) 104.4(397) 269.4(1025) 111.5(424) 89.5(340)
mg[LineGS] 27.7(10) 102.1(37) 140.8(51) failed failed

CPU time reduction relative to the local methods decreases for a fixed size problem. This
decrease in relative performance is due to the higher communication costs associated with the
global exchange of information at each iteration for the global preconditioners. In this sense
the local methods can be seen to scale more effectively to large number of processors for a
fixed size computational problem.

Among local preconditioners, least-squares polynomials perform the best over a wide
range ofproblems despite the simplified criteria used to determine the polynomial coefficients
(see 3.1). This can be seen in Tables 5-8 as well as in Fig. 6 where the time and number of
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iterations for Problem are given as a function of polynomial degree. As Fig. 6 illustrates, the
use of high-order polynomials greatly reduces the total iterations (and hence the number of
global inner products). This reduction, however, comes at the cost of increasing the number
of local matrix-vector operations. Thus, the overall performance is a function of the cost dif-
ferential between local matrix-vector computations and global inner products. On massively
parallel machines such as the nCUBE2, the matrix-vector product is relatively inexpensive and
hence high-order polynomial preconditioners are often effective. In the parallel computing
environment it is definitely an advantage to have the ability to easily alter the balance of local
and global data flow to suit parallel machines with differing computation/communication char-
acteristics. Additionally, we remark that the polynomial preconditioners generally outperform
Gauss-Seidel preconditioning. This is partially a function of code optimization and partially
a function of communication requirements. In particular, an assembly coded matrix-vector
multiply routine is used for the polynomial methods, but only a standard C code is used for
the Gauss-Seidel routines. In the optimization of the sparse matrix-vector routine, the best
standard C code performed at about .8 Mflops and the assembly code ran at 1.3 Mflops per
node. There are essentially three reasons that we believe it is justified to use of the assembly
coded matrix-vector multiply routine in our results. The first and possibly the most important
reason is that all the preconditioned solvers benefit. This is evident from Table 5 where we
present results for the nonassembly coded results with the optimized assembly code. It is
apparent that the use of assembly code has not significantly changed the relative performance
of the various preconditioners. In addition, the matrix-vector kernel is a very simple routine
that can be easily optimized. And finally, highly optimized versions of standard format sparse
matrix-vector multiplies are now being developed for specific machines by vendors [12]. In
terms of communication overhead, polynomial methods do not require any type of multicol-
oring and, therefore, incur fewer costly message startups per iteration than does Gauss-Seidel
preconditioning.

Finally, we discuss the local ILU method that lies somewhere between a local and a global
preconditioner. The classic ILU scheme is among the most popular preconditioners on serial
machines. This scheme is relatively easy to implement and can be designed so that the amount
of work per iteration (which is closely tied to the amount of fill-in) can be controlled by a
few simple parameters. In this way, it is possible to adjust the ILU scheme according to the
difficulty of the problem being solved. It is often the case that on some difficult problems,
only the ILU preconditioner will yield satisfactory results. Unfortunately, the classical ILU
algorithm (using natural ordering) does not parallelize well, and so we use the local ILU
method discussed in 3. Since this LILU scheme ignores coupling between grid points that
reside on different processors, one might expect that its convergence rate would be slower than
standard ILU. However, in many problems this convergence degradation is quite small. In
Table 9 we illustrate this effect using different numbers of subdomains (processors). From the
table it is clear that the convergence degradation of the LILU preconditioner on this problem
is only slight and is more than offset by the high degree of parallelism. By comparison with
the polynomial preconditioners (see Table 10), the resulting LILU speedups are respectable.
While the overall run time is competitive with unoptimized polynomial preconditioners, its
performance is somewhat mediocre compared to the highly optimized polynomial schemes.
However, if one optimizes the LILU it should run quite competitively with the other methods.
Unfortunately, this optimization is fairly difficult.

We conclude our evaluation by considering the performance of the nCUBE 2 using these
solvers on large problems. In particular, we wish to determine the megaflops and scaled
speedups that one can expect to obtain using these highly parallel solvers and preconditioners
on parallel machines. Specifically, scaled speedup is defined as
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FIG. 6. Convergence ofGMRES and Bi-CGSTABfor Problem on a 1024 x 1024 grid with 1024 processors
varying the degree P) of the polynomial preconditioner.

TABLE 9

Performance ofLILU preconditioner on an 80 x 80 gridfor Problem 1.

Processors
Iterations 501 52, 55 57 58 59 167 67 73 84 91

pT1

where Tp is the time required to complete one iteration of the problem with p n unknowns us-
ing p processors 11 ]. From Table 10 we see that extremely high scaled speedups are obtained
for all of the solvers. The majority of the methods and preconditioners achieve speedups of
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TABLE 10
CPU time (iterations), scaled speedups, andMflopsfor Problem 1. The GMRES method uses a Krylov subspace

size of64 before restarting.

Algorithm\ Procs 256 (512 x 512 grid

Time

CGS: JAC 41.5 (1265)
RBGS 55.1 (599)
LS,3 34.5 (353)
LS,9 33.5 (152)
LILU 64.9 (462)
mg(rbgs 1) 5.3 (8)
mf 7.5 (20)

CGSTAB: JAC 35.6 (983)
RBGS 45.0(475)
LS,3 28.2 (280)
LS,9 33.1 (148)
LILU 49.2 (339)
mg(rbgs 1) 6.5 (10)
mf 8.3 (22)

QMRCGS: JAG 46.9 (1165)
RBGS 58.8 (595)
LS,3 35.3 (335)
LS,9 32.8 (143)
LILU 64.2 (431)
mg(rbgs 1) 4.4 (6)
mf 6.4 (16)

GMRES: JAC 599.6 (6993)
RBGS 232.4 (2013)
LS,3 96.2 (814
LS,9 38.6 (215)
LILU 148.6 (1062)
LineGS 825.9 (751)
mg(rbgs2) 4.3 (8)
mf 5.4 (23)

1024 (1024 x 1024 grid)

S Mflops Time S Mflops

231 289 77.0 (2297) 903 1127
239 154 118.9 (1286) 949 612
245 279 68.4 (698) 979 1113
250 280 79.5 (361) 1000 1123
239 125 127.8 (918) 963 505
202 62 5.4 (8) 794 244
216 57 8.4 (22) 847 224
230 304 73.6 (1978) 856 1189
237 160 108.0 (1125) 935 635
243 284 53.9 (531) 970 1134
248 283 51.5 (230) 991 1132
234 127 103.2 (720) 946 513
204 66 6.1 (9) 782 253
192 61 8.9 (23) 750 238
228 248 95.5 (2308) 889 963
244 119 138.0(1383) 965 588
247 264 74.0 (698) 981 1048
253 272 63.4 (277) 1015 1090
235 133 135.0 (915) 950 537
205 57 4.5 (6) 800 223
218 55 6.9 (17) 860 216
233 442 2194.5 (25273) 920 1743
234 349 780.0 (6685) 928 1384
243 394 .301.6 (2527) 961 1568
252 352 113.0(619) 997 1414
251 308 468.0 (3340) 1002 1230
158 62 2601.7 (2237) 601 240
174 61 5.4(10) 710 250
225 95 6.1 (25) 890 391

over 900 out of a possible 1024. Even the majority of the multilevel preconditioners that make
heavy use of coarse grids (and so are somewhat less efficient on parallel machines) achieve
speedups over 700. In fact, only the multilevel methods that use the the line relaxation have
poor speedups. Consequently, the majority of the solvers/preconditioners sustain computation
rates of over gigaflop and nearly 2 gigaflops for the GMRES method. This compares quite
favorably with the vendors maximum computation rating of about 2.5 gigaflops for double
precision calculations.

5. Conclusions. We have considered the performance of a variety of preconditioners
and Krylov subspace solvers on massively parallel machines. These methods are among the
fastest algorithms on serial and vector computers. An implementation of the Krylov solvers
and preconditioners was developed on a 1024 processor nCUBE 2. Using this implementation
in conjunction with a selection of PDE problems, a number of performance tests were con-
ducted. Based on these experiments, it is apparent that the Krylov solvers are in fact highly
parallel. Each method yields scaled speedups over 900 (when used with a highly parallel
preconditioner). With respect to numerical convergence, we have found that preconditioning
is much more important with these nonsymmetric methods than with the classical CG algo-
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rithm. Overall, it appears that multilevel preconditioners offer the largest payoff in terms of
convergence rate. In this context, we have shown that algorithmic issues are still important on
large-scale parallel machines and that Mflops do not necessarily tell the entire story. Unfor-
tunately, multilevel schemes can be hard to program and often their exceptional performance
is somewhat problem dependent.

Among local schemes, polynomial methods (in particular high-order least-squares poly-
nomials) significantly accelerate the convergence of the Krylov solvers enabling fast solution
times. These methods combine ease of implementation with the flexibility to alter the balance
between local and global data flow requirements. For the most part, all the preconditioners
discussed in this paper are highly parallel with the exception of the classical ILU and to some
extent the line relaxation. For the line relaxation, it may be possible to improve performance
with a better parallel implementation of the block parallel cyclic reduction or by alternative
algorithms that perform a similar function but make better use of parallel processors. For the
ILU schemes, it is possible to use domain decomposition techniques to maintain parallelism.
In this context we feel that some combination of domain decomposition with globally coupled
interface equations and LILU should be explored for large-scale MIMD machines.
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lineGS preconditioners.
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Abstract. In many scientific computing problems, the overall execution time is dominated by the time to
solve very large linear systems. Quite often, the matrices are unsymmetric and ill conditioned, with an irregular
sparsity structure reflecting the irregular refinement in the discretization grid. With increasing problem size and
problem dimension, direct solvers cannot be used because of the huge memory requirements. The performance of
preconditioned iterative solvers is largely dominated by memory-related aspects like size, bandwidth, and indirect
addressing speed.

This article summarizes the experience of the authors on the relationship between memory aspects and per-
formance in real applications in the domain of very large scale integration (VLSI) device simulation. The authors
analyze storage requirements of direct and iterative solvers on a statistical data set, and demonstrate performance
variations due to memory-related architectural features on a number of computers ranging from workstations to Cray,
NEC, and Fujitsu supercomputers for typical and ill-conditioned linear systems, using different iterative methods and
preconditioners.

The experiments are done using PILS, a package of iterative linear solvers. PILS implements a large number of
iterative methods and preconditioners and allows them to be combined in a flexible way.

Key words, solution of large systems of linear equations, preconditioned iterative methods, software, supercom-
puter performance, semiconductor device simulation

AMS subject classifications. 65Y20, 65F10

1. Introduction. The solution of large systems of linear equations is one of the main
operations inside many large-scale scientific applications. As problem sizes increase, the
linear solver often dominates the total execution time. Sparsity of the system matrix must
be exploited to achieve acceptable efficiency. Irregular sparsity patterns and ill-conditioned
linear systems induce further complexity on the choice of methods and implementations.

There are two basic approaches used to solve large sparse linear systems. Direct methods
use (explicitly or implicitly) a factorization ofthe matrix, where the factors are easily invertible
(e.g., triangular matrices). Iterative methods construct a sequence of approximations that
converges to the solution and stop when a given tolerance is achieved. In 4.1, we analyze
the storage requirements of both approaches on a larger set of practical cases. We analyze
their dependence on the dimensionality of the problem and point out the infeasibility of direct
methods on very large problems. In the rest of this paper, we focus only on iterative solvers.

The performance of scientific codes is usually measured in Mflops (millions of floating-
point operations per second). Our benchmarks in 4.2 show the Mflops performance of
our preferred preconditioned iterative solver over a range of machines from workstations to
supercomputers. Using a set of problems of different sizes, we explain why performance does
not necessarily increase with problem size.

The use of Mflops may be reasonable for applications where a given algorithm is known
to be the "best" and "fastest." It is questionable for solvers targeted towards ill-conditioned
and irregular sparse matrices, as there is no single algorithm that is the fastest for all problems
(even not for all problems among a restricted class, such as the one described in 2). Different
algorithms use a different number of operations to achieve the same result. Also, the same
number of flops requires a different number and different kinds of memory accesses, which
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better suit one architecture or another. We illustrate these variations of the performance by
using different iterative methods in 4.3 and different preconditioners in 4.4.

Periodically, we stumble over certain very ill-conditioned linear systems that standard
preconditioned iterative solvers cannot solve. We have developed several parametrized sets
of preconditioners to solve these difficult problems. In 4.5, we illustrate how the parameters
of these robust solvers affect their speed and their storage requirements.

The experiments in 4 are preceded by an overview of the methods and our context.
Section 2 summarizes the need for linear solvers in our application, semiconductor device
simulation. Section 3 lists those features of the methods, preconditioners, and data structures
that are essential for this study. It also introduces PILS, our software package used both as a
test bed for studies like this and as a solver library for production runs.

2. Context. The present study is part of a large project to analyze and construct new
VLSI semiconductor devices (diodes, transistors, memory cells, thyristors, sensors). Numer-
ical semiconductor device simulation predicts the behavior of such structures by solving a
set of three transient partial differential equations (PDEs), the so-called drift-diffusion equa-
tions [34], over a one-, two- or three-dimensional domain [4]. This system consists ofPoisson’s
equation and two continuity equations for the two carriers in semiconductors, electrons and
holes. The drift-diffusion equations relate the values of the electrostatic potential and the two
carrier concentrations.

The discretization of these PDEs leads to a system of nonlinear equations that is then
solved by damped Newton methods [3], [7] or block variants thereof. Each Newton iteration
requires the solution of a system of linear equations. Several tens of linear systems typically
must be solved in stationary simulations and several hundreds or even thousands in transient
simulations.

Modem device simulators use irregularly refined finite-element grids, where the grid
density in the simulated domainmay vary over several orders ofmagnitude. The number ofgrid
points varies between 1,000 and 20,000 for two-dimensional (2-D) simulations and between
15,000 and 100,000 for three-dimensional (3-D) simulations. The number ofunknowns in the
corresponding linear systems is up to three times as large.

The system of PDEs is known to be extremely nonlinear due to the coupling of the
physical variables in these equations. The linear systems are unsymmetric and tend to be very
ill conditioned. Because of their huge resource requirements, both in storage and computation
time, device simulators must run on high-performance architectures. The linear solver time
is dominating; it takes more than 95% of the total execution time 17]. The irregularity of
the discretization grid leads to an irregular sparsity structure for the matrices. This makes the
task of vectorizing and parallelizing the solver algorithms considerably more difficult than for
regular (e.g., finite difference) discretizations.

For further details about device simulation, please consult 18].

3. PILS. PILS is a software package of iterative linear solvers designed to meet the re-
quirements for solving large linear systems as they occur in applications like device simulation.
PILS implements a large number of iterative methods, preconditioners, and othervariants for
iterative solvers, and runs on a large range of platforms from workstations to supercomputers.
It concentrates on methods and preconditioners suited for very ill-conditioned unsymmetric
systems and on the efficient exploitation of high-performance architectures.

In this section, we will only discuss those aspects of PILS and its algorithms that are
relevant for the present study. More about PILS, its requirements, its features, its structure
and implementation, and its applications can be found in [27]. The methods, preconditioners,
and data structures are covered in detail in [25].
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3.1. Iterative methods. The set of iterative methods implemented in PILS currently
includes conjugate gradients (CG) 19] (for symmetric positive-definite systems only), conju-
gate gradients applied to the normal equations (CGNR) 19], (restarted) generalized conjugate
residuals (GCR) [11], (truncated) Orthomin [35], (restarted) generalized minimal residuals
(GMRES) [30], biconjugate gradients (BiCG) [12], conjugate gradients squared (CGS) [31 ],
Bi-CGSTAB [32], and BiCGStab2 16].

CG applied to symmetric and positive definite systems converges monotonically, has a
constant and low storage overhead, uses the minimum number of matrix-vector products to
reach a residual norm within a tolerance, and cannot break down in divisions by zero. The other
methods can be used for unsymmetric systems as well, but at the price of losing one or more
of these four properties. CGNR is usually much slower than the other methods. GCR(cx),
Orthomin(cxz), and GMRES(cx) need the minimum number of matrix-vector products to min-
imize the residual, but must store another vector at every iteration. In practice, the methods
in this family are usually restarted (GCR(e), GMRES(e)) or truncated (Orthomin(e)). Unfor-
tunately, the limited storage versions usually require many more iterations. Breakdowns do
occur sometimes in GCR and Orthomin, but not in GMRES (which is otherwise algebraically
equivalent to GCR). BiCG has constant and low storage requirements, but has an irregular
convergence behavior. If BiCG converges, CGS usually converges much faster, but its con-
vergence behavior is also much more erratic. Bi-CGSTAB and BiCGStab2 are usually about
as fast as CGS, but have a smoother (yet not monotonic) convergence behavior. The methods
in the BiCG family can break down, but breakdowns are quite infrequent and can usually be
fixed by restarting the method.

Table lists the storage requirements and the types of operations involved.

TABLE
Storage overhead and (average) operation count per iteration for the different iterative methods, n is the

problem size, k is the number ofiterations neededfor convergence, g. is the truncation or restarting parameter. Minor
terms are ignored (assuming that n >> k >> 2).

Method

Storage
overhead Matrix- Transposed
(extra vector matrix-
values products vector
to store) products

Operations per iteration
Vector Linear
dot operations

products on vectors

CG 2n 2 6
CGNR 2n 2 6

Orthomin(x)
GCR(x)
GMRES(cx)
Orthomin(e)
GCR(e)
GMRES(e)

BiCG
CGS

Bi-CGSTAB
BiCGStab2

(2k+ 1) n

kn
(2e+ 1) n

(2e+ 1) n

gn

4n
6n
4n
7n

1/2 k + 2.5 k + 4.5

1/2k + 1.5 k + 3.5
+2 2+4
1/2+2 +4

1/2e+l
2 10

2 2 12
2 4 12
2 4.5 18.5

3.2. Preconditioners. Preconditioning significantly improves the convergence speed
of all the methods above. A preconditioned iterative method solves the linear system
[Q-{1AQI] [O2x] [o]-lb]. The preconditioner O Q1Q2 is chosen such that itera-
tive methods converge in substantially fewer iterations than on the original system Ax b.
Generally, a preconditioner is an approximation to the matrix that is more or less inexpensive
to construct and to invert.
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Most of the preconditioners in PILS can be viewed as incomplete LDU-factorizations. A
complete factorization of the matrix A into the product of the unit lower triangular matrix L,
the diagonal matrix D, and the unit upper triangular matrix U can be computed by

(1) i > j" lij
djj

aij likclkukj
k=l

(2) ’v’i < j’uij dii aij- likdkkUkj

i-1

(3) ti dii aii Y likdkkUki.
k=l

Incomplete factorizations are obtained by simplifying the factorization rules (1)-(3). Ja-
cobi (or diagonal) preconditioning is the most radical simplification, approximating A by
its diagonal only. Symmetric successive overrelaxation (SSOR) preconditioning ignores the
summations in (1)-(3). D-ILU preconditioning ignores the summations in (1) and (2), but
uses the complete summation for the diagonal in (3). ILU preconditioning [21], [11] uses
all three formulae (1)-(3), but keeps the same sparsity structure as A; a zero in A imposes a
zero in the same position of the ILU factors. Table 2summarizes the resource cost of these
four preconditioners. The low cost in applying SSOR or D-ILU preconditioners results from
a clever combination of the operations for a preconditioned matrix-vector product, known as
the Eisenstat trick 10].

TA3I.E 2
Storage overhead and number of extra flops for the different no-fill incomplete factorization preconditioners.

n is the problem size, m is the number of nonzeros in the original matrix. An unpreconditioned matrix-vector

multiplication takes m multiplications and (m n) additionsfor a total of (2m n)flops.

Preconditioner

Jacobi
SSOR
D-ILU
ILU

Storage
overhead
(extra
values

to store)

Computational overhead (flops)
Construction Application
Q : A w :--- Q-iv
(once per (once or twice

linear system) per iteration)
0 n
0 5n- (m n) 5n

O(m2/n) 2m n

While the incomplete factorizations discussed above conserve the sparsity structure of
the original matrix, other variants in PILS allow some limited fill of nonzero entries in the
factors. ILU(k) uses a positional dropping criterion (based on the elimination tree, as suggested
in [5]) to select fill entries; higher values of the integer parameter k allow for more fill.
Another approximate factorization preconditioner in PILS uses numerical dropping with a drop
tolerance r and is referred to as ND(r) [2], [13], [25], [27], [28], [37]; nonzero entries whose
absolute value is smaller than the tolerance times the row or column maximum are dropped
from the factorization. The overhead of these preconditioners depends, in a monotonic but
nontrivial way, on their parameter.

1D-ILU is equivalent to ILU on sparsity structures resulting from tensor-product grids (or any other graph
containing no triangles). Since many authors use only finite difference discretizations on such regular grids for their
experiments, these two variants of no-fill incomplete LDU-factorizations are often confounded.
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Nested iterative solvers form another class of preconditioners in PILS. Every iterative
solver in PILS can be used to precondition another iterative method. This nesting can be taken
to any level, and the innermost iterative method can again be preconditioned by an incomplete
factorization. Nested iterative solvers using variants ofGCR as the outer method and GMRES
as the inner method have been introduced and analyzed under the name GMRESR by van der
Vorst and Vuik [33]. Other variants for the inner method were investigated in [36].

We use incomplete factorizations mostly as a split preconditioner (Q1 L, Q2 DU)
and nested solvers as a right preconditioner (Q1 I, Q2 Q).

3.3. Sparse matrix data structures. PILS applies a multicolor reordering (using a
greedy coloring heuristic [1], [26]) to vectorize and parallelize the no-fill incomplete fac-
torization preconditioners. A jagged diagonal sparse matrix structure [29] helps to vectorize
sparse matrix-vector multiplication. To make transposed matrix-vector products (as needed
in CGNR and BiCG) as efficient as regular matrix-vector products, the set of edges corre-
sponding to each jagged diagonal forms a matching [23] in the graph representing the sparsity
structure of the matrix. The data structure in PILS allows efficient and vectorizable precondi-
tioned matrix-vector multiplication with the preconditioned matrix itself and its transpose. It
stores the lower and the upper triangle of the matrix by color blocks, each block using jagged
diagonals that form a partitioning by matchings of the corresponding edges of the associated
graph.

Each iteration of the inner loops processing this data structure consists of one multiplica-
tion and one addition, together with five memory accesses. One of these memory accesses is
indexed and requires gather/scatter operations on vector machines.

PILS uses different, specialized data structures for factorizations with parameter-controlled
fill. Because of their higher complexity, operations on these data structures run essentially in
sequential mode.

3.4. Application. PILS is fully integrated into several device simulators [6], [17], [18],
[20], [22], and other applications, and has been used in many different problems over a period
of more than two years. The options for PILS, usually controlled from the client application,
can be modified externally even while the application is running. In case a given combination
of a method and a preconditioner cannot solve a system within a given number of iterations,
PILS can switch automatically to another (usually more resource intensive, but more stable)
combination.

All the experiments presented in this paper were conducted using PILS and its monitoring
options. The linear systems were extracted from real-life device simulations. They were
selected to reflect the typical characteristics of linear systems in device simulation, including
some very ill-conditioned cases.

4. Experiments. In 4.1, we analyze the effect that problem size and grid dimension
have on the storage requirements of direct and iterative linear solvers. We then fix the solution
approach (iterative solvers) and list, in 4.2, the Mflops rates of one particular preconditioned
iterative method on a set of machines and on a representative set of linear systems. In 4.3,
we select one typical linear system and analyze the speed and performance of several iterative
methods applied to this problem (using the same preconditioner). We fix the iterative method
in 4.4 and apply it with different preconditioners to that same typical system. In 4.5,
we examine convergence speed and storage requirements of different preconditioners on a
difficult, ill-conditioned linear system.

While 4.1 presents a statistical analysis on an impartially collected data set, the examples
in 4.2-4.5 were selected by hand as typical cases. Among the many thousands of linear
systems we solved over the last years, we would be able to select examples for almost any
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reasonable or unreasonable claim, such as the superiority of any given method over any other
given method, or the particular quality of a machine. The reader must trust that our selection of
examples truly reflects the typical behavior over the various applications in device simulation.
An impartial statistical analysis on a significant data set would be too expensive, and large
variances on the results would overshadow any of the observations that we point out in 4.2-
4.5.

Until now, our experience has been that the fastest linear solver for most problems in
semiconductor device simulation is the Bi-CGSTAB method [32], split preconditioned with
D-ILU 18], [27]. This method and preconditioner will therefore be used in those experiments
where other things are varied.

4.1. Varying the approach. The alternatives to iterative solvers are sparse direct solvers.
Direct solvers are often preferred over their iterative counterparts because of their reliability
and predictability; they are numerically stable (at least if numerical pivoting is used) [8], and
they take constant time and storage for a given sparsity structure (at least if numerical pivoting
is not used). Solving for more than one right-hand side costs very little.

Most direct solvers are based on variants of Gaussian elimination. They construct a lower
triangular matrix L and an upper triangular matrix U such that LU A. The triangular
factors L and U are also sparse, but usually more dense than the original matrix. Nonzeros
in the factors appearing at zero positions of the original matrix are called fill. Reordering
of the equations can reduce the amount of fill. The problem of computing the ordering that
minimizes the fill is NP-complete. Heuristics like reverse Cuthill-McKee, nested dissection,
or minimum degree and variants are used instead [14], [15]. Numerical stability, storage,
efficiency, and parallelism are usually traded for one another [9].

The amount of fill increases superlinearly with the problem size and with the dimension-
ality of the problem. The fill for a matrix arising from a 3-D discretization is higher than for
a matrix from a 2-D discretization with the same number of grid points. It is the combination
of these two growth factors that makes the storage requirements of sparse direct solvers an
issue when passing from 2-D to 3-D models.

Figure compares the memory requirements for direct and iterative linear solvers. The
fill was determined without actually performing the factorization on all the examples (no
machine available to us has enough memory for the large 3-D cases), but an algorithm with
minimal storage [5] was assumed, using nested dissection ordering 14] to reduce the fill. The
analysis involved 224 nontrivial examples from device simulation, using the matrices from
the coupled Newton solution, and assuming 8-byte floating-point and 4-byte integer numbers.

In the double logarithmic plot of Fig. 1, the sample points for each of the assorted
categories lie close to a line. We can thus state an empirical law of fill given by

(4) s =/znV,

where s is the amount of storage for a given number of unknowns n. Table 3 gives the values
obtained from our empirical study.

The largest 2-D discretizations for semiconductor devices rarely exceed Ok grid points,
and thus 30k unknowns for coupled linear systems (cf. 2). Direct solvers for such 2-D prob-
lems fit into 100 Mbytes of memory, which are usually available on departmental computers
or in medium-size batch queues of supercomputers. On the other hand, iterative solvers for
such 2-D problems fit into some 8 Mbytes available on any workstation. Direct solvers for

2Our data set used 172 2-D grids and 52 3-D grids for different kinds of semiconductor devices. In fact, these
were all of the distinct nontrivial grids that were on disk at the Integrated Systems Laboratory of ETH on October 9,
1991. PILS was running inside the multidimensional device simulator SIMUL [20].
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FIG. 1. Sampled storage requirementsfor direct and iterative solvers.

TABLE 3
Empirical valuesfor the storage requirementformula (4).

Grid Type of Factor/z Exponent v
dimension solver [bytes/unknown]

2-D iterative 167 1.02
2-D direct 63 1.32
3-D iterative 156 1.04
3-D direct 9 1.64

average size 3-D simulations can run only on very large computer memories, and no ma-
chine available today could accommodate truly large 3-D problems with several hundreds of
thousands or even millions of grid points. Iterative solver storage requirements, even for 3-D
problems, still increase linearly with problem size. At least for such large 3-D problems, there
is no choice: direct methods are infeasible because of their storage requirements, and iterative
solvers must be used.

The number of operations required to perform the factorization grows even faster than the
storage requirements. Timing comparisons between the two choices show that for grid sizes
above a certain crossover point, iterative methods are more efficient 18]. Such a comparison
will always be biased, because it involves many parameters from the problem, the accuracy
requirements, the implementation, and the platform, but the critical grid size is certainly much
lower for 3-D than for 2-D.

4.2. Varying the machine. Table 4 reports the Mflops rates for one algorithm (split
D-ILU preconditioned Bi-CGSTAB) when applied to the same set of problems on different
machines. The differences in the performance clearly reflect the classes that these machines
belong to: previous generation microprocessors, today’s microprocessors, minisupercomput-
ers, and supercomputers.
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TABLE 4
Mflops rates for split D-ILU preconditioned Bi-CGSTAB on different machines. Exceptfor the Alliant, only

one processor was used on each machine. Missing results indicate that thefloating-point range, the virtual memory,
or the maximum contiguously allocatable chunk ofmemory was too small on the machine at hand.

Problem
Unknowns

Nonzeros/row
Grid dimension

lddh uvdih bp25e drl5c mct70c
2,7k 22k 26k 47k 210k
6.9 6.5 9.1 21 20
2-D 2-D 3-D 3-D 3-D

Sun-3/280
Sequent $81 (i386 + fpa)
DEC system 5500
Sun SparcStation 1+
Sun SparcStation 2
Sun-4/490
Sun Sparc 10
IBM RS6000
SGI Mips R3000
SGI Mips R4000
DEC Alpha
HP 9000
Alliant FX/80 (6 procs.)
Convex C-220
Convex C-3820

Cray-2
Cray Y-MP M92
Cray Y-MP 4D
Cray C98
NEC SX-3/22
Fujitsu VP2200

0.10 0.10
0.20 0.18 0.18 0.16

1.98 1.46 1.33
1.05 0.93 0.92
1.87 1.48 1,47 1.28
1.85 1.61 1.58 1.44
5.05 3.42 3.22 2.90
5.22 3.46 3.57 2.70
3.52 2.11 2.05 1.70
6.42 4.58 4.39 3.94
9.86 6.61 6.60 5.92
12.13 7.38 7.30 6.11

1.27
1.98

1.21

4.17

5.09 3.65 3.55 3.46 2.53
7.79 8.00 7.36 6.76 6.85
19.25 20.43 19.08 14.42 14.54
37.28 38.29 31.73 26.61 28.73
57.77 60.47 52.28 47.78 48.19
105.42 126.83 114.50 103.55 106.18
207.46 256.21 210.48 201.06 210.81
156.53 197.43 142.03 136.49
109.15 126.32 96.94, 101.49

The problem size (i.e., the number of unknowns) increases from left to right in Table 4.
The performance does not always improve with increasing problem size; rather, the opposite
is more often the case. There are two reasons for this effect and both are related to memory
access speed.

First of all, the average number of nonzeros per row differs in the five examples. The
two problems on the left of Table 4 come from 2-D simulations, the other three come from
3-D simulations. Also, the first three problems involve one unknown per grid point, the two
others involve three unknowns per point. More nonzeros per row lead to a higher percentage
of indirect memory accesses (inside the sparse matrix operations), which are generally slower
than the direct (and even sequential) accesses in the rest of the operations.

For problems with approximately the same number of nonzeros per row ("lddh" and
"uvdih," "drl5c" and "mct70c"), a positive effect of problem size on performance can be
observed for the six machines at the bottom of the table. On other machines, the performance
still decreases, and this is because the cache hit ratio decreases.

Note also the difference in performance between the two variants of the Cray Y-MP
architecture. The two machines have exactly the same processor and clock frequency, and
differ only in their memory performance: the Y-MP 4D has 128 banks of fast 17ns ECL
memory, while the more economical Y-MP M92 uses 64 banks of slower 60ns DRAM.

When iterative method and preconditioner are fixed, the Mflops rate does give an appre-
ciation of the relative speed of different machines. However, problem size and matrix density
have a significant effect on performance. This effect is not explained by the sole computation
speed (or peak performance), but by various architectural features like memory bandwidth
and cache size.
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4.3. Varying the iterative method. Table 5 shows the performance of different iterative
methods when used with the same preconditioner (split D-ILU), executed on the same machine
(one processor of a Cray Y-MP 4D), and applied to the same problem (a typical, moderately
ill-conditioned system with 46k unknowns taken from the 3-D simulation of a trench DRAM
cell inside the simulator SECOND 17], 18]).

T,BLz 5
Performance ofdifferent split D-ILU preconditioned methods on one processor ofa Cray Y-MP 4D.

Performance Convergence Time
Method [Mflops] [iterations] [seconds]

CGNR
Orthomin(cx)
GCR(cx)
GCR(cz)

GMRES(cx)
Orthomin(10)
GMRES(10)

BiCG
CGS

Bi-CGSTAB
BiCGStab2

98 >400

194 89 6.89

123 361 12.16
188 89 5.15
148 >400
116 388 12.24

100 140 7.18
100 78 4.09
103 65 3.43
110 65 3.53

The methods from the GMRES-family (including Orthomin, GCR, GMRES) deliver
much higher Mflops rates than the biorthogonalization methods (BiCG, CGS, Bi-CGSTAB,
BiCGStab2). This difference can be explained with the following reflection. Knowing that
there are on average 21 nonzeros in each row of the particular matrix used for Table 5, and
looking at the operation breakdown in Table 1, we see that more than half of the number
of flops in the GMRES-like methods are spent in well-vectorized linear operations (vector
additions, scaling, and inner products), and the rest are spent in operations involving indirect
memory addressing (sparse matrix-vector products and preconditioning). The biorthogonal-
ization methods, on the other hand, spend only around 20% of their flops in linear operations,
and four times as many of their flops require gather/scatter memory access.

The important column in Table 5, however, is the last one, showing the time in seconds
required to solve the system. Truncated or restarted variants ofGMRES generally require more
iterations than BCG variants on device simulation problems 18], [24]. Note that on a similar
machine without hardware gather/scatter support, GMRES(cxz) would certainly converge in
less time than Bi-CGSTAB, provided that enough memory is available to store the 89 direction
vectors.

4.4. Varying the preconditioner. Table 6 shows variations of the performance with
different preconditioners for the same combination of an iterative method, a problem, and a
machine.

At first glance, the goal of a preconditioner is to reduce the number of iterations that an
iterative method needs to solve a linear system to a given accuracy. In practice, however,
the goal is to minimize the time to find a solution. Constructing a preconditioner takes time,
and applying this preconditioner in an iterative method slows down each single iteration. The
choice of one particular preconditioner is a trade-off between this cost of individual operations
and the effect of reducing the number of iterations.

Our experience over several years now has been that D-ILU preconditioning achieves
the best trade-off for most cases. The linear system selected for Table 6 represents well this
"typical" behavior.
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TABLE 6

Performance of Bi-CGSTAB with different preconditioners (in split position), on a Convex C-220 and on a
Cray Y-MP 4D (one processor used). Note that for technical reasons, the Mflops rates are measured only in the
iteration phase, and not in the preconditioner setup.

Performance
[Mflops]

Preconditioner C-220 Y-MP 4D
none 6.66 100
Jacobi 6.70 102

SSOR 6.74 103
D-ILU 6.76 103
ILU 6.24 94

ILU(1) 2.84 15
ND(0.01) 2.78 15
Nested 6.90 100

Number
of

iterations

>400
153
69
65
61

Total time
[seconds]

C-220 Y-MP 4D

114 7.45
55 3.62
53 3.43
110 11.47

63
29
4

277 53.96
164 39.35
85 5.87

TABLE 7
Performance ofBi-CGSTAB split preconditioned with a numerical droppingfactorization on different machines.

Machine

Sun-4/490
Sun Sparc 10
IBM RS/6000
SGI Mips R3000
SGI Mips R4000
DEC Alpha
HP 9000
Convex C-220
Convex C-3820

Cray Y-MP M92
Cray Y-MP 4D
Fujitsu VP2200

Total solution time Time in factorization
[seconds] [percentage]

222 23%
108 23%
402 16%
197 22%
91 26%
69 26%
55 21%
163 45%
70 45%
54 57%
39 59%
31 48%

More effective preconditioners are usually more costly in both time and memory con-
sumption and offer less room for vectorization and parallelization. Accordingly, the relative
performance of different preconditioners varies from one machine to another. Since an ap-
proximate factorization with numerical dropping is sometimes needed to precondition very
difficult linear systems, we have listed its performance on a selection of machines in Table 7.
The factorization phase is almost exclusively scalar code with finely grained data-dependent
control flow, and the iteration phase is partly vectorized.

Note that the picture is slightly distorted by the fact that, because of our previous experi-
ences 18], we tuned the data structures in PILS to SSOR, D-ILU, and ILU preconditioners.
Slightly higher performance would be possible with no preconditioning or with Jacobi precon-
ditioning. Some fine-grained parallelism would be conceivable in the incomplete factorizations
with fill, but has not been investigated yet.

4.5. Varying the storage consumption. Occasionally, linear systems arise for which
most preconditioners do not achieve convergence in any iterative method. Within a device
simulation run involving hundreds of linear solves, a single such ill-conditioned linear system
is sufficient to preclude the entire simulation. We have devised robust preconditioners for this
purpose. To prevent excessive loss of efficiency, our software uses fast preconditioners for all
the other systems and switches automatically to a robust preconditioner when needed.

We will now analyze such a very ill-conditioned linear system. Standard preconditioners
and methods can solve it only after a very high number of iterations or not at all. Our system
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occurs in the solution of the hole continuity equation in the simulation of a UV diode on a
strongly refined 2-D grid with more than 20k points.

Such a resilient case can be solved with an approximate factorization preconditioner using
numerical dropping. The lower the drop tolerance r, the more fill entries are allowed in the
approximate factors and the fewer iterations are needed for convergence. On the other hand,
more fill in the preconditioner increases the CPU time per iteration. Therefore, the plot of
the total time to solve the system as a function of the storage requirements for ND(r) (dotted
curves in Figs. 2 and 3) is convex.

Similarly, certain nested iterative solvers can solve this problem in a reasonable amount
of time. The higher the maximum number of inner iterations (the numbers inside the circles in
Figs. 2 and 3) per outer iteration, the fewer outer iterations are needed. We used split D-ILU
preconditioned Bi-CGSTAB as inner method and GCR(cx) as outer method for Figs. 2 and 3.
GCR requires the storage of two more vectors for each iteration, so that the number of outer
iterations dictates the storage requirements of the entire solver.

Time [minutes]
14-

2

0
0

Storage [Mbytes]

FIG. 2. Storage size and solution timefor an ill-conditioned linear system on a Convex C-220 (one processor).
The square marks refer to different preconditioners used with Bi-CGSTAB, the dotted line following the marks of
numerical dropping preconditioning with different drop tolerances. The solid line with the round marks refers to a
nested iterative solver, with GCR(x) as the outer method and split D-ILU preconditioned Bi-CGSTAB as the inner
method.

The experiments for Fig. 2 were done on a Convex C-220 and the experiments for Fig. 3 on
a Cray Y-MP 4D (one processor). The set of experiments was exactly the same. The relative
locations of the (dotted) curve for numerical dropping preconditioning and (solid) curve for
nested iterative solvers are different for two reasons:

1. The ND(r) preconditioner runs mainly in scalar mode. The performance ratio be-
tween vector and scalar code is much higher on the Cray than on the Convex, so that
the ND(r) preconditioned solvers are not as much faster than the others on the Cray.
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Time seconds]
160-

140-

120-

100-

0
0 10 20 30

Storage [Mbytes]

FIG. 3. Storage size and solution timefor an ill-conditioned linear system on a Cray Y-MP 4D.

2. ND(r) uses a considerable amount of integer storage. One integer takes 8 bytes on
a Cray, but only 4 bytes on a Convex. Therefore, the preconditioner requires almost
twice as much memory on the Cray, even if the number of fill entries is the same.

Also, the shape of the curves is not exactly the same. This is due to the differences in
the floating-point formats on the two machines that lead to different rounding effects and
sometimes ultimately to different iteration numbers.

5. Conclusions. The usefulness and the performance of preconditioned iterative solvers
for numerically difficult large-scale applications with irregular structure is, to a great extent,
governed by storage-related aspects.

The size of the memory requirements for direct sparse solvers limits their range of ap-
plication for today’s problem sizes and storage capacities. These requirements do not only
increase superlinearly with problem size; the exponent of the leading term also increases
with the dimensionality of the problem. Iterative solvers are much less restricted by storage
limitations.

Mflops rates are of little help in evaluating different iterative methods. The fastest algo-
rithms in terms of computation time do not always correspond to the methods with the highest
performance numbers. Mflops do give acceptable figures with which to compare an iterative
solver’s performance on different machines, as long as the problem and the solution method
are held constant.

The performance of iterative solvers does not necessarily increase with problem size. A
growth in the problem complexity (dimension of the domain, number of PDEs, irregularity)
leads to higher demands on the memory access. Memory aspects (latency, bandwidth, size),
rather than pure computation speed, largely dominate the performance of iterative solvers on
today’s architectures.
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Approximate factorizations with numerical dropping and nested iterative solvers are new
preconditioners that are able to solve even very ill-conditioned linear systems. In essence,
they trade memory for convergence speed. The solution time is always some convex function
of the memory requirements, but the exact relations and the optimum value depend strongly
on the characteristics of the machine.
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A PARALLEL VERSION OF A MULTIGRID ALGORITHM FOR ISOTROPIC
TRANSPORT EQUATIONS*

T. MANTEUFFELt, S. MCCORMICKt, J. MOREL*, S. OLIVEIRA, AND G. YANGt

Abstract. The focus of this paper is on a parallel algorithm for solving the transport equations in a slab
geometry using multigrid. The spatial discretization scheme used is a finite element method called the modified linear
discontinuous (MLD) scheme. The MLD scheme represents a lumped version of the standard linear discontinuous
(LD) scheme. The parallel algorithm was implemented on the Connection Machine 2 (CM2). Convergence rates and
timings for this algorithm on the CM2 and Cray-YMP are shown.

Key words, multigrid, parallel algorithms, transport equations
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1. Introduction. The description of the neutron transport problem is given in previous
papers 1 ]-[3]. For steady state problems within the same energy group for the isotropic case
(by isotropic we mean that the probability of scattering for the particles is the same for all
directions), the transport equation in a slab geometry of slab width b becomes

(1.1) fl/Z--X + O’tlr O’s 1/r(X,/Z’)d/Z’ + q(x, u),

for x (0,b) and/Z [-1,1]. Here, p(x,/Z) represents the flux of particles at position x
traveling at an angle 0 arccos(/z) from the x-axis; at dx represents the expected number
of interactions (absorptive or scattering) that a particle will have in traveling a distance dx;
o dx represents the expected number of scattering interactions; ra at r represents the
expected number of absorptive interactions; and q(x,/Z) represents the particle source. The
boundary conditions prescribing particles entering the slab are

(1.2) (0,/z) go(/z), ap(b,--/z) gl(/Z), /z (0, 1).

This problem is difficult for conventional methods to solve in two cases of physical
interest:

1. , (pure scattering, no absorption)"
at

<< b (optically dense).2.
In fact, as rt o and /-+ 1, the problem becomes singularly perturbed.

Standard discrete approximations to (1.1) and (1.2) will have operators with condition
numbers on the order of at least rt2, regardless of the meshsize 1 ]. This phenomenon presents
problems for numerical solUtion techniques in general and multigrid in particular. In this
paper, the discretization used in the spatial dimension is a special finite element method called
the modified linear discontinuous (MLD) scheme (described in the next section). To solve
the linear system of equations, we use a suitable relaxation process, called two-cell/z-line
relaxation, within a multigrid algorithm. The serial version of this algorithm was described
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in [3] and the convergence properties were analyzed. It was shown that for F 1 (pure
scattering), which is the case we examine in this paper, the algorithm yields a convergence

2)factor on the order ofO( -7) whentrth >> 1 andO((crth)3)whenrth << 1. For the two-angle
case, it behaves like an exact solver. These convergence rates were proved for special cases
in [3] and are substantiated by Fourier analysis in [12]. The Fourier analysis for multigrid
based on red-black/z-line relaxation (with numerical results for both Jacobi and red-black
Gauss-Seidel relaxation) is shown in [12]. The results show a close agreement between the
Fourier analysis and the computational results presented here. The serial algorithm for the
case in which F < 1 is examined in [4]. The multigrid algorithms were compared to a version
of the diffusion synthetic acceleration (DSA) method in [3] and [4]. It was shown to be faster
than the DSA in all regimes.

Multigrid algorithms for the transport equations have been examined in [8]-[11]. The
algorithm here takes advantage of the rank-1 form of the isotropic scattering operator in
the implementation of the two-cell/z-line relaxation (see 3). In this form the two-cell
line relaxation is efficient, effective, and parallel. Together with efficient interpolation and
restriction operators, this.algorithm yields the rates mentioned above (for complete details see
[3]). We also mention that a parallel implementation of the DSA algorithm was examined in
[13].

In this paper we describe a parallel version ofthe algorithm. The main benefit of the single
instruction multiple data (SIMD) architecture of the CM2 is attained at the relaxation step of
the multigrid algorithm, where we take advantage of the structure of the matrix, matching the
nonzero entries of very sparse matrices with the relevant processors.

An outline of the remainder of this paper is as follows. In 2 we describe the discretization
scheme used. In 3 we show how to accomplish the inversion of the relaxation matrix to take
advantage of the SIMD architecture on the CM2. In 4 we describe the multigrid scheme,
the interpolation, and the restriction operators used. In 5 we discuss the storage and data
structure. In 6 we develop the algorithm for the parallel relaxation and a few implementation
details. In 7 we consider a few implementation details of our CM2 multigrid code. In 8 we

report on convergence rates and compare these results with the Fourier analysis prediction.
In 9 we show the timings obtained with our CM2 parallel codes and compare them with a

sequential version ofour algorithm on a Cray Y-ME Finally, in 10 we make a few conclusions.

2. Modified linear discontinuous scheme. The angular discretization is accomplished
by expanding the angular dependence in Legendre polynomials and is known as the SN ap-
proximation when the first N Legendre polynomials are used. This results in a semidiscrete
set of equations that resemble collocation at N Gauss quadrature points,/zj, j 1 N,
with weights wj, j N. Since the quadrature points and weights are symmetric about
zero, we reformulate the problem in terms of the positive values,/zj, j 1 n, where

Nn -. We define 7tj+ (x) 7t (x,/zj) and 7zj7 (x) 7t (x, -/zj) for j 1 n. The spatial
discretization is accomplished by the MLD scheme, which uses elements that are linear across
each cell and discontinuous in the upwind direction. In our grid representation, the variable
p+(-) denotes the flux of particles at position xi in the direction/zj (-/zj) Assuming F=I,ij
the nodal equations are

(2.1)
o’t hi

+ .+. ck(/+ + + q.+.
t,J i,k llrik) ,,j,

k=l

(2.2)
err hi )+q.+.+ 2i-k --,k ’,J’
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(2.3) @ lriTj O)k(lri+k + lriTk) "at-qi,-j,
at hi k=l

and

-I- l[t-i-_1/2,j (Ok l[t-_1/2,k At- 2aPi,+k lti++1/2,k At" qi,--j’
crt hi k=l

j 1 n, 1 m, with boundary conditions

(2.5> + ,g6,/,-,s +,s
j=l n.

In ourmodel, Xi+l/2 andxi-1/2 are cell edges, x/ -(Xi+l/2+xi-1/2) is the cell center, and
hi Xi+l/2 xi-1/2 is the cell width, 1< < m. Equations (2.1) and (2.3) are called balance
equations and (2.2) and (2.4) are called edge equations. In block matrix form, (2.1)-(2.5) can
be written, respectively, as

(+/- +,_,+.: + +(2.6) B i++ .__. iL
(2.7)

(2.8)

(2.9)

(2.10) + g;’ ;nt-1 gl’

i= ,m. Here,

athi

(2.11) Bi "’. and R

0

o)1

where/Zl,/Z2 /An are the positive Gauss quadrature points, l/)1, l/)2 tOn are the Gauss
quadrature weights, and (-) is an n-vector: (-) (p(-) lt+(-) r

’’’’’tin

In the computational grid, the inflow for positive angles is on the left of each cell and
for the negative angles it is on the right. For a/z-line relaxation, the inflows of each cell are
assumed to be known. This is the same as using the values of these variables from the previous
iteration. Figure shows the computational domain with 2m + 1 spatial points and n angles.

Consider cell i. In/z-line relaxation cell centers, and ., together with the outflow
and i++ 1/2’ will be updated using the following matrix equation:variables, ._

1/2
(2.12)

I+2Bi-R
0

Bi
R
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Solving this matrix equation corresponds to performing a/z-line relaxation. In our imple-
mentations we perform two-cell relaxations for the whole domain. In this kind of relaxation
we consider pair of cells coupled together. This relaxation yields an error that is linear, inde-
pendent of angle, and continuous across two cells up to O(--t-t-) accuracy when oth >> [3].
Instead of updating four variables with a relaxation scheme, we update eight variables. For
example, in Fig. 1, variables -1/2’"’i+1/2’ i++1/2 +’ i++1 and /+3/2’ will

be updated. Notice that the inflow variables lriL 1/2
and ’+3/2 will be used from the previous

iteration.

1 2 3 2i-1 2i 2i+1 2i+2 2i+3 2m+l

lr0::k /4-1 1/ti-- 1/ti+ /i+ i+

cell cell i+

FIG. 1. Computational grid.

The two-cell/z-line relaxation involves inversion of the 8n 8n matrix

(2.13)

I + 2Bi R -2R -2Bi R 0 0 0

0 I- R -R Bi 0 0 0

Bi -R I- R 0 -Bi 0 0

R -2Bi -2R 1 + 2Bi R 0 0 0

0 0 0 0 I + 2Bi+l R -2R -2Bi+

0 0 0 -Bi+l 0 I- R -R

0 0 0 0 Bi+l -R I- R

0 0 0 0 R -2Bi+ -2R

Bi+l

I + 2Bi+ R

The order of variables for this matrix are

(2.14) + +
i+1/2 1/t.+1/2 1/ti+,, r.+l r i+

The right-hand side for the two-cell/z-line relaxation is given by

(2.15) (0, BirL1/2 O, O, O, O, Bi+I 1/f.+., O)
T
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In our implementations we developed a multigrid scheme that uses either a block Jacobi
relaxation or a block red-black Gauss-Seidel relaxation in parallel. For the Jacobi relaxation,
all of the two-cell relaxations will be performed simultaneously for the whole domain. For
red-black relaxation, we update half of the total number of cell-pairs during the first (red)
stage of the algorithm and the other half during second (black) stage of the algorithm, each
time skipping neighboring cell-pairs. To illustrate, Fig. 2 shows four cells. The even numbers
represent the cell centers, the odd numbers represent the cell edges. For simplicity, we omitted
the vertical lines (passing through each spatial grid point) that contain the Gauss quadrature
points (angles). For a Jacobi type of relaxation process, variables at x points 5-9 will be
updated at the same time as points 1-5. Each pair of cells will use the relaxation matrix just
described. On a parallel machine like the CM2, red-black relaxation takes approximately
twice as much CPU time as a Jacobi relaxation. This is partially offset by a better convergence
rate (refer to the Fourier analysis in [12] and numerical results in 8).

2 black cells

2 3 4 5 6 7 8 9

2 red cells

FIG. 2. Red-black relaxationforfour cells.

3. Two-cell inversion. The inversion of the two-cell relaxation matrix can be done in
a very suitable way for SIMD computers like the CM2. First, notice that the matrix can be
written as the difference of an easily inverted matrix, which we call A, and a rank-four matrix,
which we write as VWr. The matrix A has a special structure that allows its inverse to be
calculated basically in place. It is given by

(3.1)
A=

I +2Bi

Bi

0 -2Bi

I 0

-2Bi

Bi

I+2Bi

-Bi+l

I + 2Bi+l 0 -2Bi+l 0

0 I 0 Bi+l

Bi+l 0 I 0

0 -2Bi+l 0 I nt- 2Bi+I
(8n x8n)

This is a block matrix with n x n blocks. Each nonzero block is diagonal. The rank-four
matrix VWr is defined by
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(3.2)

2 0 0 0

1 1 0 0

1 1 0 0

0 2 0 0

0 0 0 2

0 0 1

0 0 1

0 2 0
(8n 4)

and

(3.3) Wr=

v w 0 0 0-Tw__ to 0
_

T 0 tO T T 0 0 0
T LoT 00 0 0 0 -w
r 0 wr0 0 0 0

0

0

(48n)

wherel (1, 1) r 0 (0, 0, 0) r 2 (2 2, 2) T andwr (09 0002, (_On)
We can use the Sherman-Morrison formula to calculate the inverse of the two-cell/z-line

relaxation matrix M A VWr.

(3.4) M-1 A -1 -4-A-1VE-1WrA-,
where E I Wr A-1V. If y is an n-vector, we have M- y (i + A-1V E- Wr)A- y.

The connectivity of A is two interleaved 4 4 block matrices. Thus, inverting A amounts
to solving 2n tridiagonal matrices, each of size 4 4, which can be done in parallel. Since

ml
all matrices are diagonal, and thus commute, we make use of the notation M1M- We
have

D"-’[ 0 D’--[’ 0
Di Di+

0
Di Di+

0

I+2B -B
0 0 0 0 0 0

Di Di

-B I+2B Bi+ZB2 (Bi+ZB2i )(ZBi+l)
0 0 0Di Di Di Di+ Di Di+

2B
0 0D-T D-7 0 0 0

2Bi+l
0 0 0 0 Di+{ 0

Di+l
0

(B/+I +2B/2+ )2Bi Be+ +2B/2+ I+2Bi+I
0 0 0 0 -Bi+l

Di Di+l Di Di+l Di+l Di+l

-Bi+l I+2Bi+l
0 0 0 0 0 0

Di+l Di+l

4BiB+ 2B+ 2Bi+l
0 0 0 0Di Di+l Di Di+l Di+l Di+l

uJ Thewhere Bi diag( bij ), Di diag( 1 + 2bij + 2b2ij ), and bij Gthi
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matrix E I WrA-1V is a 4 x 4 matrix of the form

(3.6) I WTA-1V
dl 0 all b
0 dl Cl a

(/22 b2 d2 0

c2 a2 0 d2

where

(3.7)
N

dl 2 ogj +dijCjbij

(3.8)
N

d2 1 2Z coj + o)jb + j

j=l di+lj

(3.9)
N oojb2ijbi lj

all 2’ cojbijbi+lj + +

dijdi+lj

(3.10)
N cojbij + oojbijbi lj -- cojb2ij + ogjb2ijbi+lj

bl -2Z +

j=l dijdi+lj

(3.11)
N o)jb2ijbi+lj

C --2

(3.12)
N o)jb2ij ._ oojb2ijbi+lj

al -2
dijdi+lj

(3.13)
N o)jb2i+lj -Jl- oojbijb2i+lj

a22 -2
dijdi+lj

(3.14)
N 2)jbijbi+lj

b2 -2
dijdi+lj

(3.15)
2N o)jbi+lj @ o)jbijbi+lj q-" oojb2i+lj @ o)jbijbi+lj

2 -2y
j=l dijdi+lj

(3.16)
N o)jbijbi+lj + o)jbijb2i+lj

a2 -2

_
j=l dijdi+lj

and E- is also a 4 4 matrix and can be calculated analytically. Its entries are shown in
Appendix A.
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4. Multigrid. To illustrate the multigrid scheme, we consider it in a two-grid form. Let
Lh denote the fine grid operator, L2h the coarse grid operator, and Ih2h and Ih the interpolation
and restriction operators, respectively. Let Vl and v2 be small integers (e.g., Vl v2=l),
which determine the number of relaxation sweeps performed before and after the coarse
grid correction. Then one multigrid V (Vl, v2) cycle is represented (in two-grid form) by the
following"

1. Relax Vl times on Lhuh fh.
2. Calculate the residual rh fh Lh uh.
3. Solve approximately L2h u2h lhrh.
4. Replace uh -- uh + Ih2h u2h.
5. Relax v2 times on Lh uh fh.

Our multigrid scheme is applied with regard to the spatial variable only. For a multilevel
scheme in angle, see [7]. Figure 3 illustrates grid points on the fine grid and on the coarse
grid after the a restriction operator is applied to the residual. The interpolation and restriction
operators used here are based on the same finite element principle as in the derivation of the
MLD scheme. They are defined as follows:

(4.1) Ih

Sl,1 81,2

am-l,1 am-l,2

where

0

0

hi
hi+l +hi

0

0

0

hi+l +hi

0

and Si,2

0 0

hi+l
0 I 0

hi+l+hi
hi+a

0 0
hi+l+hi

0 00 I

i+ i+1

hi+l

i+

FIG. 3. Fine and coarse grid.
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and

(4.2)

T2,1

T2,3

where

I 0 0
2hi+1 +hi

0 I 0
hi+l +hiTl,i hi+l hi

I 0
hi+l+hi

2hi+l
0 I 0hi+lq-hi

and

hi+l-hiI 0
hi+lWhi

hi+l
0

hi+l-t-hi
-hi

hi+l+hi
[ 0

0 0

2hi
I 0
hi+l+hi

hi
I 0 Ihi++hi

2hi+hi+I 0
hi+l+hi

0 I

The order of variables for these operators is the same as in (2.14). The coarse grid operator,
L2h is defined as

where Lh is given by (2.6)-(2.9). The coarse grid operator L2h has the same form as Lh, but
on a new grid.

We use the notation 2h to indicate a coarse grid, although our grids are not really assumed
to be uniform. In the general nonuniform case, the meshsize at cell on the coarse grid is
given by h h2i- "]- h 2i.

5. Storage and data structure. Implementation of this scheme on the CM2 involves the
following considerations.

We assign one processor to each point (i.e., for each (xi,/zj) pair) in the computational
mesh, assuming there are at least (2m + 1)n processors. If we are using less than (2m + 1)n
physical processors, the CM2 will reuse the physical processors, creating virtual processors
to store the additional grid points.

Variables that are defined at different grid levels have an index that represents the
grid level. We store these variables such that if they represent the same spatial and angular
coordinate point, they will be assigned to the same processoreven iftheir grid levels are distinct.
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This avoids communication when data is accessed from different grid levels for a given spatial
and angle coordinate variable. For example, variable 7t appears as 7r(:serial,:news,:news) in
the code. Here, the first index represents the grid level, and the remaining indices represent
spatial and angular coordinates.

In the relaxation for the nonuniform grid (variable h), some processors will require
products of variables that belong to different cells, as can be seen, for example, in any row
of (3.5). In particular, look at the first row of this matrix. Even though this row will have its
elements stored in a processor in the first cell of the two-cell pair, it uses data from both cells
(i.e., BBi+I). To avoid extra complication in the parallel algorithm, we store these variables
in the proper processors at the outset. For example, we have an array b that stores the values
of matrix B for the first cell and an array bp that stores the values of matrix B for the second
cell of the pair. In this way all the processors representing grid points of a two-cell pair will
contain data from both cells of the pair.

2 3 4 5 6 7 8 9

cell1 cell2 cell3 cell3

FIG. 4. Computational meshforfour cells.

Figure 4 illustrates the computational mesh for four cells (horizontal axis) and four angles
(vertical axis). Vertical lines 1-5 represent the variables associated with celll and cell2, i.e.,

while vertical lines 5-9 represent the variables associated with cell3 and cell4,

Processors represented by vertical lines 1-4 will contain all the information associated with
celll and cell2, while processors represented by vertical lines 5-8 will contain all the infor-
mation associated with cell3 and cell4. Consider cella and cell2. Array b contains the values
of b(i, j) tz(j)/(trt(celll)h(celll)). Thus bp(1,3) bp(2,3) bp(3,3) bp(4,3). Array
bpl contains the values of bpl(i, j) lz(j)/(rt(cellz)h(cell2)). Thus bpl(1,3) bpl(2,3)
bpl(3,3) bpl(4,3). However, b(1, 1) : b(1, 2), bpl(1, 1) - bpl(1, 2), and so on. The

arrays b and bpl are constant on the same subsets of the computational mesh. We also use
some replication of data in a slightly different way for the mesh size variable h. The elements
of array h contain the cellsize hi, the array hm 1 contains hi-l, and the array hpl contains
hi+l. These three arrays are constant on vertical lines in Fig. 4. This data structure is the same
for all the grid levels, but with a different number of cells for each grid level.
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Some communication, of course, is necessary between processors. In fact, between the
boundaries of every pair of cells we will have some shifting of data. For example, consider
the variables (2.14) updated with the appropriate two-cell relaxation matrix (celli and celli+ 1).
Note that i++3/2 will be updated by this matrix, but the variables +3/2 will be updated by
the next two-cell pair relaxation matrix (celli+2 and celli+3). Again, consider Fig. 4. Vertical
line 5 represents the variables /t+)-) The two-cell relaxation matrix for cell1 and cell2 will

5/2
be stored on the processors associated with vertical lines 1-4. So, to update variables 5+/2
the processors on line 5 will need to access data from line 4.

In the CM2, conformable arrays (arrays with the same shape and size) are always stored
in the same set of processors in the same order. To compute expressions like the elements
of the matrix E in (3.6) without the need for communication, we store the variables wj (a
one-dimension array) as a two-dimension array that is conformable with array b (Fig. 4).
Consequently, w is constant over horizontal lines in Fig. 4. Note that the elements of E-1 in
(A. 1) will also be conformable with variables w and b.

6. Relaxation in parallel. A two-cell relaxation step consists of applying M- (M is
given by (2.13)) to a right-hand side vector thatwe call y. Whatfollows is the process to perform
a two-cell relaxation step. If the current grid has k cells, then two-cell relaxations will be

performed simultaneously for Jacobi, while two-cell relaxations steps will be performed in
each of two stages for red-black Gauss-Seidel. Each two-cell relaxation can be performed
through the following steps.

Step 1. Form z A-y. This step is done at the same time for all the cells, using the
matrix A-1 as shown in (3.5). To update any variable, the associated processor needs only
one row of this matrix. For example, with the order of variables used and shown in (2.14), to
update the variable ,+., we need only the second row of A-l; so, the processor that updates
this variable needs only to store this row’s entries. Note, though, that this row’s entries will
multiply data that are allocated in other processors. Through the use of the CM2 intrinsic
function eoshift, we can perform a move of data in the x direction (index i), and then multiply
by the appropriate entry Of the matrix. To update all the variables, we thus have the following
combination of shifts:

l/t+i A2/+ + A1 r/+_1/2 " M31/t/1/2 -- A4/_l + AsPLfor =1 n (at the same time). Here, A1, Az, A, A4, and A are the elements of the
appropriate row. Note that processor (i, j) does not have variables other than the ones with
indexes i, j. It will therefore use the CM2 intrinsic function eoshift in the following way:

temp =l[ti+ eoshlft(l[ti, 1, 1),

7ti+1 eoshift( temp, 1, 1),

and so on. Each new shift will take advantage of the previous one. The big advantage of this
step is that this updating occurs at the same time for all the processors, making this matrix
multiplication ajob that requires only eight communications. Note that for each cell the vector
_z has length 8n.

Step 2. Form VE-1WT,z. In this step we take advantage of the fact that the 8n 8n
matrix VE-W7" can be written as the tensor product F (R) R F (R) lwt. Remember that 1
and w are n-vectors. The 8 8 matrix F is derived from a combination of rows and columns
of the matrix E- and is given by

1The first argument of the eoshift function is the array name, the second is the array index that is going to be
shifted, and the last is the stride of the shift.
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(6.1) F=

1 1

1 1

0 2

2 0

1 1

1 1

0 2

1 1 0 __1
2 2

_! 0 12 2

Note that if the grids are nonuniform, the matrices E-1 and F will have their elements as
arrays and will be different for each distinct pair of cells. Note that we can write F (R) 1 w

LO(18 (R) 1)F(I8 (R)_ ), where 18 is the 8 8 identity matrix. Thus, multiplication by the matrix
F (R) 1 w can thus be done in three steps.

Step 2.1. Form z* (18 (R) _wV)z._ This step consists of a dot product of _w and each
n-vector that makes up the 8 n-vector z. Remember, vector _z was obtained in Step 1 and

tot is an n-vector. So, first we multiply each entry of to by each corresponding entry of z

LOij X Zij which is performed for all processors at the same time because w__ is conformable
to _z. The index for variable zij goes from 1 to 8 for each cell. The second stage of the dot
product is to perform a summation in the angle index direction. This is done with the use of
the CM2 intrinsic function sum. The vector z* has length 8.

Step 2.2. Form r/= F z*. This step is a multiplication of a vector by a matrix, and can be
performed in the CM2 similar to the way Step 1 of this relaxation was performed. Depending
on which point the processor is representing, it will have stored different rows of the matrix
F. Its variables will be updated through the use of the CM2 intrinsic function eoshift only (in
this case, 16 of them).

Step 2.3. Form (R) (18 (R) 1)0. This spreads the result of Step 2.1 across all the angles
(for all spatial points at the same time). This is done with the use of the CM2 intrinsic function
spread.

Step 3. Form A-I__o as in Step and add the result to z.
A special remark should be made here. It is not hard to see that Steps 2.2 and 2.3 can

have their order interchanged. In fact, since all the CM2 processors will execute the same
instruction simultaneously, unless instructed otherwise by the use of masks, we make use of
this property of the algorithm. We spread vector z* throughout all the angles represented by
different processors. Since all the processors had the appropriate row elements of matrix F
from the outset, we perform Step 2.2 last. This will make the use of masks necessary only
for distinction between the processors regarding the kind of spatial point it represents, not the
kind of angle.

It is easy to show that, if we take advantage of the structure of the various matrices and
perform the matrix multiplication steps as described, the total operation count and the number
of communications per processor for one relaxation sweep are both O(n), more precisely
2(n 1). Details are given in [12].

7. Muitigrid in parallel. The parallel relaxation process of the multigrid algorithm was
explained in 6. For calculation of the residual on the finer grid, again we use the CM2
intrinsic function eoshift. For example, to calculate the residual at an edge grid point for a
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negative angle, we use (2.4). Note that the processor that contains the variable 7ti-j will not
contain other variables necessary for the calculation of the residual at this point. Therefore,
we perform a move of data:

+1/2 eoshift(gt[-, 1, 1),

_1/2 eoshift([-, 1,-1).

For calculation ofthe right-hand side ofthis equation, we perform a one-step multiplication
for the conformable arrays w and ap+ (the same for 7t-), and then, using the CM2 intrinsic
function sum, we perform a summation in the angle direction for the resultant products.

After the residual is calculated, to solve for the error on the coarser grid, we have to
estimate the residual on the coarser grid. This is done by multiplying rh, residual on the fine
grid by the restriction operator Ih shown in (4.1). In some processors there will be no operation
or communication at all, because as in 3 the grid level index is serial, and some processors
will contain all the information they need. For example, for a negative angle at the left-hand
side of a two-cell pair (negative angle outflow), the restriction consists of r2ihl/2 rhi_l/2 (see
the first row of (4.1)). This requires no communication.

For processors that represent cell centers on the coarse grid (second and third row of
(4.1)), we use the CM2 intrinsic function eoshift in a way that is similar to what was done in
Step 1 of relaxation.

temp Fp+ eoshift(rih, 1, 1),

temp2 Fhi eoshift(rhi 1, 1).

We then calculate the residual on the coarse grid

h
r2i h

hp
temp + temp2.

(hp1 + h) (h -t- hp1)

After forming r2h we perform parallel relaxation again, this time to estimate the error on the
coarser grid (u2h).

To use the coarser grid quantities to correct the solution on a finer grid, we multiply u2h by
the matrix Ih2h shown in (4.2). This multiplication is performed similarly to the multiplication
of rh by Ih.

8. Numerical results. The CM2 codes were run for different values of crth on the fine
grid. In Tables 1 and 2 we chose these values to be the worst cases predicted by the Fourier
analysis shown in 12]. All of the convergence factors (i.e., the ratio of Euclidean norms of the
residuals before and after a multigrid V-cycle) shown here are for the case with no absorption
(, 1). The results are shown for the two kinds of relaxation (Jacobi and red-black Gauss-
Seidel) used in our multigrid scheme. The convergence factors shown for the CM2 codes
were obtained for one V-cycle after five V-cycles. The convergence factors were close to the
ones predicted by the Fourier analysis as Tables and 2 show. Tables and 2 show results for
uniform grids for different number of angles, e.g., $4 means four scattering angles (n=2) and
so on. Table 3 shows convergence factors obtained for nonuniform grids; these grids were
generated randomly with h varying between 1 and 100. Table 4 shows a comparison of three
relaxation methods, discussed in the next section, and the behavior of the convergence factor
for varying crth for a two-cell Jacobi (V (1, 1) and V (2, 2)) or two-cell red-black Gauss-Seidel
(V(1, 1)) relaxation. Note that the convergence factor appears to be O((-h)2) when crth >> 1
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and O((ffth)3) when ffth << for all three relaxation methods. To make a fair comparison
between the different relaxations, we have to consider the difference in time spent to attain
the above convergence factors. This will be analyzed in the next section.

TABLE
Worst-case convergencefactorfor multigrid with Jacobi V(1, 1) relaxation, Fourieranalysis, and CM2 results

(for m 512).

Angles $4 $8 S16 $32

crth .230 .100 .150 .400
Fa .012 .012 .013 .13
CM2 .016 .015 .016 .017

TABLE 2
Worst-case convergence factorfor multigrid with red-black Gauss-Seidel relaxation, Fourier analysis, and

CM2 results (m 512).

Angles $4 $8 S16 $32

at h .150 .240 .100 .200
Fa .0042 .0045 .0043 .0045
CM2 .0063 .0065 .0086 .0045

TABLE 3
Convergence factors for nonuniform cells (Jacobi and red-black Gauss-Seidel relaxation on the CM2), _<

h < lOOandtrt 1.

Angles $4 $8 S16

Jacobi 1.6 x 10-4 1.3 x 10-4 5.6 10-4

Red-black 1.3 x 10-4 1.0 x 10-4 9.7 x 10-5.

TABLE 4
Convergence factorsfor the Jacobi (V(1, 1) and V(2, 2)) and red-black Gauss-Seidel (V (1, 1)), for various

values ofat h, $4 case with m 512.

crth
10-5
10-4
10-3
10-2
10-1
1.

101
102

Jacobi V(1, 1) Red-black l/’(1, 1) Jacobi V(2,2)
9.4 x 10-1 3.3 x 10-1 1.47 x 10-1

8.7 x 10-7 2.8 x 10-7 1.38 x 10-7

4.1 10-4 7.2 x 10-5 7.40 x 10-5

1.0 x 10-2 4.3 10-3 2.41 10-3
1.5 10-2 8.0 x 10-3 2.71 10-3

4.2 x 10-3 1.1 x 10-3 1.03 10-3

3.9x 10-5 3.2 10-5 1.86 10-5

3.4 x 10-7 2.5 x 10-7 4.16 10-7

In Table 5 we make crth equal to .1 and vary the number of cells (m). For a fixed grid
nieshsize the convergence factor is basically constant. The proof of convergence through
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Fourier analysis for uniform meshs and additional results are shown in [12]. An analytical
proof of convergence is also shown in [3].

TABLE 5
ConvergencefactorsforJacobi (V (1, 1) and V (2, 2) cycle) and red-black Gauss-Seidel (V (1, 1)) on the CM2.

$4 case and o’t h 1.

rn Jacobi V(1, 1)
512 1.5 x 10-2

1024 1.5 x 10-2

2048 1.5 x 10-2

4096 1.5 x 10-2

32768 1.6 x 10-2

65536 1.6 x 10-2

Red-black V (1, 1) Jacobi V (2, 2)
9.5 x 10-3 2.7 x 10-3

9.7 x 10-3 2.8 10-3

9.8 x 10-3 2.9 x 10-3

3.0 x 10--39.9 x 10-3

9.9x 10-3 3.2x 10=3
9.9 x 10-3 3.1 x 10.-3

9. Timings. First, we show the cost behavior when we keep n constant (equal to one)
and vary the spatial dimension rn (Figs. 5 and 6 and Table 6). Second, we analyze the cost
when n varies and the spatial dimension rn is kept constant (Fig. 7). All the results shown
in this section were measured for a V (1, 1) or V (2, 2) cycle. There are two codes, one for
uniform grids and the other for nonuniform grids. The uniform grid code was used for the
timings in this paper. However, similar results have been obtained with the nonuniform grid
code, but with all of the timings roughly doubled. The sequential timings were measured
using one processor of a Cray Y-MP, which has a vector architecture.

When we increase the number of grid points of the computational grid, we should have
no increase on the time spent for our relaxation step on computers like the CM2 until all the
processors are being used. However, in our multigrid relaxation scheme, the number of levels
should be defined such that the coarsest grid consists of two cells. Hence the number of grid

m,levels will always be log2 -f, so, every time we double the number of cells (m) in our finest
grid, we have new computations at the new added grid level since the grid level index is serial.
This increase in time corresponds only to the new calculations. This can be observed in Fig.
5 for rn between 26 and 29, specifically, where we notice that the increase in time when we
double rn is linearly proportional to log2 m, while after rn 29 there is a bigger increase in
the slope of the graph every time we double rn because the processors are saturated.

For our example, when rn reaches the value of 21, we have begun to saturate the CM2.
Here the number of grid points (2m + 1) is 2049. When these timings were measured we used
one sequencer, which consists of 212 processors with 512 floating point units (FPU). Note that
2048 is four times the number of FPUs, where four is the vector-length at each FPU. This
explains the beginning of increase for the slopes of the piecewise linear graph in Fig. 5, since
we will be reusing these FPUs. Also, when we vary rn between 21 and 211 we are changing
the number of grid points by 2048, which causes an even bigger increase on the slopes of Fig.
5. In fact, the timings will increase (disregarding the overhead) every time we further increase
the number of cells (2m + 1) by multiples of 2048 (the number of FPU x 4).

If we look at the timings and dimensions for larger m, the parallel code starts increasing its
time proportionally to the increase ofm, similarly to the way a sequential code does. Consider
the points rn 215(32768) and rn 216(65536) in Fig. 6. This is explained by the fact that,
for this range of m, every time we increase rn we will be reusing FPUs.

Figure 7 shows the variation of cost when n changes. The multigrid in this paper was
applied to the spatial variable m, so none of the increase in cost is due to the multilevel scheme
used. The increase of cost here is due to the fact of using the CM2 intrinsic functions sum and
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FIG. 5. Timingsfor a V (1, 1) cyclefor small m and n 1.

seconds
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512 16384 32768 65536
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o CM2 Jacobi timings

CM2 red-black Gauss-Seidel timings
, Cray timings

FIG. 6. Timingsfor a V (1, 1) for large m and n =1.

spread in the angular variable direction. This happens, for example, in Step 2 of the parallel
relaxation. Of course, when we increase n to the point of reusing the FPUs, the time cost will
increase similarly to the way it did when rn increased.

Figure 6 also shows the additional time spent ifwe use a red-black Gauss-Seidel relaxation
instead of a Jacobi. The timings for red-black Gauss-Seidel (V(1,1)) and Jacobi (V(1,1) and
V(2,2)) two-cell relaxation are compared to the Cray timings on Table 6. The Cray timings
were measured for a V(1,1) cycle. Note that since the code on the Cray is sequential, it is
irrelevant for timing purposes whether we use the Jacobi or red-black Gauss-Seidel relaxation
since both relaxations will take approximately the same time, sequential steps.
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FI. 7. Tmingsfora V(1, 1) cycle varying (n) andm 512.

TABLE 6
7mingsforJacobi (V(1, 1) and V(2, 2)) and red-black (V(1, 1)) on the CM2 and Cray Y-MP. $4 case, trth .1.

m
512
1024
2048

65536

Jacobi V(1,1) Red-black V(1,1) Jaco V(2,2)
1.19 1.78 1.69
1.93 3.00 2.82
2.78 4.54 4.35
4.60 7.57 7.41
31.00 53.53 52.69
63.14 109.54 108.6

Cray
2.9
5.85
11.71
23.43
187.5
376.0

In the CM2 for the same number of V-cycles, the Jacobi relaxation in a V (1, 1) cycle is
much faster than the red-black Gauss-Seidel relaxation in a V (1, 1) cycle, but its convergence
factor is generally worse than the red-black V (1, 1) convergence rate (Table 4). If we consider
the Jacobi relaxation for the V (2, 2) cycle, the timings will be slightly better than the red-black
Gauss-Seidel V (1, 1) cycle and the convergence factors in this case will be comparable. We
show here that if the additional time used in doing a V-cycle with red-black Gauss-Seidel
relaxation was used to perform more of the Jacobi V-cycles, the convergence factor (both
V (1, 1) and V (2, 2)) would be generally better.

For a fixed number of V-cycles, Table 7 compares Jacobi V(1, 1) and V(2, 2) with
red-black Gauss-Seidel V (1, 1). In this table we compare the convergence factors for each
relaxation using the time for a red-black V (1, 1) as the standard unit. For example, ifred-black
Gauss-Seidel V (1, 1) took twice as long as Jacobi V (1, 1), then two Jacobi V (1, 1) cycles
could be performed in the same time as one red-black V (1, 1). Using the time for red-black
V (1, 1) as the standard unit of time, the proper convergence factor for Jacobi V (1, 1) would

)2be (Pjl We define

trb time for 1 V (1, 1) cycle with red-black Gauss-Seidel relaxation,

tjl time for 1 V (1, 1) cycle with Jacobi relaxation,

tj2 time for 1 V (2, 2) cycle with Jacobi relaxation.
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TABLE 7
Comparison between Jacobi V(1, 1), Jacobi V(2, 2), and red-black V(1, 1) convergencefactors (P]l, P]2 and

Prbl) for various values oftrth ($4 case)

crth
10-5
10-4
10-3
10-2
10-1
1.

101
10

trb.__L

(p,) ’J’

2.8 x 10-14
Prbl

3.3 10- trb___L

(P,/2) 92

4.4 X 10-8.1 10-10 2.8 10-7 5.9 10-8.6 10-6 7.2 10-5 4.5 10-5

1.0 10-3 4.3 x 10-3 1.7 10-3

1.8 10-3 8.0x 10-3 2.0 10-3

2.7 10-4 1.1 x 10-3 7.1 10-4

2.4 x 10-7 3.2 x 10-5 1.0 x 10-5

2.0 10-10 2.5 x 10-7 1.9 10-7

Likewise we define the convergence factors ,Orb, /gjl, and Pj2. The correct comparisons are

trb trb

Prb vs. (Djl) tjl VS, (PJ’2) tj2"

These comparisons are shown in Table 7. It is obvious that both Jacobi V(1,1) and V(2,2) are

superior to red-black Gauss-Seidel. If we compare the Jacobi V(1,1) and V(2,2) relaxations,
we conclude that Jacobi V(1,1) gives, in general, a better convergence factor in this parallel
environment for the same CPU time.

10. Conclusions. In this paper we have shown a parallel algorithm for a multigrid scheme
for solving the transport equations in slab geometry. This algorithm is suitable for SIMD
computers and takes advantage of this kind of architecture during the different stages of the
multigrid scheme. It was implemented on the CM2 and was much faster than a sequential
version of the same algorithm on the eray Y-MP (using only one processor), especially when
comparing large gridsizes. For the relaxation step of the multigrid algorithm, we used the
Sherman-Morisson formula and developed an efficient relaxation with the use of a few intrinsic
functions on the CM2. The interpolation and restriction operations, for some grid points, were
able to be performed without communication. The increase in the CPU time spent in a V-cycle
when either one of the grid dimensions was increased was small before saturation. For the
spatial dimension this increase is due to the addition of a new grid level, and for the angular
dimension it is due to the use of the CM2 intrinsic functions. After saturation of the CM2 is
reached, we have shown that the sharper increases in timings are caused by reuse of FPUs.
In fact, when the CM2 becomes saturated, the parallel timings start doubling when one of the
grid dimensions is doubled. This, of course, always happens in the sequential timings for any
doubling of rn or n.

The convergence rates attained per V-cycle were extremely good and matched theoretical
results. We implemented three different kind of relaxations" Jacobi (V (1, 1) and V (2, 2)) and
red-black Gauss-Seidel V(1,1) in two kinds of implementation each, uniform and nonuniform
meshes. We have shown that in this context, the Jacobi V(1,1)-cycle was superior to Jacobi
V (2, 2)-cycle and red-black Gauss-Seidel V (1, 1)-cycle. The timings for the nonuniform
grid code do not appear in this paper, since they were obtained under a timesharing environ-
ment that was not reliably comparable to the uniform grid code executed under the dedicated
environment. However, similar results and conclusions seem to hold, with the exception that
all of the times are roughly doubled.
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The results in this paper show the good performance of our parallel algorithms for solv-
ing the isotropic form of the transport equation on SIMD architectures. For the anisotropic
scattering, we are developing an algorithm suitable for SIMD computers 12] using an angular
multigrid developed in [7].

Appendix A. The inverse of the matrix E in (3.6) is given by

(A.1)

where

(A.2)

ell el2 el3 el4

e21 e22 e23 e24

e31 e32 e33 e34

e41 e42 e43 e44

(allb2 -+- bla2)d2
ell

deh

(A.3)
(allb2 + bla2)d2

el2
deh

(A.4)
[did2 (clb2 + ala2)](-al) + (allb2 + bla2)(-c1)

el3
deh

(A.5)
[did2 (clb2 + ala2)](-bl) -Jr- (al lb2 -+- bla2)(-al)

el4
detl

(A.6)
(cla22 -[- alc2)d2

e21
detl

(A.7)
[dd2 (alia22 --]- blc2)]d2

e22
detl

(A.8)
[cla22 + alc2](--all) - [did2 (alia22 -+- blc2)](-Cl)

e23
det

(A.9)
[cla22 -k- alc2](-bl) --I- [dd2 (alia22 -at- blc2)](-al)

e24
detl

(A.10)
[did2 (C2bl -k- ala2)](-a22) -+- (a22bl --I-- b2al)(-c2)

e31
det2
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(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

and

(A.19)

[dd2 (C2bl -+- ala2)](-b2) -+- (a22bl -+- b2al)(-a2)
e32

det2

[did2 (c2bl -t- ala2)](dl)
e33

det2

(a22bl -k- alb2)](dl)
e34

det

(c2all -+- a2cl)(--a22) -+- [did2 (a22all + b2cl)](-c2)
e41

det2

(c2all + a2cl)(-b2) -.}- [did2 (a22all + b2Cl)](-a2)
e42

det

(c2all q-- a2cl)(dl)
e43

det

dxd2 (alia22 -k- b2cl)(dl)
e44

dete

detl [dldz-(Clb2-I-ala2)][dld2-(alla22+blc2)]-(cla22+alc2)(allb2-k-bla2),

det2 [dld2-(c2bl +ala2)][dld2-(alla22+b2cl)]-(c2all +a2cl)(a22bl +b2al).
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ROTATING WAVES FROM HOPF BIFURCATIONS IN EQUATIONS
WITH O(2)-SYMMETRY*

w. wut, P. J. ASTON, AqD A. SPENCE

Abstract. This paper considers the problem of Hopf bifurcations that occur in equations with O(2)-symmetry
on a solution that has the full O(2)-symmetry. It is well known that at such points, a path of standing waves and a
path of rotating waves bifurcates. The standing waves are easily dealt with by restricting attention to a certain fixed

point space and so the rotating wave solutions that arise are considered in detail. Efficient numerical methods for the
detection and computation of these bifurcation points based on a block diagonalisation of the Jacobian are considered.
Also described is a simple means of choosing the basis that gives rise to this block structure. Numerical methods
for following the rotating wave branch away from the O(2)-symmetric solution are then described. The extension to

infinite dimensions is, considered briefly before a numerical example is presented.

Key words, rotating waves, O(2)-symmetry, Hopf bifurcations

AMS subject classifications. 34A34, 35B32, 65L99

1. Introduction. For problems with O(2)-symmetry, it is well known that Hopfbifurca-
tions on a path of solutions that have the full O(2)-symmetry give rise to paths ofboth standing
waves and rotating (or travelling) waves. The form of the bifurcation equations at such a point
has been studied in detail by Golubitsky, Stewart, and Schaeffer [7, Chap. XVII]. We consider
this problem from a numerical viewpoint, concentrating on efficient methods for detecting
such Hopf bifurcation points and then following the paths of rotating waves that occur. We do
not consider the standing waves in detail because these solutions arise from a standard Hopf
bifurcation in the subspace of functions that are symmetric with respect to the reflection in
0(2). Thus, standard methods for dealing with Hopfbifurcations can be employed to compute
the branch of standing wave solutions (see, for example, [9]). However, the rotating wave
solutions do not have this reflectional symmetry property; as a result, they cannot be isolated
by restricting to a particular symmetric subspace of functions. Thus, special methods have to
be developed to find these solutions and our approach is to reduce the problem to a steady-
state equation to be solved for the rotating wave profile. This equation involves an additional
variable, namely, the velocity of the wave. A phase condition for isolating a particular wave
profile is an additional equation, which is introduced to match the extra velocity variable.

Rotating waves can also arise from bifurcations on steady-state branches of solutions
with dihedral symmetry when the reflectional symmetry is broken. This situation has been
analysed from an abstract point of view in [10] and from a numerical aspect in [2]. In this
situation, however, the bifurcation is a nonstandard steady state bifurcation associated with a
zero eigenvalue of the Jacobian, in contrast to the Hopf bifurcation in the present framework.
Another difference between the two cases is that the bifurcation from an O(2)-symmetric
solution has nonzero velocity on the rotating wave branch at the bifurcation, whereas, for the
bifurcation from a branch with dihedral symmetry, the velocity is zero on the rotating wave
branch at the bifurcation. This is due to the fact that an 0(2) symmetric solution can be
considered as a rotating wave solution with arbitrary velocity; this is not true for a solution
that does not have the full O(2)-symmetry.

There are three main aspects of this paper. Firstly, we construct a basis for the space,
which gives rise to a block diagonalisation of the Jacobian matrix. This decomposition then
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gives rise to efficient methods for the detection and computation ofHopfbifurcations. Finally,
we consider the computation of the branch of rotating waves arising from the bifurcation.

The block diagonalisation of the Jacobian we consider is associated with the isotypic
decomposition of the underlying Hilbert space 12], ]. However, with this decomposition,
there is always a problem in finding an appropriate basis for the block diagonalisation to occur
in its simplest and most useful form. Healey [8] and Chang and Healey [3] essentially employ
the known projection operators P, onto the isotypic components and solve the equation

(P- ) =0

for the eigenfunctions ap associated with the zero eigenvalue of the linear operator P, I.
Murota and Ikeda 11 derive a transformation matrix that can be applied to any basis to give
a basis that results in the block diagonal form of the Jacobian. However, in our case, these
relatively complicated methods are not required since we are able to choose an appropriate
basis as the eigenfunctions of a linear operator that arises naturally from the action of 0(2)
on the Hilbert space.

The continuation package AUTO [5] will find rotating wave solutions of a restricted class
of reaction-diffusion equations that arise from a Hopfbifurcation. However, in detecting these
bifurcations, it deals with only the rather artificial case of fixing the velocity of the wave and
allowing the period of the wave to vary.

The plan of the paper is as follows. In 2 we describe the block diagonalisation of the
Jacobian and the simple way of finding a basis for the space that gives rise to this structure. In
3 we consider the Hopf bifurcation in more detail before describing methods for computing
the bifurcating rotating waves in 4. In 5, we briefly consider the extension to the infinite-
dimensional case and finally, we present a numerical example in 6.

2. Block diagonalisation. We consider time-dependent nonlinear problems of the form

(2.1)
du
+g(u,,k)=0, uX, .R,
dt

where X is an n-dimensional real Hilbert space equipped with an inner product (., .) and
g X x R --+ X is a smooth nonlinear operator. We discuss the extension to the infinite-
dimensional case in 6. We assume that g is equivariant with respect to an action of the group
0(2) on X, that is,

(2.2) ?’g(u, ,k) g(?,u, .), ?’ O(2), u 6 X,

where 0(2) is the Lie group generated by rotations ro, 0 R, and a reflection s, both of which
satisfy the following relations for any or, /3 6 R (where 1 is the group identity element):

(2.3)
s2 r0 r2z 1, sra r_as.

We also assume, without loss of generality [7, p. 31 ], that the inner product is O(2)-invariant,
i.e.,

(2.4) (yx, yy)=(x,y) Yx, yeX, yO(2).

For the sake of convenience, we assume the existence of a trivial steady-state solution
path (0, .) so that
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g(0, X)=0, XR.

We are concerned with analysing the situation when a Hopf bifurcation occurs on this 0(2)-
symmetric trivial solution, with particular interest in the branch of rotating wave solutions that
arises from such a bifurcation. In practice, Hopfbifurcations can often be found analytically in
such situations. However, the theory also applies to problems with nontrivial O(2)-symmetric
solutions such as are found in partial differential equation problems on a circular domain. Hopf
bifurcations cannot be found analytically in such problems and so the numerical techniques
we describe must be employed.

Rotating wave solutions of (2.1) are defined by

u(t) rctX,

where x X is independent of time and c R is the velocity of the wave. Substituting this
form of solution i.nto the original equation (2.1) leads to the "steady-state" equation

(2.5) g(x, )) + cAx 0,

where A is the linear operator on X defined by

d
(2.6) Ax "= -:=rox

0=0

Because this operator A plays a central role in our theory, we now explore some ofits properties.
LEMMA 2.1. (i) For all 0 R,

(2.7)
dro roA, roA Aro, sA =-As.
dO

(ii) The linear operator A2 is a symmetric linear operator on X with nonpositive eigen-
values.

Proof. (i) These results are easily proved using the group relations (2.3).
(ii) Using the invariance property (2.4) of the inner product, we have that

(2.8)
d d

(Ax, y)= -7= (rox, y)10=0 -- (x, r-oy)10=0 -(x, Ay)
at5 at5

giving AT -A, i.e., A is skew-symmetric. The stated properties of A2 follow immediately
from this fact.

Let {ck, k 0, 1, 2 N} be the distinct eigenvalues of A2 and let the corresponding
eigenspaces be

Ea, := {b E X A2$=Okb}.

Elementary linear algebra gives
N

X E.
k=O

We shall show later that this decomposition is very closely related to the isotypic decomposition
of the Hilbert space and is the appropriate basis for the block diagonalisation of the Jacobian
matrix.

The following results will frequently be used.



498 W. WU, P. J. ASTON, AND A. SPENCE

LEMMA 2.2. The eigenspaces E,, k 0, 1, 2 N are invariant with respect to A,
gx(O, ) and O(2), that is,

(2.9a) A, E,, ----+ Eak,

(2.9b) gx(O, L) E ---+ Ek, L R,
(2.9c) ?, E ---+ E, Yy e 0(2).

Proof. Prop6rty (2.9a) is easily verified. Differentiating the equivariance condition (2.2)
for ?’ ro with respect to 0 and setting 0 0 gives

(2.10) gx(O, X)A Agx(O, X), R.

Let 4 e Eak. Then

A2gx(O, X)qb gx(O, .)A25 tkgx(O, X)qb,

which proves (2.9b). The relation

yA2= A2y, y 0(2),

which is derived from (2.7), is used to prove (2.9c) in a similar way. [3

It is well known that the reflectional symmetry s can be used to decompose the space X
into symmetric and antisymmetric subspaces as

x=x,x.,

where

X:={xeX: sx =x}, X := {x e X sx =-x}.

It follows from the last relation of (2.7) that A Xs --+ Xa and A Xa --+ Xs, so both Xs and
Xa are invariant under A2. This enables the eigenspaces E,,. to be decomposed as

(2.11)

where

Note that E and Ea are also eigenspaces of A2. It is easily verified that if o0, 0, then
O/k O[k

(2.12) Ea AEk and E, AEa
so that if

(2.13a) E, span{Pl qm },

then

(2.13b) Ea span{Apl Aqbm }.

The next result uses these eigenspaces to give the block diagonalisation of the Jacobian matrix
gx(O,X).
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THEOREM 2.3. Ifthe basis ofX is chosen to be the eigenvectors ofA2, then gx (0, k) has
the block diagonal structure

(2.14a) gx(O, )

In addition for otk # O, choosing (2.13) as bases of E and Ea leads to a further decom-Ol Otk

position ofthe Bk block corresponding to Ea. as

(2.14b)

Proof. The decomposition (2.14a) follows directly from (2.9b). The further two block
decomposition (2.14b) also follows immediately from the splitting (2.13) and the fact that
Xs and Xa are invariant with respect to gx (0, .). It remains to prove that the two blocks are
identical.

Let the two blocks of the Jacobian on the symmetric and antisymmetric subspaces of
E be js and j.a, respectively. Then, relative to the basis (2.13a), which we assume is an
orthogonal basis,

ff..s
(i, gx (0,))j)

i,j (i, i)

Similarly, relative to the basis (2.13b),

(Ai, Agx(O,,.)j)

Ok (i,

using (2.10)

using (2.8)

since qb Eot

This completes the proof, l-1

Clearly, the structure exhibited in the block decomposition of Theorem 2.3 is important
for the numerical solution of the problem. However, before we consider the numerical impli-
cations, we establish the link between the eigenspaces Eak and the isotypic components of the
Hilbert space.

A Hilbert space has an isotypic component associated with every (nonequivalent) irre-
ducible representation of the group on the Hilbert space. In particular, the projection onto the
isotypic component of a real Hilbert space associated with the irreducible representation rk of
the compact Lie group 1-’ is

nkfr
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where nk is the dimension of rk, d is 1 for absolutely irreducible representations and X(Y)
is the trace of rk(y). The irreducible representations of the group 0(2) are given by

(i) r0+ to=I, s= I,
(ii) r- ro 1, s =-1,

[ coskO sinkO ] [ 1 0 ] Z+"s= k(iii) rk to=
sin kO cosk0 0 -1

We note that all of these irreducible representations are absolutely irreducible. The first
step towards establishing the link is the following result.

THEOREM 2.4. For all x X,
(i) A2Pkx PkA2x, k E Z+, A2pgx PA2x,
(ii) A2px=O,
(iii) A2P-x O,
(iv) A2 Pkx -k2 Pkx, k E,Z+.
Proof Result (i) follows immediately from the fact that ro and s commute with A2, which

follows from (2.7). We prove parts (ii) and (iii) together. Now

1 f02r f02rP 4-- rodO 4- - srodO,

since n: d 1, X( (ro 1, and X(sro 4-1. Thus,

1 fo4-- A2r 4- A2srdO

lfo2 4rr
A2r 4- sA2rdO’

since A2 commutes with s. From (2.7), we have

and so

Therefore,

dr0 Aro
dO

d2ro
dO2

dro
A-";-2" A2roao

lfo2 A2P 4rr
d2ro d2ro )

4rr -d-ff 4-S-o o

=0

as required, since o =2r= Io=o (= A).
Similarly, for part (iv) we have for k Z+ that

Pk -:-- 2 cos kO rodO + O.srodO

lfo2 cos kO rodO
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and so

lf02 AZ P, cos kO A2rodO

fo
2 d2ro

cos kO dO

k27r fo
2r

cos kO rodO

-k2pk

using integration by parts twice. [3

COROLLARY 2.5. The only possible eigenvalues ofA2 are 0 and -k2 for some k Z+.
We can now establish the link between the eigenspaces of ,42 and the isotypic components

of X in the following result.
THEOREM 2.6. Let the isotypic components ofXbe Vo PXand V PkX, k Z+.

Then
(i) Eo Vo+ Vo-,
(ii) E_, V,, k Z+.
Proof (i) If x Vo, then Px x and so AZx 0 by Theorem 2.4 (ii) and (iii), thus

giving Vo+ Vo-- c_ Eo. Conversely, suppose that x Eo, i.e., .42x 0. Then for k Z+,

0 Pkd2x ,42 Pkx -k2 Pkx

by Theorem 2.4 (i), (iv), giving P,x 0 since k :/: 0. Thus, x V0+ Vo- since it has no
component in any of the isotypic components Vk for k 6 Z+. Therefore, E0

_
V0+ V0-. We

thus conclude that Eo V0+ 3 V0-.
(ii) As for part (i), if x V,, then P,x x and so A2x -k2x by Theorem 2.4 (iv),

thus giving V,

_
E_,,. Conversely, suppose that x E_,2. Then AZx -k2x, so

by Theorem 2.4 (i), (ii), and (iii), giving Pox 0 since k :/: 0. Similarly, for some j 6 Z+,

-k2 Pjx PjA2x .,42 Pl.x y2 Pjx.

Thus, Pjx 0 if j - k. Combining these results, we conclude that x 6 V, and so E_t,-

_
V,.

Thus, V, E_, as required.
Finally, by Theorem 3.3 of ], the isotypic components V,, k Z+ can be decomposed

into symmetric and antisymmetric parts as

with the property that gx (x, ,) V, V, and gx (x, X) Vfl, ---+ V, This agrees with the
decompositions of the B, block into two blocks that act on the symmetric and antisymmetric
subspaces.

The numerical consequences of this block diagonalisation of the Jacobian are considered
in the next section.
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3. The Hopf bifurcation. Suppose that (0, .o) is a Hopf bifurcation point at which

(3.1) Xoo := Null[(gx) + 0)oI} # O, 090 # O,

where gx := gx(0, ,k0). By [7, Chap. XVI, Prop. 1.4], generically X,, is O(2)-simple.
Since all the irreducible representations of 0(2) are absolutely irreducible, this implies that,
generically

(3.2) Xo0 "I ( /"2,

where Wi and W2 are absolutely irreducible subspaces of X that are O(2)-isomorphic. We
assume henceforth that (3.2) holds. Note that since WI and W2 are isomorphic, their repre-
sentations are equivalent. Hence, they are contained in the same isotypic component of the
Hilbert space. As a result they are, by Theorem 2.6, also contained in the same eigenspace of
A2. However, we also assume that

xoo n Eo {o},

since the converse does not lead to (nontrivial) rotating wave solutions. This follows because
g E0 xR --+ E0; thus any bifurcating periodic orbit remains in E0 so that if it is a rotating wave
solution, it must be a trivial one in the sense that rctX x for all time t. By Theorem 2.6, this
excludes consideration of the isotypic components associated with the two one-dimensional
irreducible representations and so (3.2) implies that dim X,, 4, since W1 and W2 must have
dimension 2, as they are irreducible.

When (3.1) .and (3.2) hold, this clearly corresponds to a matrix block Jk in the decom-
position (2.14b) having simple eigenvalues +i0) for some k e Z+. It then follows from the
choice of basis (2.13), which gives rise to the decomposition (2.14b), that

x := X,oo n x span{l,

where 1 and 102 satisfy

(3.3a) gx(l q-- 0)0(])2 0,

(3.3b) gx0(])2 0)01 0.

These equations are the real and imaginary parts of the complex eigenvalue equation. Since gx
commutes with A (see (2.10)) and A Xs -+ Xa, it follows immediately from these equations
that

x" := Xo, n x span{A4, Ab2}.

This is not suprising in view of the choice of basis (2.13b) of Eak. Clearly, X,, X0 (3 X.
In the next lemma, we highlight the relationship between the subspaces

(3.4) Xoco "= Null{gx + coA}

and the eigenspace Xo,0.
LEMMA 3.1. Suppose that Xo,o C E_k?)for some ko Z+. Then
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where co wo/ko. Moreover, there exists a cPo Xoo \ {0} such that

(3.5a) Xc span{q0, A40},

(3.5b) Xo span{SPo, SAcPo}.

Proof This result is based on the careful choice of 4o. The appropriate function is

(3.6) qo kol A2,

where 1 and t2 are the eigenfunctions in X,o. Note that tl Y and A$2 Xa and so 4o
is neither symmetric nor antisymmetric. Then,

using the fact that gx commutes with ,4 (see (2.10)), the relation ,42t2 -k)t2 since
)2 - E-k and the eigenvalue equations (3.3). Thus,

o e Xc+o =* co oo/ko.

Given 4o 6 X, it follows immediately that A4o e Xc+ since A commutes with gx and it is
easily verified that 40 and A4o are linearly independent.

Finally, for a.ny q 6 Xc+o, $4 6 Xo, since S commutes with gx but anticommutes with A
(see (2.7)). q

The block structure described in the previous section clearly has important numerical
implications with regard to the detection and computation of the Hopf bifurcation points
we are considering. Generally, in a discretised system of dimension N, the detection of a
Hopf bifurcation requires the computation of all the eigenvalues of the nonsymmetric N x N
Jacobian matrix, which requires O(N3) operations. For large N, this is often prohibitively
expensive. However, in the situation we are considering, it is possible for any of the blocks J
in the decomposition (2.14) to have imaginary eigenvalues. Hence, we need only compute the
eigenvalues of the blocks J that are much smaller than the whole of the Jacobian matrix, thus
reducing the computational expense considerably. The most efficient procedure for detecting
a Hopf bifurcation is thus to construct each block Jk on the space Vk f3 Xs, where V, is one
of the isotypic components of the space X and apply standard methods for detecting Hopf
bifurcations to this block. Also, each block depends only on the O(2)-symmetric solution
and is independent of the other blocks. The computation of the eigenvalues of each block can
therefore be performed in parallel, thus reducing the computational expense still further.

Once the Hopfbifurcation has been detected, standard methods can again be applied using
the block Jk to compute the bifurcation point accurately [9].

4. The rotating waves. It follows immediately from the equivariance condition (2.2),
that if (x, , ) is a rotating wave solution of (2.5), then so is (rx, , ,k) for all ct [0, 2r),
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giving rise to an orbit of solutions. To isolate a point on this orbit, a phase condition can be
imposed to give the system

(4.1) F(x’ c’ ’) "= [ g(x’ X) + cAx ]x)

for some appropriate choice of X (see [2]). However, this extended system has a singular
Jacobian at the Hopf bifurcation point and so is not the best choice when computing the
bifurcating branch of rotating wave solutions. Adopting an idea in [4] we introduce the
following extended system for the computation of rotating waves near the Hopf bifurcation
point with x 6

G(y, 6)=O, G Y xR Y,

(4.2a) G(y, 6) :-- (Ca, 2) 6 # 0,

(es, Yc)

gx(O,Z) + cA 1(4.2b) G(y, O) "= (Ca, ) 6 O,

(es, )

y= (,c,X) Y := Xx R2,

where s Xs and ea Xa. This system necessarily involves the velocity c. However, once
the Hopf bifurcation has been detected, the initial velocity co is known from Lemma 3.1.

For the next result, we require the left eigenvectors of gx + coA, so we define

Range(gx + coA) ’= {x X, 1//IX 1D2x 0}.

THEOREM 4.1. Let (x, X) (0, Xo) be a Hopfbifurcation point at which X C E_k for
some ko Z/ and let Yo (tPo, co, Xo), where qbo and co are defined in Lemma 3.1. Choose
es Xs and a Xa such that G(yo, 0) 0 and

(4.3) (Ca, Aqh) O,

where is defined by (3.3). Ifthe nondegeneracy condition

(4.4)

o .= Gy(Yo O) is nonsingular and hence, there exists a unique solution pathholds, then Gy
(y(6), 6) of(4.2) in Y x R.

Proof. The Jacobian of the system (4.2) is given by

I gx (62, X) + cA A -igx(6,
Gy(y, 6) (Ca, .) 0 0

(e, .) o o
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Let (I) := (c, fl, 8) 6 Y satisfy

(4.5) G(I) 0.

Then the first equation of this system is

o(4.6) (gx + coA)ot + flAcko +/g;x4o 0,

where g := gx (0, Zo), etc., since limo gz(, X) gxx (0, X). Taking the inner product
of this expression with and z gives the two equations

,go)
=0.

($2, A$o) ($2, gx$o)

The nondegeneracy condition (4.4) then implies that fl 0. Thus, from (4.6) and (3.5a),

a o + Ao,
where g, R. Using the form of o given in (3.6), it is easily verified that A$o
ko(A$ + ko$2). Thus,

(4.7) a ko(gl + 0ko2) + (okoA$

The firstteof(4.7) is inX and the second term is in Xa, since $1, $2 X and A X Xa.
The second and third equations of (4.5) are, therefore,

Now G(yo, 0) 0 and this implies that (a, 0) 0 and (,, 0) 1, which in turn imply
that (, A) 0 and (, ) 1. Thus, the above matrix is nonsingular if and only if
the nondegeneracy condition (4.3) holds, giving 0 and hence 0 as well. Thus,

0 is nonsingular. The Implicit Function Theorem can then be applied to give the0 and G
existence and uniqueness of the path of solutions (y(e), e) of (4.2).

Differentiating G(y(), e) 0 with respect to e and evaluating at e 0 gives

(4.8) 0Gyo + G 0,

where G := Ge(yo, O) (gxoo, O, 0)r and fi0 := =0. This equation can be
solved for the tangent vector rio to the path of rotating wave solutions, which can be used
in continuation codes for staing out along the branch of solutions. Once the initial pa of
the branch has been followed, the rotating wave solutions could then be continued using the
slightly smaller system (4.1) with , if required.

It is possible to define a reflectional symmetry on the system (4.2). To see this, let

S c -c

Then it is easily verified that

SG(y, ) G(Sy, .)
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using the invariance property (2.4) of the inner product. An immediate consequence of this
property is that, for any value of , if (, c, )) is a solution of (4.2), then (s7, -c, k) is also
a solution. This new solution simply consists of a reflected wave rotating in the opposite
direction.

Now we consider the symmetry properties of the rotating wave solutions. They clearly do
not have the reflectional symmetry s. However, the isotypic component Vk is contained in the
fixed point space Xzk, where Zk is the cyclic group generated by rEzr/k. Thus, ifX C 1,’ for
some k, then Theorem 4.1 holds restricting attention to the space Y :- Xzk x R2, resulting
in a branch of solutions that are invariant under r2/.

Finally, we show that the nondegeneracy condition (4.4) is essentially an eigenvalue
crossing condition. For this, we assume that

(4.9) Xc+o N Range(gx + coA) {0}.

Since o and Ao are basis vectors for Xc+o, this condition is equivalent to

(4.10)
(ltl, t0) (1]tl, Argo)

(1]r2, to) (1t2, Argo)

THEOREM4.2. Let cr(.) +iog(k) be eigenvalues ofgx(O, k) satisfying cro :- tr (,k0) 0. If
(4.9) holds, then the nondegeneracy condition (4.4) is satisfied ifandonly ifdo d(X)--Ix=o
0.

Proof. Equating the real and imaginary parts of the eigenvalue equation gives

gx(O, x)4,(x) cr(x)4(x)

gx(0, ,)2()t,) O’(,)t2(,) -" O)())1 (,).

Differentiating these relations with respect to X and setting X 0 gives

(4.11a) + gx

(4.1 lb) + gx : + +
In order to introduce o kol A, we multiply the first equation by ko, operate on the
second with A, and then add the two giving

o oAogxo + go doo Ao

since gx commutes with A and Ao ko(A + ko2). Now wo coko by Lemma 3.1, so

ogx + (g + coA)6o doo Ao.

Taking the inner product of this expression with j, j 1, 2 gives

o

which is two equations to be solved for do and &o giving

(,l, Ao) (01, gxo) (,l, o) (,l,
do= /
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Because (4.9) holds, (4.10) also holds so that the denominator of this expression is nonzero.
Thus, 60 :/: 0 if and only if the numerator is nonzero, which is precisely condition (4.4).

The condition d0 - 0 in Theorem 4.2 is, ofcourse, the familiar condition that the complex
conjugate eigenvalues must actually cross the imaginary axis as ,k passes through the Hopf
bifurcation point at .0 so that a stable trivial solution loses stability at a Hopfbifurcation point.

5. Extension to infinite dimensions, In this section, we generalize our results to an
infinite-dimensional case (cf. 6 of [2]). This enables us to deal with partial differential
equations directly.

We assume that g is-a C2 mapping from R into X, where and X are both real
Hilbert spaces with X C X. We also assume that gx is a Fredholm operator of index zero. We
suppose that there is an action of 0(2) on X that is strongly continuous and that " is an 0(2)-
invariant subspace of X, i.e., ,x X, ?, 0(2), x X. The equivariance condition (2.2)
then holds. We also assume that if x X, then Ax X, so that (2.5) defines a mapping from

" x R into X. Finally, we assume that the decomposition of X into eigenspaces of A2 takes
the form of an infinite sum of the finite-dimensional su_bspaces E_k2, k 0, 1, 2 This
decomposition then gives a natural decomposition of X also. All the results of the previous
sections then hold for the infinite-dimensional case with minor changes.

6. Numerical results. We now apply the theory to a practical example. We consider the
coupled pair of reaction-diffusion equations known as the Sel’kov model [6]:

Ut dl Uxx + -/,/l)2,
1)t d21)xx + p(u1)2 1)),

which we write in more general form as

Ut G(U, d) DUxx + F(U),

where U (), D is the diagonal matrix of diffusion coefficients, and F(U) is the nonlinear
reaction terms. We choose the diffusion coefficient dl as our bifurcation parameter. Let Hm

be the Hilbert space of 2rr-periodic functions whose derivatives up to and including the mth
are square integrable, with inner product

lf02 (U, V) n :-- - gl(m) (X)V(m) (X) "at- U(X)U(X) dx.

Then G H2 x H2 x R ----+ H x H. We define an action of 0(2) on H by

(6.1) rau(x) u(x + or), ot [0, 2zr), su(x) u(-x).

For this action, the inner product on Hm is O(2)-invariant and H2 is an invariant subspace of
H. Also G is equivariant with repect to the diagonal action on H H defined by

1)

In this example, the linear operator A has the form

(6.2)

0(2).

1) 1)x
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and the eigenspaces of A2 are

E_k (span{coskx, sinkx})2, k -7/: 0,

Eo (span{ })2.

Cleady,,the eigenspaces E_, are four-dimensional for k 0, giving rise to 4 x 4 blocks Bk in
the decomposition of the Jacobian given by (2.14a). These blocks then decompose into 2 x 2
blocks (as in (2.14b)) on the symmetric and antisymmetrie parts ofthe eigenspace E_k. Using
the definition of the reflectional symmetry s in (6.1), the symmetric subspaee involves only
the cosine functions, whereas the antisymmetric subspace involves only the sine functions.
Thus, we know precisely the spaces that give rise to the block decomposition of the Jacobian.

As an example, we choose d2 4, p 6 and there is then a Hopf bifurcation from
the trivial solution u v 1 at d associated with the E_ eigenspace for which

coo c0 t-. The symmetric eigenfunctions 1 and t2 at this point are given by

3 cos x 3 cos x

With the linear operator A defined by (6.2), the corresponding antisymmetric eigenfunctions
A4 and A4 are obtained from 1 and 4 by replacing cos x with -sinx. The standing
waves which bifurcate at this point can be computed by restricting attention to the subspace
of symmetric functions (involving only the cosine functions) on which the Hopf bifurcation is
standard. The usual methods can then be employed for switching onto the branch of standing
waves. For comtiuting the travelling waves, however, we require the function 40 defined by
(3.6), which, for this example, is given by

t#0 ( (1 + V) csx + (’/ 1) sinx ).3(cos x + sin x)

By Theorem 4.1, we must choose the fixed vectors s and a so that they satisfy certain
conditions. All these conditions are satisfied with

es 1/2 cos x sin x

The system (4.2) can then be used to compute the branch of travelling waves.
The standing waves and travelling waves that bifurcate from the Hopf bifurcation point

are shown in Fig. 1. The results are shown in terms of IIUII2, where U is defined by

V--1

SO that the trivial solution is U 0. Figure 2 shows the variation in the velocity of the
travelling waves along the branch together with the frequency of the standing waves.

Finally, we remark that the type of Hopf bifurcation we are considering will not occur
generically in a single equation because the eigenspaces E_ are then only two-dimensional.
This is not sufficient to satisfy the generic condition (3.2), which requires a four-dimensional
eigenspace of g0 contained in E_. However, bifurcations to rotating wave solutions from
nontrivial steady states are possible in this case, as in the Kuramoto-Sivashinsky equation (see
[21).
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ERROR-MINIMIZING KRYLOV SUBSPACE METHODS*

RODIGER WEISS

Abstract. Iterative methods for the solution of linear systems are usually controlled by the observation of the
norm of the residual. In reality, the error should be controlled, but the error is not available. The residuals and the
errors are connected by the condition number of the system matrix. If the system is well conditioned, the decrease
of the errors is closely connected to the decrease of the residuals. For these cases, Krylov subspac methods that
minimize the residuals in the Euclidean norm or in the energy norm arc powerful solution techniques. If the system is
ill conditioned, the residuals can decrease while the errors increase. For these systems, arising even from very simple
and commonly used differential equations, iterative methods that minimize the residuals may require a large number
of iterations to reduce the errors. The user may be misled to stop the iteration too early by small residuals. Two
families of error-minimizing Krylov subspacc methods are proposed to ovcrcomethese difficulties. Each of them is
suited for different problem types.

Principles for the design of generalized cg methods that minimize the error are derived from the geometric
convergence behavior of generalized cg methods. These methods use the transposed system matrix multiplied by the
system matrix as the iteration matrix. By this technique a fast convergence is achieved for matrices with clustered
singular values and scattered eigenvalues.

A class of Krylov subspace methods minimizing the error by using the simple transposed matrix as the iteration
matrix is proposed. Various realization possibilities are inherent in these generalized minimum error methods. The
methods are analyzed theoretically. Common and related properties with generalized conjugate gradient methods are
presented. These techniques should be preferred if the eigenvalues are more clustered than the singular values. The
first promising tests for one distinct method arc presented.

Key words, conjugate gradients, convergence, linear systems, error-minimizing methods, Krylov methods

AMS subject classifications. 65F10, 65F50, 40A05

1. Background. The purpose of this paper is to present error-minimizing Krylov sub-
space methods for the solution of the linear system

(1) Ax b.

The matrix A is a real, square matrix of dimension n, i.e., A nx,,, and x, b n. In
general, the matrix A is nonsymmetric and nonpositive definite. Let us assume A to be
nonsingular.

We use the following notation for norms: Let Z be a symmetric, positive definite matrix;
then the norm [lyllz ofany vector y " is defined by Ilyllz v/yr Zy. IfZ is nonsymmetric
and nonpositive definite, then lYl I is mnemonic abbreviation for yr Zy. lYl I is the Euclidean
norm lyll.

Let Kk(B, y) span(y, By Bky) be the Krylov space spanned by the matrix B e
/R" xn and the vector y n.

For any iterative method for the solution of (1) the residuals r, Ax b and the errors
e, x x are connected by

(2) rk Aek.

As a result of IIrll IIAell IIAII" Ilell and Ilell tlA-lrll IIA-II IIr/ll, the
following inequalities are valid:

(3) IIrll 211ellllrll< Ilell< <
llroll- Ileoll- - Ileoll’

*Received by the editors September 24, 1992; accepted for publication (in revised form) March 26, 1993.
Numerikforschung fttr Supercomputer, Rechenzentrum der Universitit Karlsruhe, Postfach 6980, 76128 Karls-
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where x IIAI] IIA -111 is the condition number of A. If x is near to one, the norm of the
relative residuals is strongly connected to the norm of the relative errors. In other words, if
the residuals decrease sufficiently the errors will be reduced as well. For a large condition
number the residuals can decrease while the norm of the errors either remains the same or
even increases.

The next example shows that a separation of the norm of the errors from the norm of the
residuals happens even for very simple and commonly used systems.

Example 1. Solve the following linear system resulting from the discretization of a one-
dimensional Laplace equation:

’ 2 -1 0 0 h

"X--

kTrThe matrix has the eigenvalues Zk 2. (1 cos ), where n is the dimension of the system
and 1 < k < n. Because the matrix is symmetric, the condition number is

K
IXmaxl 1 + cos

IXminl cos

The dimension of the system is 1000, resulting in a large condition number of approximately
4.105. The system was solved by the classical conjugate gradient (cg) method [8] and the
GMRES method 11 ]. The starting guess is x0 0. Figure 1 shows that the residuals decrease
while the errors do not decrease for either method until 500 matrix-vector multiplications have
been performed.

:Rsiduals

1000
matrix-vector multiplications

Errors

0

-2

0 1000
matrix-vector multiplications

GMRES classical cg

FIG. 1. Norm ofthe relative residuals and errors ofGMRES and classical cg (logarithmic scale).

In the following sections we propose two remedies in order to obtain error-minimizing
methods. The first technique is based on the iteration matrix ArA and generalized cg methods.
The second technique uses the iteration matrix A r and is a generalized Krylov subspace
method.
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2. Generalized conjugate gradient methods.
DEFINITION 1. Letxo be any initial guessfor the solution ofthe system Ax b, ro Axo-

b the starting residual. Thefollowing recurrence is called a generalized cg method. Choose
a preconditioning matrix P and calculate for k > the residuals rk and approximations xk
so that

(4)

(5)

xk xo + Kk- (PA, Pro), with

rlrk_ ---0

for 1 crk, where Z is an auxiliary, nonsingular matrix.
The method is called exact if rk k, restarted if crk (k 1) modcrres + 1 with ares

fixed, truncated ifcrk min(k, O’max) with Tmaxfixed, and combined ifthe truncated method is
restarted.

From Definition it follows directly for the residuals rk and the errors ek xk x that

(6)

(7)

k

rk (-Ik(AP)ro vi,,(Ap)iro + ro,
i=1

k

ek (-lk(PA)eo vi,k(PA) eO + e0,
i=1

where Flk is a polynomial of degree k with constant coefficient 1, i.e., Ilk(0) 1.
If Z 2AP and 2 is symmetric, positive definite, then for exact and restarted methods

(5) is equivalent to

(8) IIrll min lZi,k(A p)irk-rk + rk-r.
i=1

In this case the methods are called conjugate residual type methods or minimum residual
methods.

If Z is symmetric, positive definite, then for exact and restarted methods (5) is equivalent
to

(9) II=kllz min
0/l,k, Olak,k

(AP)krk-, + ai k(AP)i-I
rk-ak

i=1 Z

where

1
(0) : r

Pk,k

is the pseudoresidual; see [12] and [14]. In this case the methods are called pseudoresidual
methods.

The methods break down if division by zero occurs for the calculation of rk. A breakdown
may be curable, by modifying the algorithm [1 ], or incurable. We assume in the following
that the algorithm does not break down.

LEMMA 2. For any exact, generalized cg method

(11) rfZP-A-rk rZP-A-I-Ik(AP)ro
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is satisfied for al.l matrix polynomials Hk(AP) zik___l Oi(AP) d- I (i.e., O1 Ok are
arbitrary). This is especially true of

(12)
(13)

r[Zp-1A-lr r[Zp-1A-lrj
rArZp- rArZp-ek ek ek ej

forj --0 k.
Proof See 14]. [3

The next investigations show some interesting facts concerning the geometric location of
the residuals and the errors.

THEOREM 3. The residuals rk and the errors ek of exact, generalized cg methods satisfy
thefollowing equations:

(14)

and

(15)
ArZp

for j 0 k with

(16)

(17)

Yj 2 (ZP-1A-1 + (ZP-IA-1)r)-1Zp-1A-lrj,
3j 2 (ZP- + (Zp-1A-)rA)-1 zp-lej.

In particular ifArZP- is symmetric, then

(18)
(19)

rj rj,

e e.

Proof By (12),

r[ Zp-1A-l (rk rj) --0.

Therefore,

rZP-A-lrk rfZP-IA-lrj O.

From the definition (16) for Yj follows

rZP-IA-1
r/c I-r[ZP-’A-’ApZ-I (Zp-IA- + (ZP-A-)) j 0

2

and

rZP-A-lrk -4 (ZP-’A-’ + (ZP-’A-’)r) j

116112 2

+ 4 4
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which is equivalent to

j 2 IIjllz-,-
rk- - Ze-A- 4

Equation (15) follows by rj Aej.
Equations (14) and (15) are quadratic forms and describe geometrical figures.
If AT"ZP- is definite, then the residual rk and the error ek lie on hyperellipsoids. The

lengths of the semiaxes of the hyperellipsoid for the residual are precisely the singular values
of the matrix APZ- multiplied by IIFllz,-,-,. The lengths of the semiaxes of the hyper-
ellipsoid for the error are precisely the singular values of the matrix PZ- A-7" multiplied by
IIjllaze-,; see Fig. 2 for j 0.

Residuals Errors

FIG. 2. Residuals and errors if A T Zp-l is definite.

If Z A P, then the residual rk lies on an n-dimensional sphere; see Fig. 3 for j 0.
The norm of the residual is monotonically decreasing.

Residuals Errors

FIG. 3. Residuals and errors if Z A P.

If P A 7" Z, then the error e, lies on an n-dimensional sphere; see Fig. 4 for j 0. The
norm of the error is monotonically decreasing.

If AT"ZP-1 is indefinite, then the geometric figures are not closed and in general the
method does not converge; see Fig. 5 for j 0.

The qualitative convergence behavior follows from Theorem 3 and the geometric inter-
pretation. The speed of convergence depends on the eigenvalue distribution of the matrices
A P and PA, respectively, which follows from the next lemma. Recall that the symmetric part

BT(B + Br) and the skew-symmetric part is (B ).of a matrix B is E
LEMMA 4. IfAPZ- ispositive real i.e., the symmetricpart ofAPZ- ispositive definite,
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Residuals Errors

FIG. 4. Residuals and errors if P Ar Z.

Residuals

FIG. 5. Residuals and errors ifA rZP-1 is indefinite.

Errors

then

(20)

(21)

p2(R
IIrllze-,-, < + /X2m nn IlFl,(AP)rollze-,A-,,

p2(R
min [[rlk(PA)eoll,rzp-,IlekllazP-, < 1-t-

lZ2m n

holdsfor exact generalized cg methods. FIk is apolynomial ofdegree kwith I-Ik(0) 1. p(R)
is the spectral radius of the skew-symmetric part R of ZP-1 A-1. lzm is the minimum eigen-
value ofM, the symmetric part ofZp-1A-1. For residual-minimizing methods (Z A P)

(22) Ir#ll min
k

Z fli(Ap)ir + ro
i=1

For error-minimizing methods P ATZ)

(23)

Ilekll-- min

min

k

i(PA)leO + eo
i=1

k

fli(A r ZA)ieo + eo
i=1

is valid.

Proof See 141.
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As

xrAPZ-lx xrZ-r prArx yrArZP-y

with y PZ-lx for all x, APZ-1 is positive real if and only if ArZP-1 is positive real.
Therefore Lemma 4, in fact, covers all converging cases following from Theorem 3 and the
geometric interpretation. As a result ofTheorem 3 and Lemma4 the methods can be classified.
In Table 1 the different conditions for the minimized items are collected.

TABLE
Various generalized cg methods.

Condition Minimized Item Method

ZP-I I and
A sym., pos. def.
ZP- A- sym., pos. def.
Z sym., pos. def.
Z AP and

sym., pos. def.
Z=AP
Z A-rP and

sym., pos. def.
P=ArZ

IlrkllA-
Ilrkllze-A-
II,llz

Iletll
Ilekll

minimum energy norm
minimum ZP- A- l.residual
pseudoresidual

minimum -residual
minimum residual

minimum ,-error
minimum error

For systems with clustered eigenvalues, i.e., a small condition number, the relative norm
of the errors is closely connected to the relative norm of the residuals, and the speed of con-
vergence is fast. For systems with a large condition number error-minimizing generalized cg
methods (P Ar Z) guarantee that the errors do not increase. These methods are techniques
used to prevent the separation of the errors from the residuals.

The speed of convergence is dependent on the eigenvalue distribution of the iteration ma-
trices AP for the residuals, PA for the errors, respectively. For error-minimizing generalized
cg methods these matrices are AArZ and ArZA. If the eigenvalues of ArZA are clustered,
then error-minimizing generalized cg methods guarantee a fast convergence. An investigation
for the choice of Z in order to obtain a fast convergence on supercomputers is given in 15].

For Example 1 the eigenvalues of the matrix ArA are more scattered than the eigenvalues
of A because the matrix is symmetric. Therefore an error-minimizing generalized cg method
with Z I (Craig’s method CGNE [2]) would prevent the separation of the residuals from
the errors, but the convergence would be very slow. As regards the CPU time, this would
become even worse because one iteration step needs two matrix-vector multiplications. For
this example and many others the simple iteration matrix A or A r would generate a faster
convergence. In the next section we try to construct such methods that minimize the error.

3. Generalized minimum error methods. In this section we introduce our second tech-
nique: generalized minimum error methods that use A r P as the iteration matrix instead of
using ArZA, as in the previous section. The technique is a generalization of a method pro-
posed by Fridman [6] for symmetric, positive definite matrices.

The construction of the methods is based on the following lemma.
LEMMA 5. Let Yi - An, qi A T

Yi for k rk k and

(24)
k-1

xk , Yi.tqi + xt-ok.
i=k-o’k
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Then the error ofAxk b is minimized in the Euclidean norm, i.e.,

min E ’i,kqi + Xk-rk X(25) Ilell
Yk-ok,k Yk-l,k

i=k-coc

by the solution (?’k_,k,k Yk-l,k) ofthe linear system

(26)
k-1

E ?’i,kqirqj=bryj-xk-oqJ
=k-trk

j k-rk k- 1. The following orthogonalities are especially valid for j k-
crk k-l"

(27) r
ek qj =0.

Proof The error lell is minimized if

0
=ekqj =O2

with

T Te q (x x) qy

for j =k-a k- 1,

k-I

E ’i,kqirqJ xrqj + xk_oqj
=k-r.

k-1

E Yi,kqirqJ bryj + xk_o.qj 0
i=k-rt

following from (26). [3

The qi are update directions for the iterate xk, and the Yi are auxiliary vectors needed for the
computation of the coeffients Yi,. By means of Lemma 5 a whole family of error-minimizing
Krylov subspace methods can be derived.

DEFINITION 6. Let xo be any initial guessfor the solution ofthe system Ax b. Choose an
auxiliary starting vector Yo : O, qo ATYO. Thefollowing recurrenceis called a generalized
minimum error method (GMERR). Choose a preconditioning matrix P and calculate the
followingfor k > 1"

(28)
k-I

Xk

_
Yi,kqi + Xk-ok.

=k-r

Choose yk Kk PAr, Yo so that

(29) q[ Zqk-i 0

for 1, 6:, where Z is an auxiliary, nonsingular matrix and

(30) qt Aryk.
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The ’i,k are determinedfrom

(31) Ilell man I[’i,kqi-Jrek_a
,k-,. r’-.k i=k-tr

The method is called exact if k, restarted if, (k 1)mod Crre + with
fixed, truncated if min(k, trmax) with rmax fixed, and combined if the truncated method
is restarted. The method is called consistent iftr .

The coefficients )’i,k can be calculated by (26). If ZArp prAZ, then the iterates q can
be calculated by a simple three-term recurrence, and the methods are equivalent to the classical
algorithm of Fridman [6]. The optimal choice of Y0 would be Y0 A-reo A-rA-ro
because then q0 e0, and the solution is obtained in the first iteration step.

From Definition 6 follow directly

(32) Ilell _< Ile-ll,
(33) x e x0 + K_ (Ar P, q0),

(34) rk ro + A K_(Ar P, qo),

(35) q K(Ar P, qo)

From Definition 6 and condition (34) follow for the residuals and the errors:
LEMMA 7. For GMERRs thefollowing hold:

k-1

(36) e Vi,k(4 T p)iqo + eo,
i=0

k-1

(37) rk vi,A (A r p)iqo + ro
i=0

Proof. The proof is trivial. [3

From Lemma 7 the norm of the error can be estimated.
THEOREM 8. For exact, consistent, GMERRs holds

(38) Ilenll min
00 0k_

k-1

Oi(A T p)iqo at- eo
i=0

Proof. Equation (38) follows directly from (31) and (36). [3

From (38) it follows directly that for P ZA and Y0 Zro we also obtain the error-
minimizing generalized cg methods of the previous section as GMERRs (see Lemma 4):

min(39) Ilekll , ,. fli(A TZA)ieO A- eo
i=1

Thus we have the following duality’ The preconditioning matrix P ZA for GMERRs (see
(39)) corresponds to the preconditioning matrix P ArZ of generalized cg methods (see
(23)).

The next theorem shows the interconnections of GMERRs to a one-dimensional mini-
mization technique, the smoothing algorithm.

THEOREM 9. IfZ I, then the calculation ofxk simplifiesfor exact, consistent GMERRs
to
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with

(41) ’k-l,k

Tbryk- Xk_lqk-1

Proof. The orthogonalities in Equation (29) simplify (26). Therefore, Yk-i,j Yk-i,l for
all j and 1, and the ?’-i, can be calculated explicitly for try, by

qTk-iqk-i

bryk-i (_,-- Yj,:-iqj + Xo)rqk-i

because of the orthogonalities

TbrYk-i Xk_iqk-i

k-1Thus xk x0 + i=0 Yi,qi x_ + ’k-l,kqk-1.

Equations (41) and (40) can be considered a smoothing algorithm to minimize the error.
SchSnauer introduced a smoothing algorithm to minimize the residual (see, e.g., [12]). In
[14] it is shown that this algorithm transforms generalized cg methods that minimize the
pseudoresidual to methods that minimize the residual. Gutknecht [7] gives the reverse of this
smoothing algorithm, which is itself a smoothing algorithm. Zhou and Walker 16] show that
a smoothing algorithm transforms the BCG method [3], [9] to the QMR method [5] and that
it transforms the CGS method [13] to TFQMR [4].

If ,,_, is calculated according to (41), then the algorithm will be stable in the sense that
xk is depending only on values of the previous iteration step.

A GMERR can be implemented as shown in the following algorithm:

Algorithm I. Let xo be any initial guess. Choose an auxiliary starting vector Yo
and calculate qo A rYo. Choose and accordingly. For k >_ choose a preconditioning
matrix P and calculate:

(42) lk-l,k

then restart

(43)

(44)

Tbryk-1 x_qk-1

IIq_ll9

if I’-,1 for k > 1,

T Tqk_iZA Pqk-
for =0 ak
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t1 AT Pq-I + Oti,kqk-i
i=l

if 114llz _< ,
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then restart

(46)

(47)

(48) Yk qbk Pqk-1 -k- ot k ytc-
i=1

This implementation is an Arnoldi-like algorithm for qk. If we calculate

instead of (46), then Algorithm I resembles an ORTHORES algorithm. Without the restart
function the algorithm would break down if 4k 0. An invariant subspace or the whole
space would then be spanned, and the iteration would be restarted from the defect correction
equation.

The algorithm is also restarted if the iterate x does not change sufficiently. By numerical
engineering the value of ; has been optimized to 3 10-31lX_lll Note that the iteration
restarts from the defect correction equation so that the iterate x is decreasing, thus justifying
the choice of 8.

4. Comparison of residual-minimizing/error-minimizing methods. We test the con-
vergence behavior of the residual-minimizing method GMRES [11], the error-minimizing
generalized cg method CGNE [2], and a GMERR method. The intention is to get a feeling
for how GMERR methods behave in comparison with the corresponding GMRES methods
and the error-minimizing cg methods. GMRES is an exact generalized cg method that mini-
mizes the Euclidean norm of the residuals (Z A, P I). Correspondingly, we select the
exact GMERR method with Z P I according to Algorithm I with g 10-8 (14 digits
accuracy). For CGNE holds P At, Z I. For all methods we choose x0 0, and for
GMERR Y0 r0.

Example (continuation). As predicted, CGNE behaves worse than do GMRES and
GMERR because the eigenvalues of the iteration matrix are more scattered. Unfortunately,
GMERR does not converge faster than GMRES, but for GMERR the norm of the residuals is
connected to the norm of the errors. Thus the user is not misled by the residuals, see Fig. 6.
The bad convergence is dependent on the bad starting vector x0 0.

Examples MIT1-MIT8. The examples are taken from [10]. We omit the first example
MIT1 because the system matrix is the unit matrix and the solution is obtained in the first
iteration step. The examples "nail down the space of matrices at every corner" [10]. The
dimension of the system is 40 for MIT2, MIT3, MIT4, MIT6, and MIT7. The dimension of
the system is 400 for MIT5 and MIT8. The solution was prescribed by the random number
generator, and the right-hand side was calculated accordingly.

MIT2: A is a random matrix of dimension 40. All methods are similarly bad (see Fig. 7).
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Errors

0 ,500 000
matrix-vectot, ,,mult plications

GMRES CGNE GMERR

FIG. 6. Norm ofthe relative residuals and errors of GMRES, CGNE, and GMERRfor Example (logarithmic
scale).

’esi’duals
(}

matrix-vect_or multiplications

-10
0 50 100

matrix-v=ector., m_u!tiplications..
GMRES CGNE GMERR

FIG. 7. Norm of the relative residuals and errors of GMRES, CGNE, and GMERRfor example MIT2 (loga-
rithmic scale).

MIT3: The matrix of MIT3 is

’0 1 0 0’

0 ".

kl 0 Oj

GMERR beats GMRES and gets the solution immediately because qo A Tyo ,4Tro
A r.4eo e0 has an optimal direction. CGNE converges immediately because ATA I
(see Fig. 8). The eigenvalues of A are scattered and the eigenvalues of A T.4 are clustered.
Therefore, CGNE should be better than GMERR. The opposite is true because of the artificial
and special choice of .4.
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Residuals

O0
matrix-vector multiplications

GMRES CGNE

Errors

-10-!|
i

0 50 100
matfi-vecto multpficafions

GMERR

FIG. 8. Norm of the relative residuals and errors of GMRES, CGNE, and GMERRfor example MIT3 (loga-
rithmic scale).

The structure of the matrix for MIT4, MIT6, MIT7, and MIT8 is

A 0 0

0 0 Ann

]- l) The dimension is 40. GMRES is faster than GMERR andGMERRMIT4: Ai ( o
is faster than CGNE (see Fig. 9).

Residuals
o-

-I0
0 50

matrix-vector multiplications

Errors
10

-10
0 50 100

matrix-vector multiplications
GMI%ES CGNE GMERR

FIG. 9. Norm of the relative residuals and errors of GMRES, CGNE, and GMERRfor example MIT4 (loga-
rithmic scale).

MIT5:

A diag(l with
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i 1 + 1/2(Yi + 1)(x 1), Yi COS (i:l)Zr_l and E 10-1. The dimension is 400. GMRES
is faster than GMERR, and GMERR is faster than CGNE (see Fig. 10).

0 50

Errors

matrix-ve.c.t0r multiplications

’, 10 I ’’ i--"
O0 0 50 O0

matrix-vector multiplications
GMRES CGNE GMERR

FI. 10. Norm of the relative residuals and errors of GMRES, CGNE, and GMERR for example MIT5
(logarithmic scale).

MIT6: A, (_l 0). The dimension is 40. All methods are very fast because A2

A2r -I and AAr I (see Fig. 11).

Residuals

-10
0 50 O0

matrix-Vector multiplications

Errors

-10 --i
0 50 100
matrix-vector multiplications

GMRES CGNE GMERR

FIG. 11. Norm of the relative residuals and errors of GMRES, CGNE, and GMERR for example MIT6
(logarithmic scale).

i-l). The dimension is 40. GMRES is very fast, GMERR is very slow,MIT7’ Ai ( o
and CGNE is even worse (see Fig. 12).

MIT8"

A i I)i
with x

+ E-r-

0

(i-- 1)n" 10-10.i + 1/2(Yi + 1)(x 1), Yi cos ,,nL and E The dimension is 400. GMERR
is twice as fast as GMRES: CGNE is as fast as GMERR (see Fig. 131.
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-R-esiduai’s
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matrix-vector multiplications

Errors

0 50 100
matrix-vector multiplications

GMRES CGNE GMERR

FIG. 12. Norm of the relative residuals and errors of GMRES, CGNE, and GMERR for example MIT7
(logarithmic scale).

--ReSidUals

100
-10 .... ’’
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matrix-vector multiplications

GMRES

Errors

-10
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matrLx-vector multiplications

CGNE GMEttFt

FiG. 13. Norm of the relative residuals and errors of GMRES, CGNE, and GMERR for example MIT8
(logarithmic scale).

For MIT2 and MIT6 GMRES and GMERR deliver comparable results. For MIT4, MIT5,
and MIT7 GMRES is better; and for MIT3 and MIT8 GMERR beats GMRES. GMERR is
better than CGNE for MIT4 and MIT5. For all other cases the two methods are comparable.
In Table 2 the results are collected.

5. Outlook. The tests with the MIT examples indicate that exact, consistent GMERR
according to Algorithm I is better than CGNE, and it is in some cases better than GMRES. But
for more realistic problems, i.e., large problems arising from the discretization and linearization
of partial differential equations, the exact methods are not feasible for storage requirements.
Therefore, truncated and restarted versions have to be applied. While it was possible to
optimize the restart and truncation parameters for GMRES-Iike methods, see e.g. [12], this
optimization still lies ahead for GMERR methods. First tests indicate that this will be a more
difficult task.

We further remark that GMERRs can be combined with generalized cg methods as we
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TABLE 2
Comparison ofGMRES, CGNE, and GMERR, on a scale of 1-3 (1 =best method; 3=worst method).

Example

MIT2

MIT3

MIT4

MIT5

MIT6

MIT7

MIT8

all methods bad

both

all methods good

both 3

both

shall describe. For the biconjugate gradients (BCG) [3], [9] the double system , , i.e.,

0 Ar x* b*

is considered, b* is arbitrary. The residuals have the form F (f.) and Z Z (0 ).
A generalized cg method is applied to this double system. As Ze rZ, the method is
exact for r 2, i.e., the sequence terminates automatically. Ofcourse this doubling technique
can be adapted to GMERRs in order to get terminating sequences. But we can also exploit
this doubling differently. In the original BCG method the second sequence (*) is used only
for the orthogonalization without exploitation of the iterates of the second sequence. But we
can exploit the information of the second sequence for a generalized minimum error method
especially because the iteration matrix of the second sequence is A r as needed. Thus by
modifying BCG slightly we obtain a generalized cg and a GMERR in parallel.

g. Cndsm For problems with a single cluster of eigenvalues, i.e., in the symmetric
case for well-conditioned problems, the errors decrease with the residuals, and the convergence
of generalized cg methods is fast.

For problems with scattered eigenvalues, i.e., ill-conditioned problems in the symmetric
case, the decrease of the residuals may be excellent while the errors do not decrease. As a
consequence, we use error-minimizing methods. We have proposed two techniques. One
is based on generalized cg methods with the iteration matrix A rZA, the other is based on
GMERRs with the iteration matrix A r p. We have shown various interconnections between
the two techniques.

Because the speed of convergence is dependent on the eigenvalue distribution of the
iteration matrix both techniques are suited for different problem types. The first is superior for
scattered eigenvalues of the system matrix but more clustered eigenvalues of A r ZA, i.e., for
clustered singular values if Z I. The second is preferable if the eigenvalues of A r ZA, i.e.,
the singular values if Z I, are more scattered than the eigenvalues of the system matrix.
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POSITIVITY CONDITIONS FOR QUARTIC POLYNOMIALS*

GARY ULRICH AND LAYNE T. WATSON

Abstract. Simple necessary and sufficient conditions that a quartic polynomial f(z) be

nonnegative for z>0 or a<z<.b are derived, and illustrated geometrically. The geometry provides
considerable insight and suggests various approximations and computational simplifications.
The theory is applied to monotone quintic spline interpolation, giving necessary and sufficient
conditions and an algorithm for monotone Hermite quintic interpolation.

Key words, monotone quintic spline interpolation, nonnegative polynomial, polynomial
interpolation, quintic Hermite interpolation

AMS subject classifications. 41A05, 65D05, 65D07

1. Introduction. Consider the fourth degree polynomial with real coefficients,

(1) f(z) az4 + bz3 + cz2 + dz + e,

where ae 7 0 (the problem reduces to consideration of a cubic if ae 0). This paper
outlines conditions under which this polynomial has positivity, i.e., f(z) >_ 0 for every
z > 0. This is a rather general condition since positivity on any fixed interval (u, v)
can be directly related to positivity on the positive reals through the transformation

uzv
l+z

The property of positivity has a number of important applications to mathematics
and computer science, and to shape preserving polynomial approximations in partic-
ular. For example, Jury and Mansour [6] relate positivity to a number of problems
in control theory. Fritsch and Carlson [4], who derived positivity conditions in the
case of quadratic polynomials, use the result to construct monotone cubic spline inter-
polants. Schmidt and HefJ [8] provided conditions for positivity of cubic polynomials
and used their result to construct positive cubic splines with minimum curvature and
complex rational cubic splines. For the case of the fourth degree polynomial, Jury
and Mansour [6] use the discriminant of (1) along with other characteristic expres-
sions from the theory of equations to derive an algorithm for verifying positivity of
quartics. Their conditions are difficult to implement and provide no geometric insight
into the underlying mathematical phenomena. Dougherty, Edelman, and Hyman [3]
derive conditions for monotonicity and convexity of quintic Hermite interpolants, but
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explicitly state only sufficient conditions. Our results are very similar to those of [3],
but differ in that we give elegant sharp (necessary and sufficient) conditions for posi-
tivity of a quartic directly in terms of its coefficients, whereas [3] couches its sufficient
conditions in terms of derivatives of Hermite quintics. We also give sharp conditions
on the second derivatives, for given fixed first derivatives, such that a quintic Hermite
interpolant is monotone; this question is not addressed by [3].

Some time ago, deBoor and Swartz [2] addressed monotone spline interpolation
in general and the cubic case in detail, and monotonicity was also recently considered
by Huynh [5] and Ulrich and Watson [11].

The present paper uses a simpler, but equivalent, form of the polynomial (1) to
obtain positivity conditions which are as elegant as those available for the quadratic
and cubic polynomials. The quartic polynomial is reparameterized to this simpler form
in 2 where the regions of positivity are described and a formal proof of positivity is

provided. The geometric characterization of positivity in 2 provides considerable
insight, and easily leads to various approximate criteria and computational simplifica-
tions. Section 3 outlines the conditions used to test for positivity and provides some
heuristics on constraining a nonpositive polynomial to be positive. Section 4 briefly
describes applications of this result in polynomial interpolation.

All of the algebra in this paper was done with Mathematica [12], and thus alge-
braic derivations showing intermediate steps are not given here.

2. Regions of positivity. Consider the transformation used in [8], e.g.,

X4 az4"

This reparameterization should exist since a necessary condition for positivity of the
polynomial (1) is that the coefficients a and e are both positive. The polynomial
f(z)/e then becomes

x4 + ba-3/4e-1/4x3 --[-ca-1/2e-1/2x2 + da-1/4e-3/4x --[- 1,

which can be written as the polynomial

p(x; a,/, 9/) x4 + Ox3 + x2 + 9/x at- 1,

where c, , and 9/ are defined appropriately. This reparameterized polynomial has
only three coefficients. In previous work on the quadratic and cubic equations, the
regions of nonpositive roots were bounded by parametric curves corresponding to
double roots of the polynomial. The same holds true for the quartic polynomial (2)
above. A well-known result in the theory of equations is that double roots exist when
the discriminant

A 4 [c2 3bd + 12ae] 3 [2c3 + 27ad2 + 27b2e- 9bcd- 72ace] 2

of the polynomial (1) is zero (a proof is given in [7]). Setting A 0 leads to the sixth
order equation

(3) A 4 [/2 3a + 12] 3 [72/ + 9a/9/- 2/3 27a2 272] 2
0.
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The discriminant for the quadratic and cubic polynomials was a second and fourth
degree polynomial, respectively, and region inequalities could be represented and de-
rived in a straightforward manner. In the case of the quartic, the discriminant is a

sixth order polynomial and we see no way of approaching the problem directly; we

will construct a geometric argument which utilizes the parametric form of the double
root boundary. The presence of a double root (say t) implies that

p’(t) 4t3 + 3ct2 + 2/3t + 3‘ 0 and 4p(t) t p’(t) ct3 + 2/3t2 + 33‘t + 4 0,

where the latter equation comes from the fact that 1/t is also a double root of X4 p(1/x).
Solving simultaneously for a and 3‘ (for fixed/3), we obtain parametric equations for
t (-o, o),

1 t2 3t4 t4 -/t2 3
(4) a(t)=

2ta
and 3‘(t)

2t

Symmetry clearly shows up in these parametric equations since c(-t) -c(t),
3‘(-t) -3‘(t), a(1/t) 3‘(t), and 7(l/t) c(t). By applying curve tracing tech-
niques, we can identify three distinct shapes (corresponding to zero, one, or two cusps
on each component) for the double root curves as shown in Fig. 1 (important features
of these curves are also labeled in the figure). Figure 2 shows the family of double
root curves as/3 varies, plotting only the top portions.

The region of positivity for the quartic, like the quadratic and cubic, is bounded
by the double root curve. Trying to prove this directly from (4), however, does not
work out well. To prove this result, we employ the following theorem (from [1], [9])"

THEOREM 0. The quartic polynomial g(z) is nonnegative for all z > 0 if and
only if there exist polynomials u(x) and v(x) such that

() .() + ().

Rewriting (2) as

p(x;., Z, z) Ix: + x + ] + x [(. .)x + (Z (: + ))x + (z .)]

for some r and for s +1, then the above theorem implies that p(x) is nonnegative
for all x _> 0 if and only if there exists real r such that

(c- 2r)x2 + (- (r2 + 2s))x + (3’- 2rs)

is a perfect square. If (5) is a nontrivial perfect square, the first and last coefficients
must be positive. The values of r which make (5) a perfect square correspond to the
roots of the quartic

(6) q(r; a,/3, 3’) [/3 (r2 + 2s)] 2
4(c 2r)(3’ 2rs) O,

where c-2r>O and 3"-2rs>O.

(The limiting cases a-2r 0 and 3"-2rs 0 corresponding to/3-(r2+2s) 0 are also
possible and have trivial solutions, so we will not clutter the discussion by mentioning
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FIG. 1. Parametric curves from (4).

these special cases each time.) The discriminant of this quartic is proportional to (3),
indicating that the quartic equations (2) and (6) have the same double root boundary;
even though the double root boundary is the same for the two quartics (i.e., equations
(2) and (6)), their parametric representations differ. Proceeding from (6), as was done
from (2) to (4), gives parametric expressions a(r), -y(r) in terms of a double root r of
(6). Cleaner expressions result from writing the double root as +/- sgn(t)t, where t is

simply a parameter with restrictions obvious from the structure of the formulas. For
s 1 and t2 >_ 4, a double root of (6) is -sgn(t)t and the corresponding boundary is

parameterized as

(Ta)

and

a(t) sgn(t){-2t +
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-20 -i I0 0

(7b)

-20

FIG. 2. Top components of curves from (4) ]or =-20, -12, -2, 5, 12, 20 (top to bottom).

-(t)-sgn(t) {-2t+ (t2-/9+2)4 It- v/t2 4]}.
This curve (c(t),3’(t)) is the top half of the double root boundary in Fig. 1. The
bottom half of the double root boundary corresponds to the double root sgn(t)t and
parameterization (-c(t), -7(t)).

For s -1 and t E (-oc, oc), the double root is t and the parametric represen-
tation of the top half of the double root boundary is

(Sa)

and

(Sb)

+ (t- -2)It + V@ +4]4

7(t) -2t-
(t t 2) It- v/t + 4]

4

The bottom half of the double root boundary corresponds to the double root t and
parameterization (-3’(t),-c(t)). The substitution of w2 t2 -4 in equation (7)
would lead to equation (8), showing that these parameterizations are equivalent. For
technical reasons that only become apparent much later, (7) is the cleanest form of
the three parametrizations (4), (7), (8) to work with. Only equation (7) is needed for
the proof of the following theorem concerning the region of positivity:

THEOREM 1. For fixed , the region of positivity for the quartic polynomial (2)
is bounded below by the curve FZ, which is defined by (7) for t2 >_ max{4,- 2}. In
other words, for any (c, ), the polynomial p(x; c,/, /) has positivity if and only if
there exist (c*, /*) on F and 5 >_ 0 such that c c* + 5 and / 7" + 5.
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t2=4
/

/
/

t2=13-2

t2=4

-2<1<6
(3b)

6<1]
(3c)

FIc. 3. Regions of positivity for the quartic polynomial.

Proof. For any given fl, the region of positivity is depicted graphically in Fig. 3.
In each case, the parametric curve F is convex; this is easily proved by looking at the
signs of the first and second partial derivatives:

Oct* v/t2 -4 + t
< 0 for t2 > max{4,/- 2},03‘* v/t2 4 t

02c 4 (v/t 4 + t)sgn(t)
(3t 6 Z) (t 2 tx/t2 4)

> 0,

for t2 > max{4 /- 2} > / + 6
3

(An alternative argument for convexity is that the set of (c,/, 3’) for which (2) is

nonnegative for all x _> 0 is convex, hence every constant/ slice is convex, hence the
bounding curve FZ must also be convex.) Assume for the moment that s 1. For a

fixed , consider (c’, 3’’) defined by

’ ,*(t) + , ’ ,,/* (t) +

for some value of 5 >_ 0 and for some t. such that t2 > max{4,/-2}, and for
(c* (t) 7* (t)) given by equation (7). Since the parametric curve, F, is part of the
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double root boundary of equation (6), and since (a* (t) 3‘* (t) E FZ, then q from
equation (6) with double root -sgn(t) t can be factored as

(9) q(r;a*(t),l,3‘*(t)) (r + sgn(t) t)(r2 2sgn(t)rt + 3t 2(/ +6))

and q(- sgn(t) t; a* (t), fl, 7" (t)) 0. The double roots satisfy the conditions of equa-
tion (6). The other pair of roots,

sgn(t) t +/- /2(/ + 6 t),

are complex when t2 > + 6, but do not make the lead and tail coefficients of (5)
positive when they are real. Hence, the double roots -sgn(t)t are the only roots

satisfying (6) and its side conditions along FZ.
We next show that if p(x; , , 3‘) has positivity, then so does p(x; c+5, , 3‘+5) for

any 5 > 0, i.e., moving northeast from a point of positivity (c, 3‘) preserves positivity.
For simplicity, consider first the case of t negative, i.e., t < min {-2,-v@ 2} for
which we have a* (t) _< 3‘* (t) and q(t; a* (t), , 3’* (t)) 0. It is obvious that a* (t)
2t > 0 and 3‘*(t)- 2t > 0, which means that the conditions of (6) are satisfied
and p(x; c*(t),/3, 3‘* (t)) is nonnegative for positive x. Substituting (c’, , 3‘’) into the
function q yields

(10)

q(t; a’, , 3‘’) q(t; a* (t) + 5, , 3‘* (t) + )
q(t; a*(t),/, 3‘* (t)) 4 [5(c* (t) + 3‘* (t) 4t) + 52]
-4 [5(a* (t) + 7" (t) 4t) +

When 5 > 0, this last term is negative since c*(t) + 3‘*(t) -4t > 0. Noting that the
limsupq(r; c, , 3‘) +oe > 0, it is clear that there exists a root, say t < t, such

that
q(t’;a’,,3‘’) O, ’ 2# > 0, 3‘’-2#>0.

Hence, p(x; c, , 3‘) is nonnegative for positive x. Notice that this argument did not

require starting on the double root boundary; it uses the fact that t is a root satisfying
equation (6) for a given pair of coetficients, (c, 3‘), to show there exists a root t5 which

satisfies the equation for the pair (c + 5, 3‘ + 5), for all 5 > 0.
For small 5 < 0, equation (10) indicates that the effect of the perturbation is to

add a positive increment (in the form of a linear term) near the double roots so that
they become complex. This has negligible effect on the other two roots which did
not satisfy (6) so that, within a sufficiently small neighborhood below the double root
boundary, the conditions of (6) are not satisfied. But this in turn proves that for any

(c, 3‘) below the double root boundary, such that a < 3‘, the conditions of (6) are not

satisfied; if this were not true we could choose a 5 > 0 such that (c + 5, 3‘ + 5) lay
in the neighborhood just described, which would be a contradiction of the argument
given in (10).

A similar analysis can be performed for positive t, i.e., t > max{2, v/ 2},
with similar conclusions for a > 3‘. Since F is convex, every (c, 3‘) in the region of
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positivity can be reached from F through an appropriate choice of (a*(t), 7*(t)) and
6>0.

We have shown that p(x; a, , 7) has positivity for every (a, 7) above the curve

F, and that for (a, 7) below F, q(r; a,, 7) has no roots satisfying (6) for s 1.
Thus, all that remains to prove is that for (a, 7) below F, q(r; a, , 7) has no roots
satisfying (6) for s =-1.

So now assume s -1,/ is fixed, a’ a* (t) + 1, ’7’ ’7* (t) -]- 52, t2 > -- 2,
where (a*(t), ’7*(t)) is given by (8). Recall that the double root boundary described
by (8) is the same as that given by (7), and thus FZ lies on the curve defined by (8).
The double root t satisfies (6) if and only if t2 >_ / + 2, so only those double roots
need be considered. For double root t,

q(r; a, , "7) (r t) (r2 + 2rt + 3t2 + 12 2),

and the other two roots are

-t 4- V/2(/ 6 t2),

which are both complex since t2 > + 2 >/ 6. Therefore, the double root t is the
only root satisfying (6) near the portion of F corresponding to t2 >/ + 2. Arguing
as before, where now the sign of t does not matter, we conclude that q(r; aI, , ’7i) has
a root satisfying (6) for any 51 > 0 and 52 > 0, but not for small 51 < 0, 52 < 0.
If q(r; a,, "7) had a root satisfying (6) for (a, ’7) below F, then the analog of (10)
would prove that q(r; a + 51,/, ’7 -}- 52) also had a root satisfying (6) for (a + 51, ’7 -- 52)arbitrarily near and below the part of F corresponding to t2 > +2, for appropriately
chosen 51 > 0, 52 > 0. (It is always possible to choose such 5i because F is convex

and 0’7/0a < 0 along F.) Therefore we conclude that q has no roots satisfying (6)
for (a, ’7) below F.

3. Positivity conditions. Verifying that a point (a, ’7) lies above F is nontrivial
using (7), and therefore computationally simple tests are sought for the positivity
regions in Fig. 3. A continuity argument implies that the discriminant in (3) changes
sign every time a double root boundary is crossed. This leads to the distribution of
signs for A, in the three types of regions, as shown in Fig. 4. The conditions for
positivity in the first case (/ < -2) are simply

(11) A_<O and a+’7>O.

For the second case, -2 _</ _< 6, we can use (11) as one of the conditions, but need
another condition to cover the middle region with A positive. Linear bounds on (a, ’7)
could be used in this case, but a more compact representation is obtained by using a
parabola,

(12) A1- (a-’7)2-16(a+/3+’7+2)-0,

which surrounds the positive middle region (see Fig. 5b). The algebra required to
show that the parabola indeed lies below the curve FZ on the positive middle region
is straightforward but tedious (because of convexity, it suffices to check the slopes at
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[<-2

(4a)
-2<[<6

(4b)

(4c)

FIG. 4. Sign distribution for the discriminant A of the quartic.

the three points where A1 intersects FZ). The resulting pair of conditions in the case
of-2 <_/ _< 6 are

A<_0 and a+"),>0

(la) or

A>_0 and A <_0.

In a similar way, a parabolic curve can be constructed to bound the middle region
(see Fig. 5c) in the final case,/ > 6, leading to the curve:

(14) A2 -= ( /)2 4(/ + 2) ( )x/-2
a+7+4V//3 2 =0.

This last case is more complicated than the previous one because the parabolic curve
will not contain the tips of the cusp region for large/; however, noting that the cusp is
always contained in the first quadrant leads to the following three positivity conditions
corresponding to/ > 6:

A_<0 and a+7>O
or

(15) >0 and 7>0
or

A kO and A2 _<0.
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1<-2
(5a)

Y

-2<1<6
(5b)

6<1
(5c)

FIG. 5. Positivity conditions for the quartic polynomial.

A graphical depiction of these conditions is shown in Fig. 5 for the three cases. The
theorem from 2 and these simple tests for positivity can be summarized in:

THEOREM 2. Let f(z) az4 + bz3 + cz2 + dz + e be a quartic polynomial with
real coefficients and a > O, e > O. Define

c ba-a/ae-1/4 / ca-1/2e-1/2 ,y da-1/4e 3/4,
A 4 [f12 3c3, + 12] 3 [72fl + 9cfl7 2/33 27c2 2772] 2

A (c -7)2 16(a +/ + 7 + 2), A2 -= (a- 7): 4(v//+ 2)2. \
(a + "Y + 4V// 2.,)

Then f(z) >_ 0 for all z > 0 if and only if

(1) < -2 and

(2) 2 <_/ _< 6

(3) 6 < fl and

A <_ O and c+7>0;
A<_O and o+"y>O

and or
A >_ O and A1_<0;

A <_O and +>0
or

>0 and >0
or

A O and A20.
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These conditions can be costly to implement and a set of simplified sufficient
conditions can be used as a pretest for positivity. From Fig. 1, it should be clear that
the following conditions are sufficient for positivity:

(16)
+2 +2(i) c>

2
and > 2

for _<6;

(ii) c>-2v@-2 and >-2V@-2 for />6.

4. Applications. The initial motivation for this work was in the application
of Hermite interpolation to construction of random number algorithms for arbitrary
continuous distributions. Results from a previous paper [10] suggested that a fifth
degree piecewise polynomial approximation could achieve accuracy comparable to that
of an exact algorithm implemented in single precision for many common distributions.
That same paper outlined an approach for constructing the piecewise polynomial
interpolant but indicated that, even though the inverse cdf was monotone, piecewise
interpolants using higher order polynomials might not be monotone. The problem of
testing for monotonicity of cubic interpolants was solved by Fritsch and Carlson [4],
of quartic interpolants by [8], and of quintic interpolants (sufficiency) by and [3] and

[11]. Theorem 1 can be used in testing for monotonicity of the quintic interpolant as

described below.
Suppose that a quintic interpolant is constructed on the interval (U0, U1) to match

the ordinates and first and second derivatives of the function f(U), e.g.,

Xo f(Uo), X; f’(Uo), X[{ f"(U0),
X1- f(U1), X[- f’(U1), X’= f"(U1).

The fifth degree Hermite polynomial interpolant on (U0, U1) can be written as

(17)

where u = (U )/h, r (U0 + U1)/2, and h (U1 Uo)/2. The polynomial
in (17) is monotone on (U0, gl) if and only if its derivative is nonnegative over the

z--1interval. Taking the derivative and using the transformation u z--4-f we obtain the
test polynomial

(18) Bz4 + 4(B D)z3 + 6(D C 2B 2A + 5)z2 + 4(A + C)z + A,

h h2Xwhere A 2hX B 2hX[ C x;i D and u (X1 X0); the quintic in

(17) is monotone if and only if (18) is nonnegative for z > 0. (The special case AB 0
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reduces to a cubic, and will not be considered further. Thus we assume A > 0, B > 0
henceforth.)

This quartic can be reparameterized to fit the form of equation (2) by defining

4(B D) 6(D C- 2B 2A + 5) 4(A + C)(19) o
A/4B3/4 /- A1/2B1/2 3’ A3/4B1/4.

Theorem 2 can be applied to these coefficient values to determine whether the poly-
nomial in (17) is monotone. If the quintic is not monotone then we can adjust the
derivative values to make it monotone over (U0, U1). One strategy is to scale the
derivative vector (X, X,XI, X’) by an appropriate factor p E (0, 1), e.g.,

which will always lead to monotonicity for p small enough.
after scaling, the coefficients in (19) become

To see this, note that,

5
4(B D) 6 (D C 2B 2A + ) 4(A + C)

a
A1/4B3/4 /- A1/2B1/2 " A3/nB1/4

and decreasing p increases/ without affecting a or 7- The nature of the positivity
regions is such that increasing will eventually satisfy the conditions of Theorem 2,
for fixed c and 7. In particular, equation (16ii) can be used to provide an approximate
value for p, e.g., choose p as

120

Ax/-(52 + 8) + 24(2A + 2B + C D)’
where 5 min{c, /}.

A more satisfying strategy for constraining (17) to be monotone would involve
adjusting only the second derivatives. For much of what follows, we will assume that
the values of A and B are fixed. If a point 70 (Co, Do) could be located within the
interior of the monotonicity region, for fixed (A, B), then (17) would be monotone for
(A, B, C*, D*), where

(20) (C*, D*) p (C, D) + (1 p)(Co, Do)

for sufficiently small p.
With fixed (A,B), using (19) and plotting A A(C,D) 0 in the (C,D)

plane gives teardrop-shaped regions for the permissible values of (C, D) [3], [11]. The
discussion below, based on [11], derives entirely from translating the positivity region
in (a,/, 7) space to a region in (A, B, C, D) space.
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We establish the notation r (C, D) for fixed (A, B), and consider the points

(determined in conjunction with a previous paper [11] concerned with monotonicity
of the quintic Hermite polynomial) defined by

(21)

v 7v+3v/ 5(24+2x/AB-3(A+B))4

-x/- (6A + 3B 15 A- 2v/AB 4A3/4B1/4)
r/2 (C2, 02) 3(v/- A- v/-) 4(AB) 1/4

v/ (3A + 6B 15 + 2v/AB 4A1/4B3/4) )3(x/- + v/) 4(AB) 1/4

r3 (C3, D3) (-

v4 (3x/+ 7v/- /5 (24+2x/AB-3(A+B)))).
These points lie along the line

(22) v/- A + C v/- B D

and we will show that this line passes through the teardrop-shaped region of (C, D)
values for which equation (17) is monotone, for fixed (A, B). Also consider Regions I
and II, depicted in Fig. 6, showing values of A and B (both positive) over which the

r/ will provide endpoints bounding the segment of (C, D) values along (22) for which
the Hermite interpolant is monotone. Note that the Region II boundary is the same

as the one defined in Fig. 4.2 of [3]. If we define a(),/(), ,() to be the coefficients
in (19) evaluated at l, r/2, or /3, then we can prove the following results:

THEOREM 3. The coefficients in (19) exhibit the following properties:

i. ?2 ?3 along the boundary between Regions I and II;
ii. /(rl) > 6 over Regions I and II;

iii. (r2) _< 6 over Region I and (r2) > 6 over Region II;
iv. /(r3) _< 6 over Region I and/(3) > 6 over Region II;
V. O(T]I ’(?1 --2V/(T]I) 2;

vi. a(2) 7(2) /(r/2) + 2
2

vii. a(/3) 7(/3) -2V/(3)- 2.

The proof of these results involves tedious, but straightforward, algebra and there-
fore will not be given here. The points r/l, /2, r/3 provide the endpoints to intervals
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9

7 x <0

Reion
5 -3(A+B) =0
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3

2

o
o 2 3 4 5 6 7 8 9

A

FIG. 6. Boundary regions on I(A,B).

of monotonicity for r/along the line given by equation (22). Note that r/1 and r/3 are

complex for (A, B) beyond Region II, a reflection of the fact that equation (17) cannot
be monotone for (A, B) outside of Regions I and II. The endpoint relationships can

be summarized in the following theorem:

THEOREM 4. Let (A, B) be fixed and contained within Region I or II. If r/o

(Co, Do) is any point on the line given by (22), then (17) is monotone for (A, B, Co, Do)
if and only if

i. (A, B) is in Region I and r/0 pr/1 q- (1 p)r/2 for some p E [0, 1], or
ii. (A, B) is in Region II and r/0 Pr/1 -nt- (1 P)r/3 for 8ome p [0, 1].

Proof. Sufficiency. Note first that a(r/o) (r/0) since r/0 lies along the line given
by (22). Consider first the case of (A, B) in Region II. According to (16), we need to

show that a(r/0) _> -2V//3(r/0)- 2. Clearly, for fixed (A,B), a(r/) and (r/) are affine
in r/so that (using Theorem 3)

-(r/0) po(r/1) + (1 P)-(r/3) P(-2V/(r/1) 2) q-(1 p)(-2V/fl(r/3)- 2)
_> -2V/(pi3(r/a + (1 p)fl(r/3)) 2 by convexity o 2v/

2.

Figure 7b depicts the relationship established in the above inequality.
For the ease of (A, B) in Region I, the proof is similar except that we have to

consider the convex function defined by

x+2
w(x) 2

x < 6;

-2v/x-2, x>6.
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(7a) (A,B) in region I. (7b) (A,B) in region II.

FIG. 7. Coefficients evaluated at values.

Again using Theorem 3 and (16), as Fig. 7a suggests, we have

o(r/0) po(r]l) -k- (1 p)c(2) p(-2V//(r/1) 2) + (1 p) -pw((l))+ (1 p)w(())

w(p(i) + (1 p)(a)) by convexity of w(x)
((0)).

and

Necessity. From Figs. 1 and 3 and Theorem 2, both the situations

-(vo) 7(vo) < /(o) + 2
(/3(v/0) <_ 6),

(o) 7(o) < -v/(o) , (/3(o) > 6),

correspond to nonmonotonicity of (17). These situations obtain precisely when p
[0, 1] for Region I (Fig. 7a) or p [0, 1] for Region II (Fig. 7b), from the convexity of
w(x). This proves the necessity and completes the proof.

By choosing 0 as any point satisfying the conditions of Theorem 4, we obtain
a point interior to the region of monotonicity. The adjustment described in (20) can

then be used to constrain the quintic to be monotone. For (A, B) in Region II, a

reasonable choice of /0 is the average of the interval endpoints, T]I and 3, namely

)(e3) o --(Tv + 3/-) (3v + 7v/-)

Actually, this same point is interior to the monotonicity region for (A, B) in Region I
as well since r/3 lies between T]I and r/2 within Region I along the line given in (22).



POSITIVITY CONDITIONS FOR QUARTIC POLYNOMIALS 543

We will summarize all of these results in algorithmic form. If X1 X0 < 0,
monotonically increasing is impossible, and if 0, the solution is A B C D
0. Assume > 0 in the following, and that nominal values of A, B, C, D are given

(obtained, e.g., by a C4 quintic spline interpolant or finite difference approximations).
The case where (A, B) lies outside of Regions I and II will be handled in the first and
second steps of the algorithm.

Algorithm for constructing a monotone increasing Herrnite quintic.
1. Set A :-- max{0, A}, B := max{0, B}. If AB 0, use the simpler positivity

criteria of [8] for cubics.
2. If -I(A, B) 24+2x/----3(A+B) < 0, then scale the derivative vector (X, X)

until T1 (A, B) > 0.
3. Let - (C, D). If a(),/(/), and 7() do not satisfy the conditions of Theorem

2, then find p such that a(r/*),/(r/*), and 7(*) do satisfy the conditions, where

r/* pr/+ (1 p)r/o, p e (0,1),

with r0 defined in (23).
Following Huynh [5], Step 1 can be preceded by" Set X median {0, X, _},7

X median{0, X 7}, and then compute (A,B). Step 2 can be replaced by
a simpler sufficient condition which would scale the derivative vector till the first
derivatives lie within the square imbedded within Region II (e.g., the square defined
by [0, 6] [0, 6]). Yet another alternative to Step 2 would be to scale the derivatives

X, X back independently until T1 (A, B) > 0 [2], [3]. In a similar fashion, we can use

the conditions in (16) to simplify verification of monotonicity of the quintic in Step 3
of the algorithm.

Note that the above algorithm is for a single monotone increasing Hermite quintic
polynomial piece, and does not address at all the iterative adjustments required to
achieve a monotone Hermite quintic spline. From Theorem 4 and (21) it is clear,
however, that such an adjustment is always possible: for sufficiently small (A, B) >
0 the admissible (C, D) line segments are arbitrarily long. An efficient and robust
computer algorithm for monotone Hermite quintic spline interpolation based on the
teardrop regions of [11] will be the topic of a future paper.

5. Conclusion. Elegant necessary and sufficient conditions that a quartic poly-
nomial f(z) be nonnegative for z > 0 have been derived. Simple and computationally
cheap sufficient conditions were deduced from the more general conditions. Important
applications are to monotone quintic spline interpolation and the efficient generation
of random variates from arbitrary continuous distributions. Applying the theory to
monotone quintic interpolation, sharp necessary and sufficient conditions for mono-

tonicity were derived. Simpler sufficient conditions for monotonicity were condensed
into an algorithm suitable for quintic spline interpolation.
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SPECIAL SECTION ON
ITERATIVE METHODS IN NUMERICAL LINEAR ALGEBRA

The 1992 CopperMountain Conference on Iterative Methods in Numerical Linear Algebra
was the seventh conference in the Copper Mountain series and the second devoted to general
iterative methods. It was attended by approximately 190 mathematicians from all corners of
the world. The meeting, held April 9-14, 1992, took place at the Copper Mountain Resort,
which is located 70 miles west of Denver, in the heart of Colorado’s famous Summit County
ski region. The setting of the conference was a cluster of buildings nestled at the base of the
resort’s ski hill. Morning and evening sessions were scheduled, leaving afternoons open for
informal discussions and recreation.

During the five days of the meeting, 109 talks on current research were presented. These
talks were organized by content and grouped into sessions. Session topics included the Theory
ofIterative Methods (two sessions), Nonsymmetric Systems (four), Preconditioning Strategies
(two), Parallel Implementations (three), Applications (four), Multigrid and Multilevel Meth-
ods (three), Domain Decomposition (two), Eigenvalue Problems (two), Integral Equations,
Nonlinear Systems (two), Indefinite and Complex Matrix Problems, Collocation Matrices,
and Software. In addition, there were workshops devoted to Scientific Computing in C++ and
Common Software Standards.

On the first day of the conference each participant was provided with a two-volume set
of Preliminary Proceedings, which contained either a short paper or an abstract by each of the
scheduled speakers. Of those, 49 speakers submitted complete papers to this special issue of
the SlAMJournal on Scientific Computing (SISC). This and the previous issue of SISC contain
the results of the refereeing process. They represent a rich mix of papers on a wide variety of
topics related to iterative methods.

In the previous issue the last twelve papers represent the conference. The first three
deal with general iterative algorithms. The second and third involve quasi-minimal residual
algorithms, a subject that inspired much discussion at the meeting. Papers 4 and 5 analyze
interesting theoretical aspects of iterative methods. Papers 6 through 9 deal with precondition
strategies. Papers 10 through 12 explore the implications for iterative methods of parallel
computing environments.

In this issue the last twelve papers again represent the conference. The first seven of
these deal with multigrid or multilevel algorithms. The first of these is a very interesting
paper that uses the tools of classical iterative methods to analyze and compare many well-
known algorithms. The second and third papers also contribute to the development of the
theory of multigrid and multilevel algorithms. Papers 4 through 6 are concerned with domain
decomposition methods, which, incidentally, fall into the structure developed in the first paper.
The final six papers in this group discuss iterative methods in the context ofspecific applications
and represent the many fine application-specific talks presented at the conference.

A special effort was made to bring students to the meeting. The vehicle for this effort
was a Student Paper Competition in which students were asked to submit an original research
paper consisting primarily of their own work. We were fortunate enough to be able to provide
all student authors participating in this competition with free lodging and registration. Out
of thirteen submissions, three winners were selected. First place went to Xian-Zhong Guo
from the University of Maryland for his work, "The Algebraic Hierarchical Basis Multigrid
Method." Second place was awarded to Marlis Hochbruck from the University of Karlsruhe,
Germany, for her paper, "On the Use of Two QMR Algorithmsfor Solving Singular Systems
and Applications in the Markov Chain Modeling." Third place honors were awarded to
Andrew Lumsdaine from MIT for the paper, "Accelerating Dynamic Iteration Methods with
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Application to Semiconductor Device Simulation." All winners were awarded a travel stipend,
and their papers were presented at a special session devoted to the Student Paper Competition.

We would like to thank the following members of the program committee for their help
in editing this special issue. They are: Steve Ashby, Howard Elman, Roland Freund, Anne
Greenbaum, Seymour Parter, Paul Saylor, Homer Walker, and Olof Widlund. Through their
efforts, the articles contained in this special issue were carefully refereed and brought to print
on schedule.

We would also like to extend a special thanks to Fred Howes of the Applied Mathematical
Sciences Program of the Department of Energy for generous support of this meeting. Without
his help, this meeting could not have taken place.

As this issue goes to press, planning for the next conference in this series is in its final
stages. It will be called the Colorado Conference on Iterative Methods and will be held April
4-9, 1994, in Breckenridge, Colorado. Plans again include a special journal issue in SISC. It
is our hope that the lively interaction and the fine quality of presentations and papers that have
marked the previous meetings can be duplicated at the upcoming meeting.

Conference Chairmen
Tom Manteuffel
Steve McCormick

Special Issue Editors
Steve Ashby
Howard Elman
Roland Freund
Anne Greenbaum
Seymour Parter
Paul Saylor
Homer Walker
Olof Widlund



SIAM J. ScI. COMPUT.
Vol. 15, No. 3, pp. 547-565, May 1994

() 1994 Society for Industrial and Applied Mathematics

MULTILEVEL ALGORITHMS CONSIDERED AS ITERATIVE METHODS ON
SEMIDEFINITE SYSTEMS*

MICHAEL GRIEBEL

Abstract. For the representation of piecewise d-linear functions instead of the usual finite element basis, a
generating system is introduced that contains the nodal basis functions of the finest level and of all coarser levels of
discretization. This approach enables the author to work directly with multilevel decompositions of a function.

For a partial differential equation, the Galerkin scheme based on this generating system results in a semidcfinite
matrix equation that has in the one-dimensional (1D) case only about twice, in the two-dimensional (2D) case about
4/3 times, and in the three-dimensional (3D) case about 8/7 times as many unknowns as the usual system. Furthermore,
the semidefinite system possesses notjust one, but many solutions. However, the unique solution of the usual definite
finite element problem can be easily computed from every solution of the semidefinite problem.

The author shows that modern multilevel algorithms can be considered as standard iterative methods over the
semidefinite system. The conjugate gradient (CG) method for the semidefinite system is equivalent to the BPX- or
MDS-preconditioned CG method for the linear system that arises from the usual finite element basis. The Gauss-
Seidel iteration applied to the semidefinite system is equivalent to the multigrid (MG) method applied to the standard
basis system. Consequently, the Gauss-Seidel-preconditioned CG method for the semidefinite system is equivalent
to MG-CG for the standard basis system.

This paper includes results of numerical experiments regarding the condition number and the convergence rates
of different iterative methods for the semidefinite system.

Key words, partial differential equations, multilevel methods, BPX-preconditioner, conjugate gradients, multi-
grid methods, Gauss-Seidel iteration, semidefinite system
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1. Introduction. In recent years, different multilevel methods have been used exten-
sively to obtain approximations to solutions of partial differential equations. Besides the
multigrid method (see the references in 10], 13]) and the hierarchical basis multigrid method
[3], multilevel methods for the preconditioning of the CG algorithm have also been developed,
including the BPX-preconditioner of Bramble, Pasciak, and Xu [5], [21], its generalization
multilevel diagonal scaling (MDS) (see [20], [25]), and the hierarchical basis preconditioner
of Yserentant [22]. For a comparison of these preconditioners, see [23].,. Another interesting
type of multilevel preconditioner has been developed in [2]. Furthermore, preconditioners
that make use of the multigrid method have been studied in [11 ].

Under rigorous assumptions on regularity and approximation properties, a convergence
rate that is independent of the number of levels can be proved for multigrid methods. In
contrast to this, two-level schemes have been proved to converge under weaker assumptions.
The same is true for the preconditioner of Xu and, in the 2D case, of Yserentant. Here, no
regularity assumptions are needed to prove a condition number of O(k2) for the preconditioned
system, where k denotes the number ofemployed levels. Under strong regularity assumptions,
a condition number estimate of O(k) can be given. See the Appendix in [23].

Recently, Oswald [16]-[18], Xu [20], and Bornemann and Yserentant [4] showed that
(even under weak assumptions) the condition number of the BPX-preconditioner is O(1).
Also, Zhang [25] gave an elegant proof for the condition number of the MDS operator, which
is a slight generalization of BPX. It grows at most linearly with the number of levels in the
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general case, and is bounded by a constant independent of the mesh sizes and number of levels
under the H2-regularity assumption. In this sense, multilevel methods are optimal.

In this paper we present a new approach to multilevel methods that abandons the usual
basis approach in favor of generating functions that span the approximation space, but which
are generally linearly dependent. The idea is to use the standard basis functions on all levels
of discretization. The resulting Galerkin scheme therefore results in a redundant semidefinite
system of linear equations that has multiple solutions, but each is equivalent to the unique
solution of the standard basis approach. Fortunately, in many cases, the generalized condition
number (i.e., the condition number of the matrix restricted to the orthogonal complement of
its null space) of the semidefinite system matrix is of the order O(1), and we will see that its
singularity does not disrupt the iterative process that we use.

More specifically, there is no need for a basis of the approximation space if energy
minimizing iteration methods like the CG method or Gauss-Seidel-type relaxations are used.
In this case, even the use of a basis is an obstacle because smooth errors cannot be adequately
attenuated by the’standard basis functions. Acceleration of these methods can be gained only
by quite complex techniques such as BPX-preconditioning or, in the multigrid context, by
coarse grid corrections.

In contrast, the use of the generating system allows us to work directly with multilevel
decompositions of functions. This gives additional freedom that is beyond the scope of the
traditional basis approach and leads in a natural manner to accelerated algorithms. It is of
special interest that standard iteration methods for the semidefinite system are equivalent to
modern multilevel methods applied to the linear system that arises from the usual finite element
basis.

We show that the BPX-preconditioner and its generalization MDS, together with the
CG method, are just special implementations of the (diagonally scaled) CG iteration on
the semidefinite system. Similarly, the HB-preconditioner can be interpreted in terms of
the semidefinite system. Furthermore, we will show that the Gauss-Seidel iteration for the
semidefinite system is equivalent to the multigrid method for the standard basis system. For
Aitken’s double sweep algorithm, which is also known as symmetric Gauss-Seidel (SGS) we
obtain the standard (1,1)-MG-V-cycle. In this sense, our method and McCormick’s approach
of Unigrid and PML (multilevel projection method) are similar in spirit; see [14], [15]. Ad-
ditionally, the HB-MG method can be explained easily in terms of the semidefinite system.
If we use the Gauss-Seidel iteration as a CG-preconditioner for the semidefinite system, we
obtain an algorithm that is equivalent to MG-CG for the standard basis system.

The outline of the remainder of this paper is as follows. In 2, we introduce the generating
system, derive the semidefinite system of linear equations, and discu.ss its properties. In 3,
we consider iterative methods on the semidefinite system. First, we study the diagonally
preconditioned CG method. We show that it is equivalent to the BPX- or MDS-preconditioned
CG method for the standard basis system. Then we demonstrate that the Gauss-Seidel iteration
for the semidefinite system is equivalent to the multigrid method for the standard basis system.
Furthermore, we show that the use of Gauss-Seidel relaxations as a preconditioner for the
semidefinite system results in MG-CG for the standard basis system. Finally, the results
of numerical experiments illustrating the theory of the. earlier sections are given in 4. An
extended version of this paper can be found in [7].

2. The semidefinite system. In this section, we introduce a generating system that re-
places the usual finite element basis in the discretization of a boundary value problem of a
partial differential equation. We then derive the associated semidefinite linear system and
discuss its properties.

Consider a partial differential equation in d dimensions with a linear, second-order oper-
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ator on the domain f2 (0, 1)a, d 1, 2

(1) Lu=f on f,

with appropriate boundary conditions and solution u. For reasons of simplicity, we restrict
ourselves to homogeneous Dirichlet boundary conditions. Given an appropriate function space
V, the problem can be expressed equivalently in its variational form: Find a function ueV
with

(2) a(u, v) (f, v) Y v e V.

(In the case of homogeneous Dirichlet boundary conditions, V would be the Sobolev space
Hd (f2).) Here, a: V x V V is a bounded, positive-definite, symmetric bilinear form and
(., .) is the usual linear form for the right-hand side. Let I1.11 := /a(., .) denote the induced
energy norm. We assume that V is complete with respect to I1.1 [a, which is true if a(., .) is
H-elliptic. The Lax-Milgram lemma then guarantees the existence and uniqueness of the
solution of (2). If we consider directly the energy functional 1/2.a(u, u) (f, u), the problem
can be stated alternatively as minimization of the energy in V.

2.1. Spaces, bases, and the generating system. Assume we are given a sequence of
uniform, equidistant, nested grids,

(3) f2t C f22 C... C f2k-1 C f2k,

on f2 with respective mesh sizes ht=2-t, k, and an associated sequence of spaces
of piecewise d-linear functions,

(4)

with dimensions

(5) nt := dim(Vt) (2t- 1)a, k.

Here, denotes the coarsest and k the finest level of discretization. Consider also the sequence

(6) N1c N2 c c N- C N

of sets of grid points Nt={xl xn in the interior f2t, k.
The standard finite element basis that spans Vt on the equidistant grid f2t is denoted by

Bt. It contains the nodal basis functions tpt), 1,..., nt, which are defined by

(7) [t)(xj) i,j, Xj e Nt.

Note that we use rectangular grids. Therefore, the 2D basis functions can be written as the
product of two 1D basis functions for the different coordinate directions. The analogue is
true for the 3D case, where the basis functions are written as the product of three 1D basis
functions.

Any function ueV can be expressed uniquely by

nk
.(k) .(k)(8) U--" /i tPi

i=1

with the vector Uk:=(u) u) u()) r of nodal values.
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In contrast to the basis approach expressed by the expansion in (8), we instead consider
the set of functions Ek defined as the union of all the different nodal bases Bt for the levels
/=1 k,

(9) Ek= B U B2 U... U B:_ UB.

Clearly, because E is a linearly dependent set of functions, it is no longer a basis for V, but
merely a generating system. See Fig. for a simple 1D example.

=1

FIG. 1. Functions ofthe generating system E3 in the 1D case.

In any case, an arbitrary function ua Vk can be expressed in terms of the generating system
by

(10)
k nl

u
/=1 i=1

w<’> ’>with the block vector w :=( w were w(t)=(w w w

1 k. This represents a level-wise decomposition ofu into functions g(t) Vt, k,
where

k nl

(11) u g(t>, g(t> w}0O,).
/=1 i=1

To simplify the notation, we will not distinguish explicitly between the functions u or g(t) and
their vector representations uk or w(t), but denote them by their vector representations only.
Here and in the following, we denote representations in terms of the generating system Ek by

E isthe superscript E. The length of wk

(12)
k

nk nl,

1=1

which is in the 1D case about twice, in the 2D case about 4/3 times, and in the 3D case about
8/7 times larger than the length of the vectors for the basis representation above. This is due
to the geometric rate of decrease of the number of grid points from fine to coarse levels, with
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factors of 1/2, 1/4, and 1/8 for 1D, 2D, and 3D, respectively. The generalization of this concept
to higher dimensions is straightforward.

Note that the representation of u in terms of Ek is not unique. In general, there exists
E -dimensional variety of level.wise decompositions of u Vk. However, for a givenan nk_

E of u in E,, we can easily compute its unique representation Uk with respectrepresentation w
to uk resembles a mapping S Nn*

e -- I"k which canto B,. This transformation from wk
be described by the product

2

(13) Sf Skk -’’E "k-lk-2’E ’k-2k-3’E s’E S12’E H S-I’E
l=k

of sparse triangular (n n_) x (n n_2)-matrices S[-l’E. We then have

E(14) uk Sffw,.
Let P[_ be the d-linear interpolation (prolongation) operator that maps VI- to Vt,
k 2. Let R-1 be the restriction operator from Vt to Vt- defined as the adjoint of P/_,
R-I=(P/_)r, k 2. The transformation matrices S[-I’E, k 2 can be ex-
pressed by means of these intergrid transfer operators as

(15) S-’E=( P/-II!O0 Ik,t+lO)"
-,1+1I,1+ is the identity operator of dimension=hi. Due to the generating system approach,

these transformation matrices S-L cannot be inverted uniquely. Nevertheless, the transposed
matrices (SJ-’E) T, k 2, are defined by

(16) (S:-’E)r

Note that the identity relation in the basis representation Bt defines an equivalence relation
in E, that is different from the simple vector equivalence. Thus, we can identify two different

but equivalent representations in E, of a function in V,"
E, E,2 ,-,E E, E,2(17) wk wk ’:def b l/Ok Sf 1/ok

E, and E,2 of u differ only by a vector vEWe see that two different representations wk w
E,1 E,2 E -"0.w w that is in Ker(SE), the kernel of SE, i.e., S[v

2.2. Linear systems. Using the nodal basis B,, the Galerkin approach leads to the linear
system of equations Lku J, where (Lk)(i.j) a( .j ) and (J)<j) (f, )k)),

rLkUk Ti, j 1 n. Alternatively, we can use the discrete energy functional 1/2.u u f
to describe the problem as energy minimization in the space V, or IRnk, respectively. For the
generating system Ek, the Galerkin approach leads to the system of equations

(18) e ELk Wk fkE,
where

(--E,(h.6) (h) (6)
z’l )(i,j) a dpj ),

(19) 1, 12 1 k, hh. j 1 hi2.
-E- (12) (12)(J;)(J) =(f’w )’
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Alternatively, we can use the discrete energy functional 1/2 (w[)rLE E (wk)rfe tok Wk
describe the problem as (nonunique) minimization in

E EThe system Lwk j has the following properties. The matrix L is semidefinite. It
has the same rank as L. Thus nk_ n rank(L) eigenvalues are zero. The system is
solvable because the right-hand side is constructed in a consistent manner. However, it does
not have just one unique solution, but rather numerous different solutions. For two different
solutions W’1 and w’2,

(20) E,1 E,2
Wk Sll)k Uk

holds, where uk is the unique solution of the system Lku, j. Therefore, it is sufficient
to compute just one solution of the enlarged semidefinite system to obtain via Sff the unique
solution of the system L.u. f.

Note that the enlarged matrix Lff contains the submatrices L that arise from the use of
the standard basis Bt, 1 k. A similar property holds for the right-hand sides. The
matrix that stems from the hierarchical basis discretization is also contained in L(. For the
definition of the hierarchical basis, the resulting linear system, and further explanations, see
[221.

Instead of using the bilinear form a(., .) and the linear form (f, .), which involves explicit
integration on all levels k, we can express L and fff in a simple product-type
representation that involves only the intergrid transfer operators PI and R-1, k 2
and the discretizations of L and f on the finest level. Since the transformation from E to B
is expressed by u Sw, we get

(21) L: (S() rLkS, f (S)rf.

This can be interpreted as "semidefinite" preconditioning of the system L,u. j. It is then
E T E E__(Wff)T r LkUk__ Teasy to see that . (wk) Lk wk fff 1/2. u, uk j.

Note that the matrix L( is relatively densely populated. In practical applications, however,
it is not necessary to know the matrix explicitly. Often only a matrix vector multiplication
LkE w,E is needed, which allows the product type representation (2 l) ofL to be exploited, so
that this matrix vector multiplication can be computed in O(n) O(nk) operations.

Note further that the restriction operator R- in the mapping (Sff) r is consistent with the
Galerkin approach. If, for example, J in space Vk is given as j Y(f, (k))4(k)i then

(22)
/’/k-

R-Ij E(f, (k-1)i)eft-l)
i=1

This is an important fact that should be exploited in practical computations. The explicit
calculation of the integral (f, .) can be avoided on the coarser levels < k. The linear
combination of the coefficient values of j according to the restriction stencil is sufficient
to reproduce the integral on the next coarser level. Consequently, if fk on level k has been
computed, then fff can be gained easily using (S)r.

Consider, as an example for the product type representation (21), the case of only two
spaces Vk_l, Vk. Since the standard basis representation is computed from w=(w’-), we’)) r
by

(23) u,= Pkl h w(k)
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then the system Lk wk f can be rewritten as

L /’_ I w

and we see that

(25) L-" ( LIP_IR-ILpIcLll
Note that R-1LPi_ is just the Galerkin coarse grid matrix L

_
1.

From this two-level example, we see that the system Luk j arising from the finite
element discretization using the basis B can instead be written in terms of the generating
system E by the following steps:

Apply

to both sides of the equation and set u P-I Ik w.
In the first step, new equations are added to the system that are constructed from the

original equations by forming linear combinations with the weights of the MG-restriction
stencil. The second relation defines the new unknowns and their relation to the original

e of ut is defined implicitly, which is notunknowns. A natural two-level decomposition w
unique but nevertheless consistent with the Galerkin approach.

3. Iterative methods for the semidefinite system. In this section, we study iterative
methods for the solution of the semidefinite system. We show that the diagonally precondi-
tioned CG methdd is equivalent to the BPX- or MDS-preconditioned CG approach for the
standard system using Bt. The generalized condition number of Lff is the same as for the
BPX- or MDS-preconditioned matrix L. Therefore, proofs for the condition of BPX and
MDS are directly valid for the semidefinite system. Results of work by Oswald, Zhang, Xu,
Bornemann, and Yserentant for BPX establish a condition number of the order O(1) for Lff.
Furthermore, we show that the Gauss-Seidel (GS) method and its counterpart SGS are equiv-
alent to multigrid methods for the standard system. A Gauss-Seidel-type relaxation itself can
be used as preconditioner for the semidefinite system. This results in MG-CG for the standard
basis system.

EWe want to achieve a solution of the semidefinite system Lw fE. Because Lff
is not invertible, we cannot use a conventional direct solver. Instead, we can consider basic

E E E Eiterations w := w + cE(fE L, wk with positive-definite (or semidefinite) matrices

Cff. We focus on the CG-type accelerations of such iterations where Cff is a diagonal matrix
preconditioner. Furthermore, we study Gauss-Seidel-type relaxations, both as an iteration
itself (with Cff as inverse of the lower triangular part of L) and as a preconditioner for the
CG method.

It is well known that these methods iteratively reduce the energy of the system. They
differ in the employed descent directions. While for the CG method the descent directions
are based on the residual, the Gauss-Seidel iteration descends along the coordinate axes. It
is well known that CG is sensitive to scaling, and that its convergence rate depends on the
condition number of the system. On the other hand, Gauss-Seidel relaxations are invariant
under scaling of the system. See 12] for further explanations on descent methods.
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3.1. CG iteration for the semidefinite system. Here we consider the (diagonally pre-
conditioned) CG method for the semidefinite system. The BPX-preconditioner of Bramble,
Pasciak, and Xu and its generalization MDS applied to the standard basis system can be

e Thisdescribed directly in terms of E with simple diagonal matrices Cff of full rank n,.
is also true of the HB-preconditioner introduced by Yserentant. It can be described with a
simple diagonal matrix Cff of deficient rank n. If the functions of the generating system are
properly scaled, then the Cff for BPX or MDS becomes the identity, and the CG method for

E Ethe semidefinite system L, w fff is directly equivalent to BPX-CG or MDS-CG for the
definite system Lu fk. Otherwise, this scaling is done explicitly by the respective matrix

3.1.1. The residual and the CG iteration. In the CG method, a major task is to compute
the residual

E(26) r f Lw,k

e Here, the product type representation (21) of Lof the semidefinite system for a given wk.
and fe can be exploited. We get

E E(27) r (S)rJ (S)rLkSk w,
e and rk Lkuk, we haveand, with u Sw

(28) rff (S)r(A- Lkuk)= (S()rrk.
Consider as an example once more the two-level case (23)-(25). The residual of the

semidefinite system now reads

(29) r= (R-IJ)(- R-ILpw(-ll+R-ILw())f LkPk_w(-) + L,w()

If we use the product-type representation (21) of Lff and fe, we are able to implement the
computation of the residual efficiently. We have

and the same result is obtained if we first compute uk P_w(-0 + w(, then the fine level
residual r J Lu, then finally

(31)

This avoids computing the expressions individually on the coarse and fine levels, which differ
only by the coarse grid term R-1.

E in E ofa given function u have exactly the same residualNote that all representations wk
vector r. Therefore, even if our generating system allows many nonunique representations
for a function u, it is unique with respect to the residual. In fact,

(32) E,I E,2 E_ E, Le_ E,2w .-: w = Lk/k k tk
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In the following, let Cff be a diagonal matrix. The central step in the CG method for
E Esolving Lwk f is the computation of the residual and its scalar product. With Cff-

preconditioning, we must compute (r)rCr. Since r (S)rrk (see (28)), then

(33) (r)r Cffrff r[ SffC(Sff)Vrk.
E EHence, the Cff-preconditioned CG algorithm for solving Lwk fk is equivalent to

the CG algorithm with preconditioner SC(S)T for solving Lkuk f.
3.1.2. BPX- and related preconditioners. In the following, we show that the BPX-,

MDS-, and HB-preconditioners can be expressed by the operator Sff Cff (Sff) r for appropriate
diagonal matrices Cff. In [23], the finest level system Lu f is treated by CG-accelerated
iterations with a general selfadjoint, positive-definite preconditioning operator C V -- Vk.
Specific choices for C for the BPX- and HB-preconditioners were given by the respective
matrices Cff and C" defined as follows"

no k nt

p(0))p(0)(34) Crk Eft E(Fk’/=I -" E/=I E/=I d(il--’(Fk’ }1))}1) (BPX),

no k nl

(35) r Lff bo))bo)Ck rk E(rk, + E E d(i’)(rk, ql)),) (HB)
i=1 1=1 i=nt_+l

with the scaling factors d{1) 4t(1 ((I) )" Yserentant suggested replacing the scaling factors

d1) by d’) a (4)}0 4) ), which leads to the preconditioner C# defined as

no k n!

(36) C(rk L’ (rk, 0))0> + (rk (MDS).
i= t= i= d

Cff is fuher analyzed by Zhang in [25] as a multilevel diagonal scaling variant ofthe multilevel
additive Schwarz method. This preconditioner can be expected to work in practice better than
BPX for nonmodel problems since, with dt), it takes information into account that reflects
more closely the propeies of the problem. However, for elliptic problems with constant
coefficients, MDS is equivalent to BPX up to a constant multiple.

Note that for our simplified case of Dirichlet boundary conditions, V0 {0} and the term

Lff 7(rk, (0))0)i vanishes. For more generalboundary conditions, a system with the
level 0 discretization matrix L0 must be solved here.

These preconditioners can now be expressed easily in terms of our semidefinite system
e e producesLwk

e e. Computation of the residual r e Lk wk

(37> rff (S>rrk= ( r(’)r r(2>r.., r(-’)r r()r ) r

where

(38) (r(l))i (rk, ql))qbl), k, 1, 1,..., nl.

The BPX- and HB- preconditioners resemble just a multiplication of the residual rff of the
enlarged system with the matrix Cff. For all preconditioners introduced above, this matrix

Cff has diagonal form. The preconditioners differ only in the diagonal entries. Therefore, in
terms of the enlarged system, BPX-, MDS-, or HB-preconditioning amounts to nothing but
diagonal scaling of the residual.
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For the BPX-preconditioner Cr, its analogue C[’x has full rank. In fact

(39)

If the functions of our generating system use a special scaling, then C’x Iff, and the
BPX-preconditioner yields the usual CG method on the semidefinite system. This special
scaling is expressed by

(40) =h l=k 1, d=1,2

Note that in the 2D case no scaling is actually necessary.
Since the modified scaling factors d}t) a(cp}t), qt)) are used in the MDS scheme, we

see that

(41) C’z diag (1 /(L)(i,i))
Here, the MDS-preconditioner reduces to just a Jacobi-preconditioner for the semidefinite
system (Jacobi-CG). If the functions of our generating system use a special scaling, then

C’z I, and the MDS-preconditioner yields the usual CG method on the semidefinite
system. This special scaling is expressed by

1/2d)(/)t(1) ((I) (I))- ri(42) -i =a l=k,.

Note that Jacobi iteration on the semidefinite system alone does not generally converge, nor
do the simple iterations based on BPX- or MDS-preconditioners. It is the combination of CG
and preconditioning that makes the method properly (and quickly) converge.

For the HB-preconditioner C[, its analogue Cff’Y has deficient rank. Only the nk diagonal
entries associated with the functions appearing in the hierarchical basis are nonzero. (They

(t)contain the inverse of the scaling factors d .) For further details, see [7] and [22].
If we want to express the resulting vector C’Jr, J E {X, Y, Z} in terms of the basis

Bk, we must multiply it by Sff, which amounts to the explicit level-wise summation of the
BXP-, MDS-, or HB-preconditioner. However, using the generating system approach, this
summation is avoided because of the direct, multilevel representation of the functions of V,,
implying that the summation is really done implicitly.

It is now possible to characterize the BPX-, MDS-, and HB-preconditioning in terms of
Bk by the matrix notation

(43> Cd SC,J(s) J {x, Y, z}.

It is easy to see that the scalar products involved in the preconditioned CG methods for
EL,u, j and for Lw, fe are the same. Since r (S)rr., then

(44) (rk) r J (r)r,-,e,J eCt rk t... ri: J {X, Y, Z}.

We have seen that the use of the generating system, instead of the standard basis ap-
proach for the representation of the functions of V,, allows an easy and simple descrip-
tion of the BPX-, MDS-, and HB-preconditioned CG method. The somewhat complicated
form of the BPX-, MDS-, and HB-preconditioning reduces in Ek to simple diagonal scaling
of the residual rff. If we choose specially scaled generating functions in Et,, then Cff reduces
to the identity matrix, which means that only the standard CG algorithm is performed on the
associated semidefinite system.



MULTILEVEL ALGORITHMS AS ITERATIVE METHODS 557

3.1.3. Condition number considerations. Here we consider the condition number of
the Cff-preconditioned semidefinite system. Of course, in general, the conventional condition
number is infinity because Lff is singular. However, we will show here that the condition
numbers of the preconditioned enlarged and original systems are the same, provided we
use a generalized condition number that considers the preconditioned matrix restricted to
the orthogonal complement of its null space. In fact, each eigenvalue of CkLk is also an
eigenvalue of CffLff, and the rest of the eigenvalues of E eCk Lk are zero. This holds for all
symmetric, positive-definite preconditioning matrices C with Cff (S)rCS. It follows

Ker(S) and e Ker(S from observing that thefrom considering the cases e e and
relation

(45) E E EC(S)rLkSe . e
implies the relation

(46) E E E r eSk Ck (Sg) Lkek .k ek,

E Ewhere ek Sk ek. The generalized condition number that we use is given by

E E(47) x(C Lk .max/)min,

where .max denotes the largest eigenvalue of e eCk Lk and rnin its smallest nonzero eigenvalue.
We thus have

(48) E Ex(c) (c z).

Note that x(CkLk) reduces to the usual definition of condition number.
Any results on the condition number of CkL, therefore extend directly to the semidefinite,

preconditioned matrix CffL provided Ck is symmetric, positive-definite, as is the case for
the BPX-, and MDS-preconditioners. It has been shown by Oswald [16]-[18], Xu [20],
Zhang [25], [26], and Bornemann and Yserentant [4] that the condition number of the BPX-
preconditioner is of the order O(1). So we may conclude that

((.,E,JI E(49) ’c’k k) O(1), J {X, Z}.

Thus, if we use specially scaled functions in Ek, then C’J I and the semidefinite system
matrix that now results from the Galerkin approach has a generalized condition number that
is independent of k.

3.2. Gauss-Seidel iteration for the semidefinite system. Here we consider relaxation
type iterations for the semidefinite system. We focus on the GS method and its counterpart
SGS, and show that the multigrid method for the standard system can be interpreted as Gauss-
Seidel-type iteration for the semidefinite system. The levels used in the multigrid scheme
induce a block partitioning of the system, and switching from level to level corresponds to
an outer block Gauss-Seidel iteration for the semidefinite system. The MG-smoothing steps
resemble inner Gauss-Seidel iterations for each block. The multigrid V-cycle with one pre-
and post-smoothing step by Gauss-Seidel iterations reduces to the SGS method, which is also
known as Aitken’s double sweep scheme. Other MG-cycle types can also be modeled by
different orderins of the block Gauss-Seidel traversal. The case of multiple smoothing steps
corresponds to multiple inner iterations. Furthermore, other smoothers can be incorporated
in the block GS method as inner iterations, and the SGS iteration for the semidefinite system
can be used itself as a preconditioner of the CG method.
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As usual, we decompose the semidefinite matrix Lff by L F +G + (G)r, where
F and G denote the diagonal and strictly lower triangular parts of L, respectively. Then
the GS method is expressed by using Cff’s := (F + Gff)-1 and SGS is expressed by using

C’ss := (Fe + G)-rF(F / G)-. Note that Fff / Gff is generally not symmetric,
but it is positive definite and invertible. In what follows, we order the unknowns level-wise
starting with the coarsest level and the unknowns of each level are ordered lexicographically.

3.2.1. Gauss-Seidel and multigrid. Here we demonstrate that Gauss-Seidel-type re-
laxations for the semidefinite system are equivalent to the multigrid method for the standard
system. Without loss of generality, we restrict ourselves for simplicity to the two-level case
and consider the block system

Lk Pkk_l Lk w(k) fk

The two-level block-partitioned Gauss-Seidel iteration (with some inner relaxation scheme
like point Gauss Seidel) for the semidefinite system then proceeds as follows:

E,0O. Choose some w, (w(k)’O, w(k-1)’O) T as a starting value.
For 1 to convergence:

Relax on Lkll) (k)’i-1 fk k (k-1),i-1 to(k),iL,P_ w to obtain

2. Relax on L,_W(k-1)’i-1 R-1 fk R-Lkw(k)’i to obtain W(k-1)’i.
Consider now the well-known correction scheme (CS) form of the multigrid method.

Here, instead of exact solving the coarse grid equation, we only iterate it. It consists of the
following steps:

0. Choose some u as a starting value.
For 1 to convergence:

1. Relax on L,u- J to obtain u.
2. Set uZ 0 and relax on Lk_ui-_ R-(f. L,u)to obtain u_.
3. Form the correction u u + P,u_,.

It is easy to see that principally the same equations arise in both of these schemes. The
coarse grid equations are exactly the same, and although the fine grid equations are not, their
difference is compensated for in Step 3 of the CS scheme. This correction step performs just
the analogue ofthe transformation Sff from the nonunique representation ofthe approximation
of the solution in E, to its unique representation in the standard basis B,. Therefore, in the
CS scheme, the approximation to the solution is represented after each coarse grid correction

step in standard basis. This is not necessary for the block Gauss-Seidel scheme because it
works directly with the nonunique representation based on the generating system.

Thus, the only difference between these two schemes is their representation. They are
e is therefore clarified if theotherwise equivalent. The interpretation of the block entries of w,

correction scheme of the multigrid method is kept in mind: In our two-level example we can
see w<’) as some sort of implicit approximation of the solution on level k and w-1) as an
implicit coarse grid correction to it. In this sense, our method and McCormick’s approach of
Unigrid and PML are in similar spirit; see [14], 15].

The V-cycle with one pre- and one post-smoothing step is equivalent to two Gauss-
Seidel iterations for the semidefinite system, where the second step is performed in reversed
ordering. This is just the well-known Aitken double sweep or SGS method. Multiple pre- and
post-smoothing iterations can now be modeled by block sweeps over the semidefinite system
with multiple inner iterations. Of course, other smoothers can also be applied in the inner
iteration, and the outer block iteration can be reordered so that other MG-cycling strategies
are implemented.
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The Gauss-Seidel or SGS iteration can be considered as a method for the minimization
of the energy functional, where the search directions are just the coordinate axes. Using
the enlarged generating system, we can interpret the unknowns of the coarse grid equations
of the multigrid method as additional coordinate axes which are given via (S)r as linear
combinations of the fine grid coordinate axes. The coarse grid correction now gives additional
search directions for the minimization of the energy, which makes multigrid fast to converge.

Furthermore, it is easy to see that the HB-MG method of [3] can be interpreted in the
extended system as well" Iteration on the unknowns of w(t), k 2, which belong to
grid points that are contained in the next coarser grid f2t_, is simply omitted and its values
are frozen there.

Note that we obtain the usual Gauss-Seidel iteration on the fine grid system by omitting
iteration over theblocks that are associated with the coarser levels. This would mean that the

e values are never changed. But if we transform the resulting solutionassociated values of wk
to its standard basis representation, we obtain exactly the same result as for an iteration on
the fine grid system only. For remarks on an estimate concerning the condition number of the
SGS-preconditioned semidefinite matrix, we refer to [7].

4. Numerical experiments. Consider the simple model problem

(51) Au=f on f2=(0,1)a, d=l,2,

with Dirichlet boundary conditions, where A -/a= 02/0x2i"
4.1. Eigenvalues and condition numbers. The numerically computed eigenvalues and

generalized condition numbers of the semidefinite matrix Lff and the MDS-preconditioned
semidefinite matrix C’zL are shown for the 1D case in Table 1. (The BPX-preconditioned
matrix c’e’XrE has the same condition numbers and, up to the factor 2, the same eigenvalues.)
Here, s and r denote the respective size and rank of the matrix.

TABLE
Eigenvalues and generalized condition numbers in the D case.

k s r

1’
2 4 3
3 11 7
4 26 15
5 57 31
6 120 63
7 247 127
8 502 255

x(k-l)min max K

4.0000 4.0000 1.0000
5.5279 14.472 2.6180 2.618
6.6046 31.206 4.7249 1.8048
7.1989 63.575 8.8312 1.8690
7.5073 127.77 17.019 1.9272
7.6642 255.88 33.386 1.9616
7.7433 511.94 66.114 1.9803
7.7831 1024.00 137.57 1.9900

c(k-1),min )max to" (k)

1.0000 1.0000 1.0000
1.0000 2.0000 2.0000 2.0000
1.0000 2.8666 2.8666 1.4333
1.0000 3.4839 3.4839 1.2156
1.0000 3.9834 3.9834 1.1434
1.0000 4.3891 4.3891 1.1018
1.0000 4.7239 4.7239 1.0763
1.0000 5.0029 5.0029 1.0591

Note that Lff has a generalized condition number of O(h- ), which is by a factor h- better
than the condition number of the standard basis matrix L. The diagonally preconditioned
matrix C’z Lt, however, has the constant 1.0 as the smallest eigenvalue and a very slowly
growing largest eigenvalue. Its condition number actually behaves like O(1).

Using Fourier analysis [19], it is easy to see that, with N 2 hk , the N/2th
eigenvalue

2
(5:z) ,_---

nk
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of Lk is also an eigenvalue of L. Since C’z has the diagonal entries ht/2, 1 k
(cf. (41)), it is clear that 1.0 is an eigenvalue of r’e’zrE This is in fact the smallest nonzero"-’k "k

Z Eeigenvalue of CE’ L,, although we have yet to prove it. Applying Gerschgorin’s theorem,
it is easy to show that the largest eigenvalue ,max of C’ZL is bounded from above by a
constant, which can be estimated to be 6.8284. This is due to the fact that, at least in the
1D case, the entries of the spectrally equivalent matrix (c’Z)I/2L e.z 1/2(C decrease in a
certain geometric progression.

For the 2D case, the condition number and the eigenvalues of the MDS-preconditioned
matrix Cff’zL are shown in Table 2. (The BPX-preconditioner again results in the same
condition numbers, although the eigenvalues are now multiplied by the factor 8/3.)

TABLE 2
Eigenvalues and generalized condition numbersforC’z LkE in the 2D case.

k s r

2 10 9
3 59 49
4 284 225
5 1245 961

,.min .max tC
c(k-1)

1.0000 1.0000 1.0000
0.8232 1.6971 2.0615 2.0615
0.7690 2.2785 2.9629 1.4372
0.7548 2.7102 3.5906 1.2118
0.7512 3.0576 4.0702 1.1336

Once again, using Fourier analysis, it can be shown that the eigenvalues

(53)
2

’n,,n2 (4 cos(zrnlhk) cos(yrn2hk) 2cos(zrnlhk) cos(yrn2hk)),

of L,, n 1 N 1, n2 N/2, and n2 N 1, n N/2, where N 2,
E,Zh, l/N, are also eigenvalues of L. Since Ck is a diagonal matrix with the constant

r-,.ZLdiagonal entries 3/8, it follows that 3/8. Z,,N/2 and 3/8. .N/2,,: are eigenvalues of ,t t.
E,Z EIn fact (compare Table 2), the smallest eigenvalue of C/ L, appears to be 3/8 )(1,N/2)

3/8 )(N/2,). (Again we have yet to prove this.) Hence,

(54)

rchkN
2cos(rhk)cos,kmin,k.Zrre Lff) 4 cos(zrhk) cos

zr

cos ().
The largest eigenvalue grows very moderately. However, Gerschgorin’s theorem can no longer

,,rE,ZI/2 E E,Z 1/2be used since the entries of t.k "k (C/, no longer decrease geometrically for all
rows. Note that in the 2D case the standard generating functions in E/ are already specially

zscaled with respect to hr. C’ preconditioning results only in a scaling by the constant factor
3/8.

We now consider the SGS-CG approach. We computed the eigenvalues and generalized
condition numbers of the preconditioned matrix c,S6St,_.k.E The results for the 1D case are
shown in Table 3. Compared to the BPX- and MDS-preconditioner, the SGS-preconditioner
improves the condition number roughly by a factor 4.

(-,E,SGSI EFor the 2D case the condition number and eigenvalues of ,..k ,.,/, are shown in
Table 4.

Once more, the SGS-preconditioner improves the condition number by about a factor 4
and the formula tc(Cff’SSL) , + 1/(4.min(C’z EL, )) gives a good estimate of its upper
bound.
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TABLE 3
and generalized condition numbersforC’sasL in the 1DEigenvalues case.

k s g

2 4 3
3 11 7
4 26 15
5 57 31
6 120 63
7 147 127
8 402 255

,min .max / x(k)

1.0000 1.0000 1.0000
0.8125 1.0000 1.2308 1.2308
0.8002 1.0000 1.2496 1.0153
0.8003 1.0000 1.2495 0.9999
0.8000 1.0000 1.2500 1.0000
0.8000 1.0000 1.2500 1.0000
0.8000 1.0000 1.2500 1.0000
0.8000 1.0000 1.2500 1.0000

TABLE 4
Eigenvalues and generalized condition numbersfor LE.SaSk in the 2D case.

k s r

2 10 9
3 59 49
4 284 225
5 1245 961

,min max tC
x(k-l)
(k)

1.0000 1.0000 1.0000
0.9007 1.0000 1.1102 1.1102
0.8472 1.0000 1.1804 1.0632
0.8325 1.0000 1.2012 1.0176
0.8288 1.0000 1.2065 1.0044

4.2. Convergence factors and iteration steps. Here we study the convergence proper-
ties of the different preconditioned CG and GS methods. As shown in [1 ], the CG method
needs at most s int [1/2/ Iln(E/e)l + 1] steps to reduce the energy of the initial error by
a factor e (0, 1), where tc is the (generalized) condition number ofthe preconditioned matrix
to be considered. The reduction factor after s steps can be estimated by the quantity 2 Pcg,
where Pcg :--" (f’-- 1)/(f" "" 1) is the (worst-case) convergence factor. Note that, due to the
sophisticated convergence properties ofthe CG method taking full advantage ofthe eigenvalue
distribution of the preconditioned matrix, the upper bound 2. Pcg may be pessimistic.

We are able to derive estimates of the reduction factors from the computed condition
numbers of the above tables. For example, in the case k=5, the generalized condition number
of the MDS-preconditioner is close to 4.0 (compare Tables and 2), so, we can expect a
theoretical convergence factor of about 0.333. Also, since the generalized condition number of
the SGS-preconditioner is about 1.25 (compare Tables 3 and 4), we can expect a convergence
factor of about 0.0557. If we invest the additional work necessary for the Gauss-Seidel
iterations on each level, we get an improvement of the convergence factor by a multiple of
about 6.0.

For comparison, we performed numerical experiments to measure the number ofCG steps
necessary to reduce the L2 norm of the residual rff by the factors 10-2, 10-4, 10-6, 10-8,
and 10-1 for the MDS-preconditioned and the SGS-preconditioned semidefinite system. The
results are given in Tables 5 and 6. For the measurements, we directly computed rff, the
residual of the semidefinite system, which is related to the residual rk by (S)r, as in (28).
Note that the SGS-preconditioner reduces the number of iteration steps roughly by a factor of
2.5 in comparison to the MDS-preconditioner.

These results should be compared to the performance of the simple iterative method
associated with the respective preconditioner for which the worst-case convergence factor is

(55) P(Ii gE’J i" E
,k ,.,) max I1 ki(Cff’gL)l, g {Z, SGS},

where ,i denotes the respective eigenvalues. We see from the Tables and 2 directly that the
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TABLE 5
1D case: Required number ofCG stepsfor various residual reduction factors.

k
2 2 2 2 2 2
3 4 4 4 4 4
4 4 6 8 8 8
5 5 8 11 13 14
6 5 9 13 16 18
7 5 9 13 17 21
8 5 10 14 18 22

""k "k ""k k

10-2 10-4 10-6 10-8 10--10 10-2 10-4 10-6 10-8 ’10-10
2 2 2 2 2
2 3 4 5 5
2 3 5 7 8
2 3 5 7 8
2 3 5 7 8
2 3 5 7 8
2 3 5 7 8

TABLE 6
2D case: Required number ofCG stepsfor various residual reductionfactors.

k
2 3 3 3
3 4 6 8 9 10
4 5 8 12 15 18
5 5 9 13 16 20

cE,Z cE,SGSLE

10-2 10-4 10-6 10-8 10-10 10-2 10-4 10-6 10’8 10-10
2 3 2 3 4 5 6

2 3 5 6 7
2 3 5 6 8
2 3 5 6 8

Jacobi iteration for the semidefinite system is divergent, with spectral radius is greater 1. Note
that a damping parameter could be introduced to enforce convergence.

For the symmetric Gauss-Seidel iteration on the semidefinite system, which is equivalent
to the (1,1)-MG-V-cycle for the standard system, we get

(56) t’F’E,SGSLE’ 1/x(C,sGsPsgs min,k k L ).

Since the generalized condition number is close to 1.25 (compare Tables 3 and 4), we can
expect a theoretical convergence factor of about 0.2. Ifwe invest the additional work necessary
for the CG iteration to gain SGS-CG, we see that the convergence factor is improved by a
multiple of about 3.588.

Tables 7 and 8 show the number of steps that were needed by the Gauss-Seidel and SGS
iteration in numerical experiments to reduce the residual rff by the factors 10-2, 10-4, 10-6,
10-8, and 10-1. These iterations resemble directly a V-cycle with one post-smoothing step
by (lexicographical) Gauss-Seidel and zero or one presmoothing step, respectively.

TABLE 7
1D case: Required number ofGauss-Seidel and SGS stepsfor various residual reductionfactors.

(cE,Z)I/2[E f’,E,Z)I/2

Gauss-Seidel SGS

10-2 10-4 10-6 10-8 10-10 10-2 10-4 10-6 10-8 10-10k
2 2 2 2 2 2
3 4 6 8 9 11
4 4 8 11 14 16
5 4 8 12 16 20
6 4 8 12 16 20
7 4 8 12 16 21
8 4 8 12 17 21

2 5 8 11 13
2 5 8 11 13
2 5 8 10 13
2 5 8 10 13
2 5 8 10 13
2 5 8 10 13
2 5 7 10 13
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TABLE 8
2D case: Required number ofGauss-Seidel and SGS stepsfor various residual reductionfactors.

k
2 3
3 3
4 4
5 4

(cE,Z)I/2L (cE,Z)I/2

Gauss-Seidel SGS

10-2 10-4 10-6 10-8 10-10 10-2 10-4 10-6 10-8 10-10
4 6 8 10 2 4
6 8 10 12 2 4
7 9 11 14 2 4
7 10 14 18 2 5

6 8 10
7 9 12
7 9 12
7 10 12

4.3. Efficiency considerations. To compare the different methods with respect to their
efficiency, we restrict ourselves to the 2D model problem. BPX/MDS-CG is realized by a
multigrid V-cycle followed by a CG step on the fine grid equations, where explicit smoothing
iterations are omitted in the V-cycle. Note that smoothing now only takes place implicitly
by simply (weighted) summing of the residuals on all levels. SGS-CG is implemented by a
multigrid V-cycle with one pre- and one post-smoothing iteration (here we use lexicographical
Gauss-Seidel) followed by a CG step on the fine grid equations.

Table 9 shows the number of operations per fine grid point needed by the major processes
of the methods we consider. Operations /, -, x,/, are all counted equal. Here, Cgs denotes
the number of operations per grid point of one Gauss-Seidel smoothing iteration in the V-
cycle, Ct denotes the number of operations per grid point that are necessary for the intergrid
transfer operators in the V-cycle, and Ccg denotes the number of operations per grid point that
are necessary for the CG method on the fine grid equations. Compare also [6] for the operation
count of the different MG components and for the CG operation count. The number, op,
of operations per grid point for the different methods itself is then given in Table 10.

TABLE 9
2D case: Number ofoperations perfine gridpointfor the major algorithmic processes.

Cgs Ct Ccg
12 12 15

TABLE 10
2D case: Number ofoperations perfine grid pointfor the different algorithms.

op

BPX-CG SGS SGS-CG

Ct -I" Ccg 2. Cgs + Ct 2. Cgs + Ct +Ccg
27 36 51

The efficiency of these schemes is defined as the value

(57) eft -op/ln(p),

which gives the number of operations per fine grid point necessary to reduce the norm of the
residual at least by a factor e. For the case k 5, Table 11 shows the theoretical convergence
factors Pth and the resulting efficiencies derived from the condition numbers in Tables 2
and 4.

For comparison, we ran numerical tests and measured the average reduction factors after
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enough steps, s, to reduce the residual by about e 10-10. This average factor is defined
to be

(58) /gave
.\ irff,Ol 2

e 1/’.

For the results, see also Table 11.

TABLE 11
2D case: Convergencefactors and efficienciesfor the different algorithms with k 5.

BPX-CG SGS SGS-CG

Pth 0.333 0.200 0.0557
eft 24.58 22.37 17.66

Pave 0.355 0.203 0.074
eft 26.06 22.58 19.68

All three methods considered perform comparably with respect to efficiency even though
their convergence rates differ strongly. BPX-CG is slightly (by about a multiple of 1.15) less
efficient than SGS, which in turn is slightly (by about a multiple of 1.15) less efficient than
SGS-CG. This shows that it is possible to speed up multigrid somewhat by CG. Note, however,
that multigrid allows other relaxation orderings and other choices for the number of pre- and
post-smoothing steps that might allow for improvement in its efficiency. BPX-CG may also
be improved by additional Gauss-Seidel iterations in the BPX-preconditioning process.

5. Concluding remarks. In this paper we have introduced the idea of using a generating
system instead of the usual basis approach, which allows for the direct use of multilevel
decompositions of a function. A Galerkin scheme based on the generating system results in a
semidefinite matrix equation.

We showed that modem multilevel methods can be interpreted as standard iterative meth-
ods for the semidefinite system. The BPX- or MDS-preconditioner can be seen as simple
diagonal scaling of the semidefinite system that resembles a Jacobi iteration step. Multigrid
algorithms are equivalent to Gauss-Seidel iterations and can be used as preconditioners for
CG as well, resulting in a substantial improvement of the convergence rate.

Of course, an efficient implementation of these methods must follow the traditional way
that is already employed in the multigrid method. From this point of view, we have presented
nothing really new. However, the interpretation of different multilevel methods in terms of
a generating system as standard iteration techniques on a semidefinite system fully clarifies
the relations and differences between them and provides a simple and natural approach to
their general treatment. We believe that the development of new multilevel methods will be
substantially simplified by this perspective.

Generalizations of the semidefinite system can be derived using coarse grid spaces other
than the standard coarse grid spaces used here. For example, Ek can be enlarged to contain all
possible coarse grid basis functions with respect to standard coarsening and semicoarsening
in all coordinate directions, allowing multilevel methods to be derived for sparse grids [8],
[9], [24].
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ANALYSIS OF V-CYCLE MULTIGRID ALGORITHMS
FOR FORMS DEFINED BY NUMERICAL QUADRATURE*
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Abstract. The authors describe and analyze certain V-cycle multigrid algorithms with forms defined by numerical
quadrature applied to the approximation of symmetric second-order elliptic boundary value problems. This approach
can be used for the efficient solution of finite element systems resulting from numerical quadrature as well as systems
arising from finite difference discretizations. The results are based on a regularity free theory and hence apply to
meshes with local grid refinement as well as the quasi-uniform case. It is shown that uniform (independent of the
number of levels) convergence rates often hold for appropriately defined V-cycle algorithms with as few as one
smoothing per grid. These results hold even on applications without full elliptic regularity, e.g., a domain in R with
a crack.

Key words, multigrid methods, elliptic equations, finite elements, numerical quadrature
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1. Introduction. In recent years, multigrid methods have been extensively used to ef-
ficiently solve the discrete equations that arise in the numerical approximation of partial
differential equations (see [9], [14], [17] and references cited therein). In conjunction, there
has been intensive research into the theoretical understanding of the convergence properties
of these methods (cf. [1]-[3], [6], [11], [12], [14], [16], [17]). These results provide a uniform
convergence rate (with respect to the number of grid levels) for the V-cycle algorithm in the
case of full elliptic regularity and a quasi-uniform mesh. It was shown in [5], using a new
general multigrid theory, that uniform estimates hold for the V-cycle algorithm, with only one
smoothing per grid per iteration, even in the absence of full regularity and in the presence of
mesh refinements. The results in [1]-[3], [5], [6], [11], [12], [14], [16], [17] were applied to
the finite element method with stiffness matrix computed exactly.

In practice, the stiffness matrix is usually computed approximately using a suitable nu-
merical quadrature. Furthermore, many standard finite difference schemes can be expressed
in terms of the finite element method with a suitable quadrature rule. The V-cycle multigrid
algorithm with numerical quadrature on each grid level was analyzed in [13]. In [13], the
bilinear forms on the coarser grids were defined by using coarser grid quadrature. The results
in 13] provide a uniform convergence rate for approximations ofproblems with full regularity
utilizing a quasi-uniform mesh.

The purpose of the present paper is to show that the theoretical results in [5] yield a
uniform convergence rate for the natural V-cycle multigrid algorithm that uses the fine grid
quadrature to define the forms on all grid levels. These results hold with mesh refinements
and for problems without full elliptic regularity (e.g., an L-shaped domain or a domain with
a crack boundary). Uniform convergence estimates are also provided for a standard finite
difference scheme.

The remainder of the paper is outlined as follows. In 2, we describe the theoretical
multigrid framework in [5] and provide an abstract perturbation lemma. In 3, we consider
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elliptic boundary value problems approximated by the finite element method with numerical
quadrature. Using the perturbation lemma of 2 and the theory in [5], we prove uniform
convergence results for corresponding multigrid V-cycle algorithms. This type of analysis is
applied to finite difference multigrid in 4.

2. Abstract multigrid theory. We begin by briefly describing the general multigrid
framework and results in [5]. We then provide a perturbation lemma that will be used to
analyze the case of numerical quadrature.

Suppose we are given a nested sequence of finite dimensional vector spaces M1 c_ Ma
_

c_ Ms. Associated with this sequence, assume we are given additional subspaces, Mk c_
Mk, fork 2, 3 J. The multigrid algorithm will involve smoothing only on the subspaces
Mk}. Let A (., .) and (., .) be symmetric positive definite bilinear forms defined on Ms x Ms
and let IIA and II denote the corresponding norms, respectively. We define a V-cycle
multigrid algorithm for the solution of the problem: Given f Ms, find us e Ms satisfying

(1) A(us, v) (f, v) for all v

The multigrid algorithm is defined in terms of auxiliary operators. For k 1 J, define
the operator Ak Mk Mk by

(2) (Akw, v) =_ d(w, v) for all v

The operator Ak is clearly symmetric (in both the A (., .) and (., .) inner products) and positive
definite. Let .k denote the largest eigenvalue of Ak. Also define the orthogonal projectors
Pk, Qk" Mj -->" Mk by

A(Pkw, v) A(w, v) for all v

and

(Qkw, v) (w, v) for all v

It is easily seen that QeAk Ae Pe if e < k. The operators A-,/Sk, and 0k are defined
analogously by replacing Mk with Mk above.

To introduce smoothing into the multigrid algorithm, we use "generic" smoothing oper-
ators Rk Mk Mk, k 2 J, satisfying conditions (S.1)-(S.3) below. Let R denote
the (., .) adjoint of Rk and set

Kk I- RkAk

and

Here K I RtAk denotes the adjoint of Kk with respect to the A (., .) inner product. We
set R1 A-1, i.e., we solve on the coarsest space. Finally, set Tk =-- RkQkAs RkAkPk.
Note that T1 P1.

We make the following three assumptions on Rk for k 2 J.
(S.1) There is a constant CR > that does not depend on k such that the smoothing

procedure satisfies

(3)
u 2

_
CR(kkU, U) for all u 6 )0k.
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Note that (3) holds with CR 1 for k 1 since/1 A-. The next assumption states
that the smoothers must be properly scaled.

(S.2) There is a constant 0 < 2 not depending on k such that

(4) A(Tkv, Tkv) <_ OA(Tkv, v) for all v 6 Mk.

The. last assumption implies that )lrk is an invariant subspace under R.
(S.3) Rk RkQ.
Note that (S.3) is automatically satisfied for symmetric smoothers since the range of R

is contained in M. Conditions (S. 1)-(S.3) were shown to hold in [4] for smoothing operators
corresponding to various Jacobi and Gauss-Seidel iterative procedures.

We next define the multigrid operator Bj Mj M by induction. For each f e
M, Bf is to approximate the solution u A1f of (1).

DEFINITION 2.1. Define B A-{ 1. For k > 1, Bkg for g M is defined asfollows:
Step 1. Set

x g g.
Step 2. Set y x + q, where q is given by

(6) q Bk-1Qk- (g Akx).

Step 3. Set Bkg y + Rk(g- Aky).
Definition 2.1 defines a symmetric V-cycle algorithm with one smoothing before and after

the coarse grid correction (Step 2). As in [5], subsequent theorems hold for the W-cycle and
other algorithms that use more than one iteration for the coarse grid correction. The results also
hold for algorithms that use more smoothings per grid level as long as one alternates between
R and R in Steps and 3. This again results in a symmetric operator Bj [7]. Finally, an
analogous contraction result holds for nonsymmetric cycling, where smoothing is only done
either before or after the correction step, i.e., Step 1 or Step 3 is skipped.

The main convergence result proved in [5] for the multigrid operator Bj shows that, under
suitable assumptions, the following estimate holds:

(7) 0 < A((I- BjAj)u, u) < 8A(u, u) for all u Mj,

where 6 (0, 1) is independent of J. The proof of (7) in [5] was based on two conditions (as
well as assumptions (S.1)-(S.3) on the smoother).

The first condition may be stated as follows:
(A.1) There is a constant Co > 1 satisfying

J AkPkw 2

(8) A (w, w) < Co A(P w, w) + for all w . Mj.
k=2 .k

The second condition can be written as follows"
(A.2) There i.s a positive number e < and a positive constant C such that fork 2 J

and/< k,

(9) x- k/3w ll2 (6k-f’)2A(w, W) for all w Me.

In this paper, we are interested in the behavior of the above conditions under perturbation
of forms. To this end, let AE (., .) be an alternative quadratic form on Mj and define the
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operator Aft as above with A(., .) replaced by AE (., .). Let .ff denote the largest eigenvalues
of Aft. We then have the following lemma.

LEMMA 2.1. Assume that conditions (A.1) and (A.2) hold for A e(., .). In addition,
suppose that

(10) KoA(w, w) < AE(w, w) < KIA(W, w) forall w Mj

andfor some ot > O,

(11) IAE(q, 7/) A(4, 7/)1 _< C,-"/2ll4’ll,ll01l forallqb f/lk, ap Mk.

Finally, if.k/)k+ < o forfixed rl < 1, then conditions (A.1) and (A.2) holdfor A(., .).
Proof We first note that condition (A.1) for A(., .) follows from (10) and Lemma 3.1 in

[5]. We are thus left with proving that condition (A.2) holds.
By (10), it immediately follows that Z/ and Z are of comparable size. Let w Me with

1 < < k. Note that

(12) .ffl k/w 112= .’I(sup IA(w’b)l)
2

We clearly have that

IIA(w, )11 IAe(w, qb)l
(13) sup < sup + sup, 114’11 , 114’11

Since condition (A.2) holds for Ae (., .), there exists a constant and a positive number e < 1
satisfying

(14) (X)- sup
IAe(w’ b)12

< 62k-2eA (113, w).. IIbll 2

By (11), the second term in (13) is bounded by

IA(w, ) Ae(w, 4)1
< C)a/2A(to, to)l/2A(q,q)l/2

Using the definition of .k gives

(15) -1 sup
IA(w, q) AE(w, q)l2

< C)A(w w).
IlOll 2

The inequality (A.2) for A(., .) follows from (12)-(15). This completes the proof of the
lemma.

3. The finite element method with numerical integration. In this section we describe
the finite element method with numerical quadrature for approximately solving elliptic bound-
ary value problems. We then apply Definition 2.1 to define an efficient multigrid algorithm for
solving the resulting system of equations. The main result (Theorem 3.1 below) shows that
this multigrid algorithm has a convergence rate independent of the number of grid levels when
a sufficiently accurate quadrature scheme is used. This accuracy condition is also required
for the finite element error analysis of numerical integration (cf. 10]) and is referred to as the
"patch test."
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We employ standard notation for Sobolev spaces [15]. Let HS(g2) denote the Sobolev
space of square-integrable functions on f2 with square-integrable derivatives up to order s,
where s is a nonnegative integer. Let IIm=ll II/4< denote the corresponding Sobolev
norm. The inner product and norm on L2(fl) H(f2) are denoted by (., .)L2 and I1,,
respectively.

In the remainder of this paper, we let C, with or without subscript, denote a generic
positive constant. It will take on different values in different places, but it will always be
independent of the mesh parameters and the number of levels in the multigrid algorithm.

Let f be a bounded domain in Rd with polygonal boundary. We include the case when
C R is a domain with a crack. We consider the Dirichlet problem

(16)
Lu f in

u=O on

where

Z)-

We assume that the coefficients are in C,a (f2) for some ct greater than zero. Furthermore,
we assume that the coefficient matrix {aij(x)} is symmetric positive definite with smallest
eigenvalue bounded away from zero independently of x

We consider the variational formulation of (16). Let H0 (f2) denote the subset of H (fl)
consisting of functions with vanishing trace on 0f2. The solution u of (16) satisfies

(17) Ae(u, v) (f, v)L2 for all v 6 Ho ().
Here ,4 e (., .) is the generalized Dirichlet form given by

2

f 011 OW
(18/ AE v w) i,j Jf

a j Ox-- O--jj dx

The superscript E above indicates that the form is computed by exact integration. Subsequent
forms will be defined by numerical quadrature.

We shall consider finite element spaces with a quasi-uniform mesh as well as mesh
refinements. The quasi-uniform mesh partitioning is standard, but we include the details for
completeness.

(i) Quasi-uniform mesh. To define the approximation spaces, we first define the underlying
mesh partitioning. We assume that a unit size coarse finite element triangulation ofthe original
domain f2 is given. Associated with the mesh partitioning, we are given a rule for refinement.
For example, one triangle can be refined into four by connecting the midpoints of the edges.

The mesh triangulations {T can be defined by induction. The coarse triangulation above
provides T. Given that a triangulation T_I has been defined, T is then defined by refining
the triangles r ’Tk-1 using the refinement rule. Thus each T consists of triangles {r2} such
that

The finite element space Mk for each k 1, J is defined to be a space of piecewise
polynomial functions of degree < K with respect to the triangulation Tk. These functions
are continuous on f2 and vanish on Of2. (We refer to 10] for comprehensive discussions of
various specific finite element spaces.) We say the family of spaces {Mk} has degree K. In
the present example, each M, Mk, i.e., we smooth on all functions in M,.
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(ii) General mesh refinement. We also consider finite element approximations that utilize
a locally refined mesh as described in [8]. Such mesh refinements are convenient for accurate
modeling of problems with various types of singular behavior. We consider for simplicity the
piecewise linear finite element space (i.e., K 1), although we allow a very general form of
refinement.

Following [8], we start with a coarse quasi-uniform triangulation. The refinement trian-
gulation is defined in terms of a sequence of (open) mesh domains

The only restrictions on the mesh domains {f2k} are that the boundary of f2k, for k > 1,
consists of edges of mesh triangles in the triangulation T_I and that there is at least one edge
of -1 contained in g2,. These mesh domains control the region of refinement. If r_ is a
triangle contained in 2k, then it is broken into four smaller triangles (in the triangulation T)
by the lines connecting the midpoints of the edges. Alternatively, if r_l is in the complement
of , then it is not subdivided but is directly included into the triangulation . A simple
example of this construction is the case of a unit square with local refinement near the comer.
In this case we take k for k 1 j and flk (1 2j-k, 1) x (1 2j-k, 1) for
k=j+l J.

The space Mk is defined to be the set of piecewise linear functions with respect to the
triangulation that are continuous on and vanish on 0. The continuity condition implies
that the finer grid nodes on a coarse-fine boundary are "slave nodes" in the sense that the values
of the function there are completely deteined by the values of the function on the nearby
coarse grid points. In this case, if k_ k, then the subspace Mk on which we smooth is a
proper nonzero subspace of M. In fact, we define k to be the functions in Mk that are zero
outside of k. Thus we smooth on a given level just in the region where new nodes are being
added in the refinement scheme. It is easy to see that the mesh coesponding to the space Mk
is quasi uniform of size hk 2-k+h.

The finite element approximation, u Mj, to the solution of (16) is given by

Ae(u, v) (f, v) for all v mj.

Here (., .) denotes the inner product in L2(). We will be interested in applying the multigrid
algorithms and analysis to a peaurbed form defined by numerical integration.

To define the form by numerical integration, we staa with a numerical quadrature scheme
Q over each element rj 6 Tj. Consider the reference triangle and introduce the reference
quadrature

L

e=l

where the we are positive weights and the be 6 r are quadrature points. The quadrature rule
is taken to beon each fine grid triangle rj

L

(bj,e) Qj[],(x)dx wj,e
e=l

where (x) () and the weights w and quadrature points bJ,e J,e are defined in terms of
the we and be by means of an affine mapping from rj onto r that takes each x in rj into in
r. We refer to 10] for detailed descriptions of numerical integration in connection with the
finite element method.
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We require that the above quadrature rule be exact when is a polynomial of degree
2K 2. This is referred to as the patch test and is also a basic assumption used in finite
element error analysis (see [10, 4.1 ], and references cited therein for specific examples).

The approximate form A (v, w) is given by

(19) A(v, w) E Qia aij

’r i, "=

We present results for multigrid algorithms for computing the solution ofthe discrete problem:
Find uj Mj satisfying

(20) A (uj, v) F(v) for each v Mj.

Here F is a linear functional defined on M. Typically, F is defined by using some form of
numerical quadrature. The implementation of the algorithm developed in 2 can be used to
solve (20) as well as problem (1) [6].

Assume that we have smoothing operators Rk Mk -+ M satisfying (S.1)-(S.3) for
each k 2 J. R may be defined in the same way as for the finite element method
without numerical integration ([4], [14], [17]). Definition 2.1 provides a multigrid operator,
Bj Mj ---> M, for which the following result holds.

THEOREM 3.1. Assume that conditions (S. 1)-(S.3) in 2 holdfor the smoothing operators.
Assume that a fixed quadrature scheme, which is exact on polynomials ofdegree 2K 2, is
usedfor every term defining A(., .). Let Bj be defined by Definition 2.1. Then (7) holds with
3 e [0, 1) independent of J.

Proof. By Theorem 3.2 of [5], conditions (A.1) and (A.2) hold for AE(., .). By Lemma
2.1, it suffices to verify (10) and (11). Since the same quadrature scheme was used for every
term in defining A(., .), Theorem 4.1.2 of [10] implies_that (10) holds.

We next show that (11) holds. Let and ap be in M and M, respectively. By definition,
the support of is contained in fak. Consequently,

(21)

!ae(O, )- A(O, )1

-Q5 (aiy 3 3ap
Ox,

Since r f2, its diameter is bounded by h. Using the property that the quadrature is exact
on polynomials of degree 2K 2, a typical term in (21) can be written

(22)

(aij(x) aij)GG dx Q5 (aij(X) aij)-X G
Here ij denotes the average value of aij on rta. We clearly have that the integral on the
right-hand side of (22) is bounded by

Ch Ilaij llco.G) I111H’G) IlaP



MULTIGRID ALGORITHMS WITH NUMERICAL QUADRATURE 573

Similarly, the quadrature in (22) is bounded by

ChOllaijllco,(j) wt Ocp
J,m "x bl,m -xj (bj,m

-< Ch llaijllc.(5) i Wtj,m
O w-xi (bj,m) J,m -xj bj,m

1/2

Ch llaillc’(5)

We again used the exactness property of the quadrature rule in the last step. Combining the
above inequalities and summing over rta, i, and j shows that

IA(4,, ) A(, )1 Chllllllll.

Equation (11) follows from the fact that h CZ/. This completes the proof of the
theorem.

Remark 3.1. The hypothesis that the same quadrature was used on each term in the
definition of A (., .) was only required to prove (10). Note that (11) holds even if different
quadrature les (satisfying the exactness property) are used on different terms. Moreover,
(11) implies (10) in the quasi-unifo case if hs is sufficiently small. In the refinement
case, (11) implies (10) if h is sufficiently small.

Remark 3.2. There is no difficulty in proving that (10) and (11) hold in the case of
an operator with lower-order term with coefficient a provided that (i) the coefficient a is
nonnegative and in C,() for some a greater than zero, and (ii) that the quadrature le for
this term has positive weights and is exact on constants.

One first proves that on any triangle r in , for k and Mk,

Here, 0 is the quadrature used on the low-order term and denotes the mean value of p on

rt. Inequality (11) then easily follows from

fr aqb !l, dx Ota aqbq/ f a ap dx O_. ta a c/) q/

+ fr a( )dx Ota(a(c/) 9))

+ fr5 (a gt) dx O.ta((a

Thus, Theorem 3.1 holds for this case as well.
The multigrid algorithm defined by Definition 2.1 uses the fine grid quadrature to define

the form on each of the subspaces. The sequence of stiffness matrices can be computed as
follows. Let N, _---dim (Mk) and let {b}, Nk denote the standard nodal basis for

M for each k 1 d. For k J, we compute A ((p, q) directly from (19). If k < J,
we express the basis functions for Mk as linear combinations of those for M,+I. The number
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of nonzero coefficients is bounded independent of k. Consequently, any stiffness matrix entry
for the kth grid can be calculated from those of the k + st grid with a fixed cost. This process
is repeated, starting from the J- 1 st grid and descending to the coarsest grid. The total work
is obviously bounded by a fixed multiple of the number of points on the finest grid.

Remark 3.3. An alternative multigrid algorithm can be defined as in 13] using numerical
quadrature with respect to the kth grid to define the form on Mk. The resulting algorithm does
not fit into the framework of [5] and uniform convergence results for the V-cycle algorithm
were only proved, in the case of full elliptic regularity 13].

Remark 3.4. Although the operator Qk-1 appears in the definition of the multigrid al-
gorithm (Definition 2.1), it does not appear in the actual implementation provided that an
appropriate choice of smoother is used, for example, Gauss-Seidel or Jacobi. This is dis-
cussed in detail in [5].

4. A finite difference application. In this section, we show that the stiffness matrix for
a standard finite difference scheme in two spatial dimensions is equal to that from piecewise
linear finite elements with an appropriate quadrature. Thus, we can apply Theorem 3.1 to obtain
multigrid convergence estimates, independent of the number of grid levels, for variational
multigrid methods applied to standard finite difference schemes.

We assume for simplicity that the domain f2 is a union of squares in a coarse square
mesh with uniform mesh size h with mesh lines with x,x2 values that coincide with integer
multiples of h 1. f2 need not be convex (e.g., f2 could be an L-shaped domain or slit domain).
The coarse finite difference mesh is formed by the above-mentioned squares. Successively
finer grids are formedby breaking each square into four subsquares in the obvious way. We will
only consider the quasi-uniform case although the refinement case can be handled similarly
provided that one uses the finite element quadrature to develop the finite difference schemes
near the coarse/fine boundaries.

We employ the following finite difference notation. Set (2h {Xe,m = (eh, mh) (2}.
Define f2h f2 f3 h and 0f2h fib N 02. Let Sh denote the set of grid functions on fib
vanishing on Of h. If V Sh, then Vi,j denotes the value of V at (ih, jh).

In this section, we take

0 9u 0 Ou
(3) Lu= -a b + cu.

8Xl 8Xl 8x -x2
We assume that the coefficients a, b satisfy the conditions of the previous section. We further
assume that c is nonnegative and in C’(

We consider the following standard five-point finite difference scheme approximating the
solution of (16): For F Shj find U Shj satisfying

Lh:U F,

where Lh Sh -> S is given by

(24)
(LsV)i,j ai+/z,j(Vi,j Vi+,j) + ai-1/2,j(Vi,j Vi-l,j)

+ bi,j+l/z(Vi,j Vi,j+l) + bi,j-1/z(Vi,j Vi,j-1) + h2jci,jVi,j.

Here we have used the generic notation fs,t to denote the value of f(sh j, th j).
Consider the triangulation {rj} that results from breaking each square of the Jth finite

difference grid into two triangles (for example, along the positive sloping diagonal). Let Mj
be the space of continuous piecewise linear functions with respect to this triangulation that
vanish on Of2. We consider a finite element approximation that uses a different quadrature on
each term in (23). Let r be a typical triangle in {rj} and let:
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1. b denote the midpoint of the edge that is parallel to the x axis;
2. b denote the midpoint of the edge that is parallel to the x2 axis;
3. b for 1, 2, 3 denote the vertices of the triangle.
We use the following three quadrature schemes, respectively, for the three terms coming

from (23):

ax , T
Cdx (b2),

Ux [(] +

Let A (., .) be the resulting quadratic form on the space Mj. It is straightforward to check that
the stiffness matrix associated with this finite element numerical quadrature scheme is equal
to the matrix associated with the finite difference operator Lhs. Even though we have used
different quadrature rules in defining A (., .), it is elementary to verify that (10) holds without
any conditions on h or h j. Fuhermore, these quadratures are exact on constants. Conse-
quently, Remark 3.1 implies that Theorem 3.1 holds for the variational multigrid algorithm
using the finite element subspace imbedding formulas to define the finite difference prolon-
gation operators. This is a standard variational multigrid algorithm. We have the following
theorem.

THEOREM 4.1. The variational form of the multigrid algorithm with prolongation cor-
responding to finite element imbedding applied to the finite difference operator Lhj with
Gauss-Seidel smoothing converges with a reduction that is independent ofthe number ofgrid
levels and unknowns.

Remark 4.1. It is easy to check that the stiffness matrix for A (., .) is a five-point stencil
on every grid level. The same is true for the coarser grid finite difference stencils developed
in the variational multigrid scheme using the finite element prolongations.
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ON THE MULTILEVEL ADAPTIVE ITERATIVE METHOD*
U. RODE+

Abstract. The multilevel adaptive iterative method is a technique for solving the sparse matrix equations that
typically arise from partial differential systems. Its core consists ofa relaxation scheme and an active set strategy. The
active set is used to monitor where the iteration efficiently reduces the error. It is incrementally updated by exploiting
the current solution and the matrix structure, and most arithmetic operations are restricted to it. The algorithm can be
extended to a multilevel structure by additionally tracing the dependencies between unknowns on different levels. It
improves the robustness and efficiency of classical multilevel methods; in particular, it is an almost ideal supplement
to adaptive refinement techniques.

Key words, sparse matrices, iterative methods, multilevel methods, adaptivity

AMS subject classifications. 65F10, 65F50, 65N22, 65N50, 65N55

1. Introduction. With the multilevel adaptive iterative method we introduce an algo-
rithmic concept that improves both the robustness and efficiency of iterative sparse system
solvers. In most iterative methods, the sequence of operations is determined a priori and
depends neither on the particular matrix structure nor on the current approximation of the
solution. For example, consider the case of a finite element mesh constructed by successive
adaptive refinement. Typically, the refinement process is combined with nested iteration such
that the initial guess for the solution can be obtained from the solution of the previous system
(see Bai and Brandt 1 ], Bank [2], and McCormick 11 ]). The initial guess will be close to
the new solution in large parts of the domain, while it may be far from the solution in regions
where the mesh has been refined. A classical iterative method does not exploit this situation
and will therefore be inefficient.

The core of the multilevel adaptive method consists of relaxation supplemented with an
active set strategy, as introduced in Rtide 14]. In each elementary step, we select an unknown
from the active set and perform a preliminary relaxation step at it. If the new value differs
from the old value by more than a characteristic tolerance, the update is performed, but if the
change is small, the old value is retained. In either case, the current unknown is removed from
the active set, because a further relaxation step for the same unknown would not provide any
new result. In the case where the update has been executed, a further relaxation of the same
unknown gives exactly the same value, and if the update has been rejected, a new relaxation
would also be rejected. If and only if the update has been performed, the active set must be
supplemented by the neighbors of the current unknown. For all of these unknowns the residual
has changed, and it must therefore be checked to determine whether they must be relaxed.
Thus, the active set may grow and shrink to keep track of where the solution is changing. The
basic relaxation is repeated until the active set becomes depleted. The sequence of operations
in this algorithm depends on the matrix structure as well as on the current state of the iteration.
Computational work is concentrated where it can efficiently improve the solution.

To make the algorithm practical, the critical tolerance must be selected and adapted
appropriately. In 2, it will be shown that the speed of convergence is directly related to
the tolerance parameter used, but that the tolerance parameter necessary to obtain a certain
accuracy depends on the condition of the system. Thus, the effectivity of the method depends
on whether it can be integrated with preconditioning techniques. In 3, we extend the method
to a multilevel structure by introducing a nested system of subspaces. This structure can be

*Received by the editors May 18, 1992; accepted for publication (in revised form) November 2, 1992.
tlnstitut fiir Informatik, Technische Universitit Mtinchen, Arcisstr. 21, D-80290 Mtinchen 9, Germany
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derived naturally in many cases that originate from the discretization of differential equations,
but could also be obtained directly from the system matrix, as in the algebraic multigrid method;
see Ruge and Sttiben 17]. It will be shown that the active set strategy can be extended to the
multilevel context by tracing dependencies between unknowns on different levels.

This extended algorithm is related to multilevel algorithms and can be shown to have
asymptotically optimal convergence for many important special cases. The analysis relies on
the theoretical foundation of either multigrid theory (see Hackbusch [8], McCormick [10])
or the theory of multilevel preconditioning (see Bramble, Pasciak, and Xu [3], Dryja and
Widlund [6], Oswald [12], Yserentant [19]).

The following presentation focuses on the model case ofa positive definite linear system as
it arises in the finite element discretization ofelliptic second-order partial differential equations.
This allows us to explain the process as a minimization algorithm, simplifying the presentation
and permitting a simple analysis based on the existing multilevel theory.

2. Adaptive relaxation. Consider the linear system

(1) Ax b,

where

,,4 (ai, j)l<_i,j<_n E nxn X (Xi)l<i<n n b (bi)l<i<n E ]n

Assume that A is symmetric, positive definite, so that the solution of (1) is equivalent to finding
the solution of

(2) min(xrAx 2x rb).
xE,

For each unknown i, define the set of its neighbors by

(3) N(i) {j[ j i, aj, 0},

that is the row indices of the nonzero entries in column i, excluding the diagonal. Due to
symmetry, N(i) is also the set of indices corresponding to nonzero entries in row i. The
matrix is assumed to be sparse, that is, that the number of neighbors is small:

(4) [N(i)[ < r << n, < < n.

An elementary relaxation step for equation consists of a modification of vector x by

(5) x’ x q- ri ri Tiei T a-l eri (b Ax)i,i

where ei is the ith coordinate vector, (i.e., the ith column of the unit matrix) and ri Ti(x)
is called the current scaled residual of equation (dynamic residual); see Brandt [4]. An
elementary relaxation step for equation can be understood as a coordinate descent for the ith
coordinate direction applied to (2).

To evaluate the quality of an approximate solution we use the Euclidean norm, the maxi-
mum norm, or the energy-norm defined by

( 1
Ilxl12 x Ilxll max Ixil, Ilxlle (XTAX) 1/2,

n i=1
i=1 n

respectively. These norms will be used to measure the error x x*, x* A-b of an
approximate solution x. The effect of a basic relaxation step is described by the following
lemma.
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LEMMA 2.1. Let x x* be the error before, and x’ x* be the error after, a basic
relaxation stepfor equation i. Then the energy norm ofthe error is reduced according to

IIx x* 112e Iix’ x* 112e ai,i’i2.

Proof It holds that

IIx x* 112e IIx’ x* 2
E

(x x*) r A(x x*) (x + rg x*) rA(x + r x*)

-2rirA (x x*) ri
r Ari

ai,i i2. [-I

This lemma is exploited in the Gauss-Southwell method [18], where the equation with
largest current residual is selected for relaxation in each step. This method is often too
expensive, however, because it requires the determination of the maximal residual in each
step.

In our algorithm we therefore use weaker conditions. Consider the sets

S(r,x) {il Irg(x)l > }.

Ifrelaxation could be restricted to these sets, Lemma 2.1 would guarantee a lower bound on the
reduction of the energy norm of the error in each elementary relaxation step. Unfortunately,
the sets S(r, x) are still too expensive to compute. Therefore, we will use active sets S(r, x)
that are computed more efficiently as supersets of S(r, x): S(r, x) D S(r, x).

These active sets are the basis of the sequential adaptive relaxation algorithm in Fig. 1,
whose main loop consists of an elementary relaxation step and an update of the active set. The
input for the algorithm in Fig. is the initial guess x, the tolerance r, and the current active
set . The assertions document that the algorithm will only perform properly if is indeed a
superset of S(r, x). If this is initially satisfied, it stays a loop invariant. On termination, the
active set is empty implying that no residuals beyond the critical tolerance r remain.

proc SequentialAdaptiveRelaxation(r, x, )
assert(r > 0)
assert(S D S(r, x
while( 0)

pick 6 S
<--- ; \ {i}

if ri (x)l > r then
x <--x+ri

+-- U N(i)
end if
assert( D S(r, x))

end while
end proc

FIG. 1. Sequential adaptive relaxation.

An analogous active set strategy can be used in a simultaneous (Jacobi-style) relaxation.
This may be useful if the algorithm is to be combined with other components that need
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symmetric operators, such as the conjugate gradient method. In the remainder of this paper,
however, we will focus on successive algorithms.

A simple argument (see Rtide 16]) shows that the work is directly proportional to the
gain in energy. We state this as a lemma.

LEMMA 2.2. Assume that algorithm SequentialAdaptiveRelaxation is started with initial
guess x, tolerance 3, and active set 3 S(r, x). Let x’ denote its result. Then the number,
IV, ofpasses through the main loop is bounded by

(6)
2amin

where is the maximal number ofneighbors defined in (4) and

amin min ai,i.
i=l m

Proof. See Proposition 3.2 in 16].
Lemma 2.2 shows that the work depends on the tolerance parameter 3. This raises the

question of which values of r are suitable. We prepare the answer to this question with another
lemma that is often useful in the analysis of iterative methods. It relates the error with the gain
in one step of the iteration (see Rtide [13]).

LEMMA 2.3. Let a linear iteration

Xk+l Cxk -[-b, k= 1,2,3

with C c < be given, and assume that x* is its fixed point:

x* (I C)-b.

Then

IIx* xll IIx xll,
1--C

Proof It holds that

IIx* xll (x Xk-l)
k=l

_< IIx x C
k=l

< llx -xll,

We can now apply this lemma to the adaptive algorithm as follows.
THEOREM 2.4. Let D diag(A) be the diagonal part ofA and assume that

(7) III- D-IAII2 < c < 1.

Denote by x’ the result of algorithm SequentialAdaptiveRelaxation called with input r > 0
and 3 S(3, x). Then

(8) IIx’- x*ll=
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Proof On termination, ri (x’) < r for all i. Therefore, letting

n

Zr ri,

i=1

we get I1:11 _< r. Now consider the iterative process

y+= Cy

for k 0, 1, 2 and where C I D-A and the initial value is y0 x’ x*. Thus,
-D-1Ay, and the first step in the iteration becomes y y0 / :. This is just Jacobi’s

method applied to Ay 0. Lemma 2.3 then implies

1 y y0 11:112IIx’ x*ll2 Ily 0llz < 11 1121-c l-c- 1-c

For the typical case of second-order elliptic equations, c O(h2), where h is the
meshsize. In this case, r must be chosen as O(hZ), where is the desired accuracy. Lemma
2.2 shows that the computational complexity is O(h-4), just as for the straightforward Jacobi
or Gauss-Seidel iteration. Thus, adaptive relaxation has no better complexity than standard
iterative methods. Instead, it should be perceived as a device to augment an arbitrary iterative
method when some kind of nonuniformity makes a localization of the operations desirable.

In practical multilevel applications there are many situations where this is useful. The
multigrid rate of convergence deteriorates in the case of singularities at reentrant corners.
For the biharmonic equation discretized as a system of Laplace equations, difficulties at the
boundary lead to a much reduced rate of convergence. In all these cases, local relaxation (see
Brandt [5]) or adaptive relaxation recovers the optimal performance of multigrid algorithms,
so that even simple V-cycles converge with full efficiency.

3. Multilevel adaptive iteration. In the multilevel context the situation is different be-
cause relaxation is only used as a smoother, not as a solver. A smoother need not eliminate
the error, but only make it well approximated by a system with fewer unknowns.

To keep the presentation simple, we restrict the discussion to Galerkin algorithms where
the coarse level equations are derived by the so-called Galerkin condition. Let us assume that
we are given integers n < n2 < < nx n and a sequence of spaces

IRnk, k 1, 2 nx

with projections P, IRn*+’ ----+ 1Rnk, k 1, 2 K 1. Let k 6 1, 2 K} and define
the product projection

K-k

to--1

that maps IRn to any of its subspaces IRn. For k K we take this definition to mean/5,c I,
the identity on IR". The transpose pr of Pk will be an interpolation operator. Similar to
Griebel [7], we represent a vector x ,n nonuniquely as

K

k=l

where xk 6 IR", k K. The minimization problem (2) then becomes



582 u. RODE

-T -T -T(9) min P, xk A Pk xk 2 Pk xk b
xk6IRnk, k=l,.. K k=l k=l k=l

Multilevel algorithms usually focus on one level at a time, so that all but one xk are kept
fixed at any given time. This results in an equation for xk of the form

(10) kAPkxk-r b- A xxx
These systems are treated consecutively for k K. We are now interested in adaptive
relaxation as an elementary process for each such level.

A complete theory of multilevel algorithms is beyond the subject of this paper. However,
as an example of how theoretical results for multilevel algorithms can be used to analyze the
multilevel adaptive iterative method, we derive some results based on a theorem of Zhang
[20].

THEOREM 3.1. Assume that the matrices Ak, 1 k K, A A, originate from a

discretization ofPoisson’s equation on a nested sequence ofuniformly refined, shape regular
triangulations ofa plane, polygonal domain with linear elements. Further, let P{ be the
(discrete representations ofthe) associated interpolation operators. Then there exist constants
C1, C2, independent of K, such thatfor all x n,

(11) --xtAx < A Pk D Ax < C2XTAX
=1

where Dk diag(Ak) is the diagonal part of Ak. If the original problem has HZ-regulari,
the lower bound can be improved to be independent of K.

Proof See Theorem 3.1 of Zhang [20].
Theorem 3.1 has been proved only for the model case, so that our following argument is

focally also restricted to this paicular situation. Similar results for more general situations
have been obtained by Bramble, Pasciak, and Xu [3], Dryja and Widlund [6], Oswald [12],
and Yserentant 19], and can be applied in a similar fashion.

We define the current scaled residual of x 6 n for any level k 1, 2 K as

(12) ?k O fik(b Ax).

COROLLARY 3.2. Under the hypothesis ofTheorem 3.1,

(13) IIx x*ll Ptrt
1 k=l 2

Proof Theorem 3.1 implies that

vT AI/2 ( K -T )1/2= PDlp A v
C1 < <_C2,
K vrv

for all v 6 ]1n Thus the eigenvalues of the preconditioned matrix

(14)
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satisfy

Since

to-’-

x x* D ,A Pl, r,
tc=l tc=l

then (13) follows. ]

Theorem 3.1 can also be used to derive lower bounds on the L2 error. Furthermore,
bounds on the energy norm of the error can be constructed. Corollary 3.2 states that if the
scaled residuals on all levels are small, then the error must be small. Therefore, we need not
consider elementary relaxations with very small residuals. To obtain accuracy e, relaxation
need only reduce the residuals on each level to the point that they satisfy I1 I1 _< k, where
the e, are chosen such that

K

k=l

Thus, since adaptive relaxation can therefore be used with large critical tolerance values, we
can now construct efficient solvers.

Unfortunately, the most straightforward idea of using adaptive relaxation directly for the
preconditioned system (14) is not satisfactory. This difficulty arises because the preconditioned
matrix is not sparse in the sense of (4). Analogous to a regular multilevel algorithm, we must
instead use afactoredform, where the levels are treated consecutively and independently, while
trying to minimize the number of interlevel transfers. Fortunately, this can be implemented
by the successive application of sequential adaptive relaxation to the systems of (10) for
k=l K.

This raises the question of how the active sets should be initialized on each level. For
level k, we define

(15) Sk(f,, x)= {ill < < nk, lerykl > fk},
where , is the current scaled residual of level k as defined in (12). The trivial construction
of a superset , D Sk(f,, x) is done by setting by , {1,2 nk}, but this neglects
useful information. To exploit locality, we should attempt to transfer information about the
active sets between the levels. This is done essentially as if adaptive relaxation were applied
to the semidefinite system (9); however, for efficiency, interlevel information is collected and
transferred only when the algorithm actually switches between levels.

To give a concise description of the process we introduce the following notation. For a
matrix

M (/zi.j) m x

and a set S C 1, 2 m2 of indices, let MS denote the set of indices defined by

MS {i1 1 _< < ml, :lj 6 S"/xi.j 0}.

If sets are identified with Boolean vectors, MS denotes a Boolean matrix multiplication. In this
notation, N, as defined in (3) and extended to be set-valued, could be written as N A D,
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where D is the diagonal part of the system matrix A. Note that for two matrices A and B we
only have (AB)S C A(BS), not necessarily equality.

In Fig. 2 we display a generic multilevel adaptive iteration routine. The inner loop is
precisely the adaptive relaxation applied on the different levels k. It is augmented with sets
and Vk to provide information where the relaxation causes changes that must be propagated to
higher or lower levels. It is left unspecified whether "upward" or "downward" is selected. In
either direction, the information accumulated in the set Uk (and Vk, respectively) is exploited to
initialize the active set on the new level. These sets can also be used to localize the projection
and interpolation operations. Furthermore, the set U (respectively, V) is updated so that
information will be passed successively through all levels.

proc MLAI(x, 1, fl, 2, ?2 /K, fK)
assert(fk > 0, 1 _< k _< K)
assert(k D Sk(fk, x), 1 5 k K)
Uk ,Vk ,fork 1,2 K
kl
while(ff= k )

while(k )
pick k

{i}
if leYkl > fk then

x x + (ef)ei
Nk(i)

u u {i}
v z {i}

end if
assea( Sk(fk, x))

end while
if "upward" then

kk+l

A(e[_U_)
else "downward"

kk-1
V V P+ V+

A(P+Z+)
V+

end if
assea(Sk Sk(f, x))

end while
end proc

FIG. 2. Multilevel adaptive iteration.

Several different cycling strategies can be used. One possibility is a V-cycle, or W-cycle,
as in classical multigrid methods. Additionally or alternatively, the number of elements in the
active sets can be used to adapt the cycling strategy; see Riide 16].

Certain variants of the above algorithm can be analyzed based on multigrid convergence
theory. This possibility has been suggested by Leinen and Yserentant [9]. For this purpose,
the adaptive relaxation on level k is slightly modified such that it can be interpreted as one or
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more sweeps of regular, global relaxation on that level, perturbed by quantities of size O(fk).
The effect of one sweep of sequential adaptive relaxation starting with xk and f on level k
can therefore be described by

x’ x* ((x x*) x*) +

where G, is the inverse of the lower triangular part of Ak and/zk 6 nk satisfies I111 _< fk.
Ifa V-cycle with a single sweep ofpresmoothing is used, it suffices to argue that subsequent

corrections within the same cycle cannot enlarge the error because all operators have norm
smaller than 1. In particular, they cannot enlarge the/zk perturbations, so that their total effect
must be bounded by c=1 fk. Thus, these variants of the multilevel adaptive iterative method
have (almost) the same convergence properties as classical multigrid, but can be substantially
cheaper.

The termination criterion in Fig. 2 guarantees that the final result will be accurate, pro-
vided the assumptions of Theorem 3.1 or their equivalents are satisfied. These assumptions
assert that we have a suitable multilevel decomposition of the solution space, which, for clas-
sical multilevel algorithms, is the core feature that makes the algorithm work. The adaptive
relaxation additionally improves robustness and efficiency.

Furthermore, and equally important, diagnostic information is automatically available
within the algorithm. The relaxation within a level usually does not introduce large errors on
other levels, because the corresponding components of the solution space are approximately
orthogonal. If the orthogonality is severely violated, it becomes obvious in the performance
of the algorithm. Cycling between levels will not efficiently reduce the size of the active sets,
because removal of errors on one level feeds errors on another level. This indicates that the
space decomposition is not optimal, the estimates of Theorem 3.1 are violated (or hold with
large c2/cl only), and thus also the error bound for the solution will be poor as determined by
Corollary 3.2. In this case the setup of the multilevel hierarchy (that is the system of projection
and prolongation operators) has not been successful and must be modified. With the adaptive
iterative method, these troubles can be easily monitored. This makes the development of truly
robust software possible.

Of course, the practical relevance of the multilevel adaptive iterative method depends on
whether the necessary operations can be implemented efficiently. As discussed in Rtide 15],
[16], this can be accomplished if small sets whose cardinality is bounded by a constant are
implemented as lists. Typical small sets are N(i). Large sets, like or U and V must be
represented by flags and lists. This is necessary so that the set operations can be performed
efficiently.

4. Conclusions. The multilevel adaptive iterative method is a framework that can be
modified and extended in many ways. The basic idea can be extended easily to nonsymmetric
and even nonlinear problems. Moreover, the multilevel adaptive iterative method seems to be
an almost ideal supplement of adaptive mesh refinement. Rtide [16] introduced a special mesh
refinement technique, which is the so-called virtual global grid. Adaptive iteration by itself
does not waste work for unknowns that are already well approximated by interpolation from
a coarser grid. In this sense it can be shown that adaptive relaxation has the properties of an
error estimator. This is exploited by the virtual global refinement technique. It relies on the
adaptive iteration as a solver and error estimator. Grids are always refined globally; however,
memory allocation for nodes is deferred until the node is really accessed and modified by an
adaptive relaxation. Unknowns are therefore virtual entities that are physically created only
when required by the algorithm. In this sense the multilevel adaptive iterative method can be
seen as an algorithm to solve the linear systems when the number of levels tends to infinity
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and where the solution process is driven only by the accuracy requirement. The fully adaptive
multigrid method is thus a true partial differential equation solver.

Acknowledgment. The author thanks Steve McCormick and the referees for several
helpful comments.
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MULTIPLICATIVE SCHWARZ METHODS FOR PARABOLIC PROBLEMS*
XIAO-CHUAN CAIt

Abstract. The class ofmultiplicative Schwarz methods originated from the classical Schwarz alternating method.
It has been shown to be one of the most powerful methods for solving finite element or finite difference elliptic
problems. In this paper, these methods are extended to a class of singularly perturbed equations that are encountered
when discretizing parabolic equations by implicit methods such as the backward Euler or Crank-Nicolson schemes.
Several algorithms are discussed, including one-level, two-level, and multilevel overlapping methods. The authors
also study how the convergence rates depend on the time and space discretization parameters, as well as subspace
decomposition parameters such as the number of subregions and the number of levels to which the finite element
space is decomposed. It is shown that in the presence of a fine enough coarse mesh space the algorithms are optimal
for both symmetric and nonsymmetric problems, i.e., the convergence rates are independent of all these parameters
in both two and three dimensions. If the coarse mesh space is dropped, the algorithms are still optimal but only if the
timestep and the coarse mesh size satisfy certain relationships.

Key words, overlapping domain decomposition, multilevel, optimal convergence, parabolic equation, finite
elements

AMS subject classifications. 65N30, 65F10, 65N55

1. Introduction. In a pioneer work ofLions [20] on domain decomposition methods, the
classical Schwarz alternating algorithm [25] was extended successfully to a class of parabolic
equations. The basic idea is to divide the region into several overlapping subregions and
then to solve the parabolic problem in each subregion alternatively with boundary information
from the neighboring subregions. In this paper, we further extend this idea to the case of many
overlapping subregions, as well as to many levels of overlapping subregions. In this case, at
each timestep many independent subproblems are being created. Thus parallel computers can
be used more efficiently.

The focus of this paper is the study of the convergence rates and their dependence on
the time and space discretization parameters on the subspace decomposition parameters, i.e.,
the number of subregions and the number of levels into which the finite element space is
decomposed. Most of the techniques that we use in this paper are borrowed from the abstract
theory of the additive and multiplicative Schwarz methods for elliptic equations; see, e.g., [3],
[7], [8], [12], [13], and references therein. The additive version of some of the algorithms
of this paper has previously been considered by the author in [4]. With a coarse mesh space,
we show that under basically the same assumptions as for the additive Schwarz methods [4],
the multiplicative algorithms converge with optimal rates that are independent of the time
and space discretization parameters, the number of subregions, and the number of levels into
which the space is decomposed. In contrast to the Schwarz methods for elliptic problems in
which the coarse mesh space plays an essential role for the optimality, we prove that under the
assumption that r/Ha is reasonably small, the algorithms remain optimal even if the coarse
mesh space is eliminated. Here r is on the order of the timestep size and H is the diameter of
the largest substructure.

Some computational aspects ofthe algorithms have been studied extensively in the context
of solving elliptic problems; see, e.g., the recent paper of Cai, Gropp, and Keyes [6]. Other
domain decomposition based algorithms that deal with parabolic problems have recently been
developed [2], [9], [10], [16], and [19], and references therein.
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tDepartment of Computer Science, University of Colorado, Boulder, Colorado 80309 (cai@schwarz.
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The paper is organized as follows. In the remainder of this section, we present the
continuous and discrete parabolic equations and some of their basic properties. In 2, we
discuss four overlapping decompositions of the finite element space, including a one-level
decomposition, a two-level decomposition, and two multilevel decompositions and prove the
uniformly boundedness of these decompositions. Four algorithms are introduced in 3 and
their convergence rates are also analyzed. Finally, in 4, we apply these algorithms to some
parabolic problems, including a time-dependent convection-diffusion equation. Throughout
this paper, c and C, with or without subscripts, denote generic, strictly positive constants.
Their values may be different at different occurrences, but are independent of the time and
space discretization parameters, as well as the subspace decomposition parameters that will
be introduced later as we move along.

Let C Re be a bounded polygonal region and d 2, or 3. We are interested in the
finite element solution of the following problem: Find u H0 (f), such that

() dr(u, ok) rb(u, ok) + (u, ok) (f, ) ck H (f2).

Here r > 0 is a small number, which will be specified in 4 of this paper. The bilinear form
b(., .) is defined as

(2) b(u, v)
i,

f2aij(x) -xi -Xj dx + Zi= bi(X)xi Vdx + c(x)uvdx

and (., .) is the usual L2(f2) inner product. We assume that all coefficients are sufficiently
smooth and the matrix {aij(x)} is symmetric and uniformly positive definite. We also assume
that the bilinear form b(., .) is bounded and positive definite, though not necessarily selfadjoint,
i.e.,

(a) Ib(u, v)l < CllUlln()llWllnd( VU, v Hd().
(b) b(u u) > cllull 2 Yu 6 H0(f2)

We use anH (f2) equivalent norm, denoted by I1" I1, defined by a (u, v) (b(u, v)+b(v, u)).
In addition, we define the bilinear forms at(u, v) 1/2(dr(u, v) + dr(v, u)), which is

symmetric positivedefinite, andnr(u, v) 1/2(dr(u, v) dr(v, u)), whichis skewsymmetric.
It is not difficult to see that the norm I1, defined by at(., "), is equivalent to the norm
(ll 2L(n) + r ll. II/d (n)) 1/2. AS an immediate consequence of the above assumptions, we

have that the bilinear form dr (., .) is bounded and positive definite in the Ila norm and that
nr (., .) is bounded: There exists a constant C, such that

n(u,v) I< CVllUlIHd()IIvlIL(n VU, V

It can be shown that b(u, v) is Hl+(f2)-regular [17], [21]: For any g 6 L2(f2) there exists a
unique u 6 H1+ (f2) Iq H0 (f2), such that

b(v, u) (g, v) Vv H
and

where ot is at least 1/2. We note that the convergence rates of some algorithms that are developed
in this paper depend on the value or.
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Let Vh be the usual piecewise linear conforming finite element subspace of H (f2). The
standard Galerkin approximation of (1) can then be defined by the following problem: Find
u, Vh, such that

(3) dr(u, qbh) (f, ebb) (kh Vh.

In the next section, we shall formally introduce the space Vh and then decompose it into the
sum of certain subspaces. Related multiplicative Schwarz methods will then be introduced
to solve (3). The main purpose of this paper is the study of the convergence rates of these
algorithms.

2. Overlapping decompositions and the stability analysis. In this section, we describe
some uniformly overlapping subspace decompositions previously introduced by Dryja and
Widlund [11], [14] for solving elliptic problems. These are the one-level, two-level, and
multilevel overlapping decompositions. We will also show that these decompositions are
uniformly, or nearly uniformly, bounded in the r dependent norm liar. In the multilevel
case, the uniformity is also with respect to the number of levels.

2.1. One- and two-level decompositions. Both decompositions have been discussed in
[4], and the boundedness of the one-level decomposition is discussed only for the case d 2.
Here, we cover b6th d 2 and 3.

Let {’i M}i= be a shape regular finite element triangulation, or a coarse mesh, of 2 and
f2 has diameter of order H. In our second step, we further divide each substructure f2i
into smaller simplices with diameter of order h. We assume that the resulting elements form
a shape regular finite element subdivision of . We call this the fine mesh or the h-level
subdivision of f2 with mesh parameter h. Let us denote by VH C Hd () and Vh C Hd (f2)
the continuous, piecewise linear function spaces, with zero trace on Of2, over the H-level and
h-level subdivisions of f2, respectively.

To obtain an overlapping decomposition, we extend each subregion f2; to a larger region
f2,e.xt such that f2i C f27xt C f2. Moreover, weassume thatdistance(Of2,e.xtcqf2, Of2ifqf2) >_ cH
for all i. We suppose that Of2,e.xt does not cut through any h-level elements.

Associated with the decomposition ext MQi }i=, we define an undirected graph in which
the nodes represent the extended subdomains and the edges intersections of the extended
subdomains. This graph can be colored, using colors J, such that no adjacent nodes
have the same color. We regard the union of all subdomains with the same color as one
subdomain (which is of course not simply connected), and denote them by f21 f2. We
also denote f20 f2 which has color 0. It is important to note that J+ 1, the number of colors,
can be made to be independent of M, the number of substructures.

For each f2j, _< j _< J, we define Vj {v Vh[ v(x) O, xftj} C Vh. We also use

the subspace V0 VH. It is easy to see that we have two decompositions of Vh, i.e.,

(4) V V 2i-"" "1- Vj

and

(5) Wh 1/’0+ V +...+ gj,

which shall be referred as the one-level and two-level uniformly overlapping decompositions
of Vh, or as the decomposition without and with the coarse mesh space, respectively.

It was proved in [4] that the two-level decomposition (5) is uniformly bounded in the

I1" liar norm in both two- and three-dimensional spaces.
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LEMMA 2.1. There exists a constant Co, such thatfor any v Vh there exist vi Vi
v vo +.." + vj, and

J
2 Yv Vh(6) Vo I12 + wi Ila2 -< Co2 v liar

i=1

Here the constant Co is independent of z, h, and H.
Ifwe drop the coarse mesh space V0 from (5) and v0 from the decomposition, the following

estimate holds for both d 2 and 3. The case d 2 was discussed in [4].
LEMMA 2.2. There exists a constant C, such thatfor any v Vh, there exist vi Vi,

v Vl +... + vj, and

J

(7) v 112 < C + v IlaZ C v Yv ear
i=1

where C > 0 is independent of, h, and H.
Proof Let {Oi}Ji--1 be a partition of unity and Oi belongs to C(’ N f2). It can be chosen

so that V0i[ is bounded by C/H. Let Ih be the piecewise linear interpolation operator that
uses the function values at the h-level nodes. For any v Vh, we let vi Ih (Oi v) Vi. For
each subregion f2i, it is well known, in the sense of equivalent norms, that

(8) [Vi [2H(2’,) Z((Oiv)(xl) (Oiv)(Xm))2hd-2

where the sum is taken over all adjacent pairs of h-level nodal points in f2’i. Let K C ’i be a
single h-level triangle and xt, Xm I be two of its vertices. Let Oilm (Oi(Xl) q- Oi(Xm))/2.
We then have

(Oiv)(Xl) (Oil))(Xm) (Oi(Xl) ilm)V(Xl) (Oi[Xm) ilm)l)(Xm)
4;" Oilm(V(Xl) V(Xm)),

which can be bounded from above by

C(- ma_x{lv(x)l})x6K +lv(xt)-v(x,.)l.

(a2 d- b2), summing over all K C fiBy squaring this estimate, using the inequality ab <
and using (8), we obtain

Therefore,

(9)

2 < C (H-2 ma_x{lv(x)12} hd + Ivlm(i
KC, xK

J

i=1
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We refer to [4] for the L2 estimate, i.e.,

(10)
J

L2()
i=1

The proof follows immediately from the estimates (9) and (10). l-1
Remark 2.1..It is known that in the elliptic case, which corresponds to the use of the I1" [la

norm in the estimate, if the coarse mesh space is dropped, a factor of 1/H2 would appear in
the estimate and this makes this decomposition not so useful. However, as shown above, in
the parabolic case, only a factor of r/H2 appears in the estimate and r is usually in the order
of the timestep size.

2.2. Multilevel decompositions. Following Dryja and Widlund [14] and Zhang [27],
we let {T L {rio No}t=0 be a nested sequence of triangulations of fa, i.e. TO }i= is the initial
coarse triangulation and T {r/}(/ L) is defined by dividing each triangle of
Tt- into several triangles. We assume that all the triangulations are shape regular. Let
h diam(r[), ht maxi{hl},i H max/h/,, and h hL. We also assume that there
exists 0 < r < 1, such that h is proportional to Hrt, for 0 L. Let V be the usual
conforming finite element space of continuous piecewise linear functions associated with the
triangulation ’Tt.

We construct L sets of overlapping subdomains {I }/1,1 1, 2 L; i.e., for each
1 <l<L, wehave

Subdomains I are defined as follows. Each triangle r[-1, 1,..., Nt, 1,..., L, is
^l-1extended to a larger region r so that

ch-’ <_ dist(Of- Iq f2, Or[- f’l f2) < Ch- ^l- by using^1-1 with the boundaries of level triangles. For each l, we color the rialigning 0rg
,/ colors, such that all substructures of the same color are disjoint. Here Jt is a fixed constant

depends only on the triangulations. On each level l, we group the extended subregions r/j
by colors and obtain sets of subregions. We denote by I as the union of/-level extended
subregions that share the same color < < ,h. We denote J maxt

We define V/ {v Vz[ v(x) O, x21 C Vt. Let Jo and V V VH.
Thus, our finite element space Vh V t can be represented as

(11)
L L ,

v =vo+Ev,=vo+EE /
1=1 1=1 i=1

or

(12)
L L

l=1 1=1 i=l

These two decompositions are referred to as the multilevel decomposition with and without
a coarse mesh space, respectively. We note that the main difference between these two de-
compositions is that in (11) the coarsest mesh space is not decomposed into local subspaces.
This works well if the degrees of freedoms involved in the coarse mesh problem are few.
However, this is not always satisfied, especially for nonsymmetric problems where the coarse
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mesh needs to be sufficiently fine. In the latter case, it is desirable to further decompose the
coarse mesh problem and therefore (12) is sometimes more useful.

It is known that the decomposition with the coarse mesh (11) is uniformly bounded in the
II. norm, i.e., for any v Vh there exist v V/such that

L

V vOq-EVi
1=1 i=1

Moreover, there exists a constant C > 0, independent of the parameters h, H, and L, such
that

L

a llaz < CIIvll] Vv Vh+
1=1 i=1

We refer to ], 14], [22], and [27] for the analysis and discussions of this bound.
To prove that the decomposition (11) is also uniformly bounded in the r dependent norm

II" [la, we need only to show that the same decomposition is uniformly bounded in the
norm. Let us define Qt as the usual L2 projection

(QIv,) (V,) VV Vh V V

for 0 L. For any given v 6 Va, let v Qv V and v Qlv Qt-v v for
1. It is easy to verify that

v=v+v +...+v.
By using the fact’that, for any v 6 Vh and >_ 1,

II(Qt- Qt-1)vll2L2(n (v, (Qt_ Qt-1)v),

we establish the identity

L

(13) Qv 2 Qt Qt-1 2 2

I=1

lot)J with0[For each level > we define a partition of unity, g,i=l

such that Y.gO[ 1, 0 <_ O[ _< and IVO[I <_ C/ht-. Now, each v (Qt Qt-)v can be
further decomposed as

V ,.-- V

i=1

Ih, (O[vt) V/, and where Ih is the piecewise linear interpolation operator fromwhere v
Vh to Vt. By using the second part of the proof of Lemma 4 of [4], we have that

12 < Ciivz 2

i=1

Therefore, by combining the above results, we obtain a decomposition

L L ,h

v v q- E vl v-Jr- E v,
1=1 1=1 i=1
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which is uniformly bounded in the L2(f2) norm, i.e.,

ilvOll 2 2 < CIIvll 2 Vv Vh

/=1 i=1

where the constant C > 0 is independent of h, H, and L. As a consequence, we have proved
the following lemma.

LEMMA 2.3. For any v 1/h there exist v l/l, such that

L

l) 1) --- E E1)
1=1 i=1

and, moreover, there exists a constant C, independent of the parameters h, H, L, and r,
such that

We now discuss the case when the coarse mesh space V is dropped from the decomposi-
tion. In the analysis, we shall use the well-known approximation and boundedness properties
of the operators Qt }, see e.g., [26], i.e., for any v 6 Vh,

(14) ii(Qt al-1)l 2 Cha(v,IIL() < v), L

and

(15) IIQlvll, < CIIVlla, L.

andLEMMA 2.4. For any v Vh there exist v V/, such that v = Y’=I ELI ,
L

(16) Ilvilll < C + Ilvll 2at (C)21lvll 2a Yv Vh

1=1 i=1

where C > 0 is independent ofthe parameters h, H, L, and r.

Proof. For any given v Vh, we construct the multilevel overlapping decomposition as
ih,(o[vl) for L,follows. Let v Qlv, vt (Qt Qt-1)v for > 2, and v

1 3}. These operators are linear, therefore

L J

1=1 i=1

We do the Hi(f2) norm and L2(f2) norm estimates separately. For the L2(f2) estimate, by
using the same arguments made for (13), we obtain

(17)
Ly ilvt 112 2

L(a) -IlVllL2(a),
1=1

which, combined with the proof of Lemma 4 of [4], implies that

(18)
L .h

2 < Ciivll 2vi t(n) L2(2)
/=l i=1
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We next examine the boundedness ofthe same decomposition described above in the I1" Ila
norm. We use the fact that

L

(19) Ilwtll < Cllvll Vv Vh
a

1=1

where the constant C > 0 is independent of the parameters h, H, and L. We refer to ], [22],
and [27] for the proofs and discussions.

Because of the estimate (6) of Dryja and Widlund 11 ], at each level > 2, we have

,2 (vt2 v, 2 )
Here we used the fact that fl is the union of substructures of diameters on the order of hi_ 1.

Thus, by summing over , and by using the approximation property (14), i.e.,
v 2 < Ch vii 2

L2(2) [a, we obtain

(20)
i=1

In the case 1, the desired estimate is known; see Lemma 8 of [4], i.e.,

(21)
i=1

Therefore, the I1 estimate is accomplished by first adding (20), for 2 L, and (21),
and then using (19),

(22)
L 3 L

ll < CH-2 vl 12 g-2EE IlVi E a C II’uII2a
1=1 i=l 1=1

The proof of this lemma is completed by combining the results of the L2(f2) estimate (18)
and the H (f2) estimate (22). [3

3. Schwarzalgorithms and convergence rates analysis. In this section, we briefly
describe the multiplicative Schwarz algorithms based on the various decompositions of Vh

discussed in 2. The convergence rate of each algorithm is analyzed with the general Schwarz
theory recently developed by Cai and Widlund [8].

3.1. Multiplicative Schwarz algorithms. Assuming that we have a set of triplets of
{Wi, Si, gi rn }, where Wi are some subspaces of a normed linear space W, Si
some mappings from W to Wi, and gi - Wi, the multiplicative Schwarz algorithm can be
described as follows.

ALGORITHM 3.1 (Multiplicative Schwarz Wi, Si, gi }).
Given an initial guess u 6 W"
For n 0, nmax;

For 1 m;
un-Fi/m un+i-1/m + (gi Siun+i-1/m)

It is not difficult to see that with the error propagation operator defined by

E (I- Sm)’" (I-
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and

g (I Sm)"" (I- S2)gl + (I SM)"" (I $3)g2 +"" + gm,

then un+l Eun -+- g. The convergence rate of the multiplicative Schwarz algorithm is thus
determined by the spectral radus ofthe operator E. In an application, Algorithm 3.1 can also be
used as a preconditioner for other conjugate gradient (CG)-type iterative methods, such as CG
for symmetric positive definite problems, and generalized minimal residual (GMRES) [24],
[15], or flexible GMRES (FGMRES) [23] for other cases. When it is used as a preconditioner,
the actual system solved is the transformed system (I E)u g. We refer to [5], [6], [7],
and [8] for discussion and comments on the numerical implementations.

In the rest of the paper, we take W Vh and Wi as one of the Vi or V[ defined in 2.
Operators for subspaces Vi are defined as follows: For each v 6 Vh, a unique Piv a_. Vi is
defined as the finite element solution of

dr(Ply, ) dr(v, ) cb Vi.

Similarly, we can define Pt on V/. We denote gi Piu*h and Ptiu. We note that
the gi can be computed, without knowing the function u itself, by solving the finite element
problems

(23) d, (g, 40 (f, 40 ’4 6 V.

Similarly, can also be computed without knowing u,.
ALGORITHM 3.2 (One-level multiplicative Schwarz). Run Algorithm 3.1 with an initial

guess u 6 Vh and {Vi, Pi, gi J}.

ALGORITHM 3.3 (Two-level multiplicative Schwarz). Run Algorithm 3.1 with an initial
guess u 6 Vh and {V0, Po, go, and Vi, Pi, gi J}.

ALGORITHM 3.4 (Multilevel multiplicative Schwarz without a coarse mesh space). Run
Algorithm 3.1 with an initial guess u Vh and

{vil, Pti, d II= L, i=

ALGORITHM 3.5 (Multilevel multiplicative Schwarz with a coarse mesh space). Run
Algorithm 3.1 with an initial guess u Vh and

{V, Po, go, and V[, Pti, l= L, ,h}.

The convergence of these algorithms will be analyzed in 3.2. We note that the Algorithm
3.1 is a purely sequential algorithm; however, Algorithms 3.2-3.5 can be made highly parallel.
This is due to the fact that each Vi (or V/), except V0 (or V), is the sum of several subspaces
that are mutually orthogonal. Therefore the subproblem defined on Vi can be regarded as a set
of independent sub-subproblems that can be solved in parallel. In Algorithms 3.2 and 3.4, the
bottleneck step with V0 (or V) is removed, as compared with their counterpart Algorithms 3.3
and 3.5. We show in the next subsection that the removal of the coarse mesh space does not
degenerate by much the convergence rates for the class of parabolic problems under certain
circumstances, although this is known to be not true for elliptic problems.

3.2. Convergence rates analysis. Let EA3.i be the error propagation operator for Algo-
rithm 3.i, 1 5. We estimate the norm of these operators by using a theorem of Cai
and Widlund [8]. The proof of this theorem is technical; interested readers are referred to [8]
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for details. To apply this theorem, we need only to verify certain properties of the subspaces
related to the operator.

THEOREM 3.1 (Cai and Widlund). Let W be a Hilbert space with inner product v(., .)
and norm I1 v(., .)1/2. Suppose that W has a decomposition

(24) W=W+’’’+Wm,

where W Wm are subspaces ofW. Let the matrix eij be definedby the strengthened
Cauchy-Schwarz coefficients, where eij is the smallest constantfor which

(25) Iv(wi, wj)l <_ eiyllwllllwjll Vw Wi Vwj Wj, i, j m

holds. We assume that there are operators Ti W --+ Wi that satisfy thefollowing assumptions.
(i) There exists a constant , > 0 andparameters 6i > O, such that ,im=l 3i can be made

sufficiently small, such that

(26)

(27)

(ii) There exists a constant (;o > O, such that

m

E TirTi >- 0-2I"
i=1

Here Ti is the adjoint operator of Ti given by v(Tiru, v) v(u, Tiv). Then, we have

where

I1(I- Tin)""" (I- T1)llv _< V/1 )7"2,

4(1 + ’)-11 + t +
-1

and C is a positive constant.
In the remainder of this paper, we shall apply this theorem to the Hilbert space 1/’h

equipped with the inner product ar (., .), the decompositions (4), (5), (11), and (12) discussed
in the previous section, and the operators P,. or p/t. Our main tasks include the verification of
assumptions (i) and (ii) and the estimate of Ilt, for the four algorithms. The two assumptions
required in Theorem 3.1 will be verified through the next two lemmas.

LEMMA 3.1. For 0, 1 J,

(28) ei - p/T piT p/ >_ piT ei ti I

with 6i O(H), for > 1, and 8o CHav/H2/z + 1. Here C > 0 is independent ofh, H,
and 3. For 1 L and 1 Jr,

(29) p/+ (p])T

with 0(ht).
The proof for P0 can be obtained by applying Lemma 6 of [4] and the definition of P0. A

similar approach works for other mapping operators.
Remark 3.1. If the bilinear form b(., .) is selfadjoint and positive definite, then t 0,

for all 0 J, and 8 0, for all 1 L, J. ), 1.0 in all cases.
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Remark 3.2. For the one- and two-level methods, both summations

Ei < for and o--[- il i < Hot n2
-+- --[- orn

can made sufficiently small; therefore assumption (i) is verified. Note that the fact that o is
independent of H is used here.

Remark 3.3. For the two multilevel algorithms, since h is proportional to Hrt, the
quantity

L

/=1 i=1

JH

can be made sufficiently small if H is small. The extra member for the method with coarse
mesh Hotv/H2/r + can also be made sufficiently small. Thus, assumption (i) is verified for
the multilevel algorithms.

We next examine assumption (ii) for the four algorithms.
LEMMA 3.2. Thefollowingfour inequalities hold:

J
75 -2

c (1 + I-
i=1

(31)
J

PPo + EPir Pi > CI C2C2I,
i=1

(32)
L .h Z" -2

EE(P/)rP/ > C (1 + -5) I
1=1 i=1

(33) Por Po + EE(P/)r Pi > CI C2(C)-2I,
1=1 i=1

where Ca satisfies Idr(u, v)l < CdllUlla Ilvll, for any u, v Vh.
Proof The proofs for these four estimates are essentially the same, and we therefore

only provide the proof of the second one. For any v Vh, by using the decomposition
(4), the definition of mapping operators P, the Cauchy-Schwarz inequality, the uniformly
boundedness of the decomposition (6) in the I1 norm, and the boundedness of dr (., .), we
have

J J

dr(v v)--- Edr(v, Vi)-- Edr(Pil), Vi)
i=0 i=0

i=0 i=0

< CdCollvll P/vii 2
i=0
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Therefore, removing the common term v tl and squaring both sides, we obtain

J

i=0

which is the desired proof.
Remark 3.4. If dr (., .) is symmetric positive definite, then Ca 1.
We now discuss the bounds for Iglv. The cases for one- and two-level methods are simple.

Iglz is bounded by the maximum number of subregions that any given point in f2 belongs to.
For example, for the box-decomposition of a rectangular region in the two-dimensional space,
as in Fig. 1, the subregions can be colored such that [glt, 5. In general, Iglt _< J or J +
for one- or two-level methods. In the multilevel cases, we need an estimate of Zhang [27],

11 12
Pj Ea(@, v?) <_ c(ra)lh-61-llv, IIllvj Ila forl 12 and @ V/’ ,2 V]2

and the following lemma.

." ---it i" ii"--

Color 0 Color Color 2 Color 3 Color 4

FIG. 1. The coloring pattern of 16fine grid overlapped subregions and a coarse grid region. Color 0 isfor the
global coarse grid. The extended subregions ofthe other colors are indicated by the dotted boundaries.

LEMMA 3.3. For ll 76 12, and any v vj

z It,-zz Ilvi I1 Ilpj I1,ar(v vj < C(rd) I-1 l 12

where C > 0 is independent ofh, H, L, and r.

Proof. It suffices to show that, for 12 > ll,

(34) l 12(@, @) < C(rd)lz-6-1llvi II,=(allvj II(a>.

1 12 l and 12If the supporting regions f2 and f2 of v vj do not intersect, then (34) is trivial;
otherwise, we have

xk be all the nodal pointsLet the triangle Kh Th have vertices yl Yd+l, and letx,
of T6 in f}i2.t, We can show that k < CJ6 (h6_l / h6)d. Since v ’12is linear in "2 f"l KII we
have

1 2 <_ Ch ( (vl’ (x,,))2)
<<k,xo Kh

l’(xo)12<_ Ck h max {Iv
xo EKII
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d+l
< C h (v’t E (y))2

:=1

h6 Iloi (K’)

By using the assumption that h is proportional to Hr1, we obtain

t, 112L < C(rd)1’-1’-1 Iloi (Kt,

Summing over all K1 (Tl we have

11 2l 2 < C(rd)12-1-lllvi I[L2(2)

which proves the estimate (34).
Applying Lemma 3.3 and using the fact that + rd + r2d +... < 1/(1 rd), we see that

Ilt is uniformly bounded for both decompositions (11) and (12), independent of the number
of levels L.

We now summerize the main convergence results for the four algorithms in the next
theorem. The proof is a simple consequence of Theorem 3.1 and the lemmas of this section.
Let J maxt 3.

THEOREM 3.2. (a) For Algorithm 3.2, there exists constants > 0 and c c(Y) > O,
such that ifmax H, Hav/H2/r + 1} < Y, then

(1 4- J)2C20

(b) ForAlgorithm 3.3, there exist constants Ho > 0 and c(Ho) > O, such that ifH < Ho,
then

IIE33112 < 1-at" (1 +

Recall that Cr2 C(1 + "r/H2).
(c) ForAlgorithm 3.4, there exist constants Ho > 0 and c(Ho) > O, such that ifH < Ho,

then

IIE3.4112 _< 1-
(1 + J)2(Cr)2"

Recall that (C)2 C(1 + r/H2).
(d) For Algorithm 3.5, there exists constants > 0 and c c() > O, such that if

max{H, Hav/HZ/r + 1} < , then

c c
E., II] _<

(1 + 2)C (1 + t2)(C)2’

where J + HV/1 + - + JH.
Here the constants c may be different in different occurrence.
Remark 3.5. As previously remarked, if the bilinear form b(., .) is symmetric positive

definite, then the requirement that H be sufficiently small is not necessary, i.e., H0
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Remark 3.6. In the nonsymmetric cases, when the coarse mesh size is H < H0, the
convergence is insured. Generally, the smaller H is, the faster the algorithm is.

Remark 3.7. These algorithms are often referred as algorithms with exact solvers, because
all the subproblems defined in extended subregions, and the coarse mesh problem, are obtained
by discretizing the original partial differential operator and then solved exactly by direct
method. In practice, this is sometimes not necessary. A different differential operator can be
used instead, and the linear systems need not be solved exactly; see discussions in [6], [7],
and [8].

4. Applications to parabolic problems. In this section, we apply the algorithms devel-
oped in the previous sections to solve the following parabolic convection-diffusion problem:
Find u(x, t), such that

O + Lu f inf2x[0, T],ot

(35) u(x, t) 0 on 0f2 x [0, T],

u(x,0) uo(x) in

wheref2 C R2. Aweakformulationof(35)is: Findu(x, t) 6 H(f2), u(x, O) uo(x) in ,
such that

where the bilinear form b(., .) is the same as in (2). The existence and uniqueness of the
solution of the weak parabolic convection-diffusion equation present no problems; see, e.g.,
18]. Two time discretization schemes are considered, namely, a backward Euler scheme and
a Crank-Nicolson scheme. The space variable is discretized by the piecewise linear finite
element method. Let Atn be the nth timestep, M the number of steps, and Y=I tn T.
For the backward Euler-Galerkin scheme,

u uh h + b(u, h) ( h) Vh Vh,
Atn

with u (x, t) u0 (x) and n M. For the Crank-Nicolson-Galerkin scheme,

u u-1 u + u (Z v e v
t h + b

2

with u (x, t) uo(x) and n M. Both schemes lead to the following problem: For
a given function gn- H- (), find Wh V, such that

(36) d(wh, h) (wh, ) + rb(wh, ) (g_, h) V V,
where r is the timestep parameter. The stability of both schemes is well understood; see, e.g.,
[18]. The algorithms discussed in the previous sections can thus be applied to the solution
of (36) at each timestep. An obvious initial guess is the approximate solution obtained at the
previous timestep. For the backward Euler-Galerkin scheme,

n-1
Wh Unh Uh

r Atn,
(gn-1, qh) r((f, dph) b(unh- ckh))
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and it is known that the truncation error is O(r + h2); therefore, it is reasonable to assume
that r is of order h2 to maintain the balance of the time and space discretization errors. The
factor r/H9 is thus (h/H)2 bounded, and thus the algorithms without coarse mesh spaces are
optimal. Similarly, for the Crank-Nicolson-Galerkin scheme,

n-1
1/)h U b/h

(gn-, 4h) r(2(f, 4h) b(u]-1,

and since the truncation error is O(r2 + h2), the factor "r/H2 is approximately h/H2. As long
as this h/H2 is kept reasonably small, the methods without coarse mesh spaces should also
behave well.

In the rest of this section, we present some numerical results for model problems. We
have only tested the one- and two-level methods; the numerical performance of the multilevel
methods will be studied elsewhere. To specify our model problems, we give only the elliptic
part of the parabolic operator. We consider the following linear second-order elliptic operator
defined on [0, 1] x [0, ],

Lu= ax o

with the homogenous Dirichlet boundary condition. The right-hand side is chosen so that the
exact solution is u exy sin(rx) sin(zry). The coefficients are specified as follows.

Example 1. 1, r/= 1, and ot =/ , 0.
Example 2. 1 + x2 + y2, 0 eXy, ot 5(x + y),/3 1/(1 + x + y), and , 0.
The domain 2 is partitioned with two uniform triangular grids that have sizes h and H,

respectively. The actual values of h and H are given in Tables 1 and 2. The overlapping
subdomains are colored by using four colors as in Fig. and the coarse grid has color 0. The
differential operator is discretized by the usual five-point center finite difference method at
both the coarse and fine levels. We assume that the timestep has the form

where 0.25, 0.5, 1.0, 1.25, and 1.5. All algorithms are accelerated by the GMRES
method without restarting. The subdomain problems, as well as the coarse mesh problem,
are solved exactly by a direct method. We present the iteration counts for GMRES that are
required to solve (36). The iteration is stopped when the lit; 112/11r0112 _< 10-5, where ri is the
preconditioned residual at the th iteration. The initial guess is always zero.

TABLE
Iteration countsfor solving the problems given in Examples and 2. The two-level method is used with thefine

mesh size uniformly h 1- and the overlap is of H.

H\e

4

16

Example
0.25 0.5 1.0

5 5 4

4 4 4

3 3 4

Example 2
1.25 1.5 0.25 0.5 1.0 1.25 1.5 10pt

4 3 5 5 5 4 3

4 4 4 4 4 4 4

4 4 4 4 4 4 4

For the two-level method, we test various coarse grid sizes and the iteration numbers are
given in Table 1. As predicted in the theory, the numbers are independent of H and r( or ).
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TABLE 2
Iteration countsforsolving theproblems given in Examples and 2. The one-level method is used with a uniform

fine mesh h 1 and the overlap is of H. The approximate ratio /H is given as the subscript ofthe iteration
numberfor Example 1. The ratios are the samefor Example 2 and are therefore omitted.

Example

0.25 0.5 1.0 1.25

9(4.76) 9(1.41) 6(o. 13) 4(o.04)

17(19.o3) 16(5.66) 10(o.5o) 6(o.15)

33(76.11) 30(22.63) 17(2.oo) 10(o.59)

1.5

3(O.Ol)

4(0.04)

7(o.18)

Example 2

0.25 0.5 1.0 1.25 1.5

11 10 7 5 4

20 19 12 8 6

39 38 22 14 10

If the coarse solve is dropped as in the one-level method, the iteration numbers become
more sensitive to .the ratio r/H2, as seen in Table 2, especially for the nonsymmetric problem.
We see that if the ratio r/H2 is relatively small, the results are acceptable as compared with
the cases that use a coarse mesh solve.

Acknowledgment. I would like to thank Professor Olof Widlund for many valuable
discussions and comments on this paper.
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DOMAIN DECOMPOSITION ALGORITHMS
WITH SMALL OVERLAP*

MAKSYMILIAN DRYJA AN) OLOF B. WIDLUND
Abstract. Numerical experiments have shown that two-level Schwarz methods often perform very well even

if the overlap between neighboring subregions is quite small. This is true to an even greater extent for a related
algorithm, due to Ban’y Smith, where a Schwarz algorithm is applied to the reduced linear system of equations that
remains after the variables interior to the subregions have been eliminated. In this paper, a supporting theory is
developed.

Key words, domain decomposition, elliptic finite element problems, preconditioned conjugate gradients,
Schwarz methods

AMS subject classifications. 65F10, 65N30, 65N55

1. Introduction. Over the last decade, considerable interest has developed in Schwarz
methods and other domain decomposition methods for partial differential equations; see,
e.g the proceedings of five international symposia [17]-[19], [34], [35]. A general theory
has evolved and a substantial number of new algorithms has been designed, analyzed and
tested numerically. Among them are two-level, additive Schwarz methods first introduced
in 1987; see Dryja and Widlund [25], [28]-[30], [55]. For related work see also Bj0rstad,
Moe, and Skogen ]-[3], Cai 10]-[ 12], Mathew [40]-[42], Matsokin and Nepomnyaschikh
[43], Nepomnyaschikh [44], Skogen [47], Smith [48]-[52], and Zhang [58], [59]. As shown
in Dryja and Widlund [30], a number of other domain decomposition methods, in particular
those of Bramble, Pasciak, and Schatz [5], [6], can also be derived and analyzed using the
same framework. Recent efforts by Bramble et al. [7] and Xu [56] have extended the general
framework making a systematic study of multiplicative Schwarz methods possible. The mul-
tiplicative algorithms are direct generalizations of the original alternating method discovered
more than 120 years ago by H. A. Schwarz [46]. For other recent projects, that also use the
Schwarz framework, see Dryja, Smith, and Widlund [27] and Dryja and Widlund [32], [33].

When a two-level method is used, the restrictions of the discrete elliptic problem to
overlapping subregions, into which the given region has been decomposed, are solved exactly
or approximately. These local solvers form an important part ofa preconditioner for a conjugate
gradient method. In addition, to enhance the convergence rate, the preconditioner includes a
global problem of relatively modest dimension.

Generalizations to more than two levels have also been developed; see, e.g., Bramble,
Pasciak, and Xu [8], Dryja and Widlund [31], and Zhang [58]-[60]; here the families of
domain decomposition methods and multigrid algorithms merge. Recently there has also been
a considerable interest in nonsymmetric and indefinite problems; cf., e.g., Bramble, Leyk, and
Pasciak [4], Cai [10]-[12], Cai, Gropp, and Keyes [13], Cai and Widlund [14], [15], Cai and
Xu 16], and Xu [57]. However, in this paper, we work exclusively with two-level methods
for positive definite, symmetric problems.

*Received by the editors May 26, 1992; accepted for publication (in revised form) February 1, 1993.
tDepartment of Mathematics, Warsaw University, 2 Banach, 02-097 Warsaw, Poland (dryja@mimuw.edu.pl).

The work of this author was supported in part by National Science Foundation grant NSF-CCR-8903003, by Pol-
ish Scientific grant 211669101, and by the Center for Computational Sciences of the University of Kentucky at
Lexington.

tCourant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York
10012 (widlund@cs.nyu.edu). This work was supported in part by National Science Foundation grant NSF-CCR-
.8903003 and in part by the U.S. Department of Energy contract DE-FG02-88ER25053 at the Courant Mathematics
and Computing Laboratory.

6O4



DOMAIN DECOMPOSITION ALGORITHMS WITH SMALL OVERLAP 605

The main result of our early study of two-level Schwarz methods shows that the condition
number of the operator, which is relevant for the conjugate gradient iteration, is uniformly
bounded if the overlap between neighboring subregions is sufficiently generous in proportion
to the diameters of the subregions.

Our current work has been inspired very directly by several series of numerical experi-
ments that indicate that the rate of convergence is quite satisfactory even for a small overlap,
and that the running time of the programs is often the smallest when the overlap is at a mini-
mum. The number of conjugate gradient iterations is typically higher in such a case, but this
can be compensated for by the fact that the local problems are smaller and therefore cheaper
to solve; see, in particular, BjCrstad, Moe, and Skogen [2], BjCrstad and Skogen [3], Cai [10],
11 ], Cai, Gropp, and Keyes 13], and Skogen [47]. If the local problems are themselves solved
by an iterative method, then a smaller overlap will give better conditioned local problems and
therefore a higher rate of convergence; see Skogen [47] for a detailed discussion of this effect.
All this work also shows that these algorithms are relatively easy to implement. Recent exper-
iments by Gropp and Smith [37] for problems of linear elasticity provide strong evidence that
these methods can be quite effective even for very ill-conditioned problems. In this paper, we
show that the condition number of the preconditioned operator for the algorithm, introduced
in 1987 by Dryja and Widlund [28], is bounded from above by const.(1 + (H/g)). Here H
measures the diameter of a subregion and 8 the overlap between neighboring subregions. We
note that H/ is a measure of the aspect ratio of the subregion common to two overlapping
neighboring subregions.

We then turn our attention to a very interesting method, introduced in 1989 by Barry
Smith [48], [51 ]. It is known as the vertex space (or Copper Mountain) algorithm. Numerical
experiments, for problems in the plane, have shown that this method converges quite rapidly
even for problems, which were originally very ill conditioned, even if the overlap is very
modest; see Smith [48]. For additional work on variants of this method, see Chan and Mathew
[20], [21 ], and Chan, Mathew, and Shao [22].

When Smith’s algorithm is used, the given large linear system of algebraic equations,
resulting from a finite element discretization of an elliptic problem, is first reduced in size
by eliminating all variables associated with the interiors of the nonoverlapping substructures
{2i} into which the region has been subdivided. The reduced problem is known as the
Schur complement system and the remaining degrees of freedom are associated with the set
{f2i of substructure boundaries that form the interface 1-’ between the substructures. The
preconditioner of this domain decomposition method, classified as a Schwarz method on the

interface in Dryja and Widlund [30], is constructed from a coarse mesh problem, with the
substructures serving as elements, and a potentially large number of local problems. The
latter correspond to an overlapping covering of F, with each subset corresponding to a set of
adjacent interface variables.

Smith’s main theoretical result, given in [48], [51 ], is quite similar to that for the original
two-level Schwarz method; the condition number of this domain decomposition algorithm
is uniformly bounded for a class of second-order elliptic problems provided that there is a
relatively generous overlap between neighboring subregions that define the subdivision of
the domain decomposition method. In this paper, we show that the condition number of
the iteration operator grows only in proportion to (1 + log(H/))2. We note that even for a
minimal overlap ofjust one mesh width h, this bound is as strong as those for the well-known
iterative substructuring methods considered by Bramble, Pasciak, and Schatz [5], [6], Dryja
[24], Dryja, Proskurowski, and Widlund [26], Smith [49], and Widlund [54]; cf. also Dryja,
Smith, and Widlund [27]. We also note that the successful iterative substructuring methods
for problems in three dimensions require the use of more complicated coarse subspaces and
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that therefore Smith’s method, considered in this paper, seems to offer an advantage.

2. Some Schwarz methods for finite element problems. As usual, we write our con-
tinuous and finite element elliptic problems as: Find u 6 V, such that

and, find uh Vh, such that

a(u, v) f(v) Y v 6 V,

(1) a(uh, vh) f(vh) V vh Vh

respectively. We assume that the bilinear form a (u, v) is selfadjoint and elliptic and that it is
bounded in V x V. In the case of Poisson’s equation, the bilinear form is defined by

f
(2) a(u, v) Ja Vu Vv dx.

We assume that f2 is a Lipschitz region in R", n 2, 3, and that its diameter is on the order
of 1. (We will follow Ne6as [45] when defining Lipschitz regions and Sobolev spaces on
The bilinear form a(u, v) is directly related to the Sobolev space H (f2) that is defined by the
seminorm and norm

]UI2HI(-)--" a(u, u) and Ilulll(f)-[UI2HI(-) +
respectively. When we are considering subregions "2 C ’, of diameter H, we use a different
relative weight, obtained by dilation,

Ilull,(,) lul%,(a,) + -/llull 2
Lz (f2i)

Whenever appropriate, we tacitly assume that the elements of H0 (f2i), the subspace ofH (f2i)
with zero trace on the boundary 0f2i, are extended by zero to f2 \ f2i.

To avoid unnecessary complications, we confine our discussion to Poisson’s equation, to

homogeneous Dirichlet conditions, and to continuous, piecewise linear finite elements and
a polygonal region g2 triangulated using triangles or tetrahedra. It is well known that the
resulting space Vh C Hd (f2), i.e., it is conforming.

For the problem considered in an 1870 paper by H.A. Schwarz [46], two overlapping
subregions f2’ and f2 are used; the union of the two is 2. There are two sequential, fractional
steps of the iteration in which the approximate solution of the elliptic equation on is updated
by solving the given problem restricted to the subregions one at a time. The most recent values
of the solution are used as boundary values on the part of 0f2 that is not a part of

The finite element version of the algorithm can conveniently be described in terms of
projections Pi" Vh V H(’i) f’l Vh, defined by

(3) a(Pivh, 4h) a(vh, ) Vckh Vfl.
It is easy to show that the error propagation operator of this multiplicative Schwarz method is

(I- P2)(I- P1).

This algorithm can therefore be viewed as a simple iterative method for solving
(el + P2- P2 P1)uh gh

with an appropriate right-hand side g.
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This operator is a polynomial of degree two and therefore not ideal for parallel computing
since two sequential steps are involved. This effect is further pronounced if more than two
subspaces are used. Therefore, it is often advantageous to collect subregions, which do not
intersect, into groups; the subspaces of each group can then be regarded as one. The number
of subspaces is thus reduced, and the algorithm becomes easier to parallelize. Numerical
experiments with multiplicative Schwarz methods have also shown that the convergence rate
often is enhanced if such a strategy is pursued; this approach is similar to a red-black or
multicolor ordering in the context of classical iterative methods. In the case of an additive
Schwarz method, this ordering only serves as a device to facilitate the analysis.

In the additive form of the algorithm, we work with the simplest possible polynomial of
the projections" The equation

(4) Pub (P + P2 +... + P)uh

is solved by an iterative method. Here P,. V Vi, and V V1 +... + Vs. Since the
operator P can be shown to be positive definite, symmetric with respect to a(., .), the iterative
method of choice is the conjugate gradient method. Equation (4) must also have the same
solution as (1), i.e., the correct right-hand side must be found. This can easily be arranged;
see, e.g., [29], [30], [55]. Much of the work, in particular that which involves the individual
projections, can be carried out in parallel.

2.1. The Dryja-Widlund algorithm. We now describe the special additive Schwarz
method introduced in Dryja and Widlund [28]; see also Dryja [25] and Dryja and Widlund [29].
We start by introducing two triangulations of f2 into nonoverlapping triangular or tetrahedral
substructures ’i and into triangular or tetrahedral elements. We obtain the elements by
subdividing the substructures. We always assume that the two triangulations are shape regular,
see, e.g., Ciarlet [23], and, to simplify our arguments, that the diameters of all the substructures
are on the order of H. In this algorithm, we use overlapping subregions obtained by extending
each substructure "2 to a larger region f2I. The overlap is said to be generous if the distance
between the boundaries 0" and 0f2 is bounded from below by a fixed fraction of H. We
always assume that Of21 does not cut through any element. We carry out the same construction
for the substructures that meet the boundary except that we cut off the part of f21 that is outside
of

We remark that other decompositions are also of interest. In particular, the analysis in 4
extends immediately to the case when no degrees of freedom are shared between neighboring
subregions. In this case the distance between 3f2’ and 3f2 is just h for neighboring subregions.
This additive Schwarz method corresponds to a block Jacobi preconditioner augmented by a
coarse solver.

For this Schwarz method, the finite element space is represented as the sum of N+
subspaces

+ +...+

The first subspace V0h is equal to Vn, the space of continuous, piecewise linear functions
on the coarse mesh defined by the substructures f2. The other subspaces are related to the
subdomains in the same way as in the original Schwarz algorithm, i.e., V/h Hd (f2I) Vh.

It is often more economical to use approximate rather than exact solvers for the problems
on the subspaces. The approximate solvers are described in the following terms: Let bi (u, v)
be an inner product defined on V/h Vih and assume that there exists a constant o9 such that

(5) a(u, u) <_ ogbi(u,
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In terms of matrices, this inequality becomes a one-sided bound of the stiffness matrix corre-
sponding to a(., .) and Vih, in terms of the matrix corresponding to the bilinear form bi(u, u).

An operator Ti Vh --+ Vih, which replaces P/, is now defined by

(6) bi(Tiu, h) a(u, qh) 4h Vih.

It is easy to show that the operator T is positive semidefinite and symmetric with respect to
a(., .) and that the minimal constant o in (5) is T I1.. Additive and multiplicative Schwarz
methods can now be defined straightforwardly in terms of polynomials of the operators Ti.
We note that if exact solvers, and thus the projections Pi, are used, then o 1.

2.2. The Smith algorithm. Smith’s method has previously been described in Smith [48],
[51 ]. Let K be the stiffness matrix given by the bilinear form of (2). In the first step of this and
many other domain decomposition methods, the unknowns of the linear system of equations

Kx=b

that correspond to the interiors of the substructures are eliminated. We now describe this
procedure in some detail.

Let K(i) be the stiffness matrix corresponding to the bilinear form a, (uh, vh), which
represents the contribution of the substructure "i to the integral a(uh, vh) a(uh, Vh). Let
x and y be the vectors of nodal values that correspond to the finite element functions uh and
vh, respectively. Then the stiffness matrix K of the entire problem can be obtained by using
the method ofsubassembly defined by the formula

r Ky X(i)r K(i) y(i).

Here x (i) is the subvector of nodal parameters associated with i, the closure of "i. We
represent Kq) as

*’II

l((i r
IB lkBtt

(i) corresponding to the variablesHere we have divided the subvector x(i) into two, xi) and x,
that are interior to the substructure and those that are shared with other substructures, i.e.,
those associated with the nodal points of Ofli. Since the interior variables of fli are coupled
only to other variables of the same substructure, they can be eliminated locally and in parallel.
The resulting reduced matrix is a Schur complement and is of the form

(7) s(i) r.-(i) [d-(i)T/((i)-1 (i)
IkBB *"IB **’II I(IB"

From this follows that the Schur complement, corresponding to the global stiffness matrix K,
is given by S where

(8) xSys Z" (i)T s(i)y’)A,B

If the local problems are solved exactly, what remains is to find a sufficiently accurate approx-
imation of the solution of the linear system

(9) Sxs g.
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It is convenient to rewrite (9) in variational form. Let si (uh, vh) and s(uh, vh) denote the
forms defined by (7) and (8), respectively, i.e.,

(i)s(i) y(iB) and s(uh, Vh) xSy.Si(Uh, Vh) XB

Equation (9) can then be rewritten as

(10) s(uh, vh) (g, vh)L2(r) Yvh Vh(1-’).

Here F [,.J
Problem (10) will be solved by an iterative method of additive Schwarz type. The most

important difference between this algorithm and that of the previous subsection is that we
are now working with the trace space H1/2(1TM) instead of H(); see 3 for a definition of
H/2(l").

It is well known that

(11) x(i)T s(i)x) min x(i)r K(i)x(i)

Therefore, if uh is the minimal, the discrete harmonic extension of the boundary data repre-
sented by x,, then

. (i)r s(i)x(’) [uh 12B H

Smith’s algorithm can now be described in terms of a subspace decomposition. We use
the same coarse space as in the previous subsection, i.e., V/, but we restrict its values to 1-’.
In the case when the original problem is two dimensional, we introduce one subspace for each
interior edge and one for each vertex of the substructures. An edge space is defined by setting
all nodal values, except those associated with the interior of the edge in question, to zero.
Similarly, a vertex space is obtained by setting to zero all values at the nodes on 1", which are
at a distance greater than 3. For many more details and a discussion of implementation details,
see Smith [48], [51].

In the case when the original problem is three dimensional, we introduce one subspace
for each interior face, edge, and vertex. The elements of a face subspace vanish at all nodes
on 1" that do not belong to the interior of the face. Similarly, an edge space is supported in the
strips of width 3, which belong to the faces, that have this edge in common. Finally, a vertex
space is defined in terms of the nodes on F that are within a distance 3 of the vertex. We also
again use the standard coarse space V/-/.

2.3. Basic theory. To estimate the rate of convergence of our special, or any other, ad-
ditive Schwarz methods, we need upper and lower bounds for the spectrum of the operator
relevant in the conjugate gradient iteration. A lower bound can be obtained by using the
following lemma; see, e.g., Dryja and Widlund [29], [33] or Zhang [60].

LEMMA 2.1. Let Ti be the operators defined in (6) and let T To + T1 +... + TN. Then

a(T-lu, u) min bi(ui, ui), Ui Vi.
U"-Z Ui

Therefore, ifa representation, u ui, can befound, such that

Z bi(ui, Igi) Ca(u, u) Yu V,
then

,min (T) >_ C-2.
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An upper bound for the spectrum of T is often obtained in terms of strengthened Cauchy-
Schwarz inequalities between the different subspaces. Note that we now exclude the index 0;
the coarse subspace is treated separately.

DEFINITION 1. The matrix {F, ij is the matrix of strengthened Cauchy-Schwarz
constants, i.e., 8ij is the smallest constantfor which

(12) la(vi, vj)l < eijllvillallvjlla Vl)i E Vi Vl)j Vj i, j >

holds.
The following lemma is easy to prove; see Dryja and Widlund [33].
LEMMA 2.2. Let p() be the spectral radius ofthe matrix. Then, the operator T satisfies

T < w(p() + 1)1.

For the particular algorithms considered in this paper, it is very easy to show that there
is a uniform upper bound. In fact, by collecting and merging local subspaces that belong
to nonoverlapping subregions, the number of subspaces, and p($), can be made uniformly
bounded; see 4 for an alternative argument.

By combining Lemmas 2.1 and 2.2, we obtain the following theorem.
THEOREM 2.3. The condition number to(T) of the operator T of the additive Schwarz

method satisfies

tc(T) )max(T)/.min(T) <_ co(P() -}- 1)C02.

In the multiplicative case, we need to provide an upper bound for the spectral radius, or
norm, of the error propagation operator

(13) Ej (I- Tj)... (I- To).

The following theorem is a variant of a result of Bramble, Pasciak, Wang, and Xu [7]; see also
Cai and Widlund [15], Xu [56], or Zhang [60]. Note that this bound is also given in terms of
the same three parameters that appear in Theorem 2.3.

THEOREM 2.4. In the symmetric, positive definite case

(2 w)
IlEjlla < 1-

(2092/9()2+ 1)C"

We note that this formula is useless ifw > 2; since I- Ti I1 > if T I1 > 2, the assumption
that co < 2 is most natural. If we wish to use a multiplicative algorithm and co is too large, we
can scale the bilinear forms bi(., .) suitably.

In this paper, our results are only formulated for additive algorithms. The corresponding
bounds for the multiplicative variants can easily be worked out as applications of Theorem
2.4.

3. Technical tools. In this section, we collect a number of technical tools that are used to
prove our main results. Some of these tools are quite familiar to specialists ofthe field. Others,
to our knowledge, have not previously been used in the analysis of domain decomposition;
see II’in [38] for some similar inequalities.

As before, if2 C Rn n =2 or 3, is a bounded, polygonal region and f2i a nonoverlapping
decomposition of f2 into substructures. To simplify our considerations, we now assume that
the substructures are squares or cubes; see, e.g., Neas [45] where simple maps and partions
of unity are used to derive bounds for Lipschitz regions from bounds for such special regions;
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if we can handle a comer of a square or cube, then we can analyze the general polygonal case.
Our estimates, given in the next two sections, are developed for one substructure at a time;
our arguments can be modified to make them valid for any shape regular substructure with a
boundary consisting of a finite number of smooth curves or surfa,,es.

As before, let F [..J f2 \ 0f2. Let F, C f2 be the set of points that is within a distance
ofF.

LEMMA 3.1. Let u be an arbitrary element ofH (gig). Then

2Ilull=<p,,, C a2((1.-t n/a)luli4,<,) + 1/(na)llullZ,)).

Proof. We first consider a square region (0, H) x (0, H) in detail; the extension of the
proof to the case of three dimensions is straightforward. Since

y Olg(X, r)
u (x, O) u (x, y)

Oy
dr,

we find, by elementary arguments, that

H [u(x, O)12dx < 2 [u(x, y)12dxdy + H2

Therefore,

lu(x 0)12dx < 21lull 2 H2

Now consider the integral over a narrow subregion next to one of the sides ot tne square.
Using similar arguments, we obtain

(14) lu(x, y)12dxdy < 321/g1_/1(2i) --}- 23 lu(x, 0)12dx.

By combining this and the previous inequality, we obtain

f0 f0 lu(x, y)12dxdy _< 6Zlul2m,,) / 23 llull2t.,) / nlu

as required.
The modifications necessary for the case of an arbitrary, shape regular substructure and

the extension of the proof to the case of three dimensions are routine.
LEMMA 3.2. Let uh be a continuous, piecewise quadratic function defined on the finite

element triangulation and let 1huh V be its piecewise linear interpolant on the same mesh.
Then there exists a constant C, independent ofh and H, such that

/2The same pe ofbounds holdfor the L2 and "’00 norms and it can also be extended, with

different constants, to the case ofpiecewise cubicfunctions, etc.

Proof It is elementary to show that,
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Consider the contribution to the first term on the right-hand side from an individual element
K. We obtain

2 2

by using a standard errorbound and an elementary inverse inequality for quadratic polynomials.
The bound in L2 follows from the linear independence of the standard finite element basis for

L/l/2the space of quadratic polynomials, see Ciarlet [23]. The bounds for the "*00 norm, which
is further discussed later in this section, can be obtained by interpolation in Sobolev spaces;
cf., e.g., Lions and Magenes [39, pp. 98-99]. We use the K-method and a norm, which is
equivalent to the one given below,

ilull 2 2 -2
,,/= --Ilull= + K(t, u)2dt,

where

K(t, u) inf (lluol12 +t211ul1214d) 1/.U---Uo+ll

The crucial observation is that

K(t, Ihuh) < CK(t,

To prove this estimate, consider an arbitrary decomposition uh u0 + U of a piecewise
quadratic uh. Let Q be the L2-projection onto the space of piecewise quadratic finite elements.
It is well known that Q is bounded in H as well as L2; see, e.g., Bramble and Xu [9]. Using
the H and L2 bounds of Ih derived in this proof, we find that

K(t, Ihuh)2 <_ II/hQuol[2 + ,2lllhQull2no <_ C(lluol[2= + t2llu,[[2o,).
The proof now follows easily.

We now turn to the other auxiliary results needed in the analysis of Smith’s algorithm.
We begin by writing down a standard expression for the norm of H/2; see Chapters 1.3.2 and
1.5 of Grisvard [36] for a detailed discussion.

Let I C R be an open interval of diameter H. Then

(15) [lull 2
lu(s)-u(t)12

dsdt + --1H1/2(I) IS- t[2 Ilull2L2(I)"

The relative weight of the two terms is obtained, by dilation, from the norm defined on a region
of diameter 1.

It is well known that the extension by zero of the elements of H/2(I) does not define a
continuous map into H/2(R1); see Lemma 1.3.2.6 of Grisvard [36] or Lions and Magenes

L/l/2[39]. The largest subspace for which this extension operator is continuous is **00 (I), which
is defined in terms of the norm obtained by replacing the last term of (15) by

(16) f lu(s)12
d(s)

ds.

Here d(s) is the distance to the nearest end point of I.
In the case of a subset q of the boundary of a three-dimensional region, the formula (15)

is valid after replacing Is 12 by Is 3 and I by tls. However, for our purposes, it is more
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convenient to use an alternative formula; see Dryja [24] and Nezas [45, Lemma 5.3, Chap. 2].
In the special case of a square with side H, the seminorm is defined by

(17) fo
/ Ilu(Sl .) u(h .)112 /L2 dsldtl +

[sl tll 2
z Ilu(., se) u(., tu)ll

Is2 " -ti ds2dt2.

/_/1/2To obtain the norm for the subspace --00 ((0, H)2), we add a weighted norm

HH lU(Sl, S2)I 2
(18)

d(s)
dsldS2

just as in (16).
In addition to the space Vh, we will also use a coarser space Vs, defined on a mesh with

mesh size 3, in our proofs. We now formulate results that have been used extensively in work
of this kind; see Dryja [24] or Bramble and Xu [9]. The first inequality of the lemma is given
as Lemma in Dryja [24]. The second is part of the proof of Lemma 4 in the same paper.

LEMMA 3.3. Let I be an interval oflength H. Then

Iluallooz) -< C(1 -+-log(H/6))lluall2H,/(i)
Let I be an edge ofaface V ofdiameter H ofa cube. Then

u8 E V8.

Iluall z < C(1 + log(H/3))llusIl%,/(q,) run VLZ(I)

The next result gives a bound that is similar to the second formula of Lemma 3.3. However,
the bound holds for all of H/:.

LEMMA 3.4. Let q (0, H)2 and let q8 (0, H) x (0, 3). Then

Ilull 2t2(,v,) -< C3(1 + log(H/3))llullZI_i,/2(,) Vu HI/2().

The same result holds ifwe replace and q8 by (0, H) and (0, 3), respectively.
Proof We only provide a proof for the first of the two cases; the proof in the other case is

completely analogous. Let Q8 L2 (qJ) --+ Vs, be the L2- projection. It is well known that
IIQnllm,) is bounded; see, e.g., Bramble and Xu [9]. Since, trivially, this operator is also
bounded in L2, it follows that Qa IIm/(,) is bounded. By a standard argument,

(19) Ilu Qaull 2 < 3flu 2
L2(,) [H/Z(,V)"

We now only need to show that

(20) IIQsull 2 < C3(1 + log(H/3))llQsull 2
Lz() H1/2()"

To prove (20), we use the bound (14) derived in the proof of Lemma 3.1. Thus

2 _32 2 fH[[QsUIILz(% < [QsUIHI(, + 23 IQu(x, 0)[2dx.
Jo

By using an inverse inequality, the first term can be replaced by 3[Qsul2nvz The second()"
term is estimated using Lemma 3.3.

4/2The final lemma will be used to estimate the weighted L2 term in the "’00 norm.
LEMMA 3.5. Let u H/2(0, H). Then there exists a constant C, such that

H lu(s)12
s

2ds < C(1 + log(H/3))211ullm/2(o, i4).
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Similarly, let u H1/2((0, H)2). Then there exists a constant C, such that

H
2ds dt <_ C(1 + log(H/))llullmn((o,m.

Proof We begin by considering the first inequality. Let Q L2(0, H) V (0, H), be
the Lz-projection onto the finite element space with mesh size 8. We write u (u Q6u) /
Qu and estimate each term separately. We first note that by a standard estimate,

Ilu- Qaull 2 < Clul%,/L2(O,H) (O,H)"

The bound for the first term is therefore obtained by noting that s >_ over the interval of
integration.

The other term can be estimated by using the first bound of Lemma 3.3, which results in
one logarithmic factor, and the observation that

H iQaulz

s

H ds
ds < Ilaaull2 s

from which the second logarithmic factor arises.
The second inequality follows by considering u(s, t), a function of two variables, and

applying the first inequality with respect to s. We then integrate with respect to t, change the
order of integration, and use formula (17) to complete the proof.

4. Analysis of the Dryja-Widlund algorithm. We now use the set 1-’d,i, previously
introduced, to characterize the extent of the overlap. We assume that all x 6 f2i, which belong
to at least one additional overlapping subregion f2, lie in F,/.

THEOREM 4.1. In the case when exact solvers are usedfor the subproblems, the condition
number ofthe additive Schwarz method satisfies

(P) <_ C(1 + H/8).

The constant is independent ofthe parameters H, h, and 8.
We note that for the case of two subregions, it is easy to show that this result is sharp. It

is routine to modify Theorem 4.1 to cover cases where inexact solvers are used.

Proof The proof is a refinement of a result first given in Dryja and Widlund [28]; cf. [29]
for a better discussion. The proof is equally valid for two and three dimensions. We first show
that a constant upper bound for the spectrum of P can be obtained without the use of Lemma
2.2.

We note that Pi is also an orthogonal projection of H (’2ti) ’ Vh onto V Therefore,

a(Piuh, uh) < ai(uh, uh).

Since, by construction, there is an upper bound, No, on the number of subregions to which
any x 6 f2 can belong, we have

N

Eani(uh, uh) < Nca(Uh, Uh).
i=1

In addition, we use the fact that the norm of P0 is equal to one and obtain

)max(P) < (Nc-t- 1).
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The lower bound is obtained by using Lemma 2.1. A natural choice of u0 is the L2-
projection Ql4uh of uh onto V/-/. As previously pointed out, this projection is bounded in L2
as well as H and there exists a constant, independent of h and H, such that

(21) ilu Onuhll. <_ C nlluhlla.
Let wh Uh Qi4uh and let ui Ih(Oiwh) 1 N. Here Ih is the interpolation

operator onto the space Vh and the 0i (x) define a partition of unity, i.e., Yi Oi (x) ------ 1. These
functions are chosen as nonnegative elements of V. It is easy to see that

Uh QHUh q- Ui.

In the interior part of "i, which does not belong to I’8,i, Oi 1. This function must
decrease to 0 over a distance on the order of 8. It is easy to construct a partition of unity with
0 < 0i < 1 and such that

C
IV0il <--.-8

To use Lemma 2.1, we first estimate a(ui, ui) in terms of a(wh, Wh). We consider the
contribution from one substructure at a time and note that, trivially,

aa,\r., (ui, Ui) a,\r., (wh, Wh).

Let K be an element in 1"8,i. Then, using the definition of

aK(ui, ui) < 2aK(iWh, iWl) -I- 2aK(ll((Oi i)Wl), lh((Oi i)Wh)),

where i is the average of 0 over the element K. Using the fact that the diameter of K is on
the order of h and the bound on V0i, we obtain, after adding over all the relevant elements,

C
dr,., (ui lgi) < 2an, (wh w) + - Ilw 2

L2(F.)

We also need to estimate ar., (Uj, /,/j) for the j that correspond to neighboring substructures.
This presents no new difficulties.

To complete the proof, we need to estimate IIwll(r,,,). We note that each x 6 g2 is

covered only a finite number of times by the subregions. We apply Lemma 3.1 to the function
wh, sum over and use inequality (21) to complete the estimate of the parameter C ofLemma
2.1. [3

5. Analysis of the Smith method. A description of the reduction of the original linear
system to one for the degrees offreedom on F, and of the algorithm, have been given in 2. We
will now work in the/-/1/9(F) norm. The fact that this is a weaker norm than H is reflected
in a stronger bound than that of the previous section; better bounds of the components in the
different subspaces can be obtained. There are many similarities between the two cases. Much
of the analysis is again carried out one substructure at a time.

To show that we can work with [Uh l//2(Of,) instead of x")T s(i)x), we must show that

these norms are equivalent. We use (11) and the standard trace theorem to bound luh
(i)r S(i)x) The proof of the reverse inequality requires an extension theoremfrom above by

for finite element spaces given in Widlund [53]; see further discussion in Smith [51 ].
THEOREM 5.1. In the case when exact solvers are usedfor the subproblems, the condition

number ofthe vertex space method satisfies
to(P) < C(1 + log(H/3))2.

The constant is independent of the parameters H, h, and 8.
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Proof. As in the proof of Theorem 4.1, there is no difficulty in establishing a uniform
upper bound on the spectrum of P.

We now turn to the lower bound in the case where the original problem is two dimensional
and thus the interface is of dimension one. To use Lemma 2.1, we have to decompose functions
defined on F.

We use the L2() projection onto VH of the discrete harmonic function uh, introduced
in 2.2, to define the component of the coarse space. We only use the values on 1-’. In addition,
we use a partition of unity to represent the local space components. In the study of the local
spaces, it is sufficient to consider one substructure f2i at a time. The partition of unity is
based on simple, piecewise linear functions. Let 0 < < H represent one of the edges of
the boundary of this substructure and let Oe(t) be a piecewise linear function that vanishes
for outside (0, H), grows linearly to 1 at 8, is equal to 1 for 8 < < H 8, and
drops to zero linearly over the interval (H 8, H). In the decomposition, we choose Ih (0ewh)
as the component corresponding to this edge. As in the previous section, u0 QHUh and
Wh Uh QHUh is the error of the L2- projection. It follows from Lemma 3.2 that it is
sufficient to estimate Ilvellul/2 where re(t) Oe(t)wh(t). We note that we cannot use the

"’oo (0, H)’

weaker norm of H*/2(O, H) here; we must estimate the H*/2(Of2i) norm of Ve extended by
zero to the rest of the boundary, i.e., Ve .*/o n)"

We first consider

H fon lYe(S)- Ve(t)l2
(22)

IS tl2
dsdt,

and then the additional term (16), which completes the definition of the relevant norm. We
divide the interval [0, H] into three parts, [0, 8], [8, H 8], and [H 8, H], and take the
tensor product of [0, HI with itself. The double integral (22) is then split into the sum of nine.
By symmetry, only six different cases need to be considered. The integral over [8, H 8]
[8, H 8] is completely harmless. We now consider the diagonal term corresponding to the
set [0, 8] x [0, 8] and use the identity

SWh(S) twh(t) (S -t- t)(Wh(S) Wh(t)) (S t)(Wh(S) -k- Wh(t))
1)e(S)- re(t) =-- 4r

The integral corresponding to the first term is estimated by w n’/z after noting that, for the
relevant values of s and t, Is -i- l/28 < 1.

The integral, corresponding to the second term, can be estimated by

1/82 Iwh(t)ldsdt-- 1/8llwhll 2L (0,d),

which, in turn, can be estimated appropriately by using Lemma 3.4.
The third diagonal double integral is estimated in exactly the same way.
We next estimate the off-diagonal double integrals. We note that for 0 < < 8 and

8<s<_H-8,

re(S) re(t) Wh (S) -Z Wh (t) (Wh (S) Wh (t)) -t-
( t)

2The first term gives an integral that can be estimated straightforwardly in terms of IWhIH1/Z(O,H).
What remains is the integral

fod (f H 82(t(8 t)2_
S)2 ds) [w(t)12dt"
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We integrate with respect to s and find that the inner integral is bounded by 1/3 and the double
integral by

2(23) 1/ wh (o,),

The estimates of the other integrals can be carried out quite similarly. To complete the
estimate of the Ve ’/z we consider

-’oo (O,H)’

foH( lye(S)[2
+ ds.

s H-s

For s 6 (0, 3), and s 6 (H 3, H), we obtain contributions that can be estimated by the
expression given in (23). For the integral over (3, H 3), we use Lemma 3.5.

We next turn to the space associated with one of the vertices of 2i. We now use Or(t)
(6 -Itl)/3 to complete the partition of unity, i.e., we use Ih(Ovwh) Ih(vo). It follows from
Lemma 3.2 that we can again ignore the interpolation operator Ih. We need to estimate

f_s f_ ]vv(s) vv(t)l2

Is tl 2
dsdt

and

f_n (’vo(s)[2 Iv(s)l2 )
Considering the double integral, we note that

3 (s t) s 23 23 s

Since I1 l < 1 and Isl-ltl
-/-:7--t < 1, for relevant values of s and t, the two contributions to

the integral can be estimated in terms of

2IWIH,/2(O,H) and 1/3llwhll 2L (0,6)

respectively. Arguments, quite similar to those given above, complete the proof for the case
of two dimensions.

We now turn to problems in three dimensions, i.e., the case where the interface F is
two dimensional. In addition to the coarse space, we use three types of local subspaces
associated with faces, and neighborhoods of edges and vertices, respectively. The diameter of
the point set associated with a vertex subspace is on the order of 3. Similarly, the edge spaces
include the degrees of freedom on F that are within a distance 3 of the edge in question. We
again construct a partition of unity associated with these sets. As before these functions are
continuous, piecewise linear functions and their gradients are bounded by C/3. The proof
proceeds as in the case of two dimensions. We give only a few details. We use Oe(fi)Oe(t2) to
construct the contribution to the decomposition related to a face. Similarly, we use 0e (t)0o (t2)
as the part of the partition of unity associated with an edge. Using our formulas for 0e and 0v,
we then show that the partition of unity is completed by adding functions that differ from zero
only in small neighborhoods of the vertices. The estimates necessary for the use of Lemma
2.1 and the completion of this proof are then carried out as in the two-dimensional case.
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MULTILEVEL SCHWARZ METHODS FOR THE BIHARMONIC
DIRICHLET PROBLEM*

XUEJUN ZHANG

Abstract. The author considers the solution of the algcbraic system of equations that result from the finite
element discretization of the biharmonic equation. Some multilevel algorithms are designed and analyzed using
a Schwarz framework. Both additive and multiplicative variants of the algorithms arc considered and condition
number estimates for the additive algorithms and the energy norm estimates for the error propagation operator of the
multiplicative algorithms are given. It is noted that for a proper ordering, the iterative operators of the multiplicative
algorithms correspond to the error propagation operators of certain V-cycle multigrid methods.

Key words. Schwarz methods, domain decomposition, multilevel methods, multigrid, preconditioned iterative
methods, biharmonic problem, plate problem
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1. Introduction. We consider the biharmonic Dirichlet problem on a polygonal region
in Ra. The solution is approximated by conforming finite elements. We design and analyze
some multilevel methods for solving the resulting linear system. The additive variants of
these methods can be considered as generalizations of the hierarchical basis method [23] and
the multilevel additive Schwarz (MAS) method [10] designed previously for second-order
elliptic problems. We adopt a Schwarz framework to.study these methods. When the additive
algorithms are used, an equivalent/preconditioned equation is solved by an iterative method
such as the conjugate gradient method. We also consider some multiplicative variants of these
algorithms and give condition number estimates for the additive variants and energy norm
estimates for the error propagation operator of the multiplicative variants.

In this paper, we confine ourselves to the bicubic element discretization. We remark that
similar ideas can be used for the Argyris and Bell elements VA and F; see Ciarlet [7] for

properties of these elements. Let Ft F’ be the Bell elements with respect to a nested
triangulation Tt. The new difficulty is that Ft Ft-1, i.e., the subspaces Ft are not nested.
This difficulty can be overcome by using some tricks proposed in [24] for two-level domain
decomposition algorithms. We will not further discuss this issue in this paper.

This paper is organized as follows. In 2, we consider the biharmonic problem and its
finite element approximation by bicubic elements. We introduce a Schwarz framework in 3.
We review some space decomposition and projection techniques, which are used to estimate the
rate of convergence of the algorithms. In 4, we study the hierarchical basis (HB) algorithms
for the biharmonic problem using an additive Schwarz framework, and we establish that the
condition number X(PHB) of the linear system with respect to the normalized hierarchical
basis grows like O (h-a). We then derive a more efficient algorithm by using additional vertex
spaces in the space decomposition. This modified HB (MHB) algorithm costs almost the
same as the HB algorithm, but has a condition number that grows like O(I log hla). In 5, we
study the MAS method developed in Zhang [24]. This is an additive Schwarz method using
a multilevel nodal basis decomposition. Optimal convergence properties of the algorithm are
established. In 6, we consider some multilevel multiplicative Schwarz (MMS) algorithms
and show that the energy norm of the error propagation operator is bounded by a constant less
than one, independent of the number of levels. The MMS algorithm can also be considered as

*Received by the editors June 1, 1992; accepted for publicaton (in revised form) April 30, 1993. This work was
supported by National Science Foundation grant ASC-8958544.

tDepartment of Computer Sciences, University of Maryland, College Park, Maryland 20742
(xzhang@cs. umd. edu).
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a certain V-cycle multigrid algorithm and the MAS algorithm can be considered as a parallel
multigrid algorithm. The MAS algorithm [10], [26] is quite similar to the BPX algorithm [21 ],
[6]. The MMS and MAS algorithms are also related to, but different from, the fast adaptive
composite (FAC) and parallel FAC (AFAC) algorithms developed in [11 ], [15], [16] and the
algorithm studied in [3]. Those papers focused on the partial mesh refinement. In 7, we
present some numerical results to verify our theory.

This paper is based in part on Chapter 5 of the author’s thesis [24]. We note that recently
Oswald [19] established a similar optimal convergence result for the MAS algorithm using
Besov space theory.

2. Finite elements for the biharmonic equation.

2.1. The biharmonic problem. We are interested in solving the following biharmonic
Dirichlet problem in a plane region: Find u H2(f2) such that

A2U-- f in f2,

u go on 0,
0__U_U
On gl on 0.

For simplicity, we assume that Q is a polygonal region and that go gl 0. We consider
the weak formulation: Find u 6 HoZ(f2)such that

a(u, v) (f, v) Yv H(f2),

where f is a bounded linear functional on H0Z(f) and a(u, v) is a symmetric, continuous,
HoZ-elliptic bilinear form. Two examples of such bilinear forms are

(u, v) f AuAv dxa

and

a(u, v) AuAv + (1 --or) 20x,Ox OxOxa Ox2 0x22 0x22 Ox21
dx,

is Poisson’s coefficient of the plate. The first example arises in fluidwhere0 < cr <
dynamics, and the second provides a variational formulation of the clampedplate problem. By
the Lax-Milgram theorem, the boundness and ellipticity imply the existence and uniqueness of
the solution; cf. 12]. The methods studied in this paper can also be used for other symmetric,
positive definite fourth-order problems, e.g.,

A2U .AU +/ZU f,

The analysis would be similar to the case of the biharmonic equation.

2.2. The bicubic elements. For the biharmonic equation, the finite elements are all rela-
tively complicated. In this paper, we confine ourselves to a simple case, the bicubic elements,
known as the Bogner-Fox-Schmit rectangle. We assume that 2 is a union of rectangles.

We triangulate the domain f2 into nonoverlapping rectangles ri called elements;
cf. Fig. 1. Let Q3 span{xiyj, 0 <_ i, j < 3}. The finite element space Vh V3 is
defined (cf. Fig. 2) by

Vh {1)" tl t cl(’) and vlr, Q3}.
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The degrees of freedom of this bicubic element are given by

{ Op Op O2p
(ai) }p(ai), x (ai), -x(ai), OXlOX------

where ai is a vertex of an element. The finite element solution uh Vh satisfies

a(uh, h)= f(h) Vh Vh.

Let {(0, 0), (1, 0), (0, 1)} and {(0, 0), (1, 0), (0, 1), (1, 1)}. We use the multi-
indices notation to represent the order of derivatives. The nodal basis functions (x) are
defined by

a(Xj) i,j, 2OX#

FIG. 1. A uniform triangulation "T hx hy.

03

Representing uh by the basis b as

we obtain a linear system

FIG. 2. The bicubic elements.

otD2

Khx b,

where Kh {a(4, q)} and b f(4).
The stiffness matrix Kh is symmetric, positive definite. After a proper scaling, its condition

number x(Kh) is on the order of h -4. Since the linear system can be quite large, the condition
number of Kh can also be very large, and solving the system can be very expensive.
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2.3. Nested triangulations and subspaces. To construct and study multilevel algo-
rithms, we need to define a sequence ofnested rectangular triangulations {7q}=. We start with
a coarse triangulation 7q {ri N}i=, where i represents an individual rectangle; cf. Fig. 1.
The successively finer triangulations 7"t {_t N-i i= are obtained by dividing the rectangles of
the triangulation 7q- into four rectangles (not necessarily ofequal sizes). We denote by hx (r/t)
and hy(r[) the lengths of the edges of r/in the x and y directions, respectively, and we assume
that all the triangulations are shape regular in the sense that min(hx/hy, by hx) > Tmia, with

Tmin > 0. Let hli diameter(r]), ht max/hli, and h ht.
As a consequence of the shape regularity assumption, we know that there exist constants

C > 0 and 0 < ?’ < 1, such that if a rectangle r[+ of level + k lies in a rectangle rJ of level
l, then

diam(r]+)
diam(rJ)

For a uniform refinement, ?, 1/2 and C 1. We denote by Af and gt the sets of vertices and
edges of "l and by gt(S) the edges of the subset S.

Let Vt, L, be the space of bicubic elements associated with the triangulation
"Tt. The finite element problem can be rewritten in the new notation as: Find u 6 VL such that

(1) a(u, qb) f(dp) VL.

We denote the nodal basis functions of V by 4)’ 6 Af c )2. Let f21 supp{4/},li’

Vt span{p/} and Vii V (’] H(f21) Y’o,v2 Vt We note that for the bicubic element
dim{Vii 4.

3. A Schwarz framework. In this section, we review some tools for the study ofSchwarz
methods; see Dryja and Widlund [8], [9] and Matsokin and Nepomnyaschikh [14] for the
additive methods and Bramble et al. [5] and Xu [22] for the multiplicative methods.

3.1. Additive Schwarz method. Consider the finite element problem: Find u 6 V such
that

(2) a(u, v) (f, v) Yv V or Au f

Suppose that the finite element space V can be written as a sum of subspaces,

V V + V2 + + VN.

The projections Pv, V -- Vi and Qv, V --+ Vi, are defined by

a(Pv, u, ) a(u, ok)

(Qvu, ok) (u, ok)

Let A v; be the restriction of A to the subspace Vi given by

(Av, u, v) a(u, v) Yu, v Vi.

Based on the above space decomposition and projections, we define a preconditioner

Bs A-1v Qv
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and an additive Schwarz operator

Pas Bs1A

_
Pv.

ALGORITHM 3.1 (AS ALGORITHM). Find the solution u to (2) by solving iteratively the
additive Schwarz equation

(3) Psu (Pv, + Pv +... + Pv)u L a1f.
We note that fas Bslf -]i f, where f A-1

v, Qv,. f are the solutions for

(4) a(f, ckh) a(Pvu, ckh) (f, Ckh) h Vi.

It is easy to see that for f given by (4), the additive Schwarz equation (3), and the original
finite element equation (2) are equivalent. The crucial issue is the condition number of the
iteration operator Pas. From the definitions of Bas and Pa, we have a(Plu, u) (Bau, v).
The following lemma characterizes the extreme eigenvalues of Pa.

LEMMA 3.1. Let V be a Hilbert space, Vi be subspaces of V and V Vi. Let Pv be
the projectionsfrom V onto Vi, and P Yi evi. Then

and

a(u, u) a(u, u)
.min (P) min min ui - Vi

u a(P-u, u) u min -i a(ui, ui)
ZU --’U

a(u, u) a(u, u)max(P) max max u Vi.
u a(P-u, u) u min Yia(ui, ui)

Zl U

Proof See Lemma 3.1 in [26] for the proof. [3

Remark. 3.1. If we can find constant C and C2 such that there exists a decomposition of
u Yi ui satisfying

C1Za(ui’ Ui) < a(u, u) Vu V,

and for all u 6 V and for any decomposition of u Yi ui, we have

a(u, u) < C2 _, a(bli, lgi).

Then it follows from Lemma 3.1 that .min (P) > C and .max(P) < C2. The first part is known
as the Lions lemma; cf. Dryja and Widlund [8]-[ 10] and Nepomnyaschikh 17]. Similar results
for the case V Vi can be found in Mandel and McCormick [13], where the "min" in the
denominators is dropped, since the decomposition of a function is unique.

For u, v 6 V, let cos(u, v) a(u, v)/llull. Ilvll. For V, V2, two nontrivial subspaces of
V, we define the cosine of the angle between V and V2 by

(5) cos(V1, V2) dej sup cos(ul, u2).
Ul EVI ,U2EV2

Let Oij Cos(V/, Vj), l) {Oij}, and let u Yi ui, bli Vi be any decomposition of u. Then

a(u, u)= a(ui, uj) Oijlluillallujll < 110112 a(ui, ui).
i,j i,j

Thus, .max(P) < p(O) --11112.
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3.2. Multiplicative Schwarz method. Algorithm 3.1 can be considered as a Jacobi
method or simultaneous subspace correction. We can of course also define a Gauss-Seidel
method or sequential subspace correction algorithm.

Consider solving (2) by the following procedure

ALGORITHM 3.2 (MS ALGORITHM). Let uTM be the current approximation. Compute

U0 UTM, Ui Ui-1 + A- Qv (f Aui-1), N, unew UN.

It is easy to see that the error propagation operator is

E (I PvN) (I Pv2) (I Pvl).

In the case Vi span{bi}, Av a(qbi, qbi), where i is a nodal basis function, Algorithm 3.2
is the classical Gauss-Seidel algorithm.

In general, computing A,1 (solving A v, Y z) is relatively expensive, and we can replace
A-1 by a preconditioner or a smoother Ri Let Ti Ri Qv, A Then the corresponding error
propagation operator is

E (I- TN)... (I- T2). (I- T1).

The convergence rate is determined by EIla, the energy norm of E. We will derive bounds
for E II using the properties of T/and subspace Vi.

Let Ti, 1 N be symmetric, semipositive definite operators with respect to a(., .),
and let T y/N= T/. Let Eo I, Ei (I Ti)Ei-1, and E EN.

Let (R)T {0" }, where 0 1 and 0’, - j are given by

(6) O;j sup
a(Tiu, Tv)

u,v a(Tiu, u)l/2a(Tjv, v) 1/2"

We note that when T/are projections, definitions (6) and (5) are identical.
THEOREM 3.1. Assume T,. Ila < 09 < 2. Then

/2.rnin T)
Ella < .[1 (2 w)

2 w + Xmin(T)

.min(T)

The second inequality is a slightly modified version ofa theorem given in Xu [22]. See [26]
for a proof of Theorem 3.1.

Theorem 3.1 can be made more precise ifdim(Vi) and T/= Pv, for all i. Let i U:_. Vi,
IcPila 1, then cos(V/, Vj) la(cPi, Pj)I. Let K {a(cPi, pj)}. Then, K is a semidefinite
matrix and Or {cos(V/, Vj)} IKI. Since, usually, {pi} are linearly dependent, the
"stiffness matrix" K is usually singular andrank(K) dim(V). Let K D- L Lt, where
D is the diagonal of K and -L and -L are the strictly lower and upper triangular parts of
K. Then, the I[(R)rll2 in Theorem 3.1 can be replaced by II(D L)II2; it is easy to see that

liD LII2 _< [lOT 112. Theorem 3.1 also provides an energy norm bound for the Gauss-Seidel
method.

4. The HB methods.

4.1. Some interpolation operators. In this subsection, we state and prove some prop-
erties of certain interpolation operators defined on VL.
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Let I-I FIh’ be the standard nodal value interpolation operator defined by

(7) I’Ilu(x)-- E E Oau(xi)qblai(x)"
Ef otE’D

LEMMA 4.1. We have thefollowing estimatefor FIt.

u6VL, s 0, 1,2.

Proof This is Lemma 4.2.3 in [24]. [3

Let 1] 1-] h’ be an interpolation operator defined by

filu(x)-- E E Dtu(xi)li(X)"

We note that the mixed second derivative vanishes at level4 grid points, that is,
D(l’)(-ltu(x) 0 for x 6 .N"t. We note also that (-ltp p for p linear.

LEMMA 4.2. Let (-I be the interpolation operator defined above. Then,

hi)
1/2

irltu-ulm <_ Chy- + log lulm < C2t(s-2}(L-l)/2lUlHZ, u Vz,, s O, 1, 2.

Proof. This is Lemma 4.2.4 in [24]. We only sketch a proof here. Let r 6 7"t be an
element of level and xi, < < 4, be its vertices. We have

4

i=1 lal_<l

We want to estimate luh (Ituhli-is(r}. Note that (It(p) p for p linear. We can assume
without loss of generality that

{Du}r f Daudx
0, lal 0, 1.

By the triangle inequality, we have

4 4

i=1 ]cl_<l i=l Iol_<l

Using the fact that the basis functions are uniform to order 2, i.e.,

’ Chll-s and Iqbti(X)lns(r)<Chll+-sqbli(X)lws.oo(r <
we get

Since {D’u} O, lal O, 1, we find that

lul() ChllulH<r),

((hi))
1/2

lulrv,,o) _< C +log [UIH2(r).
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The first inequality follows by the embeddingL H2 and a scaling argument. The second
inequality follows from an application of Lemma 3 in the Appendix of Yserentant [23] to Vu.

Using these inequalities in the estimate for Ir]tuln<), we obtain

{I(ltuln,> <_ C h-’lulm) + h-" + log

Ch-s (1 +log (h))
1/

lUln2(r,.

By the triangle inequality and the vanishing mean values propey of u, we have

]u tUln,(r, lUlH,(r) + ItUlH,(r, Ch-s (1 +log (h)) 1/x

The lemma follows by summing over all r Tt.
It can be shown that the estimates in Lemmas 4.1 and 4.2 cannot be improved.

4.2. The HB method. We now study the HB method for the bihaonic problem. Let
and t t t-I for 2 L, where t is the set of veaices of T as

defined in 2.3. Let K be the stiffness matrix with respect to the HB
To simplify the presentation, we assume that h O(1), i.e., the coarse triangulation T is
coarse enough. Therefore, the coarse stiffness matrix K {a($i, j)} can be replaced by
D, the diagonal of K, and z(D{ K) is small. In the general case, we need to solve the
coarse problem exactly and the algorithms and analysis can be easily modified.

If we represent a function u Vz by this HB as

L

li,

1=1 iJ u72

then the extreme eigenvalues of KHB can be estimated as follows"

(Krmx, x) lul2m
Zmin(KHB) min min

ilxll 2 2’
2 Ilxl12

(KHBX, X) lulZm.max(KnB) max max
x Ilxll 2 2"

2 Ilxll2
Note that 1(,)12m O(h -2) and [b(l’l)[ O(h2). The unbalance between (1,1) and

b(’) implies that tC(KHB) >_ ch -4. This suggests that we should use the normalized basis
function (with respect to the energy norm), or equivalently a diagonal scaling technique. The
diagonal scaling is inherent in the additive Schwarz method; therefore one does not need to
keep track of scaling for different degrees of freedom. We will show that the simple diagonal
scaling reduces the condition number to O(h-2).

Let H 0. By definition (7), we have

i. oe/2

It is easy to show. that

I(n’ c E E c E E Ixr,
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If we scale the basis functions such that (Dti 12H2 O (1), then

Thus,

)min(KHB) min
X

.mx(KH) max
X

(gx x) lulmin
Ilxll " E I(W FI/-1)UI2Hz’

(KHBX, X) lulmax

We will not discuss this direction further. Instead, we will use the additive Schwarz techniques
to study this method. Based on the HB decomposition

L

1=2 ia

we define a preconditioner

L

1=2 j/ ot

and an additive Schwarz operator

L

!=2 i)Q a’D2

ALGORITHM 4.1 (HB). Find the solution u of the finite element problem (1) by solving
iteratively the additive Schwarz equation

PHBU fHB de2 BIIf.
We note that fHB BIBf Y’, Y’-i -a J and fff A-fi, Qvi: f are the solutions of

a(f., ) (f, ) 6 V,7.

Since dim(Vt) 1, it is easy to see that

a(v, 49)ev, v ;’o, d? and jt/=
,b b/.

a(), li) a()ii li)

If we replace Pv, by YisN’, Pz,,, then the above additive Schwarz equation can be written
down explicitly as

r a(u, i) t f(i)E Ea a qbti, dPi) a(qbt,, qbti(o   =EEE
1=1 i.)Q l=1 i.jQ OleO2

The corresponding linear system is

D-1 KHBX D-lb,



630 XUEJUN ZHANG

where D diag(K1, D2 DL) or D diag(D1, D2 DL), Kt is the stiffness matrix
associated with {q/}iX/’ and Dt diag(K/).

LEMMA 4.3. There exist constants C1 and C2 such that

Clh-2a(u, u) <_ a(PHBU, u) < C2a(u, u) Vu .
The estimate cannot be improved, i.e., Cl h-2 (D-1KHB) C2h-2.

Proo Let u (H Ht-1)u; it follows from Lemma 4.1 that

2 c4L-I 2lutl I(n- n-)ulnn < lulH().
It is easy to see that ut can be represented uniquely as

1 Uli li
ie2

By the inverse inequality and Lemma 4.1, we obtain

ie2 i 2

Summing over gives

hi)<_ Ch4Ch - lulls. _< C4(L-t)lul2n..

The lower bound follows from Lemma 3.1.
The upper bound, a(PHB, U, U) _< C, can be established by using certain strengthened

Cauchy-Schwarz inequality. We will not give a proof here, since it follows easily from
Theorem 5.1 and Remark 5.2 of the next section.

To show that the estimate is sharp, let u ql), j .A/-1. The HB decomposition of u
is given by

We have U
(1’1) (1 1) (1 1)
lj tlj’ and note that ItPlj’ 12 O(h) and lul2n Ip(l’l)l2 O(h)Lj

Thus

1=1 ied

It follows from Lemma 3.1 that min(eHB) _< Ch -2. F!

Remark 4.1. In [20], Oswald studied the biharmonic problem approximated by composite
finite elements consisting of piecewise quadratic Powell-Sabin elements and piecewise cubic
elements of Clough-Tocher type. Using Besov space theory, Oswald established that the
condition number of hierarchical multilevel methods grows like CL2, which is significantly
better than the case of bicubic element. This is because the second derivatives of the finite
element function are not degrees of freedoms of the two composite finite elements considered
by Oswald. In general, for symmetric elliptic problems of2mth order, if the degrees offreedom
of the finite elements consists of function values and derivatives of order less than or equal to

m- 1, then, tC(KHB) < CL2.

L

u + E E E lu"’122 < E C4L-tluI2 < C4LIuI"
1=2 ie.jd ae/)
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4.3. A MHB method. To get better algorithms, we need to improve .min(P), the mini-
mum eigenvalue of the iteration operator. If we use additional subspaces in the space decom-
position, we have more freedom to choose the decomposition of a function u VL and by
Lemma 3.1 we have a larger )min (P). Our approach is to add some additional vertex subspaces
in the space decomposition. Using the space decomposition

L

vL VI--E E E Vlat- E VL(’I)’
1=2 i./Q-/otD: iAf/:

we define a preconditioner

B-1 =BI+ E A-1MHB v,) Qv’)
Li Li

and an additive Schwarz iteration operator

L

ALGORITHM 4.2 (MHB). Find the solution u of the finite element equation (1) by solving
the following additive Schwarz equation:

P..u f..,

where

r(<,l))fa=Bf=fn+iE A-v," Qv"’*>f=f+ iE a(g’)siiwi i

This algorithm costs a little more than the HB algorithm per iteration, since we need to
compute the extra terms

a(u <1,))i <,) i NLiPv"’’>u
(<1,1) 1,1)

Li Li

in each iteration. This requires N operations, where N N dim. Compared with
the cost for one multiplication Kx, which is about 144N, this cost is small (less than 1% of
the computation).

The following lemma provides a condition number estimates of P.
LEMMA 4.4. There exist constants C and C2 such that

Cllloghl-Ua(u,u) a(PMHuU, U) C2a(u,u) u V.
Thus the condition number ofthe MHB algorithm is O(I log hi) O(L2).

Proof We apply Lemma 3.1 to establish the lower bound. Let

E
It is easy to see that u<’1) has the same mixed second derivatives as u, but has zero function
values and first derivatives at the grid points x . Let supp{i }. Using the discrete

2norm estimates, luxy(xi)lh2 ClUIHu<), we obtain

luxr(X)’1 IhLi IH<) < lux(Xi)1211’1>I C lux(X)

Clu H<) CluIH<).
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Let ut ffltu- II-lu. Then,

L

U U(1’1) -- -ILu E Uxy(Xi)q(l’l)Li - UI"
Jkf 1=1

It is easy to check that

DUl(Xi) O, X . jfi-1 Ol E )2

Thus ut can be uniquely represented as

Ul Uli,
.K/, D

Uli Vli.

By the inverse inequality and Lemma 4.2, we obtain

idQ"/ OIE’)2 ijQ"/

Combining the above two estimates, we get

L

i 1=1 iejQ t792

L

<_ Clul + C -(e -l)lul _< Ct21ul2,
1=1

Uli Vii

The lower bound follows from Lemma 3.1.
The upper bound, a(PMHBU, U) < Ca(u, u), follows from Theorem 5.1 and Remark 5.2

in the next section. [3

5. MAS methods.

5.1. Algorithm. MAS methods for the biharmonic problem were designed and studied
in [25] and [24]. They are generalizations of the two level domain decomposition methods
also considered in [24]. In matrix form, they correspond to multilevel block diagonal scaling.

Let QI supp{b/}. The MAS method can be derived from the multilevel overlapping
domain decomposition f2 Uif2I, using domain decomposition language; cf. [24]. In this
paper, we work directly with the multilevel space decomposition.

Let VII span{b} and let Vti= VtfqH(f2I) - VII be defined as in 4. For uniform
triangulations, Vt _1_ Vfi, for c :/:/, thus Vti - Vt is an orthogonal decomposition and

Pz.u , Pzt7. The 4-by-4 local stiffness matrices K, {a(p/ ptti)} are diagonal.
Based on the MAS space decomposition

vh V1 q- E VIi V1 -E E E Vff
1=2 .M 1=2 .lV

we defined a preconditionerBs

>_2 jf
r’,, Ovi7

>_2 Jf ot)
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and an additive Schwarz operator PMAS

PMAs BIIAsA Pv + E E Pv. (Pv, + E E E PvI)e>_2 E.lf e>_2 E./f ot)

ALGORITHM 5.1 (MAS). Find the solution uh of the finite element equation (1) by solving
iteratively the equivalent equation:

(8) PMASUh fMAS dej Bsf.
Note that fMAS BASf --t )--]i fi, where i A-1, Qv. f are the solutions for the

finite element problems

(9) a f ebb) a Pv. u cbh f cbh Cbh Vii.

It is easy to see that for fi given by (9), equations (1) and (8) are equivalent. To find
uh, we first compute the right-hand side fMAS by solving (9), and we then use the conjugate
gradient (CG) method to solve the system (8). In each iteration, we need to compute Pz. vh
for a given vh Vh by solving the equation

a Pv. vh cbh a vh el:h) cbh Vii.

This is a finite element equation on with mesh size ht, and dim(V.) 4. Recall that for
uniform triangulations, Vtia Vt, for fl, and the local stiffness matrices {a($, $#ti) are
diagonal, we have

a(u, ) f($)
a a a (li, li)

If we assume that h O(1), and we can replace Pz by i,a Pzg, then Algorithm 5.1 can
be written explicitly as

L

a(.. .) a(..I=I i i

Kt is the stiffness matrix associated with V and Dt is the diagonal (block) paa of Kt. Let
H be the prolongation operator (matrix representation of the inteolation operator from Vt
to Vz), and let H be the adjoim of Hr. Equation (8) can then be written as a preconditioned
linear system

where

B- KLX B-lb,

B;’ n, K?1FI] + rI2Df n’2 +... + n,_ D-1_1FIL_I + D-
K-1 can be replaced by any good preconditioner B1 of K1; in particular, if hi O(1), then

K1 can be replaced by
Remark 5.1. For domains with complicated geometry, the use of the diagonal D-1 to

replace K-1 is not recommended, since tc(D-1K1) can be large.
For elements with relatively larger aspect ratio, the 4-by-4 local stiffness matrix Kn

{a(/, )} or,diag(K.)-1Kti may have large condition numbers. Therefore, we should not

replace V. by the sum of Vt in the space decomposition, and the local 4-by-4 problem Ktix b
should be solved.exactly. Replacing K, by its diagonal can hurt the overall performance of
the algorithm.
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5.2. Condition number estimate. It is easy to establish that the MAS operator PMAS
satisfies

(10) C1L-la(u, u) < a(PMAsU, U) < C2La(u, u).

Thus, x (PMhs) < CL2. For second-order problems, x (PMhs) can be bounded uniformly with
respect to the number of levels; cf. [18], [26]. We now eliminate L from (10).

We first establish a "strengthened Cauchy-Schwarz" inequality.
LEMMA 5.1. For ut Vt and uk Vk, let

Ul Uli Uli Vii and uk ukj, ukj
E./kl ot jE./V"k ot

Then

a(ut, uk) <_ Crl-tl(h211utllz)(h-21lu,llL)

Proof We assume k > l. For each element rt, we decompose u as (cf. Fig. 3)

def ot o
Uk-- /,/out-I- t/B "q- Uin Ukj "[" Y Ukj + Z Ukj"

jC.AfkCl) ot392 j6.Af (0"! 0l)2 jE.IV"k (r 0l2

I"

case 1,j ’ .A/’E(t) case 2,j 6 .AY’(0rt) case 3,j 6 .A/’k(rt)

FIG. 3. Three possible relations between

It is clear that, ar, (ut, Uout) 0, thus

a,,(ut, uk) ar,(ut, Uin) + a,(ut, uB).

We estimate each term separately. Let F r N(OiAc.o) g2/) be the union ofsmaller elements

rk 6 Tk that touch the boundary of the larger element rt. We first estimate a,! (ut, uB). Since
supp(un) 1-’, we have

la,(ut, u,)l lar(ut, u)l _< lutli-l<r’)luln’.<r’).

Using inverse inequality, lutlwz.<,) < Ch- lUtlnz<) < Ch-3llutllLz<,), we obtain

lutlm<r) _< Ir’l/Zlutlm.oo<r) <_ Ir’l/Zlutlre,oo<,,)

<_ cir’l/2h311utll.<,) <_
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and

lualzr) < Ch211uallr) < Ch-211ullz<,).

Combining the above inequalities, we obtain

(11) la,.(ut, u)l _< Ck-th2llutllz<,)hff2llukllz<,).
We now estimate ar (ut, Uin), integrate by paas, then use Schwarz inequality,

la,(ut, ui)l I(A2ut, Uin)L2(rl)l IIA2utll<,)llui, llz<,).

It follows from the inverse inequality lutln4<) hallutllz<) that

Note that Ilui, llz<,) Cllull<,), thus,

la,(ut, ui)l
(2)

Combining estimates (11) and (12), we obtain

la,(ut, uk)l Ck-t (h;211utllz<,))
Summing over r and using the Cauchy inequality, we obtain

a(ut, u) Ck-t

< ( h; Ilu (

The second inequality in the lemma follows from the fact that Iluz. IIz
The L2 projection Qv H2(fl) Vh is defined by

LEMMA 5.2. We have thefollowing estimatesfor Qv"

IQvu uln,<,) Ch2-luln<,), s O, 1, 2,

Qvuln(n) Cluln,(a), 0 a 2.

Proof We construct a quasi-inteolation operator Ov H(fl) Vh by

Here fli supp{i} and {Dau},, (f, Ou/[i[). It can be shown, cf. Theorems 4.1.1
and 4.1.2 in [24], that

(13) [Ozu ulns(,
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By an inverse inequality and a property of Qzh, it follows that

(14)

<_ 2Ch-ll(lvh u UllL_() _< Ch2-lUlHZ(C).

The first part of the lemma follows from the inequalities (13), (14), and the triangle inequality.
Taking s 2 in the first inequality of the lemma and using the triangle inequality, we obtain

Note that Qv ullLz() Ilull(). The second part of the lemma now follows from interpo-
lation in Sobolev spaces. [3

We will make the following regularity assumption.
Assumption 5.1. There exists a constant r > 0 such that

lul+() CIA2UlH-2+o().

It is known that the assumption holds with cr for convex region. Blum and Ran-
nacher [2] have shown that the assumption holds with r 2 for convex polygons with interior
angles smaller than 126.28

Using the Aubin-Nitsche trick, it follows from Assumption 5.1 that the H2-projection
Pv, H2() " Vk satisfies

(15)

LEMMA 5.3. Assume that Assumption 5.1 holds. Let Qv VL --+ Vt be the L2 projection
and let uk (Pvk Pvk_l) u. Then Qvuk Ofor >_ k and

IQvuklHz()C (h-ll) lUklH2() l<k.

Proof. By an inverse inequality, the boundness of Qvt in the H2--norm, we obtain,

The lemma follows by applying inequality (15) to the above inequality.
We can now prove the following lemma.
LEMMA 5.4. Assume that Assumption 5.1 holds. Then,

L

!=1

The constant C is independent of L.
Proof Let uk (Pvk Pvk_)u. Then u uk. Lemma 5.3 implies that (Qv

Qv_)uk O, k < and

L L

2 I(Ql/’l QVI-1)UI2H2 2
/=1 /=1

(Qvt Qv_,) uk
k= H
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Here C(y, L) (1 yaL)2/(1 ,tr)2 and C(y) 1/(1 yo-)2. [-]

THEOREM 5.1. Assume that Lemma 5.4 holds. Then the MAS operator PMAS satisfies

Cla(Uh, Uh) <_ a(PMASUh, Uh) <_ C2a(uh, uh) tUh E Vh.

The constants are independent of {ht and L.
Proof Upper bound: Let u E VL and let {uTi be a decomposition of u, i.e.,

L

1=1 E.Af ct

Let 1,11 EiE./kl’l Eot.’D2 Uli " Vii" It follows from Lemma 5.1 that

L

a(u, u) a(ut, uk)
l,k=l

The upper bound follows from Lemma 3.1 and Remark 3.1.
Lower bound: Let ut (Qv Qv,,)u and we further decompose ut as

Ul--- Ut. Uli Vii.

Using the inverse inequality lug. HE()2 __< Ch4 iluti= 112.(), and Lemma 5.2, we obtain

c 2E E [U/[2HE’f) < Ch;4 E E [[UIiII2LE < Ch;4llUlll2L2 < ClUllHg-(2)"
EJfl Ot Jfl

Summing over and using Lemma 5.4, we obtain
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The lower bound now follows from Lemma 3.1.
Remark 5.2. It is clear that

a(PHBU, U) < a(PMAsU, U) and a(PMHBU, U) < Ca(PMAsU, u).

Therefore, we have also obtained upper bounds for PUB and Plrta.
Remark 5.3. Recently, Oswald 19] also proved a similar result for the MAS algorithm.

A discrete norm lulo is defined by

L

lul inf
Y! Ul--U /=1

Oswald’s approach is to use the Besov space theory to establish the following norm equiva-
lency:

(16) Clul2o < lul/,. < C2lul2

Our proof for the lower bound follows an idea of Bramble and Pasciak [4]; see also
Xu [22]. A more elementary approach for the lower bound is used in Zhang [26]" We first
establish the result for domains with Ha-regularity. In the general case, we extend f2 to a
larger convex domain , on which Ha-regularity holds. We then construct a decomposition
of u with respect to 1/t (f2) from a decomposition of u with respect to F"t (). See [26] for a
detailed discussion of the second-order case.

6. Multiplicative variants. In this section, we discuss some multiplicative variant of the
multilevel Schwarz methods. They represent certain V-cycle multigrid methods.

Let Ktt {a(4/, ck.)},,#ez)2,i,jeJV’, be the stiffness matrix associated with triangulation
’Tt. Let Ktt (Dr Lt L), where Dr, -Lt are the diagonal and lower triangular parts of
Ktt, respectively. Consider the problem

Au f or KlLx b.

ALGORITHM 6.1 (MMS/MG-JACOBI). Let uTM Vt or xTM be the current approximation
to the solution. Compute the new approximation by the following:

(1) Set u0 uTM.
(2) For 1, 2 L compute

Ul UI-1 "sl- l"(Yi,otA’l Ovi.)(f AuI-1) Ul-1 dr- O(-i,otPVl)(l.l Ul),

where 0 is a damping factor such that II/) Ila 0, Pv. lia < a < 2.
(3) Set Unew UL.

We order (a, i), Aft, ct Z)2, and represent it by one index i, 4Nt. Let
eli u Uli, rli f-/lUli .aeli.

ALGORITHM 6.2 (MMS/MG-SOR). Let uTM VL be the current approximation.
(1) Set u 1,0 uTM.
(2) For 1, 2 L, compute

ut,o Ul-l,aNt_" the approximation of previous level (level e-l).
For 4Nt compute Uti by
Uli bll,i-1 -1" o)A’ll Qv. (f Aut,i_l) Ul,i-1 + wPv.et,i-1.

(3) Set unew uz,,aN,,.
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The case co 1 corresponds to a Gauss-Seidel smoother and 1 < co < 2 corresponds to
a successive overrelaxation (SOR) smoother.

In matrix form, the algorithms can be written as

X0 XTM,
Xl Xl-1 + FIIM-IFI(b- KLL

Xnew XL,

xt-1), L,

-1where M/-1 oD[ for weighted Jacobi smoother and M/-1 (Dt Lt) for a Gauss-
Seidel/SOR smoother.

The corresponding error propagation operators are

(17) Ej H(I--T/)de-----fH I-- OE E PvI7
1=1 1=1 iN otD2
L

(18) Eo, H H H (I- coPvI).
1=1 .N ot ’D

The product in the above expressions can be arranged in any order; different orders
correspond to different schemes. The operators Ej and E,o correspond to the error propaga-
tion operators of V-cycle multigrid methods using damped Jacobi and Gauss-Seidel/SOR as
smoothers, respectively.

Let /be normalized basis functions, i.e., IbuIlia Then cos(Vt, V) la(/, qj)l.
Let K {a(, ffj)} and 19 {cos(Vt, V)}. Then (R) IKI. The following lemma
provides an estimate for K 112 and O 112.

LEMMA 6.1. There exists a constant C > 0 independent ofL and ht such that

IIKII2 < IIOIlu < C.

Proof. For simplicity, we assume that the triangulations are quasi uniform, thus
Let 72 supp(4) Uxlrt. We assume < k. There are three cases (cf. Fig 4).

k 0 then Cos(VI, Vkflj) la(b/, P(1) If 721A 72j kj)[ O.
(2) If there exists an element "t"1 C 721 such that 72jk. C r C 721, then

ChTltlm(hlqjlm(
_< C4-(k-t)14, Im()14,tkjlH:() C4-(k-t).

kFor fixed i, the number of 72’s that belong to this category is bounded by the number of 72j
that intersect 721. This number is bounded by

(mes(721) ) (h (4k_o =o =o ).
mes(72) \hJ

k(3) If i, j belong to neither the first case nor the second, then 72j must intersect some of

the edges in gl (721), where gt (721) is the set of level-e edges of 721 as defined in 2.3. For fixed
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t3 case 2, flj C C fli case 3, fj fq (f2I) # 13case 1, 21 f) f2j
FIG. 4. Three possible relations between and ti"

’ that intersects some edges in ,E (21) is bounded by O(ht/h,) O (2’-t).i, the number of

Note that a ($ffj, $ffj) 1, and we have

cos(Vt, V) la(q/, ffj)l lan(n (, ffj)l
1/2 3 3 1/2la., ti, )1 la(kj, kj)l

< mes(
5 Chh;ltln=n)= Chkh; C2-k-t).

We paition O {cos(Vt, V)}i,,j,,3,lt,kz into L-by-L blocks,

{Ot}lt,z,
where Otk are 4Nt-by-4Nk matrices whose elements are given by

Ot= {Ot*(i, j)}it,jek,a,eD2 {cos(Vff, V.)}iet,j6,,a,6D2.
We claim that

(19) ]]tkll2
k isTo prove this, we assume

bounded uniformly. Thus the number of nonzeros in each column is bounded uniformly, i.e.;

E Z sign( a(  , X0,

where No depends only on the coarse triangulation T. By a simple norm analysis, we can
show that

IlOZ*ll No max Ilrowi,(Ot)ll2.
i,ot

We see that Ilrowi,(O) I1 can be estimated as

c /)2Ilrowi,(Ot*)ll a li, *j

j j6case 2 j6case 3 fl

0 + C4k-t4-2k-t) + C2k-t2-2(k-t) C2-(k-t).
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Thus

[l(R)tkllz < ,0max Ilrowi,=((R)tk)llz <

If we replace (R)tk by II(R)tkllz, we get an L-by-L matrix {ll(R)tkllz}<z<. The second part
of the lemma follows from

+1
11(R)112 _< 11112 _< IIlll _< C.

#-1
The first part of the lemma is trivial.

The following theorem provides energy norm estimates for Ea and Eo.
THEOREM 6.1. There exist constants aa < 1 and o < such that

IIEjII < J, IIEII _< o, 0 < oo < 2.

The constants are independent ofnumber oflevels and the order ofthe product.
Proof. We first estimate Eo ]-I1 I-[i (I wPv). In this case, wPv for some

subspace Vt. Thus T Z. wPMas and Or wO wlKI. By Theorem 5.1, we
know that min(T) min(AS) is unifoly bounded from below. On the other hand, it
follows from Lemma 6.1 that IIOTII is uniformly bounded above. The estimate for
now follows from Theorem 3.1.

We now estimate Ej t(I 0 i, Pzt). In this case, 0 i,u Pv and T
0PMAs. Thus Zmin(T 0min(PMAs) is uniformly bounded from below. To estimate

IlOr 112, we note that

i,u

i,a j,#

O’la(u, u)l/a(rv, v)l/.
l,kBy the definition of 0r (cf. (6)), we have

Therefore,

The estimate for ]1EjIla follows from Theorem 3.1. F1

Theorem 6.1 implies that the V-cycle multigrid method, using damped Jacobi, Gauss-
Seidel or SOR as smoother, has a rate of convergence that is independent of the number of
levels and the order of product.

Similar techniques can be used to establish the convergence rate for the multiplicative
HB algorithms (HB multigrid). We can show that the energy norms of the error propagation
operators of the multiplicative variants of Algorithms 4.1 and 4.2 are bounded by 1 Ch2

and 1 C log h 1-2, respectively. See for more details about the multiplicative variants of
Algorithm 4.1 for second-order elliptic problems.
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7. Numerical experiments. In this section, we report on some numerical experiments
with additive multilevel methods for the biharmonic problem. For comparison, we have also
carried out experiments for the CG method and the Jacobi CG, a preconditioned CG method
using a diagonal matrix as a preconditioner. These experiments were carried out for the
biharmonic equation on a unit square with homogeneous Dirichlet boundary conditions

--A2U f(x) in fl,
(20) 0u

u=--=0 on 0f2.
On

We divide the domain into 2 x 2 square elements ri 4, and obtain a triangulation
7"1 {ri }. We then divide each ri into 2 x 2 squares to obtain the triangulation 7-2 {r/2},
etc. The length of an edge of r[ is denoted by ht, where h (1/2)t. In all our experiments,
we use the bicubic element. Let PNa, PIB, PMI-m, and PMAS denote the linear operator (or
matrix) obtained from the conventional nodal basis, the HB, the MHB, and the MAS methods,
respectively. We use the preconditioned CG method to solve the corresponding linear systems.

In Tables 1-5, we present numerical results for these methods. The first column con-
tains the number of levels, L, of the multilevel methods, the second column contains the total
degrees of freedom N (= 4(2L 1)2). In the third, fourth, and fifth columns, we give the
minimum eigenvalues, the maximum eigenvalues, and the condition numbers of the corre-
sponding algorithms. These numbers are computed by the Lanczos methods (as a by-product
of the CG computation). The sixth column gives the number of iterations required to decrease
the 12-norm of the residual of the preconditioned system by a factor of 10-6.

TABIE
CG method using bicubic elements.

Level

2
3
4
5
6
7

N
4
36
196
900
3844
15876
64516

Xmin(P) Xmax(P) to(P)
0.447E+0 0.472E+2 0.106E+3
0.276E+0 0.798E+2 0.289E+3
0.208E+0 0.894E+2 0.428E+3
0.180E-1 0.918E+2 0.510E+4
0.120E-2 0.925E+2 0.767E+5
0.764E-4 0.926E+2 0.121E+7
0.457E-5 0.927E/2 0.203E+8

Item
3

24
89

203
518
1749
6473

TAmE 2
Jacobi conjugate gradient method using bicubic elements.

Level

2
3
4
5
6
7

N
4
36
196
900
3844
15876
64516

.min(P) kmax(P) to(P)
0.100E+I 0.100E+I 0.100E+I
0.853E-1 0.176E+1 0.206E+2
0.631E-2 0.191E+l’ 0.303E+3
0.412E-3 0.195E+1 0.473E+4
0.260E-4 0.196E+1 0.753E+5
0.162E-5 0.197E+1 0.121E+7’
0.971E-7 0.197E+1 0.’202E+8

Item

14
41
116
405
1154
3313

We have shown that the condition number X(PNn) O(h-4) O(2-4L) O(16-L);
this is clearly verified by Table 1. For L 1, we have only one interior vertex and thus
four degrees of freedom. The matrix is diagonal and has only three distinct eigenvalues and
the CG algorithm converges in three steps. Note that the basis functions are not well scaled,

4)t,i la # const. By normalizing the basis function or by using a diagonal scaling technique,
the condition number can be improved. This is shown in Table 2.
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Level N
4

2 36
3 196
4 900
5 3844
6 15876
7 64516
8 260100

Level

2
3
4
5
6
7
8

TABLE 3
HB method using bicubic elements.

.min(P) )tmax(P) to(P)
0.100E+I 01100E+I 0.100E+I
0.757E-1 ’0.166E+1 0.220E+2
0.177E-1 0.204E+1 0.115E+3
0.428E-2 0.241E+ 0.562E+3
0.106E-2 0.271E+1 0.256E+4
0.263E-3 0.295E+1 0.112E+5
0.657E-4’ ’0.478E+5
0.164E-4

0.314E+1
0.330E+1 0.201E+6

TABLE 4
MHB method using bicubic elements.

N
4 0.100E+I
36
196
900 0.110E+0
3844 0.781E-1
15876 0.580E-1
64516 0.452E-1
260100 0.362E-1

.min(P) )tmax(P) tc(P)
0.200E+ 0.200E+

0.273E+0 0.230E+ 0.843E+
0.167E+0 0.246E+1 0.147E+2

0.253E+1 0.229E+2
0.350E+20.274E+1

0.296E+1 0.510E+2
0.315E+ 0.696E+2
0.330E+1 0.912E+2

Iter.

14
39
80
165
302
604
13

Iter.
2
14
23
30
37
44
50
55

Level

2
3
4
5
6
7
8

TABLE 5
MAS method using bicubic elements.

N
4
36
196
900
3844

15876
64516
260100

.min(P) -max(P) to(P)
0.100E+I 0.100E+I 0.100E+I
0.588E+0 0.188E+ ’0.320E+
0.471E+0 0.262E+1 0.557E+1
0.444E+0 0.327E+1 01736E+1
0.438E+0 0.379E+ 0.867E+
0.437E+0 0.422E+ 0.967E+
0.436E+0 0.458E+1 0.105E+2

0.112E+20.436E+0 0.486E+1

Iter.

10
14
17
18
19
20
20

In Table 3, we report on the results for the HB method. The theory suggest that the
condition number/(PHB) O(h-2) O(4-L). We see that the c(l + 1)/to(l) , 4.

In Table 4, we report on the results for the MHB method. The condition number of PUHB
grows slowly as predicted by the theory.

Finally, in Table 5, we report on the results for the MAS method. The condition number of
PUAS is bounded (grows very slowly) as predicted by the theory. One can see that the smallest
eigenvalues decrease very slowly and quickly approach a limiting value. This confirms our
theory. As remarked in [23], the largest eigenvalues, although bounded in theory, increase as
fast as they are allowed in the proof. In fact, for the first eight levels, the largest eigenvalues,
thus the condition numbers, behave like C/.

Acknowledgement. The author is indebted to Professor Olof B. Widlund for reading the
manuscript and for providing valuable comments.
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Abstract. In this paper the authors extend the multilevel algorithm of Atkinson and Brakhage for compact fixed
point problems and the projected Newton method of Bertsekas to create a fast multilevel algorithm for parabolic
boundary control problems having bound constraints on the control. Results are extended from finite dimension on
constraint identification. This approach permits both adaptive integration in time and inexact evaluation of the cost
functional.
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1. Introduction. In this paper, an expanded version of 15], we consider fast algorithms
for solution of nonlinear equations that can be expressed in the form

(1.1) u(t) P(1C(u))(t),

where/E is a completely continuous map from L (f2) to C(f2) for some bounded f2 C Rn,
and 7:’ is the map on C(f2) given by

Umin(t) ifu(t) < Umin(t),

(1.2) 79(u)(t) u(t) if Umin(t) < u(t) < Umax(t),

Umax(t) ifu(t) >_ Umax(t),

for given Umin and Umax in C(f2). The particular algorithm we consider is a generalization and
synthesis of the Atkinson-Brakhage multilevel algorithm for compact fixed-point problems
[3], [6], and the projected Newton method ofBertsekas [5] for bound constrained minimization
problems.

A paradigm for problems of the form (1.1) is the Urysohn equation

(1.3) 1C(u)(t) f k(t, s, u(s)) ds.

Maps that are not easily expressible in this way, however, are the real target. In particular, we
wish to develop an algorithm general enough to be applicable to boundary control problems
for partial differential equations. The algorithms and assumptions in this paper provide fast
local convergence for problems with continuous controls in one space dimension.

Our methods differ from previous multilevel approaches for such problems [10] in that
the smoothing requirements on the approximate Fr6chet derivatives at the various levels are
relaxed, the results on identification of active indices from [5] can be extended, and the
algorithm is a direct approximation of the projected Newton method and therefore quasi-
Newton methods can be used to accelerate the convergence.
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We are motivated by constrained parabolic optimal control problems in one space di-
mension. One such problem, a constrained version of the problem considered in [16], is to
minimize

u2(t) dt,(1.4) f(u) (y(u; T, x) g(x))2 dx + --where c > 0 is given and y(t, x) y(u; t, x) is the solution to the nonlinear parabolic
problem

(1.5)
yt (t, x) Yxx (t, x), 0<x < 1, 0<t <T,
y(0, x)=y0(x), 0<x < 1,

yx(t, O) O, yx(t, 1) g(y(t, 1)) + u(t), O < < T.

In this problem u is allowed to vary over the set

(1.6) /,/-- {u L([0, T])lUmin(t) < u(t) < Umax(t), for a.e. [0, T]},

and the nonlinear function g is assumed to satisfy

(1.7) g C2(R), gt, gtt . LOZ(R).

Such problems arise in metallurgy, for example [21 ].
The gradient of f in L2([0, T]) is

(1.8) (Vf(u))(t) otu(t) + d(t, 1),

where d(t, x) is the solution of the adjoint problem

(1.9)
-dt(t,x) dxx(t,x), O < x < 1, O < < T,
d(T, x) y(T, x) z(x), O < x < 1,

dx(t,O) =O, dx(t, 1) g’(y(t, 1))d(t, 1), 0<t <T.

We let/ be the map that takes u into -d(t, 1)/c. It is known [20] that/C is com-
pletely continuous from L ([0, T]) to C([0, T]), (and hence a completely continuous map on
C([0, T])), and in fact is a continuous map from LP([0, T]) to C([0, T]) for p > 2. Standard
techniques in optimization [4] imply that a necessary condition for u* to be a solution of the
problem given by (1.4), (1.5), and (1.6), is that

u* 7:,(E(u*)).

In [16] we considered the unconstrained problem with/g replaced by C([0, T]) and used
DASSL [7] to perform the integration in time. The use of such an adaptive time integrator
required weaker smoothing assumptions than that used in 10] on the maps that take discrete
versions of u into those of d. Under these relaxed smoothing assumptions we showed how
the Atkinson-Brakhage algorithm could be implemented with appropriate finite difference
gradients to obtain fast convergence.

The purpose of this paper is to merge the work in 16] with the ideas in [5] to design a fast
algorithm for constrained optimal control problems ofthe type described above. We extend the
projected Newton method to the abstract setting of constrained compact fixed point problems.
We generalize the convergence results and the results on identification of the intervals on
which u(t) attains its.bounds. This latter result is an extension of some of the results in [17].
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Once the analysis is complete we can apply the ideas in 16] directly to the problem given by
(1.4)-(1.6) and produce a fast algorithm. The algorithm here differs from that proposed in 16]
in that numerical Jacobians are not computed on coarse grids. Instead, generalized minimal
residual (GMRES) 19] iteration is used to solve the coarse mesh linearized problems needed
by the Atkinson-Brakhage iteration and a projected form of the Newton-GMRES iteration [8]
is used to solve the coarse mesh problem itself. This modification, suggested for the first time
in 12], makes the analysis of the algorithm proposed here simpler than the one from 16]. We
conclude the paper with a report on some numerical results for constrained optimal control
problems.

In the remainder of this section we briefly describe the projected Newton iteration of
Bertsekas and our proposed algorithm for (1.1). We do not discuss the line search used in [5] to
ensure global convergence since the focus ofthis paper is fast algorithms for local convergence.
We take the position that the method from [5] is sufficient to obtain convergence fro. distant
initial iterates on coarse meshes and that the solution so obtained can be interpolated to provide
a good initial iterate on finer meshes.

The problem considered in [5] is to minimize a function f defined on a box in RN

ldN {u RS < u < <i<N}.Umin Urnax,

Here u denotes the ith component of the vector u RN and Umin, Umax RN are given. If f
is differentiable there is a solution u* and each solution satisfies the necessary condition

(1.10) u T’(u- Vf(u))

where, similarly to (1.2) for the continuous problem,

if u <Umin Umin,

(79u) u if < U <Umin Umax,
if U >Umax Umax.

The second-order sufficient condition for optimality of u* is that (1.10) holds and that the
matrix H given by

H Pa + pIV2f(u*)PI

be positive definite. Here PA is the projection

ui
(eAu) u

0

if (u,)i Umaxi and (Vf(u*)) < O,

if (u,)i Umini and (7f(u*)) > O,
otherwise,

and P= I- P,.
The iteration proposed in [5] is of the form

(1.11) Un+l ’9(Un otnH-lVf(Un)),

where

Hn PA,n + PI,nV2f(un) PI,n,

ctn is selected by an Armijo type rule, and P,4,n and PI,n are approximations to Pz and P,
respectively. The construction of Pa,, and PI,n in [5] ensures that in the iteration PA,,, P,4
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and Cn 1 for n sufficiently large. After the active set has been identified (when P,,n P,)
the iteration reduces to Newton’s method on the inactive set and therefore local quadratic
convergence holds. Crucial to the analysis in [5] is identification of the active set after finitely
many iterations. This allows one to reduce the analysis of the limiting behavior of the iteration
to that for Newton’s method.

For problems with a continuum ofconstraints, such as the ones under consideration in this
paper, identification of the active set after finitely many iterations is unlikely. To use the ideas
of [5] one must change the algorithm to take this into consideration and change the analysis
as well. In 2 we introduce notation and discuss the assumptions needed to make the estimate

Ilu u*llx < Kiln P(E(u))llx

for u sufficiently near u* and some constant K. This estimate is trivial in the finite dimensional
case if f is sufficiently smooth, u is an element of the sequence of iterates, and the active set
has already been identified. In the infinite dimensional case considered here attention must be
paid to the size of sets in which activity of the constraints is unclear. In 3 we show how the
algorithm in [5] can be extented to take the continuum of constraints into account and prove
a local convergence result. The results in these sections require only a modest smoothing
assumption. We show how the Atkinson-Brakhage algorithm can be used to create a fast
algorithm and present some numerical results in 4. The design of the fast algorithm requires
a stronger compactness assumption than the results in the earlier sections.

2. The basic estimate. In this section we state our assumptions on the nonlinearity and
show that for continuous u the error in the solution is proportional to the size of the nonlinear
residual in a neighborhood of the solution. We work in the space of continuous functions on
f2, C C(f2) and also on X L(f2), where C Ra. We assume that/C is a smooth map
on X and seek to solve the constrained compact fixed point problem

(2.1) ’(u) u 7’(C(u)),

where T’ is given by (1.2). We note that since KS maps Lp to C C(f2), the point evaluation
implicit in 79 is defined and therefore .T" is a well-defined map on X. The spaces X and C are
both given the sup norm, which we denote by IIx, and C is a closed subspace of X.

In keeping with the application to optimal control we will denote points in f2 by t. For
6 f2 we let U be given by

U(t) {u
_
X Umin(t) < u(t) <_ Umax(t)},

where Umin, Umax C C, and define the two point set

OU(t) {Umin(t), Umax(t)}.

If S C f2 we let Sc f2 \ S be the complement of S in f2. If S and T are subsets of f2
we denote the symmetric difference by

SAT (S tO T) \ (S fq T).

Throughout this paper Xs will denote the characteristic function of the set S and/z will denote
Lebesgue measure on Ra. We will let/(X, Y) be the Banach space of bounded linear maps
from a Banach space X to a Banach space Y and let COM(X) be the space of compact linear
maps on X.
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2.1. Differentiability, smoothing, and nonsingularity assumptions. We make the fol-
lowing differentiability assumption on

Assumption 2.1. There is a solution u* C to (2.1) and a neighborhood .A/" c X of u* in
which the/C is Lipschitz continuously Fr6chet differentiable in X and in C.

For future use we let , be the Lipschitz constant for the map/C and ’1 the Lipschitz
constant for the maps/C’.

Our smoothing assumptions are given in the following statements.
Assumption 2.2. There is p 1, cx) such that the family of maps {/C’ (u) }, where u .A/"

is a uniformly bounded subset of fl..(L p (f2), C). Let

(2.2) sup IIK:’(u)IIc(,().c) Mr.
ueA/"

An immediate consequence of these assumptions is stated in Proposition 2.1.
PROPOSITION 2.1. For all measurable S, T C f2 and u

II/C’(u)(xs- xr)llc _< Mxlz(SAT)/p.

We define active and inactive sets for u* by

A*= {tlu*(t) 0U(t)} and I*= {tlu*(t) int(U)(t)}.

In (2.3) int(U)(t) is defined to be the interval

and

int(U)(t) (Umin(t), Umax(t)).

For a measurable subset S of define

Es(u) XsE(u* + Xs(u u*))

s(u) u Es(u).

Clearly, we have .the following proposition.
PROPOSITION 2.2. Forall measurable I C f2 t is Lipschitz continuously Frchet differen-

tiable as a map on Xand LP. IfI is closed, I is Lipschitz continuously Frchet differentiable
as a map on C(I). Moreover there is M1, independent of I, such t.hat
(2.4) II’i(u)llc(c(I)), (ifI is closed), II(u)llc(x), II)(u)llc(,) _< M1

for all u .Af.
In Proposition 2.2, the action of(u) on to C(I) is understood to be given by extension

of to to zero on [0, T] \ I, application of )(u) to that extension, and restriction to I.
The next assumption is needed to make the extension of the projected Newton method

described in [5] converge quadratically.
Assumption 2.3. , I XI*/C’(u*)xI, is a nonsingular map on Xand on LP. There are

1 and M2 such that for every u ./V" and every measurable I C fl such that Ilu u* IIx <
and/z(IAI*) < r/1 the map (u) is a nonsingular map on C, on X, and on Lp, and

(2.5) 116)(u)- II<c), 116(u)-1 lie<x), 116(u)-111<,) _< M2.

The most simple analog of the iteration (1.11) from [5] is

(2.6) un+ 79(Un An.(un)),

where An is an approximation of .(u*)-. Construction of an extension of (1.11) that has
good L convergence properties requires a more complex iteration than that given in (2.6).
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Fundamental to the local convergence analysis of any Newton-like algorithm is a bound of the
error in terms of the size of Or The remainder of this section is devoted to such an estimate.

2.2. Assumptions and results on sets A* and I*. The next two lemmas are simple
consequences of the Lipschitz continuity of/C and the convexity of U. Before stating them
we recall some more notation. If S C Rk for some k and e Rk, we denote the distance from
to Sby

dist(t, S) inf{s 6 S s }.

Note that

(u) .(u) u -/C(u).

For u 6 C define

(2.7) K2(u) {t l(u)(t)l _> }, and 2 --(u*)-- {t l(u*)(t)l >_ }.

We require the following trivial lemma.
LEMMA 2.3. f2 C A* for all > O.
Proof. Since u*(t) 79(/C(u*))(t) either (u*)(t) 0 or u*(t) 79(/C(u*))(t) #

(/C(u*))(t). Hence if 2 then u*(t) is the image under 79 of a point outside of U and
therefore u*(t) OU. This means that A* as asserted. [q

Recall that we denote by ?’ the Lipschitz constant for/C in the set A/’; therefore, )7 1 + F
is the Lipschitz constant for in A/’. We have the following lemma.

LEMMA 2.4. Assume that Assumption 2.1 holds. There is cro > 0 such that if u C
satisfies

(2.8)

and > a, then

Ilu u*llx < a

f(u) c f_e c ,,1".

Proof Let 0 < 3/7 be small enough so that that (2.8) implies that u .IV’. Note that for
f(u),

IG(u*)(t)l >_ IG(u)(t)l a >_ a > O.

Hence _,, C A* and the proof is complete. [3

Assumption 2.4. There is v 6 (0, 1) such that Umax(t) > Umin(t) + v for all 6 2. A*
is the closure of a finite union of disjoint open components. There is co > 0 such that-for all
6 > 0 the sets

E {t Ra dist(t, OA*) < 3}

are uniformly bounded in measure by

(2.9) lz(E) < coa.
On each component of A* either u Umax or u Umin.

Moreover, there is c such that

(2.10)
I(u*)(t)l >_ cdist(t, OA*) for all 6 A* and

dist(t, A*) < c-(ldist(u*(t), OU(t)) for all 6 I*.



ALGORITHMS FOR CONSTRAINED FIXED POINT PROBLEMS 651

Note that (2.9) and the assertion that on each component of A*, either u Umax or u Umin
follow from the previous parts of the assumption if d 1. For d > 1 they may be viewed as
regularity conditions on the boundary of A*.

LEMMA 2.5. Let Assumptions 2.1 and 2.4 hold. Then there are c2 and 31 such that if
3 < 31, then 2 C A* and

u(A* \ f) <_ c2d.(2.11)

Proof Let

31 min(d0, 30/Cl),

where 30 and Cl are from Assumption 2.4. By Lemma 2.3 C A*. If A* \ Q, then
IG(u*)(t)l < and u*(t) U(t). Hence, by (2.10) from Assumption 2.4 for 8 1 0

dist(t, OA) < /c.

This implies that

A* C E/c
and therefore, by (2.9) from Assumption 2.4,

(A* ) Cocdd.
This completes the proof with c2 cocd. U

Let al min(a0, 8/:)/2. Under all of our assumptions, for a given u C such that

Ilu u* IIx < 1, we have by Lemma 2.4 that

3,(U) C ]2 C A*.

Define

(2.12) {tlE(u)(t) int(U)(t)} I*.

Since A* I* 0, Q* A* I*,2 C and C we can decompose Q into the disjoint union

(2.13) fl * U U R(u),2

where 32 /2 and

2.14) (u) (I u ;).
As a trivial corollary to Lemma 2.5 we obtain the following estimate.
COROLLARY 2.6. Let Assumptions 2.1 and 2.4 hold. If u C and Ilu u*llx < m then

u(g(u u h I*) * c:.
The next lemma will enable us to estimate the size of R(u).
LEMMA 2.7. Let Assumption 2.4 hold. There is c3 such thatfor all > 0

({tl dist(E(u*)(t), OU(t)) < }) c3d.(2.15)

Proof Let

S {tldist(1C(u*)(t), OU(t)) < 3}.

If 6 S fq A*, then

dist(/C(u*)(t), OU(t)) dist(/C(u*)(t), 79(1C(u*)(t))) I(u*)(t)l < 3

and hence, by (2.10) from Assumption 2.4, dist(t, OA*) < 3/q. Hence S (q A* C E/c.
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If S fq I* then (2.10) from Assumption 2.4 implies that dist(t, A*) < C’18 and
therefore S f I* c E/ct. Hence S C E/c, and therefore

Ix(S) < Ix(E/c,) < CoC?d8d.
This completes the proof with c3 coc-{d.

LEMMA 2.8. LetAssumptions 2.1 and2.4 hold. Then ifu C is such that Ilu-u*llx <_
and R (u) is defined by (2.14), then

(2.16) Ix(R(u)) <_ c38a2
Proof. If R(u) then I(u*)(t)l < z because R(u) f) fl* 0. We divide thed2

remainder of the proof into two cases, R(u) implies that I(u*)(t)l < 82 and that either
(1) 1C(u*)(t) . int(U)(t) or (2) IC(u)(t) q int(U)(t) and 1C(u*)(t) int(U)(t).

In case (1) I(u*)(t)l < 82 implies that dist(/C(u*)(t), OU(t)) < 82. In case (2), Lipschitz
continuity implies that

I/C(u)(t)-/C(u*)(t)l _< ,cr

and hence, since 1C(u*)(t) int(U)(t) in case (2),

dist(1C(u*)(t), OU(t)) <_ ytx <_ t71 < 82.

These estimates imply that

R(u) C {t dist(1C(u*)(t), OU(t)) < 82}

and therefore, by Lemma 2.7,

This completes the proof.
COROLLARY 2.9. LetAssumptions 2.1 and2.4 hold. Then ifu

crl, then

Ix([AI*) _< (c2 + 3)82d.

LEMMA 2.10. Let Assumption 2.1 hold. Then ifu X is such that u u* x < r then

7:’(1C(u)(t)) u* (t)

for all f2* and2’

lu(t)- u*(t)l _< II’(u)llx

for all 2"
Proof Let 6 f2* A*.2 C Without loss of generality we may assume that u* (t) Umax (t)

and 1C(u*)(t) > Umax(t) + 82. Since Ilu u*ll < r,

1C(u)(t) >_ K(U*)(t) 1/0" >_ Umax(t) "+" 82 0"1 > Umax(t).

Hence P(/C(u))(t) Umax(t) u*(t). Therefore

lu(t) u*(t)l lu(t) 7:’(/C(u)(t))l I’(u)(t)l _< II’(u)llx.

This completes the proof.
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2.3. The main estimate. Now we reduce t if necessary so that

(2.17) (c2 -- c3)2dwhere 01 is the bound in Assumption 2.3. This has the effect of reducing 32 and 0.1. By
Corollary 2.9 this implies that (u) satisfies (2.5).

We can now formally state and prove the main result in this section
THEOREM 2.11. Let Assumptions 2.1-2.4 hold. There are 0.2 > 0 and K > 0 such that if

u C and Ilu u* IIx _< 0"2, then

Ilu u*llx _< KIl(u)llx.

Proof. We let 0"2 0"1 for now. We will reduce 0"2 as the proof progresses. Let 0"*
Ilu u* IIx _< r2 and let II-(u)IIx . We will estimate 0.* in terms of e in the course of the
proof in a way that can be applied to show 0"* O(e).

Without loss of generality we assume that e < 0"* as if that is not the case the lemma
holds with K 1. We decompose the projected gradient map into three parts

u 79(E(u)) X(U 79(E(u))) + X(u)(U T’(E(u))) + xa,* (u 79(E(u))).

Since/C(u) u* on f2* by Lemma 2.10 and 79/C(u) =/C(u) on I by definition, we have

u 79E(u) XZ(U E(u)) + Xa,)(u ’(K:(u))) + Xn,* (u u*).

e. Therefore IleallxLet e u- u* e xie, eR XR(,,)e, and e Xa;2
e by Lemma 2.10. To analyze the sizes of el and eR, we note that/C is a Lipschitz continuous
map from LP(f2) to Xwith Lipschitz constant Mr, where Mr is the bound on
from (2.2), Hence

liE(u) l(u* + eI)llx ’lleallx + MKIIeRIIL, ’ -b MKIIeRIILp.

We write Xi(U 1C(u)) as

(2.18) XZ(u (u)) Xi(u E(u* + el)) + 1 (u) Xig(u) + 1 (u),

where

1 (U) X(]((U* -Jl" ei) ](u* q- ei -k- eR -t- e)).

Recalling that

IIK;’(u) IIZ(Lp,x) MK

for all u e .A/" we have, since IlellL, IleRllXlZ(R(u)) 1/p,

(2.19)
IIg’l (u)llx

Hence, by (2.5),

(2.20)

< ’lleallx + MKIleRIILp

<_ , + Mxlz(R(u))/Pllegllx <_ ,. + MKIZ(R(u))I/P0" *.

IleIIIx < M211l(u)llx < M2(9/ -+- MKcd3t$d2/P0"*).
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For convenience we rewrite (2.20) as

(2.21) Ilezllx __< C4(6 "" t2d/P0-*),
where Ca M2 max(),, Mxcd3).

Now, reduce d;1 if necessary so that

cd/p 1/(8),) and MK(c3d)1/p < 1/8.4o2

At this point we have shown that if dl is sufficiently small, then Ile < II’(u)II

IlelII _< c41l’(u)ll + a*/(8y).

We will obtain a similar estimate for Ile IIx and then apply these estimates to obtain the
conclusion Ilellx-- O().

Let XR<,,).T’(u). Letting er eI + e, we have

Ilerllx <_ (1 + C4)6 + 0"*/(8),).

Since u* 79(/C(u*)) we may write

eR + 2(u),

where

(2(u) X<u)(79(1C(u* + er + eR)) 79(K(u*))).

Since Ilellx

II’=(u)llx llerllx + II(E(u* + en))

(2.22)
5 ),((1 -- C4)? q- 0"*/(8),)) q- Mxlz(R(u))l/plleRllX

_< ),(1 + C4)5 - 0"*/8 -- MK(c3d2)I/P0" *

5 ),(1 @ C4) " 0"*/4.

Here we use the fact that 79 has Lipschitz constant because it is a projection onto a convex
set.

Noting that I1 IIx _< II(u)IIx , we have that

Ilegllx + II(z(u)llx g2 + 0"*/4,

where K2 1 + ),(1 + C4). Therefore

Ilellx r* _< Ilellx + Ilerllx _< (1 + C4 -1- K2) --I- 30"*/4

and

0"*/4 < (1 -I-C4 "- K2)6.

This completes the proof with K 4(1 + C4 + g2). 1-]
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3. The algorithm. In this section we describe our Newton-like iteration in broad terms.
The details of an efficient implementation will be presented in 4. Our first task is to formulate
the projected Newton iteration and analyze its convergence properties. Following that, it is
easy to describe the class of algorithms that we implement.

Assume that the assumptions of Theorem 2.11 hold. Let Uc C be such that Ilecll
where ec Uc -’u*. We let

II(uc)llx c,

Let/3 (0, 1). We define the sets

(3.1)
Ac {t T’(IC(Uc))(t) IC(Uc)(t), I(uc)(t)l >_ },
Ic {t179(E(Uc))(t) E(Uc)(t)},

Rc {t179(IC(uc))(t) E(Uc)(t), I(uc)(t)l < 3}.

Note that the point evaluations required to to determine the sets Ac, Ic, and Rc are well defined
since Uc C. Note also that Ic is a closed set because Umin and Umax are continuous.

Using (2.6) as an iteration would, as we shall see, not produce iterates that converge in
the uniform norm. We use an evaluation of K to remedy this. We propose the iteration

(3.2)

ul/3 XAcP](Uc) 21- XIcORclC)
/,/2/3 ul/3 Ic (ul/3)-l’"(ul/3)’
u+ 79(K(u2/3)).

In the final form of the algorithm we advocate here, we will replace

tlc (ul/3)-I’(U 1/3)

with an approximation of the action of)c (ul/3)-1 on .T’(u 1/3) that can be evaluated efficiently.
We note here that even though the intermediate iterate u 1/3 is not continuous on [0,T], it is
everywhere defined and continuous on the set Ic t3 Re, and particularly on the closed set Ic;
and so methods for approximation of integral operators on the space of continuous functions
are applicable to the approximation of the action ofc (ul/3)-l" We defer the construction of
this approximation to 4, and in this section consider (3.2) and estimate e2/3 in the LP norm,
where p is the exponent in Assumption 2.2. That estimate leads directly to a uniform estimate
for e+ u+ u* by Assumption 2.2.

LEMMA 3.1. Let Assumptions 2.1-2.4 hold. Let r2 and K be the constantsfrom Theorem
2.11. Let Uc X be such that

(3.3) Ilecllx <_ min{cr2, (1/2 + y/K)-I/C-O/y, v/y}

then Ac C A* and U 1/3 12" on Ac.
Proof. Since c < F Ilecllx, (3.3) implies that

(3.4) t 1-/3 < (1/2 + y/K)-1.

Let Ac, since

I(u*)(t)l _> I(Uc)(t)l- ’llell _> ff- y3/K >_ /2

by (3.4). Hence Ac C A* by Lemma 2.3.
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To complete the proof, note that if 6 Ac then 1C(u)(t) OU(t). As

lu*(t)- T’(E(u*))(t)l--17:’(E(u))(t)- 7:’(E(u*))(t)l _< ’llecllx < v

we must have u*(t) T’(/C(u))(t) ul/3(t) for Ac. This completes the proof.
The set Rc is small. This is made precise, by the following lemma.
LEMMA 3.2. Let Assumptions 2.1-2.4 and (3.3) hold. Then if uc X is such that

(3.5) Ilecllx < (V K)-I/(-P)/’,

then

lz(Rc) < c33d3c/d,
where c3 is the constantfrom Lemma 2.7.

Proof. By (3.3) Ilellx < 1/r’. Note that if Re, then 79(1C(Uc))(t) OU(t) and also

I1C(Uc)(t) 7:’(E(Uc))(t)l <_ I(uc)(t)l + I.(Uc)(t)l

The last estimate follows from the assumption that Ilecllx < 1/,, which implies that 3 < 1.
Therefore

Rc C {t dist(1C(Uc)(t), OU(t)) < 2dc#}
c {tldist(E(u*)(t), OU(t)) < 2d + 711ecll}
C {tldist(1C(u*)(t), OU(t)) < 2 + PKc}
C {tldist(1C(u*)(t), OU(t)) < 3c#}.

The last estimate above follows from (3.5). The conclusion of the lemma is a direct application
of Lemma 2.7.

Ac will serve as the approximation to the active set. An immediate corollary of Lemmas
3.1 and 3.2 is a theorem on identification of the active set.

THEOREM 3.3. Let Assumptions 2.1-2.4 and (3.3) hold. Assume that 5c < 1. Then there
is ca such that

A* \ c <_ c/.
Proof If A* \ Ac then either Rc or /c fq A*. If /c (q ,4* then (Uc)(t)

’(Uc)(t) and Assumption 2.4 implies

cldist(t, 0,4*) _< I(u*)(t)l _< i(Uc)(t)l + yllecllx

This implies that

and therefore

I’(Uc)(t)l + ’llecllx < c(1 + ?,/K).

Ic f3 A* C Ec?,c(+r/K

tZ(Ic (q A*) <_ co(c-ldc(1 + y/K))d.
This completes the proof as A* \ dc C Rc U (/c N A*) with

CA C3 "+" C0(C-1 (1 + )t/K))d. ff]

The reader should compare the following lemma with (2.18) and (2.19) that used a similar
decomposition of to obtain a similar result.
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LEMMA 3.4. Let Assumptions 2.1-2.4 hold. Let Uc satisfy the assumptions ofLemma 3.2.
Then lel/3(t)l < lec(t)lfor all 2, and there are wc X and Kw > 0 such that

and

Ilwcll,() Kwllecllxaf/(pa)

T’(ul/3) Xicic (u* + Xicel Wc.

Proof. By Lemma 3.1, X,c(u/3) xAce/3 0. Hence

.T’(ul/3) ul/3 79(]C(U* + XIctRcec))

XIcURc (U/3 79(E(u* + XuRec))).

By Lemma 3.2,

where

C5 (c33d) lip.

Similarly,

II/C(u* -+- xzcec + xRec) 1C(u* + Xicec)llx <_ MIllecllxlz(Rc) lip <_ c61lecllxB/pd),
where c6 MlcCs. Hence if we let

Wc XR(Uc/3) + Xic(1C(u* + xIec + xRcec) 1C(u* + xec)),

note that for any f X, IlfllLp < #(f2)/Pllfllx, and set Ko (1 + lz(fDl/PMg)cs, then
the proof is complete.

A trivial corollary of the proof is found in Theorem 3.5.
THEOREM 3.5. Let Assumptions 2.1-2.4 hold. Let Uc C satisfy the assumptions of

Lemma 3.2 and assume that Ilecllz, Ilecllx < 1. Then there is Ke such that

+(/pd)(3.6) IleZ/3ll, _< Kpllecllx

and there is KN such that

l+(:/pd)(3.7) Ile+llx _< KNIlellx
Proof. By Lemma 3.4,

U2/3 ul/3 , (ul/3)-IIc I (u* + xe/3) c (ul/3)-lwc"

By Assumption 2.3, I1 (u/3)-111, _< M= and hence by Lemma 3.4

IIG’i(u/3)-wcllLp <_ M2gwllecllxSc/(pa)
+(:/pa)<_ M2KwPp/(pd) ec x

By standard estimates for Newton iterates and Assumption 2.3

Hence

lie/3 6tlc (Ul/3)-16ic(u* -JI- Xlce/3)llx <_ Mzllel/311x/2.

lie/3- 6tlc (Ul/3)-lIc (U* -Jr" xic el/3)llz <_ lz(K2)/PM2llel/31lx/2.
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The first assertion therefore holds with

K? M.Kw::’/(l"a) + Iz()I/PM2/2.
The second assertion follows from Assumption 2.2 with

Ks MrKo.
This completes the proof. D

The algorithms we implement replace )c (Uc)- in (3.2) with an approximation. The
behavior of these algorithms is described by the next theorem, which is a direct consequence
of Theorem 3.5.

THEOREM 3.6. Let the assumptions of Theorem 3.5 hold and let u+ be defined by

(3.8)
u 113 XA,79E(Uc) + Xz,uRUc,
u2/3 u 1/3 B --(ul/3),
u+ "P(K(u2/3)),

where

II(B-1 ’ (ul/3)-1

Then there is Kc > 0 such that

+(/pd)(3.9) Ile+llx _< gNIlecllx + gcPcllecllx.

Proof. This follows directly from Theorem 3.5 with Kc MIy. To see this, note that

Ile2/311z _< KpIlellx+(p/Pd)-t-Pll(ul/3)llx
<_ gPIleclllx+(p/pd) + ?’Pcllecllx.

Finally, we give an inexact variant of Theorem 3.5. The analysis is like that of the finite
dimensional case [9].

THEOREM 3.7. Let the assumptions of Theorem 3.5 hold and let u+ be defined by

(3.10)
U 1/3 XAcS].(Uc) -I- XlcJRc Uc,
U213 U 113 "Jr" ,
U+ ’P(E(U2/3)),

where X N C(Ic) and

(3.11) IIG’ (ul/3)z )11, _< pcll(u )llx.

Then there is K1 > 0 such that

+(/pd)(3.12) Ile+llx _< gNIlecllx + gzPcllellx.

In particular, if Pc P is independent of Uc N’, we have q-linear convergence and if
Pn 0 as n --+ cx the convergence is q-superlinear.

Proof. Note that

e2/3 el/3 (ul/3)--I’(U 1/3)

--c (ul/3)-I ()c (ul/3) -" ""(U 1/3))"
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Hence, as in the proof of Theorem 3.5,

1-1-(/pd)I1e2/311. _< gPIlellx + M2pll.,V(u/3)llx

<_ g,llelllx+(/pa / M2ePllecllx.
Therefore

Ile+llx _< Mrlle2/311
+(p/pd)<_ Mr(K,llellx + M2’Pllellx).

Setting K1 MrM2y completes the proof.

4. Implementation and an example. As in [16] we construct the operators Bc using
a collectively compact sequence of approximations to/C. Recall that a family of maps
{K},x C/(X, Y) is collectively compact if

is precompact in Y for every bounded set B C X.
We incorporate an estimate ofthe set Ic using a "coarse mesh" approximation. We consider

a sequence of approximations {Km to K. We refer to the equation u 79(]m(U)) 0 as
the equation for level m. Such approximations can be obtained, for example, by replacing the
integral in (1.3) by a quadrature rule. Typically the problem at level m is equivalent to a finite
dimensional problem of dimension Nm, say. Our compactness assumption is given below.

Assumption 4.1. The sequence of maps Km converge strongly to/C in A/" and the family
{1Cm (U)}m<_,u is uniformly Lipschitz continuous as a family of maps from N" to .(Lp, C)
and is a collectively compact subset of/(X, C).

In Assumption 4.1,/C =/C. In the case of smooth nonlinearities, [2], [13], Assump-
tion 4.1, solvability of’(u) 0, uniform Lipschitz continuity ofthe family {/Cm (u)}m<_.ue,
and nonsingularity of .T"(u*) would imply that um ]m(Um) would have a solution for m
sufficiently large and that um u* in X. In the nonsmooth case considered here we must
assume that the approximate problems have solutions that converge to u*.

Assumption 4.2. For m sufficiently large there is a solution to the fixed point problem
Um ],(Um) E C. um converges uniformly to u*.

Our algorithm, like the original Atkinson-Brakhage algorithm, [3], [6], or multigrid
methods of the second kind 11 ], begins with a coarse level for which the problem at that
level is solved. The Atkinson-Brakhage approach uses low-level information to construct an
approximate inverse Bt that is used to solve the problem at a higher level L. Our general
scheme may be described in terms of the transition from a solution uL at level L to a solution
uL+I for level L + 1. The initial iterate at level L + is u+1 u. We apply the iteration
(3.2) with Bc B+ until IlY’/ (u/)llx -< /1, where er+l is an estimate for truncation
error at level L + 1. For a sufficiently fine coarse mesh one would hope to require only one
iterate for each fine level L. Any necessary transfer of information between grids between
levels can be done through Nystr6m interpolation [3] or directly by polynomial interpolation
[14], [16].

The remaining issue is the construction of the maps B. We denote

,s(u) I- xslC;(u)xs
and let

II {t ]C(ul) ’P(K(u/))}.
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We describe the action of (Bt)- on a function v by the basic formula

(4.1) (Bt)-lv V + XicXlt,it(ul)-lxitxic]tL(Uc)Xlcl).
In (4.1) Uc is the current iterate at level L for the computation of uL. Assumptions 2.2, 4.1,
and 4.2 imply that Bt will satisfy the assumptions of Theorem 3.5 with p independent of L if
the index of the lowest level, l, is sufficiently large. As with the original Atkinson-Brakhage
iteration, (4.1) is an approximation to a two-term Neumann series expansion of((Uc))-.

In 16] the levels corresponded to piecewise linear approximations ofthe functions and the
equations at the levels were equivalent to nonlinear equations for the values of the piecewise
linear functions at the nodal points. The action of the fine mesh derivative w =/C’(uc)v was
approximated by a difference quotient. The action of (I -/j(u1))- was approximated by
forming I 1(u1) as a matrix by numerically differentiating in coordinate directions, forming
an LU factorization of the resulting matrix and storing the factors. Then w was projected onto
the coarse mesh, the equation (I 1C(ut))z w was solved, and z extended to the fine mesh.
The final approximation was B-lv v z. Of course, a similar technique could be used for
the constrainted problems considered here, setting

W XIt XlcitL (llc)XIc U,

forming a matrix equivalent of,Ii and factoring it, and then using that factorization to compute
z (,i)-w. Instead, we follow the technique of [12] and use a GMRES [19] iteration with
a discrete L2 inner product to solve a finite dimensional problem associated with the linear
system

(4.2) ;, (ut)z w,

and then use interpolation to approximate the solution to (4.2). The matrix-vector products
that are required by GMRES are done with a forward difference approximation to the action of
the Fr6chet derivative. As our assumptions on the family {/Ct will guarantee that the condition
number of I 1C(ut) is bounded independently of l, the results in [18] guarantee that the
behavior of a GMRES iteration will be mesh independent in the sense of ].

The theory in 16] allowed for inaccuracy in the evaluation of/EL, which can be introduced,
say, by the control of relative and absolute errors in adaptive integration codes or ordinary
differential equation (ODE) codes like DASSL. In 16] we showed how one should adjust this
accuracy to take into account the expected error u u* xo That analysis can be incorporated
here in a direct way in the evaluation ofthe difference approximations to directional derivatives
1C(u)’w that are required by both the Atkinson-Brakhage algorithm in the approximation of

K at the fine mesh level and the solution of (4.2) by Newton-GMRES iteration. In [16] the
analysis was complicated by the numerical Jacobian, and additional accuracy was needed in the
coarse mesh function evaluations. The use ofGMRES eliminates some of that complexity. As
in [16] the use of inaccurate function evaluations introduces an absolute error in the iteration.
Making this absolute error smaller as the iteration progresses means that the convergence rate
of the algorithm becomes r-linear.

Assume that the compact fixed point maps,/Cm, can be evaluated to a given absolute
accuracy rm, with smaller values of rm resulting in a increase of the cost of the nonlinear
function evaluation. In the case ofthe method oflines solution ofa parabolic partial differential
equation, for example, rm would be the absolute error tolerance given to the routine that
performs the integration in time. Letting hm O(-m), we approximate the action of/C, (u)
on a vector w by the forward difference map

Am(u, tO) [ 0, tO 0,

w IIx c’+h’/llwll’>-c<u),m w O./
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Am(U, W), though nonlinear in w, approximates/Cn (u)w up to a relative error of O(ht). We
have

(4.3) IIAm(U, w) E’m(U)wlIx < (’/2)hmllwllx.

Hence ,I! ut)z, which is used in the construction of the Atkinson-Brakhage approximate
inverse, would be approximated by

Gt(ut, z) I- XiIAt(u, XllZ).

The effect of this approximation is that in the evaluation of the action of the Atkinson-
Brakhage approximate inverse given by (4.1), w =/C (Uc)Xrc v is approximated by At (Uc, v)
and an error of O(hI.llvllx) is made. Then z ,t(ut)-lxlYo is approximated by , where

is computed by using GMRES to solve 9,It (ut) X Co with Gt(ut, z) used in the matrix-
vector product routine whenever ,It ut)z is requested and an approximate La inner product
used in the GMRES routine itself. We use the zero function as the initial iterate to GMRES
and request a reduction in the residual by a factor of/5. Following [8], we assume that the
GMRES routine returns a vector that satisfies

(4.4)

In (4.4), 112,t is the norm associated with the approximate L2 norm for level l. In our
examples from control problems, I1" 112,z I1" II= and the functions at level are piecewise
linear. In the example from integral equations the approximate inner product is given by a
quadrature rule. In either case there are C > 0 and Nt --+ o such that

(4.5) N-II IIx _< I1" 112,z _< Coll. IIx.
We can use (4.4) and (4.5) to obtain a uniform estimate

(4.6)

Using (4.3) we have

IIGz(d, E) xz,,llx <_ NtCllxi, ffllx.

IIGz(ut, z") (ut)llx _< (’hz/2)llllx

and hence by Assumption 2.3, if ht < 2/(M2’),

MellGz(ut, z-)llx M
II-llx _< <

1 M2’ht/2 1 M2’ht/2

Hence if

Ilxz, Wllx(] / NC).

(4.7)

we have

NlCoo < 1 and hl _< 1/(M2’),

IIllx _< 4M Ilxz, Co lIx.

Summarizing, if (4.7) holds, then

IIG;(ut) Xi, Collx < (NtCoo + 2M2?’ht)llxI, Collx.

This leads us to the rule to thumb that h O(NI) as a guide to selection of the accuracy
required by a coarse mesh function evaluation. Also we get insight into the tolerances/5 and
rl O(ht) from (4.7).
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If a Newton-GMRES [8] iteration is used, Theorem 3.7 and the analysis above provides
guidance in the choice of hc as a function of Nc and Pc, where Pc is the factor in (3.11). In the
computations reported below, we set Pc =/5 .001 with a view toward makingNC and
,On small.

The overall effect of the GMRES approximations is to introduce a relative error of
O(N + ht + hL) into the approximate Newton iteration and, if N + ht + hL is suffi-
ciently small, the overall rate of r-linear convergence will be preserved. Approximating .T’L
will introduce an absolute error of rL and accordingly r. should be reduced as the grids are re-
fined to approximate the expected truncation error. Note that it is not necessary to approximate
1CL (Uc), which is used in the evaluation of.T’L, and the perturbations used in the approximation
of/C to the same accuracy. We use an accuracy of rt for the perturbed evaluation since that
does not change the size of the relative error in Bf 1.

As in [16], for an example we consider maps/C defined by

1C(u) -d(t, 1)/or,

where for x (0, 1) and e (0, T),

(4.8)

-dr dxx + f(t, x), d(T, x) y(T, x) z(x),

dx(t, O) ht(t), dx(t, 1) hr(t),

Yt Yxx + f (t, x), y(O, x) yo(x),

yx(t, O) gt(t), yx(t, 1) gr(y(t, 1)) + q(t) + u(t)

where the right-hand sides and boundary values can be used to specify a solution to the problem.
Discretization in space was by piecewise linear finite elements. The mesh at level L consisted
of the L + 1 points {i/L}i=o The functions/EL were evaluated by using DASSL to solve the
systems of ODEs obtained by discretizing (4.8) in space and setting the absolute error to
The sets Ac, Rc, and Ic were specified as in (3.1) with/3 .

In the computations we set the right-hand sides and boundary conditions so that the
solution to (4.8) was

y(t, x) (1 + xt)/(1 + x2t)

and

d(t, x) ct(1 x(2x(1 t) 1)2)(1 exp(-(t 1/4)2)),

with

u*(t) 79(d(t, 1)/ct) 7’((1 (1 2t)2)(1 -exp(-(t 1/4)2))).

We imposed constraints given by

Umax(t) 1 + 10(t- .5)2 and Umin(t) t/4.

The solution to (1.1) is plotted in Figure 1. The solution is Lipschitz continuous but not
differentiable. Hence we would expect piecewise linear approximations to be first-order
accurate.

We have constructed the examples in such a way that tthe solution u* does not depend on
u. The reason for this was to isolate the ill conditioning that arises from small values of ot in
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FIG. 1. Plot ofu*.

the operator and to make it possible to directly compare results for different values of . We
report results for t 1, .5, .25,. 1. Since the Lipschitz constants of/C are proportional to
and the solution of the linear equation for the step becomes very sensitive to high frequency
perturbations of the solution for small ct, one would expect that finer coarse meshes and more
accurate initial iterates will be required for the smaller values of ct. This is the case for both
the Atkinson-Braldaage and Newton-GMRES forms of the algorithm.

The maps/EL were constructed exactly as reported in 16] and the absolute accuracy of
the function evaluation at level L was rL .001/L, consistent with the expected first-order
accuracy. In the forward differencing we used ht .1//-. In the computations we used a
coarse mesh of Nt / points. Consistently with our requirement that h 0(Nt) we
set/5 .01. The iteration at the coarse mesh was terminated when II(u)ll < t 10-4.
The iteration at a higher mesh level L was terminated if II(u)ll < .O1/L. For both
methods considered, projected Newton-GMRES and the Atkinson-Brakhage iteration, only
one outer iterate was required for termination at the higher mesh levels. After that the mesh
spacing was halved and the iteration continued. The initial iterate was

uo 79(u(t) + sin(t)(t .5)t).

3 controls the size of the initial iterate error and was reduced as ct is reduced. The number of
points in the coarse mesh Nt is increased as ct is reduced.

In the tables that follow we report the norm Vn of J:’L at each iterate n and for the final iterate
(n=l) at each level the ratio Vl/VO and the number of GMRES iterates I6 required for (3.11)
to hold in the case of Newton-GMRES or needed to solve (4.2) in the case of the Atkinson-
Brakhage iteration. In the header for each table we report ct, 3, l, and the computation time
Tc in seconds.

All computations were done on the CRAY Y-MP at the North Carolina Supercomputing
Center running UNICOS 6.0. All codes were written in CRAY FORTRAN cft77 version
5.0.0.0. Computation times were taken from the output of the CRAY hardware performance
monitor.

We report on two methods of solution. The first, reported in Tables 1-4, is a direct
Newton-GMRES approach that satisfies (3.11) with a GMRES iteration, using Pc .001.

In Tables 5-8, we report the results of the Atkinson-Brakhage algorithm using 3 .001.
In both methods a fine mesh function evaluation was used to test for termination. A

more efficient approach would be to see if the function norm at the next finer mesh has the
predicted size of half the initial evaluation at the previous mesh. This would not avoid the
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TABt,E

Projected Newton-GMRES.

a 1.0, 8 .1, 20, Tc 669
L n IG Vn vn/vn-
20 0 0.23E-01

3 0.26E-03 0.11E-01
40 0 0.70E-01

3 0.11E-02 0.15E-01
80 0 0.38E-01

3 0.39E-03 0.10E--01
160 0 0.14E-01

3 0.59E-05 0.42E-03
320 0 0.63E-02

3 0.15E--04 0.25E-02
640 0 0.45E-02

3 0.24E-05 0.54E-03
1280 0 0.28E-02

3 0.63E-05 0.23E-02
2560 0 0.68E-03

3 0.31E-07 0.45E-04
5120 0 0.42E-03

3 0.47E-06 0.11E-02

TABLE 2
Projected Newton-GMRES.

a .5,8 .1, 40, Tc 745
L n IG Vn vn/vn-
40 0 0.20E-01

3 0.53E--03 0.27E-01
80 0 0.37E-01

4 0.11E-02 0.30E--01
160 0 0.18E-01

3 0.11E-03 0.63E-02
320 0 0.66E-02

3 0.54E-04 0.81E-02
640 0 0.45E-02

3 0.17E-03 0.38E-01
1280 0 0.31E-02

3 0.16E-04 0.51E-02
2560 0 0.65E-03

3 0.15E-05 0.23E-02
5120 0 0.42E-03

4 0.58E-07 0.14E-03

fine mesh function evaluation to test for termination at the finest and ultimate mesh. Hence
at least four fine mesh function evaluations per level were done: one to compute 1E(Uc), one
to compute/C(ul/3), one to compute u+ T’(]C(u2/3)), and one to test for termination. The
Newton-GMRES required one additional fine mesh evaluation for each inner iterate, while
the Atkinson-Brakhage method required a low accuracy (i.e., using rt instead of r.) fine
mesh function evaluation to compute 1C(Uc) via a difference in (4.1) and at most a few
coarse mesh evaluations for the GMRES iteration. This accounts for the advantage in the
Atkinson-Brakhage method, which, as the tables show, executes in roughly 60% of the time
of Newton-GMRES. Note that for the computations reported in the tables that required more
GMRES iterations in the inner iteration of Newton-GMRES, the advantage of the Atkinson-
Brakhage method was larger. Having said that, the nested iteration form of Newton-GMRES
is still a fast algorithm for compact fixed-point problems since the number of inner iterations
required at each mesh level is bounded independently of the mesh size.
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TABLE 3
Projected Newton-GMRES.

a .25, .05, 80, Tc 651
L n lt vn v,,lv,,_
80 0 0.18E-01

3 0.14E--02 0.74E-01
2 2 0.21E-04 0.16E-01

160 0 0.15E-01
3 0.63E-03 0.42E-01

320 0 0.59E--02
3 0.49E-03 0.83E-01

640 0 0.50E-02
4 0.13E-03 0.26E-01

1280 0 0.29E-02
3 0.72E-04 0.25E-01

2560 0 0.74E-03
3 0.49E-05 0.67E-02

5120 0 0.42E-03
3 0.16E-05 0.37E-02

TABLE 4
Projected Newton-GMRES.

t 1, ; .025, 640, Tc 730
L n IG Vn Vn/Vn-
640 0 0.22E-01

3 0.68E-02 0.33E+00
2 2 0.29E-03 0.43E-01

1280 0 0.26E-02
4 0.35E-03 0.14E+00

560 0 0.85E-03
3 0.96E-04 0.11E+00

5120 0 0.48E-03
3 0.27E-05 0.55E-02

TABLE 5
Atkinson-Brakhage iteration.

c 1.0, 8 .1, 20, Tc 391
L n IG I) I)n/I)n-I
20 0 0.23E-01

3 0.26E-03 0.11E-01
40 0 0.70E-01

3 0.82E-03 0.12E-01
80 0 0.38E-01

3 0.17E-03 0.45E-02
160 0 0.14E-01

2 0.88E-04 0.63E-02
320 0 0.63E-02

2 0.19E-04 0.30E-02
640 0 0.45E-02

3 0.14E-05 0.31E-03
1280 0 0.28E-02

3 0.11E-05 0.38E-03
2560 0 0.69E-03

3 0.52E-06 0.75E-03
5120 0 0.42E-03

3 0.14E-06 0.34E-03
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TABLE 6
Atkinson-Brakhage iteration.

ct .5, d 1, 40, Tc 444
L n IG Vn Vn/Vn-I
40 0 0.20E-01

3 0.53E-03 0.27E-01
80 0 0.37E-01

3 0.12E-02 0.32E-01
160 0 0.18E-01

3 0.74E-03 0.42E-01
320 0 0.76E-02

3 0.14E-03 0.18E-01
640 0 0.48E-02

3 0.38E-04 0.79E-02
1280 0 0.29E-02

3 0.14E-04 0.50E-02
2560 0 0.65E-03

3 0.44E-05 0.67E-02
5120 0 0.42E-03

3 0.26E-05 0.61E-02

TABLE 7
Atkinson-Brakhage iteration.

ot .25, .05, 80, Tc 428
L n ZG Pn I)n/l)n-1
80 0 0.18E-01

3 0.14E-02 0.74E-01
2 2 0.21E-04 0.16E-01

160 0 0.15E-01
3 0.43E-03 0.28E-01

320 0 0.67E-02
3 0.25E-02 0.37E+00

640 0 0.69E-02
2 0.21E-03 0.30E-01

1280 0 0.30E-02
2 0.24E-03 0.82E-01

2560 0 0.60E-03
2 0.57E-05 0.96E-02

5120 0 0.42E-03
2 0.70E-06 0.17E-02

TABLE 8
Atkinson-Brakhage iteration.

t 1, 6 .025, 440, Tc 446
L n I Vn Vn/Vn-I
640 0 0.22E-01

3 0.68E-02 0.33E+00
2 2 0.29E-03 0.43E-01

1280 0 0.26E-02
3 0.15E-03 0.60E-01

2560 0 0.67E-03
4 0.24E-04 0.35E-01

5120 0 0.42E-03
4 0.83E-05 0.20E-01
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PRECONDITIONED RICHARDSON AND MINIMAL RESIDUAL
ITERATIVE METHODS FOR PIECEWISE HERMITE BICUBIC

ORTHOGONAL SPLINE COLLOCATION EQUATIONS*
BERNARD BIALECKI

Abstract. The preconditioned Richardson and preconditioned minimal residual iterative methods are presented
for the solution of linear equations arising when orthogonal spline collocation with piecewise Hermite bicubics is
applied to a selfadjoint elliptic Dirichlet boundary value problem on a rectangle. For both methods, the orthogonal
spline collocation discretization of Laplace’s operator is used as a preconditioner. In the preconditioned Richardson
method, an approximation of the optimal iteration parameter is computed from knowledge of spectral equivalence
constants. Such a priori information is not required for the preconditioned minimal residual method. In each iteration
of both methods, orthogonal spline collocation Poisson’s problems are solved by a fast direct algorithm which
employs fast Fourier transforms. An application of the preconditioned minimal residual method is also discussed for
the solution of linear equations arising from the orthogonal spline collocation discretization of nonselfadjoint elliptic
Dirichlet boundary value problems.

Key words. Dirichlet boundary value problem, orthogonal spline collocation, preconditioned iterative methods,
Richardson method, minimal residual method, fast Fourier transforms
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1. Introduction. Consider the Dirichlet boundary value problem

Lu f(x, y), (x, y) f2 (0, 1) x (0, 1),
(1.1)

u (x, y) O, (x, y) 0

where L is the selfadjoint elliptic differential operator given by

(1.2) Lu a(x, Y)x b(x, y)y + c(x, y)u.

(The homogeneous boundary condition in (1.1) is chosen to simplify the presentation.) Let
{ti N}i--0 be a uniform partition of [0, such that ti ih, where h -. Let .h//h be the space
of piecewise Hermite cubics on [0, defined by

.A/[h {v E cl[0, 1]’vl[t,,t,+,] E P3, 0, N- 1, v(0) v(1) 0},

where P3 denotes the set of all polynomials of degree < 3. Let Vh be the space of piecewise
Hermite bicubics on f2 defined by Vh Adh (R) .A//h; that is, Vh is the set of all functions on f2
that are finite linear combinations of products of the form v(x)w(y), where v, w 6 A//h. Let
{j }j2.__N be the Gauss points in (0, 1) given by

3-,/5 3+,/5
2i+ ti +h, 2i+2 ti +h, 0 N- 1,

6 6

and let be the collection of Gauss points in f2 defined by {(x, y) x, y {j}}=N }.
The piecewise Hermite bicubic orthogonal spline collocation solution to (1.1) is a function
uh 6 Vh such that

(1.3) Luh() f(), .
*Received by the editors May 18, 1992; accepted for publication (in revised form) December 22, 1992. This

research was supported in part by National Science Foundation grant CCR-9103451.
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Sufficient conditions for the existence and uniqueness of uh were given recently in [2],
where the O(h3) rate of convergence of uh to the exact solution u in the Hi-norm was also
established.

When finite difference or finite element Galerkin methods are used to discretize (1.1), the
resulting linear systems have symmetric, positive definite coefficient matrices. Such systems
can be solved efficiently by the preconditioned Chebyshev or preconditioned conjugate gradi-
ent methods (see, for example, [3], and [14, 6.2 and 8.4.1]) in which the discretization of the
Laplacian plays the role of a preconditioner. In conjunction with alternating-direction meth-
ods, the idea of preconditioning finite difference linear systems was proposed by D’yakonov
[6], and has been used by many researchers for the last three decades. For orthogonal spline
collocation, the situation appears to be more complicated than that for a finite difference or
a finite element Galerkin discretization, since even for Poisson’s equation, the matrices aris-
ing from (1.3) are nonsymmetric. However, it was shown recently in [2] that the orthogonal
spline collocation Laplace operator generating such matrices is selfadjoint and positive def-
inite with respect to the discrete inner product, .which is defined in terms of the composite
Gauss-Legendre quadrature rule. Moreover, fast direct solvers based on fast Fourier trans-
forms have been also developed in for linear systems arising from the piecewise Hermite
bicubic orthogonal spline collocation discretization of Poisson’s equation. It is the purpose of
this paper to discuss applications of these solvers to one-step preconditioned iterative methods
for the solution of (1.3). Although the orthogonal spline collocation operator corresponding
to this problem is not selfadjoint with respect to the discrete inner product, nevertheless it
is spectrally equivalent to the orthogonal spline collocation Laplace operator. This spectral
equivalence makes it possible to employ the preconditioned Richardson method and also the
preconditioned minimal residual method that does not require a priori information for the
selection of the iteration parameters.

Some recent works on preconditioned iterative methods for solving linear systems arising
from discretizations of elliptic boundary value problems include [9] and [10]. In [9], the
preconditioned conjugate gradient method applied to normal equations and the preconditioned
Orthomin method were used for the solution of finite difference linear systems corresponding
to nonselfadjoint elliptic boundary value problems. It was shown that the convergence rates
of these methods were independent of the partition mesh size. In 10], the effect of boundary
conditions was discussed on preconditioning discrete linear systems on the left and on the right.
Conditions were given under which the condition numbers of the preconditioned matrices
were uniformly bounded. It should be noted that preconditioned iterative methods based on
spectrally equivalent operators have serious limitations. Even though the numbers of iterations
in such methods are independent of the partition mesh size, they may still be quite large if the
variations in the differential operator coefficients are large. This drawback of preconditioned
iterative methods is characteristic of orthogonal spline collocation, finite difference, and finite
element Galerkin discretizations.

A brief outline of this paper is as follows. The preconditioned Richardson and precon-
ditioned minimal residual iterative methods for solving nonselfadjoint equations in a general
Hilbert space framework are discussed in 2. These methods for solving the orthogonal spline
collocation equations (1.3) are presented and analyzed in 3. In 4 an application of the
preconditioned minimal residual method is considered for the solution of (1.3) when the dif-
ferential operator L is nonselfadjoint. Finally, 5 contains results of numerical experiments
and a brief discussion of these.

2. Preliminaries. In this section, following the approach of 14], we present the precon-
ditioned Richardson and preconditioned minimal residual iterative methods for the solution of
a nonselfadjoint positive definite linear operator equation in a general Hilbert space setting.
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Let H be a finite dimensional Hilbert space over the field of real numbers and let (., .)
and ") denote the inner product and norm in H, respectively. Let A be a linear
operator from H into H. An operator A* from H into H such that (Av, to) (o, A’w) for
all v, w H is called the adjoint operator to A. The operator A is said to be selfadjoint if
A A*. The operator A is said to be positive definite (A > 0) if (Av, v) > 0 for all nonzero
v H. If A is selfadjoint and positive definite, then Ilvll /(AV, v) denotes the energy
norm of v H induced by A. The norm of the operator A is defined in the usual way, that is,

ilAII SUpx0 IIAxll/llxll. If A and B are two linear operators from H into H, then A < B
means that (Av, v) < (By, v) for all v H. In the following, E denotes the identity operator
in H.

The following result plays an important role in establishing convergence rates of the
iterative methods discussed in this paper.

LEMMA 2.1. Assume that the linear operators A and B from H into H and the real
numbers Fi, 1, 2, 3, are such that

(2.1) B=B*>0, ?’B<A<y2B, )/1 >0,

and

(2.2) (A* A)B-1 (A A*) _< 4Y32B, g >_ 0.

2
(2.3) (1 px),

YI+Y2

where

(1 + tc)y2 (1 K)/1 Y3(2.4) p x
(1 --F- K)y2 --F- (1 K)y1

V Y2 +

then

(2.5) liE D/ZB-1AD-1/2II < p

for any D S’S, where S is a linear nonsingular operatorfrom H into H such that

(2.6) SB-AS- B-/2AB-/2.

Proof Setting A B-/2AB-/2, it is easy to verify that

liE- :D1/2B-1AD-/uI[- liE- rll, v ,
for any D S* S, where S satisfies (2.6). Since conditions (2.1) and (2.2) are equivalent to

(2.7) yE < 2 < y2E, il,/- X*II <_ 2y3,

(2.5) follows from Lemma 4 in 6.4.2.2 of [14], where a certain bound on liE vXII is
minimized with respect to r. [3

It should be noted that the condition (2.6) is satisfied, for example, by S B/2(B-1A)t,
where is a nonnegative integer.

It is important to observe that the formula (2.3) for and the bound (2.5) are optimal in
the sense that, if A A*, then
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min liE rD/2B-1AD-/2II 2
E D1/2B-1AD-1/2

where y; is the largest Y1 such that /1B < A, and ?’ is the smallest Y2 such that A < yg. B.
Let .4 be a linear nonsingular operator from H into H (.4 may be nonselfadjoint) and let

f H. Assume that the equation

(2.8) Au f

is solved by the preconditioned Richardson (PR) method

(2.9) B(u(k+l) u (’)) rr(’), k 0,

where B is a nonsingular linear operator from H into H, r is an iteration parameter to be
selected, u() H is assumed to be given, and here and in what follows,

r(k) f- Au(k).

THEOREM 2.1. Assume that A, B, and gi, 1, 2, 3, satisfy the assumptions ofLemma
2.1 and thatg and p are given by (2.3) and (2.4), respectively. Ifu(), k 1 are generated
by the PR method (2.9) with r , then

(2.10) Ilu () ullz < pllu) ullz,

with D B and D A*B-1A.
Proof Using (2.8) and (2.9), it is easy to verify that

D1/2(u(k+l) U) (E- 5D1/2B-1AD-1/2)D1/2(tI(k) u),

and hence (2.10) follows easily from Lemma 2.1 on taking S B1/2(B-1A) with
l=0,1. ]

Let B be a nonsingular linear operator from H into H, and let D be an arbitrary linear
operator from H into H such that D D* > 0. Consider solving (2.8) by the preconditioned
one-step gradient method

(2.11) B(u(+) u(k)) r,rk), k 0,

where

(Dw() u u())
(2.12) r Bw() r().

(Dw(), w(*))

It should be noted that, for a given u(), and u(’+l) defined by (2.11), (2.12) arises from
minimizing Ilu(k+) ullD with respect to r,. Therefore, if u(+1) is computed from (2.11)
with r, given in (2.12), then

(2.13) Ilu (e+l) UllD min II(E- rD1/2B-I.4D-1/2)D1/2(u(k) u)ll.

If B B* > 0 and D A*B-1A, then (2.12) yields

(Aw(k) w(k))
(2.14) r Bw() r(), By() Aw(),

(Aw(),
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and the resulting method (2.11) can be regarded as the preconditioned minimal residual (PMR)
method. It follows from (2.11) and (2.14) that the PMR method can be written in the following
way"

(2.15)

Choose u() H, compute r f- Au, and solve Bw r.
For k 0, 1

Compute z(k) Aw(k).

Solve By() z().

Compute rk (z(), w(*))/(z(), v(k)).

Compute u(k+l) u() + r,w(k).

Compute w(+1) w() rv().

Clearly each iteration of the PMR method requires the solution of only one equation with the
operator B.

THEOREM 2.2. Assume that A, B, and Yi, 1, 2, 3, satisfy the assumptions ofLemma
2.1 and that p is given by (2.4). Ifu, k are generated by the PMR method (2.15),
then

(2.16) Ilu() UIIA*B-’A pllu( ull,-,A.

Proof The inequality (2.16) follows easily from (2.13) with D A*B-1A and Lemma
2.1. [3

The two methods described in this paper for the solution of (2.8) are referred to as the
PR and PMR methods since they arise from applying the Richardson (R) method 15] and the
minimal residual (MR) method [8], respectively, to the preconditioned operator equation

(2.17) a f,

where B-1/ZAB-1/2, B1/Zu, f B-1/zf. For example, the application of the MR
method to (2.17) yields

(2.18) (k+l) fi(k) + fk;(k), ;(k) f_ fi(k), k 0, 1

where (0) 6 H is given and

(2.19) fk

It is easy to verify that if/(k) is generated by (2.18), (2.19), then U(k) B-1/2I(k) satisfies
(2.11), (2.14).

The significance of the inequalities in (2.1) and (2.2) relating A and B becomes more
transparent in view of their equivalence with the inequalities in (2.7). It is clear, for example,
that Y3 in the second inequality of (2.7) measures the size of the skew-symmetric part of the
preconditioned operator A.

It should be noted that the MR method applied to (2.17) is equivalent to the Orthomin(l)
method 16] with 0. Of course, instead of using the MR method, one could apply to (2.17)
the Orthomin(l), > 1, or the generalized minimal residual (GMRES) method of[13], which
is theoretically equivalent to the generalized conjugate residual method of [8]. Obviously
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Thereom 2.2 remains valid for the Orthomin(/), > 1, and the GMRES method, although
these methods may converge faster than (2.16) seems to indicate. Since Orthomin(/) with
large and the GMRES method require, in general, significant amounts of work and storage
per iteration, in this paper, we concentrate on the one-step PR and PMR methods, which, with
a proper choice of the preconditioner B, have very modest work and storage requirements.
Obviously, if A and B satisfy (2.1) and if, in addition, A A*, then (2.8) can be solved
by the preconditioned conjugate gradient method [11] with B as a preconditioner, yielding
(2.10) with D A and 2pf in place of pk, where/91 (/-- -i)/(/- -[- -i) (see, for
example, 14, 8.3 ]).

3. PR and PMR methods for orthogonal spline collocation. For the iterative methods
of the previous section to be applicable to the solution of (1.3), results on spectral equivalence
of elliptic orthogonal spline collocation operators must first be established.

3.1. Spectral equivalence of orthogonal spline collocation operators. It follows from
Lemma 2.3 of [5] that any v Vh is uniquely determined by its values on the set of Gauss
points . Therefore Vh is a Hilbert space with the inner product (., .) defined by

h2

(3.1)

(The expression on the right-hand side in (3.1) arises by formally applying the composite
Gauss-Legendre quadrature rule f2 g(t) dt () EI g() with respect to each variable to

the standard L2-inner product f fn(vw)(x, y)dxdy.) Let Lh and Ah be the operators from
Vh into Vh defined by

(L,v)() Lv(), (zX,v)() zXv(),

where L is given by (1.2) and A is the Laplacian. Obviously Ah is a special case of the
operator Lb. It follows from Lemma 2.2 of [2] that -Ah is a selfadjoint and positive definite
operator. The following theorem gives spectral equivalence results for the operators Lh and

THEOREM 3.1. Assume that a is five times continuously differentiable in f2 with respect
to x, b is five times continuously differentiable in f2 with respect to y, c is continuous in
and that

(3.3) 0 <

Then

* Co(h)] (-zX)(3.4) a -t- Z(h-- [ Y* ]< Lh < ,8 + - + Co(h) (--Ah),

(3.5) (L h* Lh)(--Ah)-l(Lh L’h) _< 4C202(h)(-Ah),

where the positive constant C is independent of h, a, b, c, and where

,. min(0, min_ c(x, y)),
(x,y)f2

,* max(0, max c(x, y)),
(x,y)f

(3.6) ,k(h) 24h-2
8 -4- v -/x

v cos(hzr), /z 9/43 + 40v 21)2,
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o(h) h max (
(3.7) + hz max

c(fi) c(fi)

04b
c(E)

+ h4 max
c()

Proof Employing the approach used in the proofofTheorem 4.4 in [4] (see also the proof
of Theorem 4.2 in [2]), it can be shown that

(3.8) (Lh v w) ,(1) (v w) + B2) (v, w) + (c(x y)v w) v, w VhL5h

where/31 and/32 are bilinear forms from V x V into R such that

(3.9) B) (v, w) B (w, v),

(3.10) ot(--Ahv, v) <_ B)(v, v) < fl(--Ahv, V),

(3.11) [/32)(v, w)[ < Co(h)(-AhV, v)/2(--AhW, w) /2,

where or,/3, o(h) are as in (3.3), (3.7), and the positive constant C is independent of h, a, b,
c. Moreover, by Theorem 2.1 and Corollary 2.1 in ],

(3.12) .(h)E <_--Ah,

where .(h) is given in (3.6). Therefore (3.4) follows easily from (3.8) and (3.10)-(3.12).
For w (--Ah)-l(Lh L*)v, (3.8), (3.9), and (3.11) give

(w, (Lh L;)v) B2)(v, w) B2)(w, v) <_ 2C(h)(-AhV, v)l/2(w, (Lh L*h)V) 1/2,

and hence

(W, (Lh *Lh)V < 4C2t12(h)(-Ahv, v)

which implies (3.5).

3.2. PR and PMR methods. Let the operator Lh from Vh into Vh be defined by (3.2),
and let 6 Vh be such that J () f(), 6 . Then (1.3) is equivalent to finding Uh Vh
such that

(3.13) LhUh fh.

Assume that the assumptions of Theorem 3.1 are satisfied and that

(3.14) c(x, y) > -2rr2ot, (x, y)

By Corollary 5.2 in [7], X(h) 2rr 2 + O(h4), and hence

(3.15) u + .(h)
oe + 2 + O(h4)"



PRECONDITIONED METHODS FOR ORTHOGONAL COLLOCATION 675

Therefore (3.4), (3.5), (3.7), (3.14), and (3.15) show that for h sufficiently small the operators
A Lh and B -Ah satisfy the assumptions of Lemma 2.1 in the Hilbert space H Vh
with

* -Co(h), 2=++Co(h) 3=Co(h).(3.16) ?’ -1
.(h)

It follows from (2.9) that the PR method for (3.13) takes the form

(3.17) zh(u+) u)) (fh Lhu*)), k O, 1

where is defined by (2.3) with ?’1, ?’2, ?’3 of (3.16), and u) Vh is given. Using (2.8) of
12] and (3.2) of [5] it can be shown that there exist positive constants C1 and C2, independent
of h, such that

(3.18) ClllVllnl(a) < Ilvll- < C211vlln,(a), v Vh.

Therefore it follows from (2.10) with D B that uk) generated by (3.17) satisfies

(3.19) Ilu) uhllm<) Cp*llu) uhlln,(),

where C is a positive constant independent of h, a, b, and c, and p is given by (2.4) with ?’1,

?’2, ?’3 of (3.16), and hence

/3 --c -k- (?’* ?’,)/(27r 2)
(3.20) p + O(h).

fl + c + (?’* + ?’,)/(2:rr 2)

Equations (3.19) and (3.20) show that, for sufficiently small h, the convergence rate of the PR
method applied to (3.13) is independent of h. It should be noted that the constant C appearing
in (3.16) is not known explicitly, and hence the exact value of the parameter g given by (2.3)
is not available. However, it is justifiable to take

c -+-/3 q-- (?’, -k- ?’*)/(27r 2)

in place of in (3.17), since f + O(h). In fact, this was done in all of the numerical
experiments involving the PR method and no noticeable deterioration of the convergence rate
was observed.

It follows from (2.15) that the PMR method for solving (3.13) takes the form:

(3.21)

(o) u) and solve Ahw) (o)Choose u) Vh, compute % J Lh rh

For k O,

Compute z(h) Lh wh
.(k)Solve ZhVh zh

(k) .(k) (k)Compute r zi, wh )/ zi, oh .
Compute uk+l)= Uhk’ + r,wk).

w+1) () .()Compute wh kVh

To examine more closely the convergence rate of (3.21), we require the following result.
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LEMMA 3.1. Assume that. the assumptions ofTheorem 3.1 are satisfied. Then

(3.22)
+ O(h)] (-zxh) _< L (-zXh)-Lh

_< + +o(h (-zxl.

Proof It is easy to see, by (3.8)-(3.11), that

(3.23)
((--ZX)-Lhv, Lv) ((-ZXh)-/;v,

+ ((--A)-IL)u, L2)u) + 2((--Ah)-’LI)u, t2)u),
where

6(--Ah) < L) < 2(--Ah),

(3.25) I(LZ)v, w)l < Co(h)(-AhV, V)I/2(--Ah w, 1/)) 1/2,

and t O/ -- y,/.(h), t2 + y*/X(h). It follows from (3.24) that

< (--Ah)-1 < t2 L 1)

and hence

(3.26) (--AhV, V) < ((--Ah)-ILI)v, L(hl)v) < t(--AhV, v).

With w (--Ah)-1LZ)v, (3.25) implies that

(W, L2)v) 1/2 _< Co(h)(-AhV, 1)) 1/2,

and hence

(3.27) 0 < ((--Ah)-lL2)l), L2)l)) < C21"12(h)(-Ahl), 1)).

Using the Cauchy-Schwarz inequality, (3.26), and (3.27), we also obtain

(3.28)
I((--Ah)-ILI)v, L2)v)I I((_Ah)-l/2L(hl)v, (--Ah)-I/2L2)V)I

< C2rl(h)(-Ahv, v).

Finally, (3.22) follows from (3.23), (3.26)-(3.28).
If h is sufficiently small, then it follows from (2.16), (3.22), and (3.18) that the u

generated by (3.21) satisfy (3.19) with C independent of h, and p given by (3.20). Therefore,
as was the case for the PR method, the convergence rate of the PMR method applied to (3.13)
is independent of h.

Ith .!2N+l3.3. Implementation and cost. Scaled standard Hermite basis functions L,rjJj=0

for the space of piecewise Hermite cubics on the partition {ti }i--0 of [0, were used to im-
plement the orthogonal spline collocation PR and PMR methods. For i, j 0 N, these
basis functions are defined by

qb2j(ti) i,j, q2j(ti) O, flP2j+l(ti) O, dp.j+l(ti h-li,j,
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where 3i,j is the Kronecker delta. Clearly, if vh Vh, then

(3.29)

where

2N+l

Vh(X, y) Vi,j)i(X))j(y),
i,j=0

OVh
Vzi,zj vh(ti, tj), V2i+1,2j h-x (ti, tj),

Ovh
ha 02Vh

(ti, tj).V2i,2j+ h--y (ti, tj), v2i+l,2j+

Hence any vh 6 V is uniquely represented by either {vh()}, the values of vh on , or
I2N+Iby {vi,jJi,j=o, the expansion coefficients of (3.29). In both iterative methods, the successive

iterates uk) were represented in terms of their expansion coefficients {- (k)lZU+l
ui,j Ji,j=o. Collocation

problems of the form --Ah vh w, where vh, wh 6 Vh, were solved by the fast Fourier
transform solver of ]. For a given wh ()}, this solver requires O(N2 In N) arithmetic

12N+Ioperations to produce {l)i,jli,j=0 It is important to note that, for a given

h [V0,0 1)0,2N+l 1)2N+l,0 1)2N+l,ZN+l] T,

the evaluation of {v()} involves multiplications of h by a matrix, which is the tensor
product of (2N + 2) x (2N + 2) almost block diagonal matrices with four nonzero elements
in each row. Therefore, the cost of such multiplications is O(N2). Similarly, for a given

12N+l{1)i,ji,j=O, {Lhl)h()} is computed by multiplying h by four matrices each of which
is the tensor product of (2N + 2) x (2N + 2) almost block diagonal matrices with four
nonzero elements in each row. Therefore, the cost of one iteration in the orthogonal spline
collocation PR or PMR method is O(N2 In N). It also follows from (3.19) and (3.20) that
if Ilun) uh lind(n) O(h3) is to be guaranteed, then the number of iterations n should be
proportional to In N. Thus the total cost of the orthogonal spline collocation PR or PMR
method for solving (1.3) is O(N2 In2 N).

4. Extension to nonselfadjoint boundary value problems. Consider the Dirichlet
boundary value problem (1.1), where L is the elliptic differential operator given by

0x (0u) 0u
Lu a x Y) -x b x y -ff-y + d x Y -x + e x y -y + c x y u

The corresponding orthogonal spline collocation problem is given by (1.3) or equivalently
(3.13), where (Lh v)(’) Lv(), . The following theorem is a counterpart of Theorem
3.1.

THEOREM 4.1. Assume that a and d are five times continuously differentiable in f2 with
respect to x, b and e are five times continuously differentiable in f2 with respect to y, c is
continuous in f2, and that (3.3) is satisfied. Then

a-
X(h)
* C In(h) + a(h)] (-ah) _< L _< / + + C In(h) + a(h)] (-A),

(L*h Lh)(--A)-1 (Lh L*h) < 4C2 [3 + r/(h) + o’(h)]2 (--Ah),

where the positive constant C is independent of h, a, b, d, e, and c, and .(h is given by
(3.6), o(h) is given by (3.7), and



678 BERNARD BIALECKI

y, min(0, min_ g(x, y)),
(x,y)_f

a (h) h max (11d c(, e c()

y* max(0, max_ g(x, y)),
(x,y)fl

+ h2 max
c()

+ h3 max

+ h4 max ( c() c()

max (11d c(>, e c

c(6))

where g(x, y) c(x, y) [(Od/Ox)(x, y) + (Oe/Oy)(x, y)]/2.
Proof. Rewriting Lu in the form

o(0u)Lu -x a x Y -x -ff-fy b x y -y

1[ Ou O Ou i9 ]+- d(x, Y)-ff-x + -x (d(x, y)u) + e(x, y)-y + y (e(x, y)u) + g(x, y)u,

and using an approach similar to that in the proof of Theorem 3.1, it can be shown that

4

(Lh v, w> E Bi) (v, w) + (g(x, y)v,
i=1

where the bilinear forms B) and Ba) satisfy (3.9)-(3.11) and

B3) (v, v) O, IB3)(v, w)l _< c,(-zXv, 1))l/2(--Ahl/), W) 1/2,

It34)(v, w)l _< Ca(h)(-zXhv, 1))I/2{--AhW, W) 1/2.

The remainder of the proof is analogous to that of the proof of Theorem 3.1 and is therefore
omitted. [3

If

c(x, y) xx(X, y) + --y(x, y) > -2zr2ot, (x, y)

then it follows from Theorem 4.1 that for h sufficiently small, the operators A Lh and B
-Ah satisfy the assumptions ofLemma 2.1. However, in contrast to the selfadjoint boundary
value problem, the unknown Y3 C [3 + o(h) + a(h)] O(1), in general, and hence a good
approximation to of (2.3) is not readily available. Therefore, the PR method of (3.17) is
not applicable for the solution of the orthogonal spline collocation problem corresponding to

nonselfadjoint L. Nevertheless, this problem can be still solved by the PMR method (3.21)
with the convergence rate given by (2.16).
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5. Numerical experiments. The purpose of the numerical experiments was to verify the
convergence rates of the PR and PMR orthogonal spline collocation methods rather than the
accuracy of orthogonal spline collocation itself. Therefore the problem (1.1), (1.2) with

a(x, y) exy, b(x, y) + sin(xy), c(x, y) O, u(x, y) 10x(1 x)y(1 y),

was discretized by orthogonal spline collocation with piecewise Hermite bicubics that led to
(1.3) with uh u. Starting with u) 0, for different values of the stepsize h N, the

PR method (3.17) and the PMR method (3.21) were used to compute sucessive iterates uk)

converging to uh. Since (3.3) is satisfied with ct 1 and/3 e, following the discussion of
3.2, the iteration parameter g in (3.17) was replaced with f 2/(1 + e). Table presents
the discrete maximum norm errors

ek) uk) (tiv max I(u- ,t)[
O<i,j<N

^(k)for both the PR and PMR methods. (The errors N were computed for convenience since the
H (f2) norm errors require the computation of integrals.)

TABLE
Errors -(k) in the PR and PMR methods.eN

k 0 2

ek) in PR .6 .8 10-1

ek) in PMR .6 .2 10-l

-k) in PR .6 8 10-e-50
-(k) in PMR .6 .2 x 10-e50

4 6 8

.2 x 10-2 .3 x 10-3.1 x 10-.2 x 10-2 .2 x 10-3

.2 x 10-2.1 x 10-1

.2 x 10-2 .3 x 10-3 .4 x 10’4

.3 x 10-4

.3 x 10-3

The obtained results show that the convergence rates of both methods were independent of h
which confirms the theoretical results of 3.2. The numerical results also indicate, as expected,
that the PMR method converges faster than the PR method, and hence is more efficient with
respect to the number of arithmetic operations since each iteration of the PMR method requires
about the same number of arithmetic operations as one iteration of the PR method. It should
be noted that the PMR method does not have to converge faster than the PR method, due to the
different paths taken by the PMR and PR methods. However, in practice, the PMR method
usually does outperform the PR method.
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Abstract. The authors investigate the performance of several preconditioned conjugate gradient-like algorithms
and a standard stationary iterative method (block-line successive overrelaxation (SOR)) on linear systems of equa-
tions that arise from a nonlinear elliptic flame sheet problem simulation. The nonlinearity forces a pseudotransient
continuation process that makes the problem parabolic and thus compacts the spectrum of the Jacobian matrix so that
simple relaxation methods are viable in the initial stages of the solution process. However, because of the transition
from parabolic to elliptic character as the timestep is increased in pursuit of the steady-state solution, the performance
of the candidate linear solvers spreads as the domain ofconvergence ofNewton’s method is approached. In numerical
experiments over the course of a full nonlinear solution trajectory, short recurrence or optimal Krylov algorithms com-
bined with a Gauss-Seidel (GS) preconditioning yield better execution times with respect to the standard block-line
SOR techniques, but SOR performs competitively at a smaller storage cost until the final stages. Block-incomplete
factorization preconditioned methods, on the other hand, require nearly a factor oftwo more storage than SOR and are
uniformly less effective during the pseudotransient stages. The advantage ofGS preconditioning is partly attributable
to the exploitation of a dominant convection direction in the examples; nevertheless, a multidomain version of GS
with streamwise coupling lagged at rows between adjacent subdomains incurs only a modest penalty.

Key words, nonlinear elliptic boundary value problems, polyalgorithms, preconditioned iterative methods,
computational combination

AMS subject classifications. 65F10, 65N22, 65Y20, 80A32

1. Introduction. The impossibility of uniformly ranking linear system solvers in order
of effectiveness within broad categories of large, sparse, nonsingular systems arising from
implicit discretizations of nonlinear elliptic partial differential equations (PDEs) is widely
appreciated. Shifts in the balance of symmetric to nonsymmetric parts of a linear operator
caused by mesh refinement, translations of the spectrum through the addition of a diagonal
matrix representing a transient term in the PDE, reorderings, and changes in the granularity
of implicitness in preconditioners (motivated, for instance, by architectural considerations)
are all capable of causing shifts in the ranking of linear solvers on the same PDE. When
the character of the solution itself evolves over the course of solving a nonlinear problem,
when convergence tolerances vary in the style of inexact Newton methods, and when Jacobian
evaluation costs and memory limitations intrude, it is not clear that the most effective overall
algorithm can rely on a single linear solver, or even a single family of solvers.

As part ofan ongoing effort to expand combustion modelling capabilities, we compare sev-
eral nonsymmetric iterative solvers on flame sheet problems, which lie along the natural route
to the numerical simulation of multidimensional diffusion flames with detailed chemistry and
complex transport combustion models [1 ], [2]. Diffusion (or "nonpremixed") flames, in turn,
are important in the study of the interaction of heat and mass transfer with chemical reaction
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in jet turbines, commercial burners, and reactors for materials processing. The terminology
"flame sheet" refers to an infinitesimally thin flame zone located at the locus of stoichiometric
mixing of fuel and oxidizer in a nonpremixed flame. In this limit, corresponding to infinitely
fast conversion of reactants into stable products, it is impossible to recover any information
about minor or intermediate species; however, the temperature distribution inside the reaction
zone can be adequately predicted by the flame sheet model for many important fuel-oxidizer
combinations and configurations. Moreover, a flame sheet model adds only one field to the
hydrodynamic fields that describe the underlying flow, whereas a detailed kinetics model of
a hydrocarbon air flame adds as many fields as species considered in the kinetic mechanism,
each with its own coupled conservation equation. Since being studied as a means of obtaining
an approximate solution for use as an initial iterate for a one-dimensional detailed-kinetics
computation in [3], flame sheets have been routinely employed to initialize multidimensional
nonpremixed flames.

Improving the efficiency of practical combustion systems and reducing their environ-
mental impact will require improved physical models and improved computational simulation
capabilities in many respects. The computational issues include resolution, nonlinear conver-
gence, and linear convergence. Typical combustion problems may involve dozens of species
defined at each grid point, and may require resolution of curved fronts whose thickness is
on the order of thousandths of the domain diameter, across which critical fields vary by an
order of magnitude or more. As a result, computations generally expand to fill all available
memory, and any workspace required by the solution algorithm comes directly at the expense
of resolution. The power-law dependence of the species mass fractions on each other and the
exponentially nonlinear dependence of these fields on the temperature (through Arrhenius-
type source terms in the conservation equations) call for Newton methods with sophisticated
control strategies, including adaptive continuation techniques and damping. Finally, robust
Newton algorithms depend on robust solvers for large nonsymmetric, possibly indefinite linear
systems.

Meanwhile, there has been a burgeoning effort to design efficient algorithms to solve large
sparse systems of the form

(1.1) Ax b

such as arise from finite difference or finite element discretizations of PDEs. In the case
of symmetric positive definite systems, the classical conjugate gradient (CG) algorithm in
combination with an efficient preconditioning technique is a powerful method for solving (1.1).
For instance, a modified incomplete Cholesky CG can solve the discretized Poisson equation to
truncation error accuracy in near optimal O(N+/2d log N) operations in dimensions d 2
or 3 [4]. However, in the case of nonsymmetric matrices, such as those arising from the
discretization of systems with convection or reaction, CG meets a fundamental difficulty. The
orthogonality of the search directions cannot be maintained by using three-term recurrence
relationships; all intermediate directions are needed for the computation of the next one.
The alternative of working with the system of normal equations, A rAx Arb, is doubly
unattractive: its condition number is much worse than that of the original, and, for a reason to
be mentioned later, we prefer not to depend upon the ability to form the action ofthe transpose.

Ideally, any generalization of CG to nonsymmetric matrices would retain the two main
features of the original algorithm: the optimality of some error or residual norm over a Krylov
subspace, and constant work and storage requirements at each iteration. Unfortunately, there
is no CG-type algorithm that fulfills both of these requirements [5].

Among the most successful schemes satisfying the first requirement is generalized mini-
mal residual (GMRES) [6] (with its recent pseudo-Krylov variants flexible generalized
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minimal residual (FGMRES) [7] and GMRESR [8]), in which the residuals satisfy a mini-
mization property over conveniently generated subspaces. However, in these schemes, storage
grows linearly and works quadratically with the iteration number so that, in most practical
situations, it is necessary to use a restarted version that may seriously degrade convergence.
In a second class of approaches, the strict norm minimization is abandoned and the iterates
are instead defined by a Galerkin condition. This leads to simple three-term recurrence re-
lationships, but also to irregular convergence behavior and numerical instabilities. This may
be regarded as a theoretical weakness; in practice, however, numerical experiments reveal
less serious consequences than might be expected. Typical algorithms of the second category
are the CG squared (CGS) [9], biconjugate gradient stabilized (Bi-CGSTAB) [10], and the
quasi-minimal residual (QMR) family 11 ], 12].

An interesting comparison of methods for nonsymmetric problems based on the normal
equations, residual minimization, and Galerkin conditions is given in [13]. Each candidate
method is notably superior to the rest on some test problems and notably inferior to the rest
on some others. However, linear operators derived from elliptic PDEs are not represented in
[13]. Because of the breadth of this problem class, it seems incumbent on investigators in
different application areas to undertake custom parametric studies before choosing production
algorithms. This paper is one such study.

In 2, we briefly describe the candidate algorithms, each of which is well documented
elsewhere: the "baseline" SOR along with GMRES and Bi-CGSTAB and their precondi-
tioners. In 3, we compare the convergence behavior of classical stationary and accelerated
iterations on ideal elliptic and parabolic problems, particularly displaying their scaling on the
size ofthe timestep. Though straightforward, the needed results do not seem to be documented
elsewhere, so we devote relatively more detail to this section than to the surrounding sections.
Model governing equations of an axisymmetric unconfined flame sheet are described in 4 in
the vorticity-velocity formulation.

The governing equations are solved using a single Newton-based solver that, in turn, em-
ploys several different linear system modules. The results are presented in 5; we emphasize
performance results as opposed to physical interpretations that are available in the references.
One of the conclusions is that a properly ordered block-line GS makes an excellent precondi-
tioner; however, GS is an expressly sequential algorithm. This raises the question of whether
the Gauss-Seidel updates on selected lines of the grid can be replaced with Jacobi updates
to create parallel threads of execution in the preconditioner. In 6, this is answered i.n the
affirmative, for this problem and for a related problem involving 26 species engaged in 78
chemical reactions. Section 7 concludes with a summary of observations and extensions.

2. Linear solution algorithms. We consider a total of seven linear solvers: the classical
block-line SOR method, and two acceleration methods, GMRES and Bi-CGSTAB, each with
the same set of three preconditioners: block-line GS, symmetric block-line GS (SGS), and
a block incomplete LU decomposition (ILU). The adjective "block" refers to the coupling
of several (in our test problems, four) fields at each point, and "line" to the coupling of all
the grid points in a row of the (tensor product) grids. In our test problem of predominantly
unidirectional flow in a high aspect ratio domain, we group by lines normal to the main
transport direction. We always sweep in the main flow direction, except in the case of the SGS
preconditioner, which includes a return sweep against the main flow.

In this work, the matrices to be inverted arise from the discretization of second-order PDEs
on two-dimensional tensor product grids in a symmetry plane of an axisymmetric domain
described by radial and axial coordinates. If nc is the number of dependent variables and nr
and nz are the number of grid points in the r and z directions, respectively, the Jacobian matrix
.4 has the following tridiagonal block structure
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Dl
L2 D2

(2.1) A "’.

where all the blocks D, L, and U are of size (ncn,.) x (ncn,.). These blocks in turn have a
tridiagonal block structure consisting of nc x nc blocks arranged in nr rows. When a nine-
point finite difference stencil is employed for the discretization, the Jacobian must allow for

9n2cnrnz nonzeros. For compact algorithmic descriptions below, we recast (2.1) in the form

(2.2) A L + D + U,

where L, D, and U are the block lower, diagonal, and upper parts of A, respectively.

2.1. Primitive iterations. For use either as stand alone or preconditioning methods, we
consider splittings of relaxation and incomplete factorization type. The first class requires no
storage in addition to the original matrix A, whereas the second nearly doubles the memory
requirements of the code in the practically important limit of large nc. For reasons described
in 4, we consistently precondition on the left, transforming (1.1) to (B-IA)x B-b by
means of a nonsingular approximation B to A, whose inverse action is inexpensive to apply
in the usual sense that its operation cost is proportional to the first power of the number of
degrees of freedom in the system.

2.1.1. GS. The GS preconditioner is

(2.3) BGS (L + D).

I’he .preconditioned product y BsAx is formed in two steps: solve (L + D)z Ux;
y <--- z / x. The product Ax is not explicitly computed, so the factors of the decomposition
of the block diagonal matrix D can be stored in place in A. Note also that the vector z can be
overwritten by y.

2.1.2. SOR. GS is a special case of the SOR algorithm

(2.4) BSOl= L+-D

with o) 1. The vector y BAx can be computed in three steps: compute s
D- +/- I + D-L)z s; y -- + x. The name derives from the(1 -)I + Ulx; solve (o

choice < w < 2, which can be selected to improve the convergence rate by a full asymptotic
order overGS in model problems. When used as a stationary method in typical finite-difference
combustion applications [1 it is usually necessary to under relax SOR to bring the spectral
radius of the iteration matrix below one. Even o) leads to catastrophic divergence for a
significant fraction of the Jacobians encountered. One advantage of the acceleration method
is its freedom from senstivity to relaxation parameters, which is difficult to optimize in these
multicomponent, convective problems.

2.1.3. SGS. The SGS preconditioner is

(2.5) Bss (L + D)D-I(U + D).

The following four-step process forms y B-dsAX" compute s -LD- Ux; solve (L +
D)z s; solve (I + D- U)y z; y +-- y + x. The second and third steps are done
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using a forward and backward substitution, respectively. Note that the LU decomposition
of the matrix D can also be stored in place in the matrix ,4, but one more work vector is
necessary with respect to the GS preconditioner. The principal advantages of SGS over GS,
preserving symmetry when A is itself symmetric and propagating boundary information more
isotropically in problems with negligible flow or significant flow recirculation, are not directly
relevant to our test problem, but we include SGS in the tests to provide an indirect measure of
the value of downstream influence in our strongly coupled system of elliptic boundary value
problems.

2.1.4. ILU. ILU factorizations of the matrix A constitute an important class of precon-
ditioning methods. An ILU factorization of ,4 (of level 0) consists of a lower triangular matrix, and an upper triangular matrix with the same nonzero pattern as the original matrix ,4

satisfying

(2.6) /0 A + E,

where E is the deviation matrix. The LU decomposition is obtained by a modified Gaussian
elimination procedure where all the corrections in the matrices and are discarded if the
corresponding entry in the matrix A is zero. With this procedure, no fill-in is introduced, but
we still need to store the matrices L and U, in addition to the original matrix ,4. We use a block
ILU factorization at the level of the nc dependent variables, i.e., dense Gaussian elimination
is done below this level.

Because all of the matrix operations described in 2.1 are blocked at the level of the nc
degrees of freedom defined at each point, all of the solvers treat the source-term coupling
(including such chemical reaction and such heat release as may be present) of the combustion
process implicitly. This is algorithmically natural and nearly universal 14] since the nc nc
blocks are dense, and are of highly unpredictable diagonal dominance, depending upon which
reactions are active at a given grid point. Only parts of the convection and diffusion operators
are left explicit. The GS, SOR, and SGS methods are implemented in block-line form along
radial lines, so that only the z-directional coupling is left explicit. The ILU preconditioner
treats both r- and z-directional coupling implicitly, up to the level of fill permitted. The
performance of low-fill ILU is sensitive to ordering effects, but less so than that of the block-
line methods. A 20 to 30% difference in iteration count for flow-aligned versus cross-flow
ILU orderings on a similar flame sheet problem is reported in 15].

2.2. Acceleration methods. The GMRES method [6] computes successive approxima-
tions to x*, the solution of (1.1), in the affine space x0+Km, where x0 is an initial approximation
to the solution. Upon introduction of the initial preconditioned residual ro B- (b Axo),
the Krylov subspace Km is defined by Km span{r0, B-1Aro (B-IA)m-ro}, and, in
practical implementation, is spanned by the orthonormal Arnoldi basis generated through a
Gram-Schmidt process on the elements of Kin, requiring rn inner products and one precondi-
tioned matrix-vector product at iteration m. The approximate solution Xm at step rn minimizes
the residual over the Krylov subspace xo + Km, which requires the storage of the full Arnoldi
basis of size m. Since the maximal dimension of the Krylov subspace is held fixed in practice,
the iteration generally needs to be restarted before achieving convergence.

In contrast to GMRES, Bi-CGSTAB 10] keeps the work and storage constant per itera-
tion by defining the iterates by a Galerkin condition rather than by a minimization property.
The algorithm terminates in a number of steps equal at most to the size of the problem;
however, since there is no minimization property of the residuals in the intermediate itera-
tions, breakdownsmmore precisely, division by zero or very small numbersmmay occur in
the convergence process. In the Bi-CGSTAB algorithm, the iterates are constructed in such a
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way that the residual rj is orthogonal with respect to a sequence of vectors 70 r-j’-i and,
similarly, the vector tzj is made orthogonal to ro rj-1. The jth residual can be written

rj Pj(A)ro, where Pj is a monic polynomial of degree less or equal to j. The :j are gener-
ated with polynomials of the form Qj(x) (1 WlX)... (1 ojx), where the wj are chosen
so that

(2.7) (Pi(A)ro, Qj(Ar)Yo)= O, j.

In a practical implementation, condition (2.7) is enforced without explicit reference to A r. Bi-
CGSTAB requires two preconditioned matrix-vector products with A and four inner products
per iteration. In the tabulated numerical experiments, we consistently chose the standard
default 70 equal to r0. Based on a recent personal communication from H. van der Vorst, we
repeated certain experiments with t:0 equal to (B-1A)rro with mixed benefits; see 5.

3. The effect of the pseudotransient on the linear conditioning. Though relaxation-
based solvers have largely been superseded by Krylov methods for linear elliptic problems,
this section motivates their use in nonlinear elliptic problems aided by pseudotransient con-
tinuation. Model elliptic and parabolic Poisson problems in two dimensions are considered
because of the convergence theory available for them. We present theoretical iteration count
estimates for various methods on discrete operators corresponding to -V and /t V
in unpreconditioned or preconditioned form. We denote either of these symmetric positive
definite operators as A, and write A B R, where B is the dominant part of A to be used
as a splitting matrix or preconditioner, and R is the remainder. A simple conclusion drawn
from the model problems is tested experimentally in 5 in the combustion context.

Convergence theorems for either stationary or accelerated iterative methods for general
systems (1.1) are few in number and generally unsatisfactory with respect to either of two
weaknesses" they are frequently pessimistic, or, if tight, they depend on hypotheses about the
spectrum of A or the rank of cI-A (for some nonzero scalar a) whose verification is more
computationally complex than the solution of (1.1), itself. Because of the lack ofpredictability
ofthe convergence rate ofiterative methods for nonsymmetric or indefinite systems, experience
within a problem class is often more useful than theory in estimating computational work to
solve a particular problem. A combination of theory for model problems (for the scaling
laws), and experience within a problem class (for the constants), is much better than either
guide alone in estimating the computational resources (time and memory) required to solve a
problem that is in some sense "near" to the problem whose behavior is well understood.

3.1. Spectrum-based convergence results for symmetric problems. The number of
iterations, k, required for convergence in the sense of

IIx --x*llg

IIxo--X*IIM
<_ e,

where x0 is the initial and x the kth iterate, and e > 0 a given tolerance, can be estimated as
follows: for stationary methods, we have for M I that

(3.1)
log(e)

log(p(/- B-1A))"

For a preconditioned CG method, we have for M B-/2.4B-/2 that

(3.2) k(e)
log(e/2)
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In these formulae, p and x are the spectral radius and the condition number of their matrix
arguments, respectively, which reduce for symmetric positive definite operators to p(M) =_

Zmax(M) and to(M) =_ max(M)/.min(M). The spectra, in tum, depend upon the mesh spacing
h, and the timestep size At. To comprehensively compare the effectiveness of stationary
and accelerated methods in pseudotransient problems, k(, h, At) should be examined as a
function of h and At at a tolerance that tightens according to the truncation error, e.g., h2

for second-order discretizations. Here we compare several methods on a fixed grid with a
fixed tolerance as zXt varies.

We consider the SGS and ILU(0) preconditioners, which can be split symmetrically around
the model symmetric A defined above, but which may also be defined as one-sided precon-
ditioners in the nonsymmetric case. As baseline cases, we also consider unpreconditioned
CG iteration and the stationary GS iteration. To examine the behavior of (3.1) and (3.2) we
need spectral data that can be obtained experimentally from applying sparse eigensolvers to
large-dimensional discrete systems or estimated at virtually no expense from Fourier tech-
niques. The techniques we employ were developed in 16] and subsequently applied in [17]
and 18]. In 16], it is argued that the distribution of the spectrum of the periodic boundary
condition problem of mesh interval h predicts the distribution of the spectrum of the Dirichlet
problem of mesh interval 2h, provided that the zero eigenvalue (corresponding to the constant
eigenvector), and the next pair of eigenvalues (corresponding to the univariate modes), are
removed from the bottom of the periodic spectra. In the case of periodic boundary conditions,
A and the various preconditioners B all share the same set of eigenvectors, and hence the
spectra (I- B-A), and L(B-1/ZAB-1/2) are trivially computed from the individual spectra
,(A) and )(B).

3.2. The unpreconditioned periodic problem. Slightly extending 16] in notation that
conforms to it where possible, consider A (hZ/At)I XT, where -XT2 is the usual uniform
grid five-point operator scaled to have four on the diagonal on a periodic square domain of
n + grid points on a side. Because of the periodicity, the number of cells is the same as the
number of points, i.e., the mesh interval h is / (n + 1). We take the coordinate indices in the
standard range 0 _< j, k _< n, interpreting indices outside this range in terms of their modulus
with respect to n, so that a row of Au f becomes

2(3.3) 4 + - U U]-I, U+I, U],t_ Uj,t+ h fj.

The (n + 1) eigenvectors are

u (s,t) ei(jo,+k4,)
jk O<s,t<n,

where Oj =-- j2rh and 4k -= k2rh. Substituting this expression into (3.3), the corresponding
eigenvalues are readily determined:

.st(A) 4(1 + ,2) e-iOs eiO, e-J4,, ei4,

4(1 + ,2) 2(cos Os + cos 4t)
h2

+ 4 2(cos 0s + cos 4t)
At

At
+4 sin-+sin-where g h/(4At). The largest eigenvalue is .max " ha/At + 8 at 0s 4 r and the

smallest, excluding s 0 or 0, is Xmin h/At + 8 sin(rh) h/At + 8h.



688 ERN, GIOVANGIGLI, KEYES, AND SMOOKE

The condition number is therefore

(A)
h2/At + 8

h2/At + 8yr2h2’

from whence it follows that limAt0 to(A) and limat-,oo to(A) , (:rrh) -2. Values of to(A)
between these saturation limits are plotted as a function of At at h -1 64, 128, and 256 as
the solid curves in Fig. l(a). For a Dirichlet problem, the Poisson problem limit would be
the classical c(A) (rr(h/2)) -2, justifying in this instance the claim that the periodic case
condition number predicts the Dirichlet case condition number of a grid twice as coarse. To
apply to the Dirichlet problem, the curves in Fig. l(a) should be labelled h -1 32, 64, and
128.

SO00

6000
h=1/256

lOOO

qooo

2000
h:1/128

CG-%S

0104 104 10 10-2 lif I0 O]o-S 104 10.3 I0-2 tO lO

(a) (b)

FIG. 1. (a) Condition number of the parabolic Poisson problem with periodic boundary conditions for the
unpreconditioned case (solid curves) at three different h, andfor the SGS-preconditioned (dashed curve) and ILU-
preconditioned (dotted curve) casesforh -l 256, as afunction ofAt. (b) Iteration count estimatesfor theparabolic
Poisson problem on a grid with h -1 64 with a convergence tolerance on the error of 10-6 in norms convenient to

particularaccelerator/preconditioner combinationsfor stationary GS, unpreconditioned CG, CG-SGS, andCG-ILU,
as afunction of At.

Note that if At is of the order of h2, .min becomes independent of h to leading order, and
all methods converge in a number of iterations independent of h. (Ofcourse, in this case, many
outer timesteps will be necessary.) If At is of the order of h, min goes as h to leading order.
Finally, if At is large, independent of h, min behaves like h 2. In the course of the numerical
results reported in 5, At sweeps through the entire range of O(h2) to (.9(1), governed locally
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by nonlinear convergence criteria. In this and many other practical problems, therefore, the
preferred linear solver may also vary over the course of the nonlinear trajectory.

3.3. The SGS preconditioned periodic problem. From the additive decomposition A
.(s,t)L + D + U and Bss (L + D)D-(U + D), we derive upon substitution of the uji into

Bssu .(Bss)u that

1
,st(BsGs) [4(1 + y2) e-iO, e-i,] [4(1 + ?’2) eiO, el4,,]

4(1 + ?,2)
+ cos(Os bt)

4(1 + ?,2) 2(cosO + cos 4t) + 2(1 + ?,2)
Since Bs6s and A are simultaneously diagonalized, we can easily evaluate

4(1 + ?,2) 2(cos Os + cos 4t)ll-1/2 zl n-1/2 -1’st’-’SGS ’SGS ’st(BsGsA) +coS(0s--$t)4(1 + ?,2) 2(cos0s + cosSt) + 2(1+v2)

This expression can be explored analytically for its maximum and minimum in (s, t), but it is
simplest for present purposes to extract the condition number by looping over all eigenpairs.
A plot of the condition number of BssA over a range of At at h -l 256 is given as the
dashed curve in Fig. 1 (a).

3.4. The ILU preconditioned periodic problem. For a symmetric problem, we write
BILtJ(0) as the product of a lower triangular factor, a diagonal factor, and the transpose of the
lower triangular factor, and we require that the elements of the product match the elements of
the original where possible. Thus,

Z /)-l/,r E,

where E is the deviation matrix. For the constant coefficient operator in question, has l’s
in the same off-diagonal locations as A and a to-be-determined d on the diagonal, and L3 is a
diagonal matrix of all d’s. Multiplying out and equating to A yields

2
d+=4(l+y

as the equation for d, whence d 2[(1 + ?,2) + v/(1 + ?,2)2 1/2]. This leads straightfor-
wardly to

Lst(BILU) [d e-iO‘ e-i4’] ’d [d eiO‘ ei4’

COS(0s t)
4(1 + ?,2) 2(cos 0s + cos qt) +

(1 + ?,2) + v/(1 + ?,2)2 1/2"
As above, we can easily evaluate

4(1 + ?,2) 2(cos Os + cos $t)
.st (BluA) -,t)4(1 + ?,2)_ 2(cos 0 + cos qt)+

A plot of the condition number of BbA over a range of At at h -1 256 is given as the
dotted curve in Fig. 1 (a).

The condition number data of the previous three subsections is employed in (3.2) to gen-
erate the curves labelled CG in Fig. 1 (b), which predicts iteration counts for a fixed reduction
in a convenient preconditioned energy norm of the error over a range of At at a fixed grid size
of h -1 64.
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3.5. GS stationary iterations on the periodic problem. The curve labelled GS in Fig.
l(b) is plotted from (3.1) on the basis of the following derivation for I)(I BA)I
I)(B R)l in the symmetric case for which A L + D + Lr and Bs D + L.

Xst(I- B]A) Xst((D + L)-IL r)

Multiplying by the complex conjugate,

_eiO, eidpt

4(1 + y’2) e-iO‘ e-i’t

IGt(I BA)I2
+ cos(0 )t)

8(1 + },,2)2 4(1 + y2)(cos 0s + COS (])t) "+" + cos(0s --(])t)

whence p(I- BA) is easily found.
In comparing different curves in Fig. (b), it must be borne in mind that changing the

method or preconditioner changes the norm in which the error is measured; thus, one should
not attempt to infer in detail the cost to arrive at a particular solution, but only the trends.
These plots indicate that if At is constrained to be small by nonlinear considerations, ordinary
relaxation will be competitive.

4. Test problems. In this section, we briefly describe the flame sheet problem used to
evaluate the performance of the various linear algebra solvers discussed in 2. The numerical
solution of a flame sheet model presents a twofold interest. First, as mentioned above, flame
sheet problems are on the natural route to the numerical solution ofimportant multidimensional
diffusion flames. Second, the governing equations are highly nonlinear and the dependent
variables are strongly coupled in the physical domain and on its boundaries so that their
solution constitutes a formidable test for nonlinear elliptic solvers.

The flame sheet governing equations consist ofthe conservation oftotal mass, momentum,
and a conserved scalar equation. The temperature and major species profiles are recovered
from the conserved scalar, as described in ]. The flow field equations are formulated in terms
of velocity and vorticity coupled together with a conserved scalar equation. As motivated in
19], a vorticity-velocity formulation allows replacement of the first-order continuity equation
with additional second-order equations. Whereas the streamfunction-vorticity formulation
also accomplishes the same replacement in two dimensions, vorticity-velocity is extensible to
three and allows more accurate formulation of boundary conditions in a numerically compact
way. Furthermore, convective terms in off-diagonal blocks that exert a strong influence in a
streamfunction-vorticity formulation disappear.

The governing equations prior to nondimensionalization are

(4.1) V2Vr Oz

(4.2) VZv

(4.4)

ligvr Vr
r Or r2 Or p
lOvr 3 (v’Vp)r 3z 3z p

3o) pUr P2

Oz r
o)+ Vp. V- Vp. g,

) OS 3S-rl V rpDVS pv -r + pVz
z

where v (vr, Vz) is the velocity vector with radial and axial components vr and Vz, respec-
tively, p the density, oo 3 vr!3z- OVz/Or the normal component of the vorticity, g the gravity
vector,/z the viscosity, S the conserved scalar, D a diffusion coefficient, V2 a shorthand for
32/3r2 + 32/3z2 (not the full cylindrical Laplacian), V. (otr, Otz) is Our + Oz/Oz, and the
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components of Vfl are (O/Oz, -(Off The diffusion coefficient D and the viscosity/z
depend on the temperature through a power law ]. In our computations, typical values for
the Prandtl and Reynolds numbers were 0.75 and 160, respectively. As boundary conditions
on an open domain with entrainment permitted, we employ along the axis of symmetry (r 0)

(4.5)

at the exit (z c)

OVz o =o,

OVz O I’S
(4.6) vr=O, =0, 0:

=0’ ,z

along the inlet (z 0)

0 OVr OVz
(4.7) Vr=0, Vz Vz, W= S S,

Oz Or

and along the entrainment boundary (r Ro)

(4.8)
Ov OVz Ow
0-7=0,-fir=0,-gr-r =o, s=0.

The inlet consists of an inner cylindrical fuel jet and an outer coflowing annular oxidizer jet.
A schematic of this simple, extensively experimentally investigated configuration is given in
Fig. 2. The inlet profile of the conserved scalar, S(r), is a slightly rounded step function that
blends room temperature reservoirs of fuel and oxidizer by means of a narrow Gaussian in
temperature centered at R (see Fig. 2).

AIR AIR

I FUEL
FIG. 2. Schematic ofthe physical configuration.

The PDEs (4.1)-(4.4) together with the boundary conditions (4.5)-(4.8) are discretized
on a two-dimensional tensor-product grid. A solution is first obtained on an initial coarse grid.
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Additional mesh points are then inserted and the coarse grid solution is interpolated onto the
finer grid to yield a new solution starting estimate. A modified damped Newton iteration

(4.9) A U" .-n J(un)- F(U"), n O,

with convergence tolerance mUn 112 < 10-5, is used to solve the set of discretized equations
F(U) 0. The Jacobian is inverted at each Newton step through an inner iteration. It
is important to base convergence of the linear iterative method as nearly as possible on the
magnitude of AUII, which controls the outer Newton iteration. If our linear convergence
criterion is too loose or too stringent, we may suffer divergence of the outer iteration or
excessive CPU time, respectively. Due to the ill conditioning of the Jacobian, the norm of the
linear residual may differ by orders of magnitude from the norm of the correction AU. In the
Krylov methods, we base convergence on the norm of the left-preconditioned residual, since
it scales as II/x UIl=. In the SOR method, the magnitude of the update to the Newton correction
is already conveniently available.

All of the results presented below are obtained using an absolute linear convergence toler-
ance equal to one-tenth of the Newton tolerance. By this procedure, excessive CPU consump-
tion during the pseudotransient phase is avoided while still bringing back sufficient precision
in the Newton correction. To illustrate the difficulties encountered when using the right-
preconditioned residual as the convergence criterion, we reran selected cases with the same
absolute convergence tolerance applied to the right-preconditioned residual. For instance,
the coarse-grid Bi-CGSTAB/GS run required 64% more CPU time when right-preconditioned
convergence was based on the same absolute tolerance as the left-preconditioned method. The
Newton convergence history was virtually unchanged. This unnecessarily stringent criterion
could be partially alleviated with a mixed absolute-relative tolerance allowing termination at
the earlier of the absolute criterion based on the Newton tolerance or a relative reduction of
106 in linear residual. The same test required only 33% more CPU time when based on the
mixed tolerance.

Due to the nonlinearity of the original problem, a pseudotransient continuation process is
used to produce a parabolic-in-time problem and bring the starting estimate on a given grid into
the convergence domain ofthe steady Newton method. The original nonlinear elliptic problem
is cast into a parabolic form by appending a pseudotransient term OU/Ot to the original set
of algebraic equations F(U) 0, and a fully implicit scheme solves (again with Newton’s
method)

un+ Un

(4.10) )L"(un+I) F(Un+l) + Atn+
O,

where Atn+l is the (n + 1)st timestep. The timestep is adaptively increased as the conver-
gence domain of the steady Newton method is approached [20] so that the solution process on
a given grid may be conceived as having three main stages: an initial "deep" transient phase,
a "medium" transient phase, and the final steady Newton iteration. The boundary between
the first two phases is blurred by the gradual and not necessarily monotonic buildup of At.
Typically, in driving detailed-chemistry flame solutions towards grid independence, an outer
iteration in which the grid is adapted with respect to truncation error estimates is wrapped
around each pseudotransient-to-steady-state cycle. Asymptotically, as the mesh spacing ap-
proaches zero, the interpolant of the converged solution on one grid lies in the convergence
domain of Newton’s method on the next finer grid [21 ].

5. Numerical results. In this section, we present several numerical experiments obtained
on a Multiflow Trace 14/300 computer for the solution of the test problem described in the
previous section. We compared three categories of methods for solving the linear systems
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arising at each Newton step: a stationary method (block-line SOR with a relaxation parameter
initially set at 0.85, adjusted downward as necessary), a short-term recurrence Krylov (Bi-
CGSTAB) and an optimal Krylov (GMRES). Due to memory constraints, GMRES was actually
run in a nonoptimal restarted mode with 20 Arnoldi vectors. The choice of 20, justified
below, represents a balance of convergence rate and memory considerations. Both Krylov
methods were combined with the three different left preconditioners: block-line GS, block-
line SGS, and block-point ILU. We used GS as a preconditioner rather than the somewhat
more costly SOR because of our experience that relaxation methods are much less sensitive to
o> as preconditioners than they are as stationary iterative methods, as also reported in [22]. In
addition to varying the iterative method/preconditioner combination, we considered a coarse
41 x 41 and a fine 81 x 81 tensor-product grid. In presenting the results, we distinguish between
early timesteps of small size and later larger timesteps to observe performance variations in
the parabolic and elliptic limits.

Coarse and fine grids adapted to the coflow geometry are shown in Fig. 3, and the converged
solution for a methane-air flame sheet is shown in Fig. 4. The axisymmetric flow is locally
tangent to the streamfunction contours, and the mass flux it carries in a circumferential ring is
inversely proportional to the local contour spacing. The failure of the contours to close on the
open outer boundary is evidence of entrainment of ambient oxidizer. In engineering practice,
the outer boundary condition of a zero gradient on the vorticity may be replaced with its
definition in term.s ofthe velocity derivatives, which we have observed to yield less entrainment
of fluid across the outer boundary. The temperature field plot in Fig. 4(b), obtained from the
solution for the conserved scalar S as described in [1 ], varies from an ambient temperature
of 298K to approximately 2000K in a distance of millimeters. Interpretative discussions of
similar results for flame sheet, reduced kinetics, and full kinetics flame models may also be
found in [1 ], [2], and references therein.

5.1. General comparisons. The algorithmic performance results obtained on the coarse
41 41 grid are summarized in Table 1. We found that a minimum of 850 adaptively increased
timesteps had to be taken to bring the initial estimate into the convergence domain ofthe steady
Newton method. The initial timestep was set at 10-8 and was allowed to increase adaptively
[20]. By the time a switchover to the steady-state form of the equations could be undertaken,
At had typically reached O(1). The first line of Table presents the memory requirement in
double-precision words for each method. The extra overhead of the Krylov space is reflected
in the GMRES columns, and it is seen that the use of an ILU preconditioner approximately
doubles the storage requirement with respect to the standard relaxation method. The second
line shows the CPU time needed per inner linear iteration averaged along the pseudotransient
iterations; these numbers are normalized by the corresponding SOR time in line 3. Lines
four-six show the total amount of CPU time spent on the linear algebra solves for the first 5,
10, and 20 timesteps, respectively. At this stage of the transient iteration, the timestep is small
so that a relaxation method is quite competitive with a Krylov method preconditioned with
GS, whereas the use of other preconditioners (SGS or ILU) tends to be more expensive.

It is clear from the last three lines of Table 1, representing the total CPU time spent on the
pseudotransient iteration, the steady Newton method, and the whole algorithm, respectively,
that the best overall results are obtained by combining either Bi-CGSTAB or GMRES(20) with
the GS preconditioner and, from a storage point of view, the former algorithm is preferable.
Relaxation methods meet with difficulty when the timestep is increased and are ineffective in
the fully elliptic phase of the iteration. The asterisks in the SOR column indicate that linear
convergence on the steady-state system was eventually achieved with a relaxation factor o
of 0.3, instead of the previously sufficient 0.85. The combination of GMRES(20) with SGS
stagnates due to loss of orthogonality in the Krylov vectors.
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FIG. 3. The grids. (a) a coarse grid, showing concentration ofmesh lines in the high-activity regions oftheflow
domain and (b) a self-similarfine grid.
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FIG. 4. The converged solution. (a) variable-density Stokes streamfunction and (b) temperature.
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The use of an ILU preconditioner is not very attractive for these problems because, in the
coarse grid case, most of the CPU time is spent in the pseudotransient continuation process to
bring the iterate into the convergence domain of the steady Newton method. The decrease of
inner iterations needed to invert the Jacobian matrix with either the SGS orILU preconditioners
is not sufficient to compensate for their higher cost per iteration. This results in an increase
of the overall CPU time by a factor of 1.4 and 2.1 for SGS and ILU, respectively. Finally,
the use of ILU preconditioning nearly doubles the memory requirements in problems already
dominated by Jacobian storage. In detailed chemistry combustion models, where the dominant
term in the storage, due to the Jacobian, scales like n2 available memory limits the choice ofC’

nc, which may be as high as 40 in current practice ].

TABLE
Performance results on the coarse grid.

Algorithm
Preconditioner
work array (Mw)

time/it (min) 10-3

time/SOR-time
time/5 steps (min)
time/10 steps (min)
time/20 steps (min)
time/transient (min)
time/steady (min)
Total time (min)

SOR

0.31
2.83
1.0
0.13
0.25
0.48
156
94*
250*

Bi-CGSTAB
GS SGS ILU
0.35 0.35 0.60

6.56 16.6 26.6
2.3 5.9 9.4
0.09 0.21 0.33
0.20 0.40 0.62
0.42 0.78 1.22
121 162 246
9 18 24
130 180 270

GMRES(20)
GS SGS ILU
0.45 0.46 0.70
4.27 11.7 20.7
1.5 4.1 7.3
0.09 0.18 0.32
0.18 0.35 0.62
0.36 0.73 1.20
117 154 243
9 28
126 271

We discuss next the results obtained on the finer 81 x 81 tensor-product grid. Although
the interpolated coarse grid solution lay in the domain of convergence of the steady Newton
method on the finer grid, we found it more efficient overall to take several timesteps before
starting the steady Newton iteration. After timesteps are taken, the Jacobian matrices at the
first and second Newton steps are less expensive to invert so that an optimal balance exists
between the CPU time spent in the parabolic and elliptic phases. In our computations, ten

timesteps between 10-6 and 10-5 represented an excellent compromise. Numerical results
are summarized in Table 2 using the same notation as in Table 1. Once again, the shortest
overall execution time is obtained by using a Krylov method preconditioned with GS, and a
short-term recurrence may be then preferable, rather than an optimal method, from a storage
point of view. The relaxation method compares very favorably during the deep transient steps,
but is unable to solve the elliptic linear systems with the original relaxation factor of 0.85. The
asterisked execution times were obtained with a reduced factor of 0.65. With intermediate
values of 0.75 and 0.70 for o9, SOR was able to take only the first steady Newton step and
the first two steady Newton steps, respectively. As in the coarse grid case, the use of either
SGS or ILU preconditioning does not present any advantage and it is interesting to note that
GMRES(20)/ILU even stagnates as opposed to the much simpler GS and SGS preconditioners.
The convergence history of all the above Krylov methods is illustrated in Fig. 5 for both grid
cases by representing the residual norm versus CPU time during the inner iterations for the
first steady Newton step. The characteristic staircase pattern of restarted GMRES and the
highly nonmonotonic convergence history of Bi-CGSTAB are evident.

We have observed above that 20 Krylov vectors are not sufficient to prevent GMRES
from stagnating in certain steady Newton cases. Our uniform choice of 20 vectors in the
reported results stems from numerical experiments with as few as 5 and as many as 30 vectors,
using the GS preconditioning. With Krylov spaces of dimensions 5 and 10, even the coarse

grid problems stagnated. The same difficulty was encountered on the fine grid with dimen-
sion 15. In the other limit, allowing as many as 30 vectors led to fewer restart cycles during the
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TABLE 2
Performance results on thefine grid.

Algorithm SOR Bi-CGSTAB
Preconditioner GS SGS ILU
work array (Mw) 1.22 1.35 1.38 2.32

time/it (min) ,10-2 1.17 2.88 6.47 10.6
time/SOR-time 1.0 2.5 5.5 9.1

time/5 steps (min) 1.04 0.93 1.63 2.05
time/10 it (min) 1.83 1.64 2.92 3.63

’ime/transient (min) 4.1 3.5 5.0 8.3
104.9" 59.3

GMRES(20)
GS SGS ILU
1.77 1.80 2.74

1.70 5.25 8.38
1.5 4.5 7.2
0.84 1.78 1.96
1.46 3.40 3.53
3.5 5.8 8.3
26.3 48.6time/steady (min) 25.0 49.1

Total time (min) 109.0" 28.5 54.1 67.6 29.8 54.4

Coarse Grid Bi-CGSTAB Convergence History Fine Grid Bi-CGSTAI3 Convergence Hi story104

10 10

l0 101

10 10

10-t 10-1
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Coarse Grid OMRES(20) Convergence History
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Fine Grid GMRES(20) Convergence History
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10- 10-

10 15
cpv (rm)

FIG. 5. Plots ofpreconditioned residual norm as afunction ofexecution timefor Bi-CGSTAB and GMRES(20)
using each ofthree preconditioners on coarse andfine gridsfor thefirst steady Newton step (At cx).

steady Newton iteration with overall CPU savings of 26% and 2% on fine and coarse grids
respectively, but at a cost of approximately 15% more in storage. It therefore appears that
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special care should be taken in selecting the Krylov dimension to avoid both stagnation in the
steady Newton iteration and excessive storage requirements in the pseudotransient stage.

Following a suggestion of Van der Vorst, we reran the Bi-CGSTAB/GS cases on both
coarse and fine grids with 0 (BsA)Tro to attempt to observe a decrease in iterations
often associated with this practice. We found decreases in iterations relative to 0 r0 in the
steady-state Newton iteration for both coarse and fine grids, the savings in CPU time being
as high as 18%. In contrast, the convergence improvements were marginal and the execution
times greater when this device was employed in the pseudotransient phase. The associated
CPU time penalty was as high as 18%. This is mainly attributable to the extra cost of forming
and factoring a second set of diagonal blocks of the Jacobian for use in the application of the
transpose of the preconditioner. Their cost is not amortized over many subsequent iterations
since the pseudotransient linear systems converge fairly rapidly.

We should also mention that the use of the flexible variant of GMRES, namely FGMRES
[7], preconditioned alternatively by lower and upper triangles, did not meet with success. In
fact, the alternate use of these two preconditioners seemed to uncondition the system for this
test problem and the results were much worse than with a lower triangle preconditioner (GS)
alone. Finally, we point out that for flame sheet problems, the cost of evaluating the Jacobian
does not represent a significant number of linear iterations, and the best overall strategy for
these problems is to re-evaluate the Jacobian at each timestep. For instance, in the fine grid
case, the evaluation of the Jacobian takes as much time as 4.7 Bi-CGSTAB/GS iterations.
Consequently, the savings on Jacobian evaluations from keeping the Jacobian fixed for several
timesteps does not compensate for the resulting increase in the number oflinear iterations. This
contrasts with our experience in larger combustion systems, such as a 29-species methane-air
flame, in which a Jacobian evaluation costs the equivalent of 14 Bi-CGSTAB iterations, so
that it is preferable to keep it fixed for several timesteps, especially during the initial deep
transient phase.

5.2. Detailed comparisons of Bi-CGSTAB/GS and GMRES/GS. According to the
results of the previous section, the two most effective algorithms over the course of the entire
solution history are Bi-CGSTAB/GS and GMRES(20)/GS. These algorithms never fail to
converge and deliver total CPU times that are within 2% ofeach other on the two different grids.
Bi-CGSTAB accomplishes this with approximately 30% less memory than does GMRES(20).

Table 3 breaks down the counts of Newton steps and Krylov iterations and the CPU
time over each of four easily demarcated phases of the overall two-grid computation. As
summarized in the left-most columns, these phases consist of: 850 adaptively chosen transient
Newton steps on a coarse grid of 40 subintervals on each side, followed by a steady Newton
iteration on the same grid, followed by interpolation onto a grid formed by doubling the
refinement in each coordinate direction and 10 adaptively chosen timesteps on this new grid,
followed by a steady-state iteration on the fine grid. The count of Newton iterations includes
all of the correction vectors AU that are accepted by the algorithm, sometimes after damping.
(Because of the control structure of the nonlinear algorithm, this is not the same thing as
the total number of linear systems (4.9) of size nc n,. nz solved. Many of these Newton
corrections are provisional "look ahead" vectors that are ultimately discarded.) The counts of
preconditioned Krylov iterations (of either Bi-CGSTAB orGMRES type) are the totals over all
calls to the linear solver. This is the same as the number of calls to the subroutine that evaluates
matrix-vector products for GMRES; for Bi-CGSTAB, the matrix-vector subroutine is called
twice in each iteration. Likewise, the subroutine that evaluates vector inner products is called
four times for each tabulated Bi-CGSTAB iteration. It is not possible directly to infer the
number of inner products from number of GMRES iterations because of the ever-expanding
space of direction vectors against which GMRES orthogonalizes each iterate. However, each
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full restart cycle of 20 Krylov vectors requires 20 21/2 210 inner products, so we can
upper bound the number of inner products per GMRES iteration at 10.5.

TABLE 3

Performance ofBi-CGSTAB/GS and GMRES/GS by grid and timestepping phases.

Problem Bi-CGSTAB/GS GMRES/GS
Coarse grid
transient

Coarse grid
steady

Fine grid
transient

Fine grid
steady

Total

Newton its.
Krylov its.
Time (min)
Newton its.
Krylov its.
Time (min)
Newton its.
Krylov its.
Time (min)

1,662
12,550
120.5
7

1,595
9.4

57
3.5

Newton its.
Krylov its.
Time (min)
Newton its.
Krylov its.
Time (min)

4
1,102
25.0
1,687
15,304
158.4

1,664
19,661
116.7
7

2,724
9.2
14
86
3.5
4

2,006
26.3
1,689
24,477
155.7

It would appear that the nonlinear convergence history is independent of the linear solver,
since the total number of Newton steps is nearly identical. In fact, a detailed iteration-by-
iteration comparison reveals this not quite to be the case. The convergence tolerance for the
Krylov methods is loose enough to allow slightly differently shaped correction vectors (whose
linear residuals satisfy the same Euclidean bound) to be returned to the Newton method.
Appreciable discrepancies (on the order of a factor of two) in nonlinear residual norm between
the Bi-CGSTAB- and GMRES-driven solvers occur only in the last few Newton iterations, after
the norm has dropped a millionfold. However, the number of Newton iterations to complete
convergence is not affected.

In the transient portions of the solution trajectory, when the diagonal dominance of the
Jacobian is enhanced by the timestepping, the number of Krylov vectors required per Newton
step is one to two orders of magnitude less than the number required during the steady-state
portions for both Bi-CGSTAB and for GMRES. In the transient fine-grid computation, for
instance, Bi-CGSTAB requires approximately 4.1 iterations per Newton step, and GMRES
approximately 6.1. On the other hand, in the steady coarse-grid computation, Bi-CGSTAB
requires approximately 276 iterations per Newton step, and GMRES approximately 502.
(Because "look-ahead" steps are frequently discarded during the steady Newton stage of the
computation, the average numbers of Bi-CGSTAB and GMRES iterations per linear system
solved are closer to half these totals.)

For a fixed state of the physical system, the Jacobian constructed on the fine grid is more
dominated by the elliptic, second-derivative terms of (4.1)-(4.4) than by the first-derivative
terms. The tables do not contain a control experiment in which the identical physical state is
discretized on each of the two grids, but we can observe that Bi-CGSTAB is on average equal
to or slightly better than GMRES in terms of CPU time on the fine grid, whereas GMRES is
slightly better than Bi-CGSTAB on the coarse grid.

Comparing the iteration counts of Bi-CGSTAB and GMRES, we see that the former
is 62.5% of the latter, averaged over a complete computation, ranging from about 55% to

about 66% for different phases of the computation. This translates into the Bi-CGSTAB
solver making 25% more matrix-vector product calls than GMRES. On the other hand, over a
complete calculation, GMRES makes just under three times as many calls to the inner product
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routine as Bi-CGSTAB. Given the readily apparent differences between the distribution of
work of the two linear solvers, it is interesting that their CPU times match very closely within
each phase.

6. A multidomain preconditioner. In this section, we reexamine the block-line GS pre-
conditioner with a view toward parallelism. Computational combustion is driven in this direc-
tion by both memory requirements and execution time requirements, even for two-dimensional
problems. As is widely appreciated, Newton-Krylov methods for finite-difference discretiza-
tions are easily and efficiently parallelized by domain decomposition, except, possibly, for
two tasks: inner products and preconditioning steps with internal sequentiality or extensive
nonlocal data dependencies. Apart from these tasks, Newton-Krylov solvers consist mainly
of residual evaluations, Jacobian evaluations, and sparse matrix-vector products, in which the
worst data dependencies can be confined to nearest-neighbor type. Inner products ofdistributed
vectors involve global synchronized communication. Possibilities for recasting Krylov algo-
rithms to form several inner products simultaneously within a vector global reduction operation
have been explored by many authors with views towards stability and computational complex-
ity, and are beyond the scope of this article. However, the sequentiality of the block-line GS
preconditioner has been addressed through the following simple modification.

The preconditioned product y BsAx is still formed in two steps as in 2.1.1, but
for multidomain GS we replace L with an/, in the factor to be inverted: solve (, + D)z
Ux / (L ,)x; y -- z + x. The operator/ is just L with the off-diagonal row blocks that
contain the coupling of each subdomain to the one upstream set to zero. In our application,
a subdomain consists of a collection of contiguous rows of gridpoints oriented normal to the
predominant flow direction. For the case of two subdomains on the coarse grid, for instance,
the downstream subdomain spanning rows j 22 through j 41 takes its upstream data at
iteration k from the data along row j 21 after iteration k 1.

We have previously experimented with a similar "poor man’s" type of domain decompo-
sition preconditioner in the context of block-ILU subdomain preconditioners in [23]. Though
its effectiveness does not scale to the fine parallel granularity limit in elliptic systems, it is
a simple and practical device at coarse granularity, motivated by the following elementary
observation. Let A be a banded matrix, written in block 2 x 2 form

(6.1) A_[AI A12]A21 A22

TheA block corresponds to subdomain and A22 to subdomain 2, with coupling blocks A2
nonzero only in its lower left corner and A2 only in its upper right. Let B be a conformally
blocked diagonal preconditioner

(6.2) B [A-I 0 ]0 A-2
The preconditioned operator is

[ I A-{II A12 ] =_ I + R(6.3) B-I A
A21A21 I

In the context of a naturally ordered two-dimensional PDE discretization with O(n) mesh
intervals on a side, the dimension of B-1A is O(n2) and the rank of R is O(n). Hence CG
on a symmetrizable B-1A will converge in at most O(n) iterations [24], which is acceptable
relative to other comparably parallelizable methods as n becomes large.
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Tables 4 and 5 display the results of rerunning the Bi-CGSTAB and GMRES(20) tests
with the modified preconditioner. The first columns show the same timing data as in Table 3.
The next three c61umns display the results of complete computations carried out on the same
serial machine as the single domain computation.

TABLE 4
Performance ofthe multidomain preconditioner with Bi-CGSTAB (timings in minutes).

Problem One subdomain Two subdomains Four subdomains Eight subdomains
Coarse grid transient
Coarse grid steady
Fine grid transient
Fine grid steady

Total

120.5
9.4
3.5

25.0
158.4

122.2
10.1
3.5

28.0
163.8

121.6
9.7
3.5

29.2
164.0

126.7
11.0
3.5

27.5
168.7

8:1 ratios
1.05
1.17
1.00
1.10
1.07

TABLE 5
Performance ofthe multidomain preconditioner with GMRES(20) (timings in minutes).

Problem One subdomain
Coarse grid transient
Coarse grid steady
Fine grid transient
Fine grid steady

116.7
9.2
3.5

26.3
Total 155.7

Two subdomains Four subdomains
121.1

9.3
3.5

23.5

118.2
9.7
3.5

23.3
157.4 154.7

Eight subdomains 8:1 ratios
123.0 1.05
11.0 1.19
3.5 1.00

22.8 0.87
160.3 1.03

At the maximum granularity of eight subdomains, the line GS preconditioning is com-
menced independently in each of eight strips that are, respectively, 5- and 10-grid cells wide
in the streamwise direction on the coarse and fine grids. As can be observed from the ratios in
the final column, comparing the cases of one and eight subdomains, the penalty in CPU time
paid by this modification is very modest: 7% under Bi-CGSTAB and only 3% under GM-
RES. It has become conventional in reporting parallel efficiencies to distinguish between the
"numerical efficiency," r/num, of a multithreaded algorithm relative to the best single-threaded
algorithm and the "machine efficiency," r/mach, of the multiprocessor implementation of the
multithreaded algorithm. In this nomenclature, the final column lists the reciprocals of the
numerical efficiency of the parallelized preconditioning. We conclude that modest granular-
ity parallel preconditioners are available for these problems at a very small price in terms of
convergence degradation relative to an excellent serial preconditioner.

It is perhaps surprising that there are a few nonmonotonicities in the convergence be-
havior of both linear solvers as the number of severed j-lines increases. Moreover, on the
fine grid during the final steady Newton iterations, the convergence of GMRES is actually
monotonic in the unexpected direction for the first three mesh bisections shown. However,
GMRES(20) stagnates when the preconditioner is further decoupled into 16 subdomains. We
do not fully understand the circumstances under which using data that is less than the best
available (i.e., moving away from GS towards Jacobi) will enhance convergence, but we can
offer the following observations concerning the plausibility of encountering such behavior.

First, this problem is multicomponent. In some regions of the flow field, the strongest
couplings of one degree of freedom to all others occur not between unknowns of the same
type at neighboring points in space, but between unknowns of different type (e.g., velocity and
vorticity) at the same point in space. Furthermore, in pseudotransient phases with very small
timestep, the stroiagest coupling of each degree of freedom is to its own image at the previous
timestep. Therefore, weakening spatial dependencies does not always make a leading-order
difference in the update formula for a given degree of freedom.



POLYALGORITHMIC LINEAR SOLVERS FOR NONLINEAR BVPS 701

Second, the linear operators are not symmetric positive definite; recall that SOR used as
a stationary iteration actually requires underrelaxation for convergence throughout the entire
solution trajectory. The modification of GS described above is a form of underrelaxation.

Third, we do not iterate to machine precision within each linear solution process; therefore,
there is an interaction between the linear and nonlinear residuals. When the preconditioner
changes, the shape of the incompletely converged Newton correction changes, which results in
a different Jacobian matrix and right-hand side vector at the next Newton step. Our numerical
experiments show that for finer granularity preconditioners more inner iterations are needed
to solve the first steady Newton step; on the other hand, further nonlinear progress is made
in the sense that the norm of the nonlinear residual is further reduced by the resulting step.
The next Newton step then generally requires fewer linear iterations for its computation. The
result is an oscillation in the linear iteration history for the decoupled problems around the
linear iteration history for the single-domain problems. Threshhold effects of this oscillation
along the course of the steady nonlinear iterations account for the variations in cumulative
linear iterations as the number of subdomains is increased.

7. Conclusions. In this study, we compared a standard relaxation method and two CG-
like algorithms combined with three preconditioner options in the solution of linear systems
arising in axisymmetric flame sheet simulation problems. Both traditional (SOR) and recent
(Bi-CGSTAB) solvers occupy practical niches. Though SOR cannot handle the Jacobians
of the steady Newton steps on the coarse grid as early as the Krylov methods in the present
problem, it has been successfully employed in streamfunction-vorticity ], primitive variable
[2], and vorticity-velocity 19] formulations both with and without chemical reaction by pro-
longing the pseudotransient stage and by under-relaxation. By handling fully implicitly the
intra-point coupling, block-SOR can be regarded as the most economical splitting matrix for
problems in which the dominant coupling is through the source terms or backwards to the
previous iterate through the implicit time-differencing. The Bi-CGSTAB algorithm combined
with a GS left-preconditioner gives the best execution time and does not break down in our ex-

perience. Bi-CGSTAB/GS permits passage to steady Newton iteration at an earlier stage than
SOR. GMRES/GS yields nearly identical execution times without concern for breakdowns,
but at a higher storage overhead in problems in which memory may be a premium.

With an eye towards future applications, it should be noted that either Bi-CGSTAB or
GMRES can be employed as inner iterative loops of Newton’s method in matrix-free variants
with preconditioners that might rely on evaluation and storage of only selected portions of
the Jacobian, or only infrequent evaluation of the Jacobian. It is to preserve this possibility
on problems with more expensive Jacobian evaluations that we avoid linear solvers with an

explicit reliance on matrix-vector products with the transpose of the Jacobian.
For coarse-granularity parallel computation in which each processor is responsible for a

different subdomain, we have demonstrated that a number of the off-diagonal blocks of the GS
preconditioner coupling adjacent subdomains may be discarded with minor penalty, leaving
a block-Jacobi-like structure to the outermost iteration. This approach has been implemented
in [3] and in [25]. In the latter full-scale implementation of a 26-species, 78-step reaction
mechanism for a methane-air flame, an overall efficiency of 82% is reported on a six-processor
IBM ES/3090 60.0J. GS still retains its usefulness as a subdomain preconditioner. For finer

granularity parallelism, we would expect to combine it into a global preconditioner based on
hierarchically coarsened grids. Simple, two-level hierarchies have been extensively tested
under the rubric of "domain decomposition" methods. For some parallel performance results
on model two-dimensional problems with convection and adaptive refinement, see [26].

Finally, on fine-grained distributed parallel architectures with differential rates for com-
munication involving local and global data dependencies, the trade-off between the generally
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greater number of matrix-vector products in Bi-CGSTAB and the generally greater number
of inner products in GMRES may play a more significant role than CPU and total storage
considerations in selecting among linear solvers.
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BIFURCATION FOR THE BOUSSINESQ EQUATIONS*
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Abstract. Some of the most challenging eigenvalue problems arise in the stability analysis of solutions to

parameter-dependent nonlinear partial differential equations. Linearized stability analysis requires the computation
of a certain purely imaginary eigenvalue pair of a very large, sparse complex matrix pencil. A computational
strategy, the core of which is a method of inverse iteration type with preconditioned conjugate gradients, is used to

solve this problem for the stability of thermocapillary convection. This convection arises in the float-zone model of
crystal growth governed by the Boussinesq equations. The results obtained complete the stability picture augmenting
the energy stability results [Mittelmann, et al., SIAM J. Sci. Statist. Comput., 13 (1992), pp. 411-424] and recent

experimental results. Here a real eigenvalue of a Hermitian eigenvalue problem had to be determined.

Key words, eigenvalue problem, thermocapillary convection, Hopf bifurcation, linear stability, inverse iteration
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1. Introduction. The float-zone crystal-growth process is a containerless method for
producing high-quality electronic material in which a rod of the material to be refined is
passed through a type of heater, producing a zone of molten material that is held in place by
surface-tension forces (see Fig. 1). The requirement that surface-tension forces alone support
the weight of the molten zone makes the process unsuited for use with certain materials
(notably gallium arsenide) in terrestrial environments. Consequently, there has been a great
deal of interest in exploring the microgravity environment of space to grow larger crystals of
electronic material using the float-zone method [4], 14], 19].

Along with the reduction in weight provided by a microgravity environment comes a
reduction in any convection in the melt induced by buoyancy. At one time, it was believed that
buoyancy-induced convection was responsible for the appearance of striations observed in
float-zone-grown material. If this were the case, then one might also expect to produce better
material in a microgravity environment. Associated with the float-zone process, however, is
another type of convection that will not vanish in space, namely, thermocapillary convection,
driven by temperature-induced surface-tension gradients along the free surface of the melt. In
fact, it has been widely speculated that the instability of this convective mode is responsible
for the appearance of the observed striations. The desire to utilize the unique environment
of space coupled with these observations has led to a significant body of research associated
with the stability of thermocapillary convection in models of the float-zone process.

Hydrodynamic stability theory is concerned with determining the conditions under which
a certain flow, called the basic state, will remain stable or become unstable due to the inevitable
presence of unknown perturbations. In general, these perturbations are governed by nonlinear
partial differential equations. For a general reference on stability theory we refer to [6].
Linear-stability theory assumes the perturbations to be infinitesimally small and neglects the
nonlinear terms in comparison with their linear counterparts. This theory is local in nature
and results in a criterion that guarantees growth of these small disturbances. Typically, an
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FIG. 1. Schematic oftheftoat-zone crystal-growth process.

externally controllable dimensionless parameter, say R, is selected and linear theory yields a
value RL such that R > RL is a sufficient condition for instability.

Energy stability theory, on the other hand, adopts a global approach by examining the
behavior of a generalized integral disturbance energy. Unlike linear stability theory, energy-
stability theory provides a value Re such that R < Re is a sufficient condition for stability
of a given basic state to disturbances of arbitrary amplitude. This technique is equivalent to
a stability analysis utilizing a Lyapunov function. The application of either theory gives rise,
in general, to an eigenvalue problem.

If Re and RL should coincide, a rigorous stability bound is obtained. However, this is
usually not the case and the proximity of Re to Rz is a function of the physical mechanism
that gives rise to the instability. Two such mechanisms for which Re and Rz may be expected
to be relatively close to each other are buoyancy and thermocapillarity.

Experimentally, it has been shown by Preisser, Schwabe, and Scharmann [13], among
others, that thermocapillary convection in a model of the float-zone process undergoes a
transition from steady to oscillatory convection when a dimensionless parameter known as the
Marangoni number exceeds a particular value, the other parameters held fixed. The geometry
employed by Preisser et al is termed a half-zone because it is meant to simulate the lower
half of an actual float-zone. It consists of a pair of coaxial, solid cylindrical rods, oriented
vertically, with a bridge of liquid material suspended between them. The rods are heated
differentially, with the upper rod being at a higher temperature than the lower one. Buoyancy,
therefore, plays a stabilizing role in the experiment since the liquid is stably stratified due to
temperature in the axial direction. The basic state of thermocapillary convection that results
consists of a single toroidal eddy with motion on the free surface in the direction from the hot
cylinder toward the cold one.

Motivated by the above work, Shen et al. 16] undertook a stability analysis of a half-zone
of O (1) aspect ratio, employing energy-stability theory rather than linear theory. Their results,
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computed primarily for Prandtl number Pr 1, compared favorably with the experimental
results of Preisser et al. However, their analysis had made the simplifying assumption of
permitting only axisymmetric disturbances, while the oscillations observed by Preisser et
alwere clearly nonaxisymmetric and for a material with significantly larger Prandtl number.

Computations for general disturbances were undertaken by Neitzel et al. 11 ]. Fortunately,
experiments performed by Velten, Schwabe, and Scharmann [18] for KCI provided results
for unit Prandtl numbers that eliminated the need to attempt the more difficult calculations for
larger Prandtl numbers. These newer energy-theory results are in excellent agreement with
the experimentally determined onset Marangoni numbers in order of magnitude, although the
azimuthal structure emerging from the energy theory does not (and should not necessarily)
agree with that observed experimentally.

This work seeks to complete the stability picture for the finite half-zone with a nonde-
formable free surface by calculating linear-stability limits for this basic state. The degree of
closeness of the linear- and energy-theory results provides a bound for the region of parameter
space possibly subject to nonlinear instability. The results show that the energy bound is less
than the linear bound, but both are of the same order. The result would be consistent with
subcritical Hopf bifurcation. To determine if, in fact, this is the case, additional computations
would have to be done (cf. [6]). This may be done in future work. Since, furthermore, both
bounds do not correspond to axisymmetric modes, symmetry of the basic state appears to be
broken.

It is important to note that a difficult application could be analyzed with respect to its
linearized stability without computing all or even a large number of eigenvalues of the lin-
earization. Ultimately, in the neighborhood of the stability bound and for the finest discretiza-
tion used, a method will be employed that yields just the eigenvalues of interest. Still, the
compute-intensive part of this method is the solution of a linear system with the linearization
as a complex system matrix. Through the use of a preconditioned conjugate gradient-type
method for a related real but large system, this could be accomplished.

Since this work is as much a contribution to solving the specific class of application
problems as to the numerical treatment of the algebraic subproblem, 2 contains an outline
of the stability analysis as applied to the thermocapillary convection problem, while in 3
the numerical problem and the procedure used for its solution are described. Finally, some
numerical results are presented in 4.

2. Linear-stability analysis. The basic state of thermocapillary convection in a half-
zone with nondeformable free surface is identical to that employed and described in 16] and
11 ]. The axisymmetric Boussinesq equations are discretized in stream-function/vorticity form
using finite differences on an equally spaced grid in the r-z plane. The computed basic state
consists of a single toroidal thermocapillary eddy with flow on the free surface directed toward
the bottom, cold cylinder. Isotherms become increasingly deformed from their conductive
profiles as the Prandtl number of the melt is increased. Details of the numerical procedure
and a discussion of the results obtained may be found in 16] and 11 ].

The stabilityanalysis of the basic-state velocity, U(x), temperature, T(x), and pressure,
P(x), fields begins in the usual fashion by assuming there exists a solution to the Boussinesq
equations of the form

q(x, t) O(x) + q’(x, t),

where q refers to any flow quantity (i.e., velocity, temperature, or pressure), a capital letter
denotes the basic state, and a prime is used to denote a disturbance. Substitution ofthe solution
into the Boussinesq equations and linearization in disturbance quantities leads to the linearized
disturbance equations (dropping primes):
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1 ] 1 2
(2.1) Re[ut + Uur + uUr + Wuz + wUz] --Pr + -(rU)rr + -uoo + Uzz vo,

(2.2) Re vt + Uvr + Wvz + r --Por + -(rV)rr
r
+ -vvo + Vzz + -uo,

(2.3) Re[wt + Uwr + uWr + Wwz + wWz] -Pz + Re + -(rW)rr + - woo + Wzz,

(2.4) Ma[0t + UOr + uTr + WO + wTz] -[r0r]r + 00o + Gz,
r -(2.5) (rU)r -1- vo -f" (rW)z O.

In (2.1)-(2.5) we have scaled velocities by vAT/Iz, pressure by vAT temperature by
AT, and time by Rtx/(V AT), where AT TI-I Tc, V is the (positive) rate of decrease of
surface tension with respect to temperature, and/z is the coefficient of dynamic viscosity of
the liquid in the zone. The disturbance temperature is denoted by 0.

The dimensionless parameters appearing in (2.1)-(2.5) are

),RATReynolds number Re

Grashof number Gr zR3r
p2

Marangoni number Ma

where v #/p is the kinematic viscosity, p is the mean density, c is the coefficient of
volumetric expansion, and g is the gravitational acceleration. The Prandtl number, Pr, is given
by Pr Ma/Re.

The boundary conditions which complete the specification of the problem are that

(2.6a-d) u=v=w=O=O, z =0, F,

(2.7a-d) u Wr q-Oz Vr v/r + 0 0r + Bi0 0, r 1,

in addition to the requirement that all flow quantities remain bounded at r 0. The quantity
I" H/R is the dimensionless aspect ratio of the zone. The additional parameter appearing
in the free-surface heat-transfer condition (2.7d) is the Biot number, defined as

Bi =hR/k,

where h is a heat-transfer coefficient and k is the thermal conductivity of the liquid.
In view of the linearity of (2.1)-(2.5) and the fact that the coefficients depend only on r

and z, we make use of the Floquet theory and normal modes to write all flow quantities as

(2.8) q(r, o, z, t) q*(r, z) exp(crt + imqg),

where cr o’R + iri is the complex growth rate and rn is restricted to be an integer. Again,
we refer to [6] for more details. Marginal stability corresponds to the condition err 0. The
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form (2.8) is now substituted into (2.1)-(2.5) and the boundary conditions. A discrete version
of the resulting problem is a complex, generalized eigenvalue problem of the form

(2.9) Ax cr Bx,

where x is the vector of unknown velocity, temperature, and pressure values at the nodes of
the appropriate grid.

The corresponding eigenvalue problem from the energy-theory analysis of this basic state
was, at worst, complex-Hermitian (in addition to being indefinite and sparse), whereas (2.9)
has no such symmetry. An additional complication, which also existed as part of the energy-
stability analysis is the fact that the basic-state velocity and temperature fields depend upon the
stability parameter, Ma (equivalently, Re). For the energy-theory calculations, this required an
additional level of iteration to obtain the energy limit, Mae. Since we formulate the problem
with cr as the eigenvalue, our procedure is to fix the Prandtl, Grashof, and Biot numbers as
well as the azimuthal wavenumber rn and calculate the eigenvalue of system (2.9) with largest
real part, call it tr*, for various values of the Marangoni number. The Marangoni number Ma*

* 0 is the value above which infinitesimal disturbances of azimuthalcorresponding to tr,
wavenumber rn will grow. The linear-stability limit, Mac(Pr, Gr, Bi), is therefore given by

(2.10) MaL (Pr, Gr, Bi) min Ma*(Pr, Gr, Bi; m).
tn

3. The numerical method. As shown above, the determination of the linear stability
bounds MaL requires the solution of the following eigenvalue problem

(3.1 a) Ax cr Bx,

where A, B are N x N matrices, N k + l, which are partitioned as

A 11, Bll E Ck’k, A2). Cl’t, where k is the number of velocity/temperature unknowns and
the number of pressure unknowns. The matrices are derived from linearizing the boundary
value problem for the Boussinesq equations at the solution (basic state) for specific values of
the parameters (Pr, Gr, Bi). A is complex and non-Hermitian while Bll iS taken as a multiple
of the identity matrix. If the real parts of all eigenvalues are negative, the basic state is stable,
and for increasing Ma that value Ma* must be found where for the first time an eigenvalue,
to be called the critical eigenvalue in the following, crosses the imaginary axis. Here, it is
expected that this corresponds to a simple Hopf bifurcation point [5]; that is, there will be
exactly one complex-conjugate eigenvalue pair with nonzero imaginary part that crosses the
imaginary axis with nonzero speed.

There is a sizable literature on the numerical computation of Hopf bifurcation points;
instead of attempting to give a necessarily rather incomplete listing of works, we refer to a
recent collection of articles on bifurcation problems [9] in which several papers address this
issue.

Generalized eigenvalue problems of the form (3.1), on the other hand, particularly if
they arise from applications as is the case here, have been studied thoroughly, and many
contributions have been made to their numerical solution. Again, we confine references to
just one recent survey work [7], which also includes an extensive bibliography.

Frequently, Hopf bifurcation points are detected during a continuation process. For this,
in general, all eigenvalues of (3.1) are computed, a procedure that is prohibitively expensive
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for large problems (N > 104). After the detection of a Hopf point, its precise location may be
determined through characterizing extended systems; see 17], [3], and the references therein.
This technique has proven to be useful for problems of moderate size, while it is of limited
use for very large problems.

From the literature dealing with the computation of Hopf points in flow problems, [2]
shall be quoted exemplarily. In this work, a relatively sophisticated combination of numerical
techniques was applied to a nontrivial hydrodynamic stability problem. One feature common
to the numerical approaches in [2] and many other works is the direct solution of the occurring
linear systems of equations. This feature still limits the size of the problems. The dimensions
of the eigenvalue problems solved are a few thousand. On the other hand, in 16] the iterative
solution of these problems permitted (in-core) solution of problems of dimension 104 105.
From the experience with the related but different computations of the energy stability bounds
in [16], there was reason to hope that, also for the determination of the linearized stability
limits, a method of inverse iteration type would yield the desired results.

If it was known in advance with which imaginary part/3 the critical eigenvalue crosses
the imaginary axis, then inverse iteration with shift i/3 would allow detection of this Hopf
point at least when the computation is started in the stable range, not too far from the critical
parameter value and continuation in this parameter is employed. It is clear that to safeguard
the obtained restilts, computations must be done with different values of/3. Alternatively,
generalizations of the numerical algorithm, i.e., the Arnoldi method, must be used to compute
more than one eigenvalue at a time as was done for medium-fine discretizations. On coarse
meshes all eigenvalues could be computed using the QZ method. Then, Arnoldi [15] was
used to compute 10-15 eigenvalues near that of largest real part. Roughly, the computational
work was greater than that for the inverse iteration used subsequently by a factor equal to the
number of eigenvalues computed.

Let s denote the shift that is usually anticipated to be purely imaginary with, say, positive
imaginary part/3. The following form of inverse iteration was successfully applied to the
present problem.

(3.2a) (A -sB)3xk (fikB A)xk,

(3.2b) fik+l
(Xk -" Xk)i

fik[Xk]i

xk + 3xk
(3.2c) xk+ [Xk "Jl- Xk]i

where [X]i denotes the component of the largest modulus of a vector x 6 Cn. Here, x0 was
initially, i.e., for the first Marangoni number used, chosen as a random vector and 19-0 was chosen
as 1. For a fixed shift, convergence of both the eigenvalue and eigenvector approximations
will generally be linear with a factor

(3.3) <1,

where 19.*, fin are the nearest and the next nearest eigenvalue to s. Also, faster convergence
for the fik could be obtained by iterating with approximate left eigenvectors and using the
generalized Rayleigh quotient, cf; e.g., [7].

The essential computational work involved in the proposed method is the solution of the
linear system in (3.2a). The matrix C A sB is complex and non-Hermitian. First, an
equivalent real system of order 2N was formed for the matrix
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(Re(C) -Im(C) )C--
Im(C) Re(C)

This system was then solved using the conjugate gradient method for the normal equations
[12]. For this, the matrix C was first scaled by multiplying the matrices Aij in (3.1b) with ap-
propriate powers of the discretization parameters to balance C. Then, additionally, a diagonal
scaling was used such that the columns of C had unit norm. Different preconditionings may
well lead to a more efficient solution method; several, however, were tried without yielding a
substantial reduction in work. These included outer-inner iterations utilizing the partitioning
in (3.1b) as, for example, in [1] for the Stokes problem. Here, however, AI SBll is neither
Hermitian nor definite. An incomplete LU decomposition was used to precondition the inner
iterations. Nevertheless, a higher efficiency is to be expected from an adaptive multilevel ap-
proach such as hierarchical bases ]. Instead, the finite difference discretization given above
was used on a fixed grid so that the results could be compared to the energy stability results
of 11 where the analogous discretization was used. Studies with various grid sizes suggest
that the error of the numerical results is well below 1%.

Instead of the normal equations, the system with C could have been solved directly by
suitable generalizations of conjugate gradients such as biconjugate gradients, biconjugate
gradients squared, generalized minimal residuals, etc. No preconditioners could easily be
found that made these methods sufficiently efficient for the cases to be solved. While C will
not generally be exactly singular if i/ :/: Im(cr*), it will be nearly singular. It must also be
noted that the values of Im(cr*) were in the range 10-2 10-1.

4. Numerical results. Algorithm (3.2) was applied to the eigenvalue problem (3.1) for
aspect ratio F and the parameter values Pr 1, Gr 0, and Bi 0 for which experimental
results are given in 18]. For coarse discretizations on square grids, up until about ;r 8z
l the results were checked with a complex QZ routine. Then, the approximate values of
20,

Ma*, or*, and the trend for decreasing grid size were known. It was not difficult to find suitable

guesses for the shift s and a Marangoni number somewhat smaller than the expected Ma*.
Continuation in Ma with a bisection or secant method on Re(a*) was used to determine Ma*.
To check the validity of the stability bound obtained on the finest mesh, the computations were
repeated for various shifts.

The critical eigenvalues computed were in the range .02i-.03i. The complex linear systems
(3.2a) had total dimension N where (1 + )(1 + z), k 4 facr--- + W in (3.1b) and
3 < fac < 5 depending on m. The number of conjugate gradient iterations was less than N
but O(N) indicating the need for a better preconditioner. While a more complete discussion
of results is given in 10], it should be noted that the least-stable mode from energy theory,
here rn 1, is not the same as the most unstable mode from the linear theory. In Fig. 2 the
present linear stability bounds and our earlier energy bounds are graphed. In fact, the linear
bound is obtained for rn 2

Mac 1685, MaL 2484.

For this bound 8r 3z resulted in an order N 17,709 for the complex eigenvalue
problem (3.1).

As in the case of exact comparability of experimental and computational models, the
experimentally determined stability limits that should be between the energy and linear stability
limits, are, in fac, close to the energy limits. While no definite statement can be made, these
results would be consistent with subcritical Hopfbifurcation with breaking of the axisymmetry
of the basic state. Clearly, there is additional nontrivial numerical computation needed to

complete the physical understanding of this problem.
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FIG. 2. Comparison oflinear-stability results (solid symbols)for Gr 0, Bi 0 with those ofenergy-stability
theory. Azimuthal wavenumber is indicated by symbol type: cross, m 5; circle, m 4; triangle, m 3; square,
m 2; diamond, m 1.

The computations were performed on a 4-processor Stardent 3000 in the Advanced Re-
search Computing Facility of the Department of Mathematics at Arizona State University; the
QZ computations were done on a CRAY2 at the NASA Ames Research Center.
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PRECONDITIONED, ADAPTIVE, MULTIPOLE-ACCELERATED ITERATIVE
METHODS FOR THREE-DIMENSIONAL FIRST-KIND INTEGRAL EQUATIONS

OF POTENTIAL THEORY*
K. NABORSt, F. T. KORSMEYERt, F. T. LEIGHTON, AND J. WHITEr

Abstract. This paper presents a preconditioned, Krylov-subspace iterative algorithm, where a modified multipole
algorithm with a novel adaptation scheme is used to compute the iterates for solving dense matrix problems generated
by Galerkin or collocation schemes applied to three-dimensional, first-kind, integral equations that arise in potential
theory. A proof is given that this adaptive algorithm reduces both matrix-vector product computation time and storage
to order N, and experimental evidence is given to demonstrate that the combinedpreconditioned, adaptive, multipole-
accelerated (PAMA) method is nearly order N in practice. Examples from engineering applications are given to
demonstrate that the accelerated method is substantially faster than standard algorithms on practical problems.

Key words, boundary-element methods, Laplace’s equation, potential theory

AMS subject classifications. 65N38, 45L10

1. Introduction. Mixed first- and second-kind surface integral equations with - and
0
On ; kernels are generated by a variety of three-dimensional engineering problems. For such
problems, Nystrtim-type algorithms cannot be used directly, but an expansion for the unknown,
rather than for the entire integrand, can be assumed and the product of the singular kernel
and the unknown integrated analytically. Combining such an approach with a Galerkin or
collocation scheme for computing the expansion coefficients is a general approach, but leads to
dense matrix problems. In this paper, we focus on accelerating such techniques for purely first-
kind integral equations of potential theory, and present an overlapping-block preconditioned
Krylov-subspace iterative algorithm for solving the associated dense matrix problem, where a
modified multipole algorithm with a novel adaptation scheme is used to compute the iterates.
This approach follows along lines originally suggested in 1 ].

In the section that follows, we review Galerkin and collocation algorithms applied to the
first-kind integral equation, as well as Krylov-subspace iterative algorithms for solving the
generated dense matrix problem. Our approaches to applying a fast multipole algorithm to
this problem are described in 3, and a simplified complexity analysis for our adaptive scheme
is given. In 4, we present more general proofs of the adaptive multipole algorithm linear
computational growth. The preconditioning strategy for accelerating the Krylov-subspace
method convergence is described in 5, and experimental results gained from using the method
to analyze a variety of structures derived from engineering problems are presented in 6.
Finally, conclusions are given in 7.

2. Formulation. Consider the first-kind integral equation for a single-layer surface den-
sity, hereafter referred to as a charge density, generated by solution of the exterior Dirichlet
problem in a multiply-connected domain. (For a second-kind formulation of this problem see
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[2].) The charge density a satisfies the integral equation

da’ x S,(1) (x) a(x’)
IIx x’ll

where S is a two-dimensional surface in R3, (x) is a given surface potential, da’ is the
incremental surface area, x, x’ e R3, and IIx is the usual Euclidean length of x given by

V/x2 4- x22 4- x. More compactly, we denote (1) by

(2)

The charge density a can be related to electrostatic capacitances and forces or fluid velocities
for the case of potential flow. Electrostatic capacitances are useful figures of merit for de-
signers of electronic packaging [3]; microelectromechanical system designers are interested
in electrostatic forces [4]; and ocean vehicle designers are interested in potential flow [5]. For
these engineering problems, 0.1%-1% accuracy is typically sufficient, and therefore low-order
schemes are in common use.

To compute an approximation to a, one can generally consider an expansion of the form

(3)
N

O’(X) " Z qiOi(x),
i=1

where 01 (x) ON(X) R3 --+ R are a set ofnot necessarily orthogonal expansion functions,
and ql qN are the unknown expansion coefficients. Typically, 01 (x) ON(X) represent
an approximate discretization of the surface S, where each Oi is nonnegative, of compact
support, and satisfies a normalization condition

(4) fs Oi (x’)da’ 1.

The expansion coefficients are then determined by requiring that they satisfy a Galerkin
or collocation condition of the form

(5) Pq -fi,

where P RNxN and if, q 6 RN. In the case of a Galerkin condition,

(6) P,.j (Oj,

and

(7) -’i (Oi’

where f g) =-- fs f(x’)g(x’)da’. For the collocation condition,

(8) Pij ((Xj), ,Oi)

and

(9) -’ffi ((Xi), lp),

where (3(x), u) u(x), and Xl XN are the collocation points [6].
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Remark. If the Oi’s are nonnegative, then for both the Galerkin and collocation methods,
P is a positive matrix, and for the Galerkin method, P is symmetric and positive definite. The
normalization condition implies that for pairs of Oi’s whose support is widely separated, the

where r is the separation distance.associated off-diagonals of P approach 7,
Example. The approach used in many engineering applications is to approximate the

surface S with N planar quadrilateral and/or triangular panels over which r is assumed to be
uniform. The expansion functions are then

+/- if x is on panel
(10) Oi (x)

0 otherwise,

where ai is the area ofpanel i. The Galerkin scheme for determining the expansion coefficients
yields

(11) Pj fpp fp l dada’,
ai aj aneli anelj IIx x’ll

and for the collocation method

lfp(12) P/j da’.
ai anel Ilxi X’II

There are closed-form expressions for the integral in (12) [5], but closed-form expressions for
the integral in (11) are known only in special cases [3].

The dense linear system of (5) can be solved to compute expansion coefficients from
a right-hand side derived from (7) or (9). If Gaussian elimination is used to solve (5), the
number of operations is order N3. Clearly, this approach becomes computationally intractable
if the number of expansion functions exceeds several hundred. Instead, consider solving
the linear system (5) using a Krylov-subspace method such as generalized minimal residual
(GMRES)[7]. Such methods have the general form of Algorithm 2.1.

ALGORITHM 2.1. General Krylov-subspace algorithm for solving (5).
Set q0 to some initial guess at the solution.
Compute the initial residual and Krylov vector, r pO -fi pqO.
Determine the value of a cost function (e.g., IIrll.)
Set k 0.
repeat

if (cost < tolerance), return qk as the solution.
pk+l ppk.
Choose o’s and/3 in

qk+ Ejk=o oljpJ + [3pk+
to minimize the cost function.
Set k k + 1.

The dominant costs of Algorithm 2.1 are in calculating the Nz entries of P using (6) or (8)
before the iterations begin and in performing N2 operations to compute Pp on each iteration.
Described below are modified and adaptive multipole algorithms that avoid forming most of
P and reduce the cost of forming Ppk to order N operations. This does not necessarily imply
that each iteration of a GMRES-style algorithm can be computed with order N operations.
If the number of GMRES iterations required to achieve convergence approaches N, then to
perform the minimization in each GMRES iteration will require order Nz operations. This
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problem is avoided through the useof a preconditioner, also described below, that in practice
reduces the number of GMRES iterations required to achieve convergence to well below N
for large problems.

Remark. As the Galerkin matrix P is symmetric and positive definite, it is tempting to
replace a Krylov-subspace method suitable for nonsymmetric problems with the conjugate
gradient algorithm. Unfortunately, this is not recommended because if a multipole algorithm
is used to approximately compute ppk, this is equivalent to using an iterative method to
solve/Sq , where/5 is the multipole algorithm’s not necessarily symmetric, but sparse,
approximation to P.

3. Multipole algorithms. In the case of collocation, computing the dense matrix-vector
product Pq is equivalent to evaluating the potential at N collocation points, {Xl xv},
due to a charge density described by -= qiOi(X). It is possible to avoid forming P, and to
substantially reduce the cost of computing Pq, using the fast multipole algorithm [8], [9]. The
fast multipole algorithm uses a hierarchical partitioning of the problem domain and careful
application of multipole and local expansions to accurately compute potentials at N points
due to N charged particles in order N operations.

In particular, in the fast multipole algorithm, potentials due to clusters of charges are
represented by truncated multipole expansions. These expansions have the general form

n

(13) k(r, O, ) Mm (0,
n=O m=-n

where is the expansion order, r, 0, and are the spherical coordinates with respect to the
multipole expansion’s origin (usually the center of the charge cluster), Y’ (0, )’s are the
surface spherical harmonics, and the M’s are the multipole coefficients 10].

Multipole expansions can be used to efficiently evaluate the potential due to a cluster of
charges at any point where the distance between the evaluation point and the cluster center is
significantly larger than the radius of the cluster. A dual optimization is possible using local
expansions. That is, for a cluster of evaluation points, the potential due to charges whose
distances from the cluster center are significantly larger than the radius of the cluster can be
combined into a local expansion at the cluster center. Then, this local expansion can be used
to efficiently compute potentials at evaluation points in the cluster. A local expansion has the
form

(14) ap(r, O, )

_
Lym(o, )rn,

n=0 m=-n

where is the order of the expansion, r, 0, and are the spherical coordinates of the evaluation
location with respect to the expansion center, and the Lm’s are the local expansion coefficients.

For a more complete introduction to the three-dimensional fast multipole algorithm, refer
to the references. In the remainder ofthis section, we focus instead on the several aspects of the
fast multipole algorithm that must be modified to create an efficient algorithm for computing
the matrix-vector products associated with using an iterative scheme to solve the discretized
integral equations of potential theory. For such problems, the charge is a surface density given
by -= qiOi(X), rather than a set of point charges, and this mildly complicates the procedure
for computing multipole expansion coefficients. In addition, using an iterative algorithm to
solve the discretized integral equation implies that the multipole algorithm is used many times
to compute potentials, but in iteration computation, only the coefficients of the charge density
expansion functions change. This implies that efficiency can be improved if quantities with
only geometric dependencies are computed once and stored. Finally, the spatial nonuniformity
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associated with surface discretizations can be efficiently handled using an adaptive algorithm
different from that given in [11 ].

3.1. Computing multipole coefficients. In general, the coefficients of a multipole ex-
pansion for a charge density cr in a volume V are given by

(15) Mt fv or(p, or, i pn y-m ot dV

where p, or, and/ represent position in spherical coordinates. In the case where the charge
density is given by -=1 qiOi(x), substitution in (15) leads to

(16)
N

Note that the relationship between the multipole coefficients and the density expansion coef-
ficients is linear, assuming that the geometric quantities are given.

In general, the multipole coefficients can be computed easily using quadrature formulas;
the integrand in (16) contains no singularities. It is also possible to derive a closed form
expression for the integral in (16) for the case of the piecewise-constant expansion function
in (10).

THEOREM 3.1. Let Q be any triangular or quadrilateral region ofa plane in R3. There
exists a closedform expressionfor

(17) fQ pnym (Ol, )da,

where p, , are the spherical coordinates ofpoints on the panel surface.
Proof Formulas for shifting and rotating spherical harmonics are already well known,

having been derived for problems in quantum angular momentum 12]. It is therefore sufficient
to demonstrate a closed form expression for (17) in the case where the coordinate system origin
is coincident with the panel centroid, and the coordinate system xl-x2 plane is coplanar with
the panel.

To begin, note that by definition,

(18) ynm (p, 0) =/‘/(n -Im[)! Plnml(cosO)eimCk
(n + Im I)!

Substituting into (17) and noting that the coordinate system assumption implies that cos/ 0
for any point on the panel surface,

(19) ,ony’m(ot, )da
(n + Iml)!

Pnlml(0) pneimCkda"

For k n Iml odd, pnlml(0) 0 and therefore (19) evaluates to zero. For k n Iml
even, pn eimck can be expanded in terms ofx and x2 as

(20) pn eimCk
,-Iml

(j=0 n-lml2n-lml2 J Z(-sgn(m)i)lml-k:=o k) 2j-k.2_n-(2j+k).



718 K. NABORS, E T. KORSMEYER, E T. LEIGHTON, AND J. WHITE

The terms

(21) Zj,k =-- fQ xYxda
are the moments of the panel for which analytic formulas can be found in [5]. Using the
moments and combining (20) and (19) leads to

(22)

where

( n-lml

M2 K2 n-lml
j=0 2

Iml Iml )2"ej-e,-(2j+),
j (-sgn(m)i)lml-k(lml- kk=0

(23) Knm =//(n -Iml)! Plnml(o)"
(n + Im I)!

3.2. Matrix representation. As mentioned above, the iterative algorithm described here
uses the fast multipole algorithm to compute matrix-vector products. This implies that the
algorithm is used many times without a change in geometry, and this fact can be exploited to
improve algorithm efficiency. As is made clearer below, the fast multipole algorithm involves
constructing multipole expansions from charge density expansions, shifting and combining
multipole expansions, converting multipole expansions and charge density expansions into
local expansions, shifting local expansions, and evaluating the potential due to charge density
expansions, multipole expansions, or local expansions. However, each of the construction,
translation, and evaluation operations is a linear function of the expansion coefficients, and
therefore can be represented as a matrix whose elements are functions of geometry alone 13].

From the above observation we have the following theorem.
THEOREM 3.2. Thefast multipole algorithm computes an approximation to the potential

due to a charge density that is a linear function of the density expansion coefficients. In
addition, it is possible to represent this linear transformation directly in terms of translation
matrices whose entries arefunctions only ofgeometry.

The fast multipole algorithm produces an approximation to Pq, denoted /Sq, which
is a linear function of q. That is, the fast multipole algorithm is directly analogous to a
sparse representation of the dense matrix P. This has several important consequences. When
the multipole algorithm is used to compute matrix-vector products in an iterative method,
the iterative method’s convergence is controlled by the properties of/5, not by how well
/5 approximates P. Also, the translation matrices need be computed only once, then used
repeatedly until the iteration converges.

3.3. The modified multipole algorithm. Mostly to establish notation, we give a mod-
ified multipole algorithm that closely follows the development in [8]. The algorithm allows
for the charge density to be described in terms of expansion functions, and also exploits
Theorem 3.2 by exclusively using translation matrices.

To begin, we consider the hierarchical domain partitioning. Let the root cube be the
smallest cube containing the problem domain. More precisely, the root cube is the smallest
cube that contains all the collocation points and for which x outside the cube implies 0i (x) 0
for all i. The hierarchy is then just a recursive eight-way sectioning of this root cube.

DEFINITION 3.1. Cube hierarchy. The cube containing the problem domain is referred to

as the level O, or root, cube. Then, the volume of the cube is subdivided into eight equally
sized child cubes, referred to as level- cubes, and each has the level-O cube as its parent. The
collocation points are distributed among the child cubes by associating a collocation point
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with a cube if the point is contained in the cube. Each ofthe level-1 cubes is then subdivided
into eight level-2 child cubes and the collocation points are again distributed. The result is a
collection of64 level-2 cubes and a 64-way partition ofthe collocation points. This process is
repeated to produce D levels ofcubes and D distributions ofcollocation points starting with
an 8-way partition and ending with an 8D-way partition. The depth D is chosen so that the
maximum number ofOi ’s whose support intersects anyfinest level cube is less than a selected
constant (see Definition 3.11).

The terms below are used to concisely describe the modified multipole algorithm.
DEFINITION 3.2. Evaluation points ofa cube. The collocation points within the cube.
DEFINITION 3.3. Nearest neighbors ofa cube. Those cubes that have a corner in common

with the given cube.
DEFINITION 3.4. Second-nearest neighbors ofa cube. Those cubes that are not nearest

neighbors but that have a corner in common with a nearest neighbor ofthe given cube.
Note that there are at most 124 nearest and second-nearest neighbors of a cube, excluding

the cube itself.
DEFINITION 3.5. Interaction set of a cube. The set of cubes that are either the second

nearest neighbors of the given cube’s parent, or are children of the given cube’s parent’s
nearest neighbors, excluding nearest or second-nearest neighbors of the given cube.

There is a maximum of 189 cubes in an interaction set. Roughly half of the cubes are
from a level one coarser than the level of the given cube; the rest are on the same level.

For the jth cube on level d: its parent’s index on level d is denoted F(d, j); its set of
d -t- 1 level children is denoted C(d, j); its set of of interaction cubes is denoted I(d, j); the
set of cube j and cube j’s nearest and second-nearest neighbors is denoted N(d, j); the vector
of multipole expansion coefficients representing the charge density in the cube is denoted
Md,j; the vector of local expansion coefficients for the cube is denoted Ld,j; the vectors of
the cube’s charge density expansion coefficients and collocation point potentials are denoted
qd,j and Pd,j, respectively. The matrix that represents the conversion of a multipole expansion
from the level d cube ] center to a local expansion at the level d cube j center is denoted
M2L(d, j, d, ). The L2L, M2M, and Q2P translation matrices are similarly specified.
Finally, the matrix that maps qd,] to Md,j is denoted Q2M(d, j, d, ), and the L2P matrix is
similarly specified.

ALGORITHM 3.1. The Modified Multipole Algorithm.
/* THE CONSTRUCTION PHASE: Computes multipole expansions at the

finest level. */
For each level D cube j 1 to 8D

MD,j Q2M(D, j, D, j)qD,j
/* THE UPWARD PASS: Computes multipole expansions. */
For each level d D to2
For each level d cube j to 8a

Ma,j }--c(a,j) M2M(d, j, d + 1, )Ma+l,y
/* THE INTERACTION PHASE: Converts multipole expansions to local

expansions. */
For each level d 2 to D
For each level d cube j 1 to 8a

La,j Yd,]eI(a,j) M2L(d, j, d,
/* THE DOWNWARD PASS: Transfers and accumulates local expansions. */

For each level d 3 to D
For each level d cube j to 8d

Ld,j Ld,j + L2L(d, j, d- 1, F(d, j))Ld-l,F(d,j)



720 K. NABORS, E T. KORSMEYER, E T. LEIGHTON, AND J. WHITE

/* THE EVALUATION PHASE: Evaluates the potential. */
For each level D cube j to 8z

Po,j L2P(D, j)LD,j + yvz,j Q2P(D, j, D, ])qz,j

3.4. The adaptive multipole algorithm. Almost certainly, the surfaces of a given three-
dimensional problem will not fill the volume of the root cube, and this will necessarily lead
to a nonuniform distribution of the support of the Oi’s. It is possible to derive an adaptive
multipole algorithm from Algorithm 3.1 by breaking up the problem domain nonuniformly.
In this case, when the cube hierarchy is created, cubes are not subdivided if they intersect
the support of fewer than some limiting number of Oi’s [11]. However, for the kinds of
charge density expansion functions in common use, such an approach can sometimes require
more computation than a nonadaptive algorithm [14]. A more effective approach in this
setting, one which is guaranteed to use fewer operations than a nonadaptive algorithm, is to
avoid translation from charge density expansion coefficients to multipole expansions, and to
avoid forming local expansions, whenever such representations are inefficient. For example,
consider computing MD,j from Q2M(D, j, D, j)qD,j. If the number of entries in vector qD,j
is smaller than the number of multipole coefficients in MD,j, which for an lth-order multipole
expansion is (l + 1)2, then qD,j is a more efficient representation of the charge distribution, and
that representation can be propagated through the algorithm instead of MD,j. Note that using
such an approach requires some rather straight-forward bookkeeping and a few easily derived
translation operators 13]. In particular, multipole coefficient to evaluation point and charge
to local expansion coefficient translation operators, denoted M2P and Q2L, respectively, are
required.

A second optimization for the nonuniform case, one that is guaranteed to reduce the
operation count during the upward pass and also improve accuracy slightly, is to exploit the
fact that there is no need to construct a multipole expansion for a cube with only one nonempty
child. This is made clear in the following remark.

Remark. Suppose the charge density in a given cube is entirely contained in one of the
cube’s descendants. Then the potential due to charge in the given cube is at least as accurately
represented using the descendant’s multipole expansion about the descendant’s center, as by
a shifted version of the descendant’s multipole expansion about the given cube’s center.

A similar optimization can be used to improve the efficiency of the downward pass. That
is, there is no advantage to creating a local expansion for a cube with only one nonempty child.
Instead, the multipole expansions associated with the members of a cube’s interaction set can
be translated directly to the cube’s only nonempty child.

To describe an adaptive algorithm that exploits the above optimizations, the following
additional definitions are used.

DEFINITION 3.6. Adaptive cube. Any nonemptyfinest level cube or a coarser level cube
that has more than one nonempty child.

DEFINITION 3.7. Adaptive child. An adaptive child ofa given cube is any adaptive cube
descendent which has no ancestors that are adaptive cube descendents ofthe given cube. The
set ofadaptive children of level d cube with index j is denoted CA (d, j).

Note that a cube need not be adaptive to have adaptive children. However, if a nonempty
cube is not an adaptive cube, IC(d, j)l, which denotes the number of elements in C(d, j),
is precisely one.

DEFINITION 3.8. Adaptive parent. The adaptive parent of a given adaptive cube is the
unique adaptive cube for which the given adaptive cube is an adaptive child. The adaptive
parent ofa level d adaptive cube j is denoted by F (d, j).

Note that an adaptive parent can be separated from an adaptive child by an arbitrary
number of levels.
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DEFINITION 3.9. Adaptive interaction set. The adaptive interaction set ofa cube is the set

of all members of the cube interaction set, except any nonadaptive cube member is replaced
with its adaptive "child. The adaptive interaction set is denoted IA (d, j).

ALGORITHM 3.2. Adaptive Multipole Algorithm.
/* THE CONSTRUCTION PHASE: Computes multipole expansions at the

finest level. */
For each level D nonempty cube j

if (size(qD,j) > (l + 1)2) MD,j Q2M(D, j, D, j)qD,j.
/* THE UPWARD PASS: Computes multipole expansions. */

For each level d D- to 2
For each level d adaptive cube j

if (size(qd,j) > (l + 1)2)
For each level a7 cube ] e CA (d, j)

if (size(qd,i) > (l + 1)2) Md,j Md,j + M2M(d, j, d, ])Md,]
else Md,j Md,j + Q2M(d, j, d, ])qd,]

/* THE INTERACTION PHASE: Converts multipole expansions to local expansions. */

For each level d 2 to D
For each level d cube j for which IA (d, j)l > 0

if (ICA(d, j)l > 1) d d and f j.
else d, f is the only member of CA (d, j).
if (size(pal,j)_ > (l + 1)2)
For each d, ] e 1A (d, j)

if (size(qd,]) > (1 + 1)2) Ld,,[^ Ld,] + M2L(d, f, d, ])Md,].
else Ld,] Ld,] + Q2L (d, j, d, ])qd,].

else
For each d, ] IA (d, j)

if (size(qd,]) > (l + 1)2) Pd,j Pd,j + M2P(d, j, d, ])Mj,].
else Pd,1 Pd, + Q2P(d, j, d, ])q,].

/* THE DOWNWARD PASS: Transfers and accumulates local expansions. */

For each level d 3 to D
For each level d adaptive cube j

d, ] FA (d, j)
if (size(pd,j) > (l + 1)2)

if (d > 1) Ld,j L2L(d, j, d, ])Lj,J
else if (size(pal,j) > (l + 1)2)

if (aT > 1) Pd,j L2P(d, j, J, ])Ld,
/* THE EVALUATION PHASE: Evaluates the potential. */

For each level D nonempty cube j
if (size(pz,j) > (l + 1)2) pz,j L2P(D, j)Lz,j
PD,j PD,j q" Y].6N(D,j) Q2P(D, j, D, .)qo,

Since the adaptive algorithm is derived by reducing or avoiding operations in a nonadaptive
algorithm, the theorem below follows directly.

THEOREM 3.3. Algorithm 3.2 always usesfewer operations than Algorithm 3.1.
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3.5. Complexity analysis. It is clear from the description of both the nonadaptive and
adaptive multipole algorithms that they can require more than order N operations if expansion
functions with arbitrary support are used to represent the charge density. Although there are
techniques that use sets of expansion functions whose support is the entire surface, we will
insist on the following two conditions.

DEFINITION 3.10. Compactness condition. The problem domain and O1 ON are such
that there exists a cube hierarchy ofdepth Dfor which the number ofcubes intersecting the
support ofeach Oi is bounded by Kct, independent of N.

DEFINITION 3.11. Bounded overlap condition. The problem domain and O1 ON are
such that there exists a cube hierarchy ofdepth Dfor which the number ofOi ’s whose support
intersects eachfinest-level cube is bounded by Ktc, independent of N.

Previous approaches to bounding the computation of adaptive multipole algorithms as-
sumed an a priori bound on on the maximum number of levels in a cube hierarchy, denoted
/) 11 ]. Such an assumption is loosely justified by the notion that given a machine precision,
there is a smallest representable finest-level cube. The precision assumption has the suspicious
consequence that in any cube hierarchy, each cube has a bounded number, in fact/3, ancestors.
Given this, simple examples can lead to seeming contradictions. Consider the surface S to be a
fiat square plate of unit area, and suppose the surface charge density on the plate is represented
with expansion functions corresponding to small square panels over which the charge density
is assumed constant (see (10)). If a x array of such square panels is used to discretize
the plate, then the finest-level cube size required to satisfy the compactness and bounded over-
lap conditions must be order in diameter. But this requires a partitioning depth of order
log N, violating the a priori bound on the depth implied by the precision assumption.

Nevertheless, the multipole algorithm completes in order N operations for the square plate
example. For that example, and for typical problems associated with the discretization of two-
dimensional surfaces in three-dimensional domains, a perhaps more relevant assumption is
the hierarchical contraction condition given below.

DEFINITION 3.12. Hierarchical contraction condition. Theproblem domain andO1 ON
are such that the number ofnonempty cubes at level d is less than y times the number of
nonempty cubes at level d, where y is strictly less than one and independent of N.

The importance of the hierarchical contraction condition is made clear in the following
lemma.

LEMMA 3.4. If the hierarchical contraction condition is satisfied, then the number of
nonempty cubes, summed over all the levels, is bounded by

(24) N * gct * ,
where =- -f-’-7 is independent of N.

Proof I-the hierarchical contraction condition is satisfied, then, by definition, the total
number of nonempty cubes summed over all the levels is

D o

(25) N Kct * yi < N Kc, * }/i N Kct * .
i=0 i=0

Given that a problem satisfies the hierarchical contraction condition, it is easily shown
that Algorithm 3.2 completes in order N operations. It is also possible to prove such a result
without this assumption, and we return to the general case in 4.

THEOREM 3.5. Given the hierarchical contraction condition, if the problem domain and
Ol ON are such that there exists a cube hierarchy ofdepth Dfor which the compacmess
and bounded overlap conditions above are satisfied, then the nonadaptive modified multipole
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algorithm (if empty cubes are ignored), and the adaptive multipole algorithm, complete in
order N operations.

Proof To prove the theorem, operations are counted for each of the five steps of Algo-
rithm 3.1, assuming that empty cubes are ignored. Then by Theorem 3.3, the result is a also
a bound on the number of operations for Algorithm 3.2.

Construction phase. Each N 0i contributes to (l + 1)2 terms in the multipole expansion
of at most Kct cubes.

Cost < N Kct * (l + 1)2.

The upward pass. By Lemma 3.4, the total number of nonempty cubes summed over all
the levels is bounded by N Kct i. In the upward pass, each nonempty cube at each level
is associated with one M2M translation to its nonempty parent, so there is a total of no more
than N Kct * M2M operations, each of which costs (l -I- 1)4 operations.

Cost < N gct * fl * (l + 1)4.

The interactionphase. Again by Lemma 3.4, the total number ofnonempty cubes summed
over all the levels is bounded by N Kct * . Each nonempty member of a nonempty
cube interaction set is associated with one M2L translation, and there are no more than 189
nonempty members in a cube interaction set. Therefore, in the interaction phase, there is a
total ofno more than N. Kct */ * 189 M2L operations, each ofwhich costs (l+ 1)4 operations.

Cost < N Kct * fl * (l + 1)4 * 189.

The downwardpass. AgainbyLemma 3.4, the total number ofnonempty cubes is bounded
by N Kct , and as each nonempty cube is associated with one L2L translation from its
nonempty parent, there is a total of no more than N Kct 6 L2L operations, each of which
costs (1 + 1)4 operations, in the downward pass.

Cost < N Kct */ * (! + 1)4.

The evaluation phase. For each collocation point in a finest-level cube j, the contribution
of the local expansion to the potential, which costs (l / 1)2 operations to evaluate, must be
added to the potential due to the charge density associated with the fewer than 125 Ktc Oi’s
whose support intersects cube j.

Cost < N (125 Ktc + (l + 1)2).

(26)

Adding the costs leads to an order N bound on the total number of operations,

Total Cost < N [((Kct + 1) (I + 1)2) + (Kct. 191 (1 + 1)4)
+(125 Ktc)]. [3

Note that for the flat square plate with a square panel discretization example mentioned
4above, , 0.25, and therefore/3 3"

One last aspect of the multipole algorithm in this context must be considered. For ef-
ficiency, it is assumed that all the translation matrices will be computed once and stored, so
they can be rapidly reapplied during an iterative matrix solution algorithm. This suggests that
the question of the required memory be addressed. Since each application of the multipole
algorithm uses every translation matrix element, the theorem below follows easily.

THEOREM 3.6. If the multipole algorithm completes in order N operations, then storing
the translation matrices requires order N storage.
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4. General theorem for Algorithm 3.2. In 3, it is claimed that the number ofoperations
in Algorithm 3.2 is order N. However, to simplify the proof of the bounds on the upward
pass, the downward pass and the interaction phase of Algorithm 3.2, a hierarchical contraction
condition was assumed. In this section, we give more general proofs of these bounds.

To simplify notation, results in this section will be given in terms of the number of
nonempty finest-level cubes, denoted M. Using the notation of 3, it is clear that M <

(N * Kct).
To bound the number of operations in the upward and downward passes of Algorithm 3.2,

we make use of a graph that can represent either pass. The graph tree structure leads naturally
to the bounds using results from elementary graph theory (see, for example, 15]).

DEFINITION 4.1. Adaptive upward-pass graph. Let each adaptive cube in each level of
the cube hierarchy correspond to a node in a graph, and insert an edge betweenpairs ofnodes
ifone of the associated adaptive cubes is an adaptive child of the other. The resulting graph
is the adaptive upward-pass graph.

Since an edge connects every adaptive child cube to its parent, there is a one-to-one
correspondence between the edges in the adaptive upward-pass graph and the M2M or Q2M
translation operations in the upward pass of Algorithm 3.2. Similarly, there is also a one-
to-one correspondence between the edges in the adaptive upward-pass graph and the L2L or
L2P translation operations in the downward pass of Algorithm 3.2.

LEMMA 4.1. The adaptive upward-pass graph is a tree with M leaves, or childless nodes,
and every nonleafnode in the tree except the root has at least three edges connected to it. That
is, each nonleafnode except the root has degree greater than two.

Proof. A graph that is connected and has e edges and n nodes with e n 1 is a tree.
The adaptive upward-pass graph is connected because any two nodes in the graph correspond
to two cubes that are parts of at least one larger cube. A path from any particular node to
another node can always be found passing through the node corresponding to the larger cube
or directly between the two nodes of given cubes if one of the two given cubes is contained in
the other.

Furthermore, every node represents an adaptive child cube and therefore has a single edge
connecting it to the node corresponding to its adaptive parent, except the node corresponding
to the level 0 cube. Since this level 0 node has no such edge, e n 1. Thus the adaptive
upward-pass graph is a tree, and the level 0 node may be taken as its root.

The definition of an adaptive cube implies that each nonroot and nonfinest-level adaptive
cube must have an adaptive parent and at least two adaptive children. Therefore, every associ-
ated nonroot and nonleaf node in the adaptive upward-pass graph has degree greater than two.
The leaves of the upward-pass graph obviously correspond to the M nonempty finest-level
cubes since these adaptive cubes have no children, lq

The bounds are a direct consequence of the upward-pass graph tree structure as summa-
rized by Lemma 4.1.

THEOREM 4.2. The total number of M2M or Q2M operations in the upward pass, as
well as the total number of L2L or L2P operations in the downward pass, is bounded by
2 M, where M is the number ofnonemptyfinest-level cubes.

Proof. Since there is a one-to-one correspondence between each edge in the adaptive
upward-pass graph and either upward-pass or downward-pass translation operations, the the-
orem can be proved by demonstrating that the upward-pass graph has no more than 2 M
edges. Since the sum of the degrees of any graph’s nodes is equal to twice the number of
edges in the graph (each edge connects exactly two nodes), Lemma 4.1 implies

(27) M + 3(n M- 1) + 2 < 2e,
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in the case of an upward-pass graph with n nodes and e edges. The first term is the sum of the
leaf-node degrees, the second corresponds to the sum of minimum nonleaf node degrees, and
the last is the minimum degree of the root. Since e n 1,

(28) e < 2(M- 1). l-1

The following theorem addresses the computational complexity ofthe interaction phase in
Algorithm 3.2. The interaction phase uses M2L, Q2L, M2P, and Q2P operations to translate
information between cubes in each interaction set. We now prove that the total number ofthese
interaction operations is of the order of the number of nonempty finest-level cubes. To avoid
somewhat less interesting complications that arise when an interaction set contains cubes on
two different levels, the theorem is proved using the definition of an interaction set given in
the original description of the fast multipole algorithm [8]. To avoid confusion, we refer to
this set as the regular interaction set.

DEFINITION 4.2. Regular interaction set ofa cube. Those cubes that are children of the
given cube’s parent’s nearest and second-nearest neighbors, excluding nearest or second-
nearest neighbors ofthe given cube.

Unlike the interaction set given in Definition 3.5, the regular interaction set of a cube has
many more members (875 rather than 189) but all the members are cubes from the same level
as the given cube. Clearly, using the regular interaction set in Algorithm 3.2 only increases
the required computation, so the upper bounds on computation derived below are also upper
bounds on the interaction phase of Algorithm 3.2.

A second useful definition describes one approach to merging regular interaction sets of
a cube and its descendents.

DEFINITION 4.3. Generalized interaction set of a cube. Those cubes at the same level
as the given cube that are either members of the given cube’s regular interaction set or that
contain descendents who are members ofthe regular interaction set ofone ofthe given cube’s
descendents. For cubes with no descendents, that is, those cubes on the finest level of a
hierarchy, the generalized interaction set is defined by assuming that the hierarchy extends to
an additionalfiner level.

The generalized interaction set of a cube can also be described as the union of the cube’s
regular interaction set with the cube’s nearest and second-nearest neighbors. Or, equivalently,
the generalized interaction set ofa cube contains the children ofthe cube’s parent, excluding the
given cube, and the children of the parent’s nearest and second-nearest neighbors. Therefore,
the generalized interaction set for a cube contains no more than 999 members, all at the level
of the given cube, and a cube is in no more than 999 generalized interaction sets (cubes near
the sides or corners of the problem domain may have fewer members in their interaction sets).

THEOREM 4.3. Regardless of the distribution or number of levels in the cube hierarchy,
the number ofinteraction operations in the interaction phase ofAlgorithm 3.2 is bounded by

(29) 1998 M,

where M is the number ofnonemptyfinest-level cubes.
Proof Given a nonempty cube at the Dth, or finest, level in the cube hierarchy, there

is at most one interaction operation associated with each of up to 999 members of the given
cube’s generalized interaction set. And as each nonempty cube is a member of at most 999
generalized interaction sets, each cube is associated with at most 999 interaction operations.
This may seem to be an unnecessarily generous count, as on this finest level there are only
interaction operations between a nonempty cube and the nonempty members in the cube’s
regular interaction set. However, for the purposes of establishing an inductive argument, we
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consider the possibility of an interaction operation associated with any member of a cube’s
generalized interaction set.

Now consider cubes at level D 1. Suppose that for each of the nonempty D 1 level
cubes, all but one of the cube’s nonempty Dth level children are emptied. We denote the
number of emptied cubes as Pz, where pz is also equal to the difference between the number
of nonempty cubes at level D and the number of nonempty cubes at level D 1. And as
the Pz Dth level cubes are emptied in a way that does not completely empty any originally
nonempty D- 1 level cubes, no D- 1 level or coarser interaction operations will be eliminated
or added. In addition, each of the emptied cubes has no more than 999 Dth level cubes in
its generalized interaction set, and each emptied cube is contained in at most 999 Dth level
generalized interaction sets. Therefore, by emptying the p9 Dth level cubes, fewer than
1998 pz Dth level interaction translation operations will be eliminated.

Once the PD cubes have been emptied, each nonempty D 1 level cube contains exactly
one nonempty child. As a result, given a nonempty D level cube, there is at most one
interaction operation associated with each member of the given cube’s generalized interaction
set. This follows from the fact that each nonempty member of a given D level cube’s
generalized interaction set either is in the given cube’s regular interaction set, or contains
a single nonempty child that is in the generalized interaction set of the given cube’s only
nonempty child, but not both. If the former is true, the associated interaction operation is
between D 1 level cubes, and if the latter is true, the associated interaction operation is
between Dth level cubes.

The above argument establishes that emptying p9 Dth level cubes, and eliminating the
associated interaction operations, results in a set of D 1 level cubes which have the property
that given a nonempty D level cube, there is at most one interaction operation associated
with each member of the given cube’s generalized interaction set. This was the only property
about the Dth level cubes used in the above argument, so the argument can be reapplied to
levels D 1, D 2, through to the coarsest level. In inductively applying the above argument
at level d 1, Pd nonempty d level cubes will be emptied, and, in doing so, no more than
1998 Pd interaction operations will be eliminated. In addition, since only nonempty cubes
will be emptied, each emptied cube must correspond to at least one ofM nonempty finest-level
cubes, and therefore d=l’ Pd < M. Finally, as there are no interaction operations on the
coarsest level, all the interaction operations are eliminated by continuing the induction to the
coarsest level. Therefore, the total number of interaction operations in the interaction phase
of Algorithm 3.2 is bounded by

D

(30)

_
1998, Pd < 1998, M.

d=l

5. Preconditioning the iterative method. In general, the convergence of a Krylov-
subspace method can be significantly accelerated by preconditioning if there is an easily
computed approximation to the problem’s inverse. We denote the approximation to p-1 in
(5) by C, in which case preconditioning is equivalent to solving

(3) ’x =
for the unknown vector x, from which the vector of expansion coefficients is determined by
q x. Clearly, if is precisely p-l, then (31) is trivial to solve, but will be very
expensive to compute.

In [16] and [17], it was suggested that a good approximation to P- could be derived
by solving overlapping subproblems. Such an approach fits naturally with the hierarchical



MULTIPOLE-ACCELERATED ITERATIVE METHODS 727

multipole algorithm because the preconditioner can be constructed and applied in a cube-
by-cube fashion. First, t is computed by inverting a sequence of reduced P matrices, one
associated with each finest-level cube, as in Algorithm 5.1 below.

ALGORITHM 5.1. Forming .
For each finest-level nonempty cube j

[* Form PJ with the Q2P matrices of cube j’s nearest neighbors. */
For each e N(D, j)
For each k e N(D, j)

P_J, fi Q2P D ], D, it)
Compute J (PJ)-.
For each t9 whose support intersects cubes in N(D, j)

if Oi’s support does not intersect cube j delete the associated row from tJ.
P. is a matrix, not a scalar. In general,The matrix PJ is a block matrix, and each entry J
j,k

since the number of collocation points contained in the cubes in N(D, j) will not necessarily
be equal to the number of expansion functions whose support intersects the cubes in N(D, j),
PJ is not square. Therefore, forming (pj)-I should be interpreted to imply a generalized
inverse.

By comparing Algorithm 5.1 with Algorithm 3.2, it is clear that PJ uses only those
elements of the full P matrix that are already required in Algorithm 3.2, and therefore the
computational cost in computing the preconditioner is only in inverting small PJ matrices.
Then computing the product Ptxk, which would be used in a Krylov-subspace method applied
to solving (31), is accomplished in two steps. First, the preconditioner is applied to form
qk ,xk using Algorithm 5.2 below. Then, pqk is computed using Algorithm 3.2.

ALGORITHM 5.2. Forming q Cx.
For each finest-level nonempty cube j
For each Oi whose support intersects cube j
For each 0k whose support intersects cubes in N(D, j)
Add Ji.kXk to qi.

The cost of the preconditioner is linked to the cost of the multipole algorithm, provided
the collocation points are distributed among the expansion functions in a reasonable manner.
The statement is made precise below.

THEOREM 5.1. Ifthe collocation points are distributed so that associated with each expan-
sionfunction there is a unique collocationpoint contained in the expansionfunction’s support,
and the expansionfunctions satisfy the bounded overlap and compact support conditions, then
computing the preconditioner requires order N operations.

Proof. If the collocation points satisfy the distribution condition in Theorem 5.1, and
the expansion functions satisfy the bounded overlap condition, then each of the dimensions
of each PJ is bounded by Ktc * 125. From the compact support condition, there are at most

Kct N nonempty cubes. Therefore, computing the preconditioner costs N. Kct * (Ktc * 125)
operations. ]

6. Experimental results. In this section, results from computational experiments in
solving (1) are presented. The experiments are conducted using FASTCAP [13], a three-
dimensional electrostatic analysis program that uses an implementation of the preconditioned
GMRES algorithm with adaptive multipole acceleration (PAMA). The program uses the
piecewise-constant panel expansion functions given in (10) and a panel centroid colloca-
tion scheme. First, idealized examples of potential flow problems are examined to allow a
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controlled investigation of aspects of the algorithm, and then results from realistic engineering
applications are shown to exhibit the practicality of the method.

6.1. Spheres in potential flow. The potential due to a unit sphere in an infinite fluid
translating at unit velocity along the x3-axis is given by

x3(32) ap(x)
211xll 3"

The charge density tr satisfying (1) for the potential in (32) can be determined analytically.
To derive the formula, Green’s theorem is written twice, once for the known on the sphere’s
outside, and once for a ap’ (some as yet unknown potential) on the sphere’s inside. Summing
the two expressi6ns gives

(33)
2rr((x) + ’(x))

+ ffs[(ap(x’) ap’(x’))VG(x, x’) G(x, x’)V(ap(x’) ’(x’))] hda’ O,
xES,

where h is the inward directed surface normal and

(34) G (x, x’)

If we let a satisfy

(35) r(x) T-X7(O(x) 7’(x)). h,

then (1) may be obtained from (33), if ’ is such that ’ vanishes on S; namely,

(36) ’(x) -x3.
By substitution of (32) and (36) in (35),

-3
(37) tr(x) ---x3, x E S.

Figure is a plot of a shaded sphere, where the shading corresponds to the charge density
given in (37).

Having the solution for the translating sphere problem in closed form allows us to demon-
strate the convergence of the complete algorithm. Figure 2 shows that the convergence rate

if the tolerance on the convergence of the iterative method is small enough,will approach
and if the order to which terms are retained in the spherical harmonic expansions is high
enough. The definition of the integrated error is the following summation over the N panels

N

(38) g Z [qi aitT(xi)[,
i=1

where ai is the area of panel and [q’aS tri (x)l is the error between the computed and exact
solution at panel i’s collocation point. The results in the figure using lower-order expansions
and a larger tolerance for convergence of the iterative method show how these parameters limit
the accuracy of the computed solution given a particular spatial discretization.
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FIG. 1. The single sphere discretized by 2592 panels translating in an infinitefluid. The shading corresponds to
the density strength tr (x). The dark shading at the pole ofthe sphere is a plotting artifact.

tolerance 0.001, order
tolerance 0.0001. order

0.0150

0.0100

0.0000

FIG. 2. Convergence studyfor the single sphere translating in an infinitefluid. Tolerance refers to the convergence
criterionfor the iterative method, and order refers to the highest term retained in the spherical harmonic expansions.

To investigate the advantages of using the adaptive multipole-accelerated (AMA) algo-
rithm and the preconditioner, a more complicated case of two spheres, shown in Fig. 3, is
considered. In this case, we do not have a closed form solution, so a Dirichlet problem is
contrived by applying the known potential of the single sphere case to each of the two spheres.
The difference in the cost of computing Pq directly and with the adaptive multipole algorithm
is shown in Fig. 4. Here the operation count is the number of multiply-add operations required
to compute Pq once, assuming that the entries in P and the multipole translation matrices
have been precomputed. As the graph in Fig. 4 clearly demonstrates, the cost of computing
Pq with the adaptive multipole algorithm increases linearly with the number of panels, and
for the case where second-order expansions are used, is faster than direct computation with as
few as 500 panels.

The effect of using the preconditioner to solve the two-sphere problem is shown in
Fig. 5. As is clear from the figure, the number of iterations required is proportional to
without preconditioning, but curiously decreases slightly with N with preconditioning. Note
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FIG. 3. The two-sphere case, each discretized by 2592 panels. Here, afictitious potential is applied. The sphere
centers are three radii apart.

10

o10
I-"

10
10

Order
Order
Order
Order
Direct

10 10 10
Number of Panels

FIG. 4. Operation countsfor computing the iterates for the fictitious Dirichlet problem oftwo spheres, where
the discretization is refined. Direct refers to the standard (order (N2)) application ofthe matrix to a vector, Order

refers to the adaptive multipole algorithm with expansions to order 1.

that the number of levels in the cube hierarchy directly affects what is used as a precondi-
tioner. As Fig. 5 shows, the smaller the number of levels used, the larger the spatial extent
of the preconditioner; the result is a reduction in the number of iterations required to achieve
convergence.

6.2. Capacitance extraction. In this section we present results using the complete al-
gorithm to solve for the capacitance matrix associated with a collection of rn ideal conductors
embedded in a uniform lossless dielectric medium. The capacitance matrix is defined as the
rn x rn matrix that relates conductor potentials to the integral of conductor charge density.
The jth column of the capacitance matrix can be computed by solving for the surface charge
density on each of the conductors when the jth conductor is at unit potential, and all the other
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2O

OL6 -
5

o 7 oo 2 o
/(Number of Panels)

FIG. 5. Iterations required for convergence to a tolerance of 0.001 in the solution of the fictitious Dirichlet
problem oftwo spheres, as the discretization is refined. None refers to no preconditioning, OL refers to use of the
overlapping-block preconditioner, and the associated number, 6 or 7, indicates the number of levels in the cube
hierarchy.

conductors are at zero potential. Note that all of the capacitance calculations are the result
of using second-order multipole expansions and a GMRES relative convergence tolerance of
0.01.

The complete algorithm is nearly as accurate as the direct factorization method on complex
problems, such as the 2 2 woven bus structure in Fig. 6. In Table 1, the capacitances computed
using the two methods are compared using coarse, medium, and fine discretizations of the
woven bus structure, also shown in Fig. 6. Note that even the coupling capacitance C12
between conductors one and two, which is forty times smaller than the self-capacitance Cll,
is computed nearly as accurately with the complete algorithm as with direct factorization.

TABLE
Capacitance values (in pF illustrating the accuracy ofthe PAMA algorithmfor the complicated geometry of

Fig. 6.

Method

Direct
PAMA

Problem
Wovenl

1584 panels
Cll Cl2
251.6 -6.353
251.8 -6.246

Woven2 Woven3
2816 panels 4400 panels

CII C12 CI1 C12
253.2 -6.446 253.7 -6.467
253.3 -6.334 253.9 -6.377

On complex capacitance extraction problems, the computational cost of using the com-
plete algorithm is roughly proportional to the product of the number of conductors, m, and the
number of panels n. This is experimentally verified by computing the capacitances of the2 x 2
woven bus structure in Fig. 6, with progressively finer discretizations. In Fig. 7, the execution
times required to compute these capacitances are plotted as a function of rnn, and as the graph
demonstrates, the execution time does grow nearly linearly.

To demonstrate the effectiveness of various aspects of the PAMA iterative algorithm on a
range of problems, the execution times required to compute the capacitances of four different
examples using four different methods are given in Table 2. The 2 x 2 woven bus example
is described above, and the 5 x 5 woven bus example is the obvious extension. The via
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Wovenl

Woven2

Woven3

(a) (b)

FIG. 6. The 2 x 2 woven bus problem: bars have lm x lm cross sections. The three discretizations are obtained
by replacing each square region in (a) with the corresponding set ofpanels in (b).

10

10-1
10 10 10

(Number of Conductors, m)*(Number of Panels, n)

FIG. 7. Execution time as a function of mn for the PAMA algorithm applied to solving progressively finer
discretizations ofthe 2 x 2 woven bus problem.

example, shown in Fig. 8, models a pair of connections between integrated circuit pins and a
chip-carrier, and the diaphragm example, shown in Fig. 9, is a model for a microsensor 18].

From Table 2, it can be seen that using the AMA algorithm can improve execution time by
a factor oftwo over using the multipole-accelerated (MA) algorithm alone, and combining the
preconditioner with the AMA algorithm can reduce the execution time by as much as a factor
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FIG. 8. Two signal line vias passing through conducting planes.

1000/zm

FIG. 9. A schematic illustration ofthe diaphragm problem. The gap between the two plates is 0.02 #m at the center.

TABLE 2
CPU times in minutes on an IBM RS60001540for the nonadaptive MA, AMA, and PAMA algorithms. Times

in parentheses are extrapolated.

Method

Direct
MA
AMA
PAMA

2 2 woven bus Via Diaphragm 5 5 woven bus
4400 panels 6185 panels 7488 panels 9630 panels

185 (490) (890) (1920)
6.0 11 8.7 42
3.3 4.7 5.9 23
2.3 3.2 1.3 11

of seven. The improvement due to the adaptive algorithm is small because it is being compared
to an MA algorithm that is already somewhat adaptive; empty cubes being ignored. Exploiting
empty cubes is easy to implement, and makes a significant difference. For the largest problem,
the 5 5 woven bus, more than 252,000 out of 262,000 cubes used to partition the problem
domain are empty. A truly nonadaptive MA algorithm would therefore be twenty-five times
slower than the MA algorithm used here for comparison.

The reduction in execution time afforded by the AMA algorithm over the nonadaptive
MA stems from more efficiently computing the Pq product on each iteration of the GMRES
algorithm, and using the preconditioner reduces execution time by reducing the number of
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iterations required to achieve convergence. Because of various program overheads, comparing
total execution times can hide the sometimes dramatic effect the preconditioner can have on
GMRES convergence. To show the impact ofthe preconditioner more directly, the norm ofthe
residual, I1 pqk II, is plotted in Fig. 10 as a function of iteration for the various algorithms
applied to solving the diaphragm problem. As is evident in the figure, the nonadaptive MA
and AMA algorithms converge nearly identically, as expected, but the residuals computed
with the PAMA algorithm decrease considerably faster. It is this rapid convergence that easily
offsets the disadvantage that preconditioned iterates are slightly more expensive to compute
than unpreconditioned iterates.

l0

l01

10

10.2

10-2

10-3

MA

AMA

PAMA

0 20 40 60 80 100 120 140 160 180

Iteration Number, k

FIG. 10. The GMRES residual normsfor the linear system solution corresponding to the diaphragm problem
(Fig. 9) with the top conductor at unit potential. As is evident here, the PAMA algorithm converges significantly
more rapidly than the unpreconditioned AMA or MA algorithms.

7. Conclusions. In this paper, a PAMA approach to solving first-kind surface integral
equations with a 7 kernel is described, and the method is shown to be effective for several
engineering problems. A novel adaptive fast multipole algorithm is given and is proved to
require order N computation and order N storage. Also, experimental evidence is given to
demonstrate that in practice the combined algorithm is nearly order N. Note that the derivation
and results are for a collocation scheme, the extension to a Galerkin scheme is straightforward
though somewhat more cumbersome to implement.
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ITERATIVE SVD-BASED METHODS FOR ILL-POSED PROBLEMS*

c. R. VOGELt Att) J. G. WADE

Abstract. Very large matrices with rapidly decaying singular values commonly arise in the numerical solution
of ill-posed problems. The singular value decomposition (SVD) is a basic tool for both the analysis and computation
of solutions to such problems. In most applications, it suffices to obtain a partial SVD consisting of only the largest
singular values and their corresponding singular vectors. In this paper, two separate approaches---one based on
subspace iteration and the other based on the Lanczos methodmare considered for the efficient iterative computation
of partial SVDs. In the context of ill-posed problems, an analytical and numerical comparison of these two methods
is made and the role of the regularization operator in convergence acceleration is explored.

Key words, ill-posed problems, regularization, singular value decomposition, subspace iteration, Lanczos
method
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1. Introduction. An operator equation

(1.1) .A(f) g, f G ’71, g ’]’2

is said to be ill posed in the sense of Hadamard if it is not the case that for each g 7-/2, there
exists a unique f 7-/1 for which .A(f) g, and the solution f is stable with respect
to perturbations in g and the operator ,4. These equations arise in a number of important
applications, particularly in remote sensing and parameter estimation. See [3] and [7] for
examples.

Arguably, most practical linear ill-posed problems have a formulation (1.1) where 7-/1,7-/2
are separable Hilbert spaces and A 7-(t --+ 7--/2 is a compact linear operator. An important tool
for both the analysis of such equations and the computation of their solutions is the singular
value decomposition (SVD) (See [10] for a thorough discussion of computational methods
and applications of the SVD in the finite dimensional case). If the spaces 7-/, 7-/2 are infinite
dimensional, the SVD is also commonly known as a singular system for the operator A (see
[18] for details in the infinite dimensional case). In the nondegenerate infinite dimensional
case, the singular values cluster at zero. This accounts for the severe ill conditioning of the
finite dimensional approximations

(1.2) Af g, A Rn Rm.

Particularly for applications in several space dimensions, rn and n may be extremely large.
To obtain accurate approximate solutions to (1.2), some sort of regularization is required.

Regularization can be viewed as replacing the ill-posed problem (1.1) by a "nearby" well-
posed problem whose solution has certain desired features, such as smoothness. Most of the
commonly used regularization methods for (1.2) have a very natural interpretation in terms of
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the SVD of,A. These methods filter out singular components of the solution corresponding to
small singular values of ,4 while retaining those singular components corresponding to large
singular values. The SVD provides additional useful information. Given a particular level
of noise in the data, the number of singular components that one can reasonable expect to
retain can be used to quantify information content for problem (1.1) (see [8]). The rate of
decay of the singular values plays an important role in this procedure. If the singular values
decay to zero at a very rapid rate (e.g., they decay exponentially), the information content is
typically quite low, and the problem is said to be severely ill posed. On the other hand, if the
singular values decay slowly, the problem is said to be mildly illposed. The SVD also plays an
important role in the robust, efficient solution of constrained least squares problems and total
least squares problems (see [10, Chap. 12]). Quadratically constrained least squares problems
play a very important role in the computational solution of nonlinear ill-posed problems, since
they arise in the implementation of so-called trust region, or hook step, methods [5], [25].

In each of the applications cited above, it suffices to compute a partial SVD consisting
of only the largest singular values and the corresponding singular vectors. In this paper, two
separate approaches to computing partial SVDs will be considered. The first approach is
based on subspace iteration (see [23, Chap. 11 ]). This is also known as simultaneous iteration
and as the block power method. Subspace iteration will henceforth be referred to as SI. In
the symmetric case with block size p, SI yields approximations to the p largest eigenvalues
together with their corresponding eigenvectors. This method can easily be adapted to compute
the p largest singular values and corresponding singular vectors of a nonsymmetric (and
often nonsquare) matrix. The second approach to be considered is based on the Lanczos
method (see [10] and [23, Chap. 13]), and is essentially the approach outlined by O’Leary
and Simmons in [22]. It is the property of the early iterates to converge quickly to the largest
singular components, which makes both methods well suited for computing partial SVDs of
matrices with rapidly decaying singular values. It will also be demonstrated in this paper that
certain regularization techniques have the effect of accelerating the convergence of both SI
and Lanczos.

In the following section, properties of the SVD of a compact linear operator are reviewed.
Also discussed are regularization techniques and a posteriori error indicators and their rep-
resentation and interpretation in terms of the SVD. Section 3 deals with SI for computing a
partial SVD of a matrix. In 4 the Lanczos method and its implementation for computing
a partial SVD are reviewed. Included in 3 and 4 are asymptotic convergence results, a
theoretical comparison, and a discussion of the role that regularization plays in accelerating
the convergence of these two methods. Section 5 contains results of numerical experiments
that compare SI with the Lanczos method. Also included in 5 are conclusions based on the
analysis and numerical experiments.

2. The SVD and regularization. Let 7-/1, "]-/2 be separable Hilbert spaces and let t
7-/1 -- 7-/2 be a compact linear operator. An SVD, or singular system, for 4 is a sequence of
triples {uj, rj, vj with the following properties:

(i) The sequence of right singular vectors {vj} forms an orthonormal basis for N(4)+/-,
the orthogonal complement of the null space of 4 in 7-/1.

(ii) The sequence of left singular vectors {uj} forms an orthonormal basis for RG4), the
closure of the range of 4 in 7-/2.

(iii) The sequence of positive real numbers {crj consists of the nonzero singular values
of 4, in decreasing order. If this sequence is infinite, then

(2.1) lim trj 0.
j--.oo



738 C.R. VOGEL AND J. G. WADE

(iv) The left and right singular vectors are related via

(2.2) Avj ojl.lj,

(2.3) .,4* uj crj vj.

A singular system can be constructed from the eigensystems of the selfadjoint, positive
semidefinite compact linear operators .,4*.,4 and ,,4.,4*. Let {.j} denote the nonzero (i.e.,
positive) eigenvalues ofA*A, which are the same as the nonzero eigenvalues of.,4.,4". Assume
these are in decreasing order and that the sequence includes multiplicities (if they exist), so
that .1 > 2 > .3 >’" > 0. Then

(2.4) crj V/j.

The corresponding eigenvectors of ,A*J[ are the right singular vectors vj, while the corre-
sponding eigenvectors of Jtjt* are the left singular vectors uj. Given vj, one can obtain uj
using (2.2). Similarly, given uj, one can compute vj via (2.3).

In the discussion below, (., ")i denotes the inner product in 7-/i, 1, 2. Given f
fo "Jr-Yj fjl)j E N(A) ) N(A)+/-, where fj (vj, f}l, one obtains Af Zj fjojuj.
Similarly, given g Y’j gjuj + g+/- R(.A) ) R(.A) +/-, where gj (uj, g}2, one formally
obtains the pseudoinverse, or least squares minimum norm, solution to the compact operator
equation ,Af g,

(2.5) Jsmn A g gj
vj.

The pseudoinverse solution exists as an element of 7-/1 if and only if the Picard condition

Igjl___2(2.6) . rj2
< o

is satisfied, in which case it uniquely solves the constrained minimization problem

(2.7) min IlfsllT,

subject to

(2.8) IIAf gllt inf IIAf- glint.

Except in the degenerate case when the R(4) is finite dimensional (and hence there are only
finitely many positive singular values) the pseudoinverse operator .A is unbounded. This is
an immediate consequence of (2.1) and (2.5).

To achieve stable, accurate approximate solutions to (1.1), one must apply regularization.
Many standard regularization methods yield approximations with a representation

(2.9) fa w(o’j2; or)
gj

vj.

The function w is referred to as a spectral filter function [8], [12]. It has the qualitative
behavior

0 ifa2 << c
(2.10) w(cr 2" a)

1 ifo2 >>or.
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The regularization parameter c can be interpreted as a cutoff parameter. Hence, these reg-
ularization methods filter out singular components corresponding to singular values whose
squares are much smaller than ot while retaining those components that correspond to singular
values whose squares are much larger than a. One important example is a method commonly
known as the truncated singular value decomposition (TSVD) [2], where

(2.11) W(0-2" c) / 0 if 0-2 <

| if0-2 >

In this case, (2.9) can be expressed as

P

gJvj.(2.12) fp

Here the integer p is the number of singular values exceeding and is referred to as
the truncation level. Various iterative methods, including Landweber iteration [19] and the
conjugate gradient method, have representations (2.9) where the spectral filter function is a
polynomial in 0-2 and the iteration count plays the role of the regularization parameter. See
12] and 13 for details.

Perhaps the most popular regularization method is Tikhonov Regularization 11 ], where
f is chosen to minimize the functional

1
(2.13) To(f) llAf-gll2 + - 11/3f[[ 2.

The operator/3 is referred to as the regularization operator. The minimizer of (2.13) has a
representation

(2.14) f (4*A + orB*B)-’ .A*g.

When the regularization operator/3 I, the identity on 7-/,, (2.13) is in standard form and its
minimizer has a representation (2.9) with

0-2
(2.15) W(0-2; 0)

0-2
__

Or"
More generally, when/3 is invertible, through the change of variables

(2.16) f /3f,
(2.17) t
one can convert (2.13) to standard form

L(f) ,?af + fll
In this case, the minimizer of (2.13) is

(2.18) f =/3-’ f,
where

(2.19)

f arg mi.ni(f-)
f

J
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Here {tTj, cTj, fij} is an SVD of ,AB-1, j de=f (ffj, g)2, and w is defined as in (2.15). The
change of variables (2.18) and the representation (2.19) remain valid if other regularization
methods, such as the TSVD or conjugate gradient iteration, are applied (see [13]).

It is often the case that the regularization operator/3 is not invertible, e.g., 7-/1 Lz(f2)
with

(2.20) IIBfll2 fa IVfl2 dx.

In this case/3 has a finite dimensional null space and a bounded pseudoinverse, and one can
replace/3-1 in (2.18) by the pseudoinverse Bt. See [6] for further details. An alternative
approach described in [13] is based on the generalized singular value decomposition (GSVD)
10, p. 562] of the operator pair A,/3. When using either approach, the representation (2.19)
must be modified to account for the nontrivial null space of/3. For simplicity, it is assumed
for the remainder of this paper that/3 is invertible.

In practice, one is given error contaminated data

g-- Afexact -}-6,

and the selection of the regularization parameter c becomes a very important issue. A variety
of a posteriori methods are available for choosing or. Among these are generalized cross
validation (GCV) [26] and the L-curve approach 15]. Both these methods require computation
of functions that reflect the behavior of the regularized solution error

(2.21) e(ot) IIB(f fexact)II f fexact II.

Both methods have very efficient implementations in terms of the SVD of t A/3-1. For
instance, the GCV function takes the form

(2.22) V(c)
yj (1 w(6; c))2j2.

The minimizer of the GCV function is an estimate for the minimizer c* of (2.21). The L-curve
approach requires component functions

X(ot) log IIAf gll 2

(2.23) logE (1 w(}; a))2
J

and

(2.24)
Y(c) log IIBf 2 log Ill= 2

logj W(dj2. 0/)2 ~:
rj

One plots Y(a) versus X(ot) for a range of values of c. The resulting curve often has a
characteristic L-shape, and the corner of the L is an estimate for or*. When the regularization
parameter ot is continuous, as is the case with Tikhonov Regularization, one may identify the
corner by extremizing the curvature function

(2.25) x(a)
X"(a) Y’(a) X (c) Y"(c)

(Xt(ct)2 -[-- y,(o)2)3/2
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If ot is discrete, as in the case of TSVD or various iterative methods, x may be approximated
using finite differences, or interpolated and then differentiated as in 17].

Because ofthe fact that w(cr2; t) 0 for small values of r, each of the above expressions
(2.19), (2.22), (2.23), and (2.24) can be closely approximated using a partial SVD consisting
of only the largest singular values and their corresponding singular vectors. This motivates
our interest in iterative methods for the efficient solution of a partial SVD for very large
ill-conditioned matrices.

3. Sl for computing a partial SVI). The truncated sequence of singular components
{(uj, o’j, vj)}jP=l will be referred to as a partial SVD with truncation level p. Assume that
trl > > trp > 0. SI will be applied to compute a partial SVD of an rn x n matrix A, or

more generally, a partial SVD of . de__f AB-1, where B is a discretization of the regularization
operator B, cf., (2.16)-(2.19). Motivated by the procedure for computing an SVD of A from

an eigendecomposition of ,4 r,4 outlined in 2, let def ,4 T,4. Note that is n x n, symmetric,
and positive semidefinite. Following Parlett [23], let V () be an n x p matrix whose columns
are orthonormal, let St, denote the subspace spanned by the columns of V(), and let kSp
denote the subspace spanned by the columns of Vk) gV. The integer k is the iteration

count. SI consists of projecting the operator onto the p-dimensional subspace -,Sp, and
then computing the eigensystem of the resulting p x p matrix. To be more precise, let V
be the n x p matrix, the columns of which are the current approximations of the eigenvectors
corresponding to the p largest eigenvalues of A. Then:

1. Let Q be an orthonormalization ofV.
2. Define H QrQ. This p x p matrix represents the Rayleigh-Ritz projection of

onto "-’k.p
3. Compute the eigendecomposition GAGT H.
4. Set V(k+l QG. This amounts to representing the eigenvectors G in the larger space

(R’) in which ,4 is defined.
The diagonal entries of the matrix A in step 3 are the Ritz values. These approximate the

p largest eigenvalues of . The vectors comprising the columns of V() are known as Ritz
vectors and are estimates for the corresponding eigenvectors.

The algorithm just described, although conceptually transparent, has the disadvantage
that an additional matrix-vector multiplication is required in step 2. A clever variant of this
algorithm, which is mathematically equivalent but avoids the additional multiplication, is
outlined in [23, p. 293]. This variant is adopted here, with modifications to account for the
fact the singular values/vectors of a rectangular matrix, rather than eigenvalues/vectors of a
symmetric matrix, are sought.

3.1. An Sl algorithm for computing a partial SVD. Let A be an rn x n real-valued
matrix, and let V<) be an n x p matrix having orthonormal columns. Compute the matrix
product U<) := AV). Initialize the iteration count k 0, and for j 1, 2 p, set

or)) 0. Specify a stopping tolerance TOL.

1. k:=k+ 1.
2. C(k :- ArUk-1).
3. Compute a QR factorization, Qk)R‘ Ck).
4. Compute an SVD

The diagonal entries r/), _< j _< p, of E () are the square roots of the Ritz values of and
are estimates for the p largest singular values of ,4.
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5. V (k) :-- Q(k) P(k). The columns of V <k) are the Ritz vectors of and are estimates for
the first p right singular vectors of A.

6. U<k) "= AVk). The columns of U(k) are estimates for the first p left singular vectors.
7. Check for convergence. Stop if

(3.1)
Itr)k) tr)k-1)l

< TOL for j 1, 2 p.
trek)

Otherwise, goto step 1.

The stopping criterion (3.1) is applied rather than a more conventional convergence check like

(uk)) r A (k)

(k) -(k)Iluy IIv) r)*)
-1 < TOL

to minimize the number of evaluations of the operator A. Step 4 was recommended by P C.
Hansen. It replaces steps (c) H R<)(R<k)) and (d) P<)(E<))2(P<))r H in Table 14-2-4
of [23]. This modification substantially reduces computational overhead and yields much
more accurate singular value estimates.

By modifying results in [23] to account for the fact that one seeks singular values rather
than eigenvalues, one obtains the following convergence result.

THEOREM 3.1. Let the p + largest singular values ofthe matrix A satisfy

(r > r2 > ...(rp > rp+l >0.

Then the relative errorsJbr the singular value approximations obtained by the above SI algo-
rithm converge to zero at the asymptotic rate

(3.3) ’J--k)- (. ((’P+l)4k) j=l,2 p.
O’j \ O’j

The angle between the spaces spanned by the true and the approximate right singular vectors

converges to zero at the rate

j=l,2 p.

An analogous result holdsfor the left singular vectors.

Proof Equation (3.4) follows immediately from the theorems in [23, pp. 297-298] and
the fact that the eigenvalues of A 7-A are the squares of the singular values of A. Note that
from (3.2) the eigenvalues are decreasing (rather than increasing) and one desires the p largest
(rather than smallest) eigenvalues. Since the left singular vectors are eigenvectors of AAr and
both ATA and AAT have the same nonzero eigenvalues, the analogous result for left singular
vectors follows by the same arguments.

To verify (3.3), let .j, vj be an eigenpair for de=f ATA and let ..k), ,.) be a Ritz value

and corresponding Ritz vector for . Assume that IIvj IIv) and

(3.5) cos-. T (k). v.(v) v) Z(vj, span{ )}) de_f Oj.
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Then

(3.6)

Consequently,

IIv w*)II 2 2 2 cos Oj.

(3.7)

(k) O(02). From (3.5) above,But cos 0 1 02/2 + (.9(04), SO Ij ,j (3.4) and

(3.8)

Combining this with

/

crj or)k> lo’j + cr)>
(3.9)

o’) r2 .p+

gives the desired result.
By combining SI with the regularization techniques of the previous section, cf., (2.16)-

(2.19), one obtains the following algorithm for computing approximate regularized solutions
to the operator equation (1.1).

3.2. An Sl based regularization algorithm.
1. Apply SI to obtain a paaial SVD {, 8j, vj}j= of

def B_

2. Select a reguladzation parameter using the techniques described at the end of 2.
3. Compute transformed regularized solutions

p

j=l J
where j (fij, g)2,

4. Back transform to obtain fa B-1

Note that if one sets w(cr2; c) for all or, one obtains the TSVD regularization method
(cf., (2.11)) with truncation level p. In certain cases, this may suffice. In other cases, further
filtering of singular components may be required. Also note that the matrix AB-1 need not
be explicitly computed. All that is required is the application of the operators A and B-1 and
their adjoints to a sequence of vectors. Obviously, step 4 is usually implemented by solving
the system Bf f,.

3.3. The effect of regularization on convergence. In typical applications, the regular-
ization operator B is a differential operator whose inverse is compact. Hence, the singular
values ofJIB-1 are likely to decay more rapidly than those ofA. Provided an accurate approx-
imation scheme is used, the singular values of the matrix AB-1 will then have a larger relative
separation than those of A. As a consequence of Theorem 3.1, SI will converge much more
rapidly when it is applied to AB-1 than when it is applied to A. In the sense of modifying
the spectrum of the operator to accelerate convergence, regularization plays a role in SI that
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is analogous to that of a preconditioner in the iterative solution of linear systems. When ap-
plying standard preconditioners, one effectively premultiples and postmultiplies A to reduce
the condition number of the resulting matrix. Preconditioning can be used for ill-conditioned
problems (see [14]), but, as pointed out in [13], this approach is inappropriate unless care is
taken to not invert small singular values.

Regularization also differs from standard preconditioning in that the solution to the regu-
larized problem is not the same as the solution to the unregularized problem. Regularization
with a differential operator tends to produce smoother singular vectors, and hence, smoother
approximate solutions than in the absence of regularization. While the regularized SI is more
efficient, one may experience a loss of resolution due to an inability to approximate "rough"
solutions with "smooth" basis functions.

4. Lanczos iteration for SVD computations. As pointed out by Parlett in [23, Chap.
13], each iteration k of the Lanczos method for computing eigenvalues of a symmetric matrix
C may be viewed as a Rayleigh-Ritz projection ofthe operator C onto the kth Krylov subspace

(4.1) /C(q) span{ql, Cqo ck-lql},

where ql is an initial unit vector. The matrix representing this projection is a k x k symmetric
tridiagonal matrix Tk. The eigenvalues of Tk, which are the Ritz values, approximate certain
eigenvalues of C. The corresponding eigenvectors of Tk can be used to compute approximate
eigenvectors of C.

To compute a sequence of approximate partial SVDs of an rn x n matrix .4, one can apply
the Lanczos method to the (m -t- n) x (m + n) symmetric matrix

(4.2) C [ Om xm
Ar Onxn

A ].
The spectrum of C is real and symmetric about the origin, with the nonzero singular values
of A comprising the positive eigenvalues of C. It is the fact that the Lanczos Ritz values
converge rapidly to the extremal eigenvalues of C that makes the Lanczos method appropriate
for computing a partial SVD of A. However, in the presence of roundoff error, it is neces-
sary either to guarantee the orthogonality of the Lanczos basis vectors qi, or to detect the
presence of "ghost" eigenvalues, which are spurious copies of convergent eigenvalues. With
reorthogonalization, one obtains the following algorithm (see 10, p. 499] or [22]).

4.1. A Lanczos algorithm for computing a partial SVD. Let A be an rn x n real-valued
matrix, and let ql be an n x unit vector. Compute

y := Aql, 01 :- Ilyll, u := y/etl.

Define Q(k) [ql, q2 qk] and U(k) [Ul, 142 Uk].
For iterations k 1, 2

1. w := Aruk otkqk
2. Reorthogonalize. w := w- Q(k)((Q(k))rw)
3. /k := w
4. qk+l :-- W/ilk,
5. y := Aqk+l kuk,
6. Reorthogonalize. y "= y- U(k) ((U(k)) ry)
7. OCk+ :--Ilyll
8. Uk+l :’-- y/Otk+l

end
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For each k, estimates for the singular values and corresponding singular vectors of A can be
obtained as follows: Let k denote the k x k upper bidiagonal matrix comprised of the otj’s
on the main diagonal and the/3j’s on the upper subdiagonal.

8a. Compute the SVD
8b. U := U(J
8c. V "= Qk)0

The diagonal entries or(k), ,,k’*k) of Ek) are approximations to the k largest singular values
of A. The columns of U and V approximate the corresponding left and right singular vectors.

4.2. Stopping conditions, regularization. The following strategy is applied when using
the above Lanczos algorithm to compute a partial SVD with truncation level p: For iterations
k p, perform only steps 1-8 of the above algorithm. For iterations k > p, perform,
in addition, step 8a and the convergence check (3.1). If condition (3.1) holds, then perform
steps 8b-8c, and stop.

The previous SI based regularization algorithm can easily be modified for Lanczos itera-
tion. In step 1, simply replace "SI" with "Lanczos iteration."

Using the results of Saad [24], one obtains the following convergence result.
TIO 4.1. Let the p + largest singular values of the matrix A satisfy (3.2). Then

the singular value approximations obtained by the above Lanczos algorithm satisfy

(4.3) 0< aJ #k) (<Mj j-3t- -1 l<j<p,k>j,
aj

where Mj is a constant (depending on the angle between ql and vj and on the separation of
al, or2 aj), and

def ( O’j2
1.(4.4)

Proof. As noted in 10, p. 499] (see also [9]), it is not difficult to show that

AQ(k) U()k,
~T

Applying A r to the first of these and substituting into the second leads to

A rA Q( Ar
(4.5)

Q(T

-T
Since T is symmetric tridiagonal, it follows that (4.5) is a matrix representation of the
Lanczos method applied to ArA with initial vector q. As before, let ] f be the jth

( () be the jth eigenvalue of r Since Xmieigenvalue of A rA, and now let X
defff > O, yj +2(]--j+l)/(j+l --min) ]. ThenbyTheorem2of[241 andtheremarks

following it, together with the Chebyshev polynomial inequality .(g) (g +g 1)i/2,

(4.6) 0 Xj -) MjXj j + 1

Combining (3.9) with (4.6) yields (4.3).
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4.3. A theoretical comparison of Lanczos and Sl. For most practical ill-posed prob-
lems (e.g., coefficient identification problems or Fredholm first-kind integral equations that
occur in remote sensing), the matrix A is not sparse and the cost of applying A and AT far
exceeds other computational costs in the implementation of SI with block size p << n. See
[25] for a detailed discussion. The same should hold for Lanczos when k << n iterations are
applied. Additional computational costs will be referred to as "overhead."

Each SI with block size p requires the same number of evaluations of the operators A
and AT as p iterations of the Lanczos algorithm. In contrast to SI, in the absence of computer
roundoff error the three-term Lanczos recursion automatically generates an orthonormal ba-
sis {ql, q2 qk for the kth Krylov subspace. The Lanczos projection matrix Tk is upper
bidiagonal, while the SI projection matrix R<) is upper triangular. Hence, in the absence
of roundoff, p Lanczos iterations require much less storage and overhead than does a single
SI. However, due to the combined effects of roundoff and very rapid convergence (see [23,
p. 270]), we have found reorthogonalization to be necessary to increase the robustness of
the Lanczos algorithm and to substantially decrease the number of operator evaluations. Re-
orthogonalization negates much of the advantage ofLanczos in terms of storage and overhead.

To interpret the results of Theorems 3.1 and 4.1, assume that

(4.7) crjZ/crj2+l >_ 1 -I-c, _< j _< p,

where c > 1. This assumption holds for many ill-posed problems. In particular, if the
singular values decay exponentially, (4.7) holds with p n. From (3.3) the relative error in

rj at iteration k for SI is of the form

=(.9 l<j<p, k=l,2

where

(4.9) rj (p+l/j)4 < (1 + c)-2(p+I-j).

Thus one should expect extremely rapid convergence for the largest singular values, with a
marked decrease in the convergence rates of the smaller singular values.

Using (4.7), one can show from (4.3) and (4.4) that when p << n, the Lanczos approxi-
mations satisfy

(4.10)
rj- r)) O(rk_j), 1 <_ j < p, k > j,

where

(4.11) r (1 + 4c)-2.

In this case one should expect a high degree of accuracy when the iteration count k is much
larger than the index j. Moreover, since one SI requires as many operator evaluations as p
Lanczos iterations, Lanczos should require far fewer operator evaluations than SI to obtain rj
for j << p when relatively large block sizes p are used.

Finally, since applying a regularization operator (cf., (2.15)) and TSVD (cf., (2.11)) may
increase the decay rate ofthe singular values, it may decrease both the rj in (4.8) and r in (4.10).
Hence one would expect more rapid convergence for both methods when a regularization
operator is applied.
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5. A numerical comparison. Consider the linear ill-posed problem arising in the nu-
merical second differentiation of discrete, one-dimensional data. While this is not a large
scale problem, the spectrum of the operator is known, and hence numerical approximations
can be compared with exact values. Moreover, the performance of the iterative SVD methods
for this problem is consistent with that observed in numerical experiments with much larger
systems arising in multidimensional applications. Given observations of a function -g(x)
at equispaced points xi in the interval [0, 1], one wishes to estimate the second derivative

f -g". Assume in addition that g(0) g(1) 0. Then f and g satisfy the Fredholm
first-kind integral equation

(5.1) g(x) 4f(x) a(x, y) f(y)dy, 0 < x < 1,

where the kernel, a (x, y), is the Green’s function for the differential operator

(5.2) /u=-u", 0<x < 1, u(0)=u(1)=0.

In the space 7-/ L2(0, 1), Z has eigenvalues j (zrj)2 and corresponding orthonormal
eigenfunctions bj(x) 1/2 sin(rrjx), j 1, 2 Let A be the inverse ofthen xn tridiagonal
matrix L obtained from the standard finite difference discretization of (5.2). L has diagonal
entries 2/h2 and subdiagonal and superdiagonal entries -, where h 1/(n + 1). The
singular values of .4, which are the reciprocals of the eigenvalues of L, are known to be 1, p.
57]

(5.3) o’j sin2(jzrh/2) 1/(zrj)2 for j << n.

Since the singular value decay rate is relatively slow, this problem is classified as mildly ill
posed [8].

Consider the regularization operator B #/2, where/ > 0. This choice is convenient
for the present numerical experiments since the spectra of the operators 4 and/3 are known
and easily related. When/ 1, this corresponds to first derivative regularization, cf. (2.20).
Approximate B by the matrix B L/2. Given the eigendecomposition L V diag(.j) V r,
where .j 1/trj, one can easily compute

(5.4) B L/2 V diag(.]/2) V r.
Note that B is invertible and that the matrix A- AB-1 has singular values

(5.5) tj cr]+/2.
By adjusting/, one can control the rate of decay of the singular values and study the effect on
the performance of iterative SVD methods. In the experina_ents described below, we applied
both SI and Lanczos iteration to compute partial SVDs of A. The convergence rates of the two
methods are first examined. Then the SVD approximations are used in the solution of the ill-
posed problem described above. These experiments were performed using the PRO-MATLAB
[20] software package on a DECSTATION 5000/200 workstation. Double precision machine
epsilon is 2-52 - 2.2204 x 10-16. The matrix size is n 100, and the initial vectors to and
the columns of V( are taken to be random vectors.

Table 1 provides a comparison of the two methods when the regularization index/ 2.
Column 2 contains the first 20 singular values j of ,4, cf., (5.3) and (5.5). Column 3 contains
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the singular value approximations obtained using k 2 iterations of the SI algorithm of 3
with block size p 20. The approximations in column 4 were obtained using 20 iterations of
the Lanczos algorithm of 5. Note that the first 10 SI approximates are (to within five decimal
digits relative accuracy) indistinguishable from the true singular values. There is a gradual
loss of accuracy as the singular values decrease. This is consistent with (4.8). In contrast,
the first 13 Lanczos approximates are indistinguishable from the true values, but there is a
very rapid decrease in the accuracy of singular values trj for which 20 j is small. This is
consistent with (4.10).

TABLE
Comparison between methods.

indexj ]] Singul_arValUeo.j
1.0268e-02

2 6.4204e-04
3 1.2692e-04
4 4.0205e-05
5 1.6492e-05
6 7.9674e-06
7 4.3096e-06
8 2.5324e-06
9 1.5853e-06
10 1.0433e-06
11 7.1501e-07
12 5.0672e-07
13 3.6938e-07
14 2.7583e-07
15 2.1029e-07
16 1.6326e-07
17 1.2879e-07
18 1.0305e-07
19 8.351 le-08
20 6.8452e-08

SI approx. Lanczos approx.
with reorthog.

1.0268e-02 1.0268e-02
6.4204e-04 6.4204e-04
.692e-04 1.2692e-04

4.0205e-05 4.0205e-05
1.492e-05 1.6492e-05
7.9674e-06 7.9674e--06
4.3096e-06 4.3096e’06
’2.324e-06 2.5324e-06

Lanczos approx.
without reorthog.

1.0268e-02
1.0268e-02
1.0268e-02
1.0268e-02
1.0268e--02
5.2964e--03
6.4204e-04
6.4204e-04

1.5853e-06 1.5853e-06 6.4204e-04
1.0433e-06 1.0433e-06 1.2692e-04
7.1499e-07 7.1501e-07 1.2692e-04
5.0667e-07 5.0672e-07 4.0205e--05
3.6937e-07 3.6938e-07 3.9435e-05
2.7576e-07 2.7582e-07 1.6492e-05
2.i027e-07 2.1029e-07 7.9674e-06
1.6239e-07 1.6141e-07
1.2729e-07 1.1971e-07
1.0261e-07 9.1849e-08
6.9451e-08 4.8531e-08
6.450e-08 6.6155e-09

4.3096e--06
2.5323e-06
1.5834e-06
6.5545e-07
7.3456e--08

The approximations in column 5 were also obtained using the Lanczos algorithm, except
that the reorthogonalization steps 2 and 6 were omitted. In this case, seven of the first 20
approximates can be positively identified as spurious copies of true singular values. An
additional four do not seem to correspond to anything. Only the first seven singular values are
approximated to within five digits (relative) accuracy.

In terms of the number of evaluations of the operators A and A r, twice as much work
was required to generate the SI approximations in this table as was required to generate the
Lanczos approximations.

Figure shows the effect on SI of varying the regularization index/. The SI count is
fixed at k 2. Note that there is a substantial increase in the convergence rate with increased
/3. In addition, the larger singular values are approximated much more accurately than the
smaller ones. Both these observations are consistent with (4.8) when rj (p+l/tj)4 ,
(j/(P + 1))(2+1)4k.

Figure 2 shows that increasing the regularization index/3 also increases the convergence
rate for Lanczos, but the effect is not as pronounced as with SI. Also, a comparison of Figs. 1
and 2 shows that the Lanczos estimates of the larger singular values exhibit extremely high
relative accuracy, while the corresponding SI estimates are only moderately accurate. As was
the case with Table 1, twice as many operator evaluations were used to generate Fig. 1 (SI
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FIG. 1. Plots of relative error in SI singular value approximatesfor varying regularization index . Solid line
corresponds to/ 0; dashed line corresponds to 1" dotted line corresponds to/ 2; dotted-dashed line
corresponds to fl 4.

with k 2) as were used to obtain Fig. 2 (Lanczos with k 20).
Next, this partial SVD was applied to compute regularized solutions and error indicators
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FIG. 2. Plots ofrelative error in Lanczos singular value approximatesfor varying regularization index . Solid
line corresponds to fl 0; dashed line corresponds to fl 1; dotted line corresponds to fl 2; dotted-dashed line
corresponds to 4.
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for the ill-posed problem (5.1). Synthetic data was generated by taking

(5.6) g hfexact -I-

where e denotes discrete white noise obtained from a Gaussian distribution with mean zero and
variance 02 selected so that the noise-to-signal ratio 0/llAfexaetll .005. fexact was obtained
by evaluating the function

f(x) al exp (-c (x hi)2) + a2 exp (-c2(x b2)2),
1 5

al .5, a2 .3, b , b2 , Cl 60, c2 200,

at the mesh points xi. Since f is smooth, the regularization operator B in (5.4) is appropriate
for any/ _> 0.

By inverting the data (5.6) without any filtering, one obtains the singular component
expansion

f def A_lg B_IA"-I g

j_n_ 15f fexact +

The terms in this expansion are presented in Fig. 3. The magnitude of the coefficients fj
appear as asterisks in Subplots B and C. As seen from Subplot B, these coincide with the
magnitude of the coefficients U"jTlexac of the exact solution (circles) for small indices j that
correspond to the larger singular values. On the other hand, Subplot C shows that for the
smaller singular values, these coincide with the expected error magnitude

As pointed out in 2, regularization has the effect of filtering out components associated with
small singular values. This takes care of the undesirable large terms u-f./#j. Unfortunately,
some desirable components 1)-jTl?exact are lost in the process, but this effect is not too severe,
since these components also decay as the singular values decrease. Plots such as these can be
used to determine information content and to select a reasonable block size p.

Using only the first 20 singular components, two spectral filters were applied-Tikhonov
(cf., (2.15)) and TSVD (cf., (2.11)). Figures 4 and 5 illustrate the behavior of various error
indicators for these two methods. Subplot A in each of the respective figures shows behavior
ofthe regularized solution error (2.21) as the regularization parameter varies. Subplot B shows
the L-curve, while Subplot D shows an approximation to its curvature (2.25), as computed
using the finite difference approximations

X(a + r) X(a) + X(a r)X(a + r) X(a r) X"(c0X’(a)
2r z"2

and similarly for Y. With Tikhonov we selected the finite difference increment r O61M/3,
while for TSVD the number of retained singular components k plays the role of the regular-
ization parameter, and r 1. Figure 6 shows the best approximate solutions obtained with
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FIG. 3. Singular components of data. Subplot A: first 20 singular values of AB-l with regularization index

fl 2; Subplot B: asterisks indicate magnitudes ofthe coefficients ofthepseudoinverse solution, j/5j (ffj, g)2/Sj
and circles indicate magnitude of the coefficients of the expected error, (ffj, )2/5j; Subplot C: the circles indicate
the coefficients ofthe exact solution (gj, fexact) I.

these regularization methods. Figs. 4-6 illustrate the observation made in 16], that different
regularization methods yield error indicators and approximate solutions that are qualitatively
quite similar. Although a particular method may fail for a particular problem (e.g., the L-curve
estimate in Subplot D of Fig. 4 underestimates c by four orders of magnitude), information
from Figs. 3-5 can be combined to make such failures less likely.
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FIG. 4. Error indicatorsfor Tikhonov Regularization. t is the regularization parameter Subplot A: regularized
solution error B(f fexact)I1" Subplot B" the L-curve; Subplot C: the GCVfinction; Subplot D: curvature to(or) of
the L-curve. The asterisks in each subplot indicate an estimator ofthe optimal value ofa.
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FIG. 5. Error indicatorsfor TVD. The regularizationparameter k is the number ofsingular components. Subplot
A: regularized solution error [[B(fk fexact)l[" Subplot B: the L-curve; Subplot C: the GCVfunction; Subplot D:
curvature to(k) ofthe L-curve. The asterisks in each subplot indicate an estimator ofthe optimal value ofk.
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FIG. 6. Exact and approximate solutions. The dotted line is exact solution; the solid line is best Tikhonov
regularized solution; the dashed line is best TSVD solution.

Finally, the computations used to generate Figs. 4-6 were repeated using the exact singular
components, SI approximations, and Lanczos approximations. The results obtained using each
of these three were indistinguishable.
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5.1. Conclusions. From our analysis and these particular experiments, we make the
following conclusions.

1. The analyses for SI (Theorem 3.1 and (4.8)) and for Lanczos (Theorem 4.1 and (4.10))
explain our numerical results. For the jth singular value, the SI relative error is O(r}), where
rj depends on the ratio rp+l/crj. This implies that the larger singular values converge much
more quickly than the smaller ones. For Lanczos, the corresponding error is O(rk-J), where
r is essentially independent of j, but does depend on the rate of decay of the singular values.

2. When using a regularization operator, transforming the operator A (cf., (2.16)-(2.17))
can significantly increase the convergence rates for both SI and Lanczos. This effect seems to
be more pronounced for SI.

3. In terms of operator evaluations, Lanczos with reorthogonalization is substantially
less expensive than SI. Precisely how much less expensive depends on desired accuracy.
Since smaller singular components are filtered out by regularization methods, uniformly high
accuracy is not necessary. For our particular numerical study, we judge Lanczos to be about
half as expensive as SI.

4. When the singular values decay rapidly, Lanczos should be used with reorthogonal-
ization. Even if spurious "ghost" singular values could be distinguished from the true ones,
advantage gained by applying Lanczos without reorthogonalization is offset by the fact that
significantly more operator evaluations are required.

In the numerical example presented here, the overall performance ofthe Lanczos algorithm
is superior to that of SI. This same general conclusion was reached in [21 for applications in
structural engineering. In that paper, Lanczos was observed to be an order of magnitude less
expensive than SI in terms of operator evaluations. In our applications to ill-posed problems,
we have found Lanczos to be roughly half as expensive as SI. The difference may be due to our
less stringent accuracy requirements and to the rapid decay rate of the singular values. There
are other applications where this comparison may be even better for SI. For example, Gauss-
Newton and Levenberg-Marquardt methods for nonlinear least-squares inverse problems give
rise to sequences of linear subproblems of the form (2.14). In this context jt is the Fr6chet
derivative of a nonlinear compact operator. It is demonstrated in [25] that for problems
with many degrees of freedom (distributed parameter estimation problems), very low rank
approximations (i.e., partial SVDs) of 4 can be used quite efficiently in such algorithms. In
this situation, each of the linear subproblems is a perturbation of the preceding one, so that
the partial SVD of the preceding Jt provides an excellent initial guess for the current one.
The block structure of SI is better suited to take advantage of this than is the basic Lanczos
algorithm, where each new partial SVD is obtained from a single initial vector.

The block structure of the SI algorithm also lends itself very naturally to parallel im-
plementation. This is a distinct advantage over basic Lanczos iteration, which is inherently
sequential. There are block Lanczos algorithms that combine the advantages ofblock structure
with the rapid convergence rates of Lanczos (see [4], [9], [24]). Applying arguments in the
proof of Theorem 4.1 to Theorem 5 of [24], with block size b one obtains

(5.7)
crj- rjk) O(jk_j) < j < p, k > j,

where

(5.8)

With rapidly decaying singular values and a large block size b, rj >> rj+b, which implies
?j (crj+b/rj)4/16. One would expect the block Lanczos algorithm to converge much more
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quickly than basic Lanczos. However, each block Lanczos iteration requires the same number
of operator evaluations as b basic Lanczos iterations, which makes a precise cost analysis
difficult. When the block sizes are the same, block Lanczos will converge more rapidly than
SI, and both will require the same number of operator evaluations at each iteration.
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FAST WAVELET BASED ALGORITHMS FOR LINEAR
EVOLUTION EQUATIONS*

BJORN ENGQUISTt, STANLEY OSHERt, AND SIFEN ZHONGat

Abstract. The authors devise a class of fast wavelet based algorithms for linear evolution equations whose
coefficients are time independent. The method draws on the work of Beylkin, Coifman, and Rokhlin [Comm. Pure
Appl. Math., 44 (1991), pp. 141-184], which they applied to general Calderon-Zygmund type integral operators.
The authors apply a modification of their idea to linear hyperbolic and parabolic equations, with spatially varying
coefficients. The complexity for hyperbolic equations in one dimension is reduced from O(N2) to O(N log N).
There are somewhat better gains for parabolic equations in multidimensions.

Key words, wavelets, hyperbolic, parabolic, numerical methods
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1. Introduction. During the last few years a number of fast computational algorithms
have been developed for elliptic problems. These are techniques for which the number of
arithmetic operations needed are close to linear as a function of the number of unknowns.
Examples of algorithms of such complexity are multigrid methods and the so-called fast
Poisson solvers. The fast multipole method and wavelet based methods for elliptic problems
formulated as integral equations also belong to this category [8], 1 ].

There has not been the same progress for hyperbolic and parabolic methods. In general,
classical numerical techniques for these problems are already optimal.

Consider a system of evolution equations

(1.1)
Otu + L(x, Ox)U f(x),

u(x, O) uo(x),

xEcRd, t>0,

with boundary conditions, where L is a differential operator.
An explicit discretization of this problem typically takes the form

(1.2)

ujn u (xj tn tn nat,

xj (jl AXl jd AXd),

u"+=Au"+F,
U0 UO,

u, F E RNe, At const Axlr.
n at time level tn For simplicity we shall assumeThe vector Un contains all the unknowns Uj

jv 1, 2 N in all dimensions v d.
The matrix A is (Nd x Nd) with the number of elements - 0 in each row and each

column bounded by a constant. Every timestep requires O(Nd) arithmetic operations, and the
overall complexity for a time interval of (,9(1) is of the same order as the number of unknowns,
O(Nd+r).

There are, however, some fast methods based on the analytic form of the solution operator.
In [3] the multidimensional heat operator was treated with u0 and f both zero, but with
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inhomogeneous boundary data given at M points for N time levels. There the closed form of
the solution evaluated at M points at each time level N was obtained in O(NM) rather than
O(N2M2) operations. Also, in [4], the same authors obtained an algorithm for evaluating
the sum of N Gaussians at M arbitrarily distributed points in O(N + M) operations. So far,
their interesting method appears to need an explicit analytic representation of the heat kernel,
effectively ruling out variable coefficient problems.

The formula (1.2) has a simple closed form solution

(1.3)
n-1

un Anu + E AVF"
v=0

This form can be used to compute the solution A" uo for F 0 in log n steps (n 2m, rn integer;
here and throughout, log n log2 n) by repeated squaring of A A, A2, A4, A8 A2’’

Unfortunately the later squarings involve almost dense matrices and the overall complexity
is O(N3d log N), which is larger than that using (1.2) directly.

For an appropriate representation of .4 in a wavelet basis, all of the powers Av may be
approximated by sparse matrices and the algorithm using repeated squaring should then be
advantageous.

We shall consider the following algorithms for the computation ofthe closed form solution
(1.3) of the inhomogeneous problem in rn log n steps

(1.4)

B := SAS-1

C :- I,
C := TRUNC(C + BC, e) I

IB := TRUNC(BB, e)
un := S- (BSu + CSF).

(iterate rn steps),

The matrix S corresponds to a fast transform of wavelet type and the truncation operator
sets elements in a matrix to zero if their absolute value is below a given threshold.

.= TRUNC(A, e)" [ 5ij aij laijl > e,
(1.5)

/ 5ij 0 laijl < e.

It is easy to see that algorithm (1.4) is equivalent to (1.3) for e 0. This is not so for e > 0.
We shall, however, show that it is possible to choose e small enough for the result of (1.4) to
be arbitrarily close to (1.3) but still with very few arithmetic operations.

For a fixed predetermined accuracy level, the computational complexity to calculate a one-
dimensional hyperbolic equation can be reduced from the standard O(N2) to O(N(log N)3).
The extra cost per timestep is minimal. This also makes it possible, as a curiosity, to use
algorithms that are unstable in the traditional sense.

Our technique is more favorable for parabolic problems. A d-dimensional explicit calcu-
lation with standard complexity O(Nd+:) may be reduced to O(Nd(log N)3).

The algorithm (1.4) can be extended to some problems with time dependent data. In this
case, we clearly need to compress the information in the data such that not all the O(Nd+r)
values in, e.g., the inhomogeneous term f(x, t) are needed.

One simple, but important, application of this type is from optics or electro-magnetic
scattering with a time periodic source. If k points are needed to resolve one time period, we
can group k timesteps together

k-I

(1.6a) un+k= Akun + E AjF’+k-j-’
j=O
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where

(1.6b) F zXtf(tn).

This equation is now of the type (1.2) with timestep kAt and with inhomogeneous term

(1.6c)
k-I

F , Aj Fn+k-j-1.
j=0

In 2 and 3 we shall discuss the analytical properties of the algorithm. Numerical
examples are presented in 4.

2. l-lyperbolic problems. Consider first the simple one-dimensional scalar advection
equation

(2.1)
8tU + aOxU 0, a > 0,

u(x, 0) u0(x), 0 < x < 1.

The functions u0 and thus u are assumed to be 1-periodic in x. The solution of (2.1) is given
by:

(2.2) u(x, t) uo(x at).

The different rows of Av in a numerical solution of (2.1) will represent approximations of the
Green function, G, below.

(2.3)

u(x, t) G(x, y, t)uo(y)dy,

u(x, t) (x y at)uo(y)dy.

Let tpj be a truncated wavelet expansion of a a-function with an orthonormal set of compactly
supported wavelets

rpj(x) ZdJ2 (v -2 ) (2-Jx k + 1)+so(x).

The choices of (x) and the resulting 0(x) will be discussed below. Assume that the rows
of Av are discrete g-functions, i.e., just one element is nonzero and large. For each level
j 1, 2 J there are only a finite number of d] :/: 0 since the wavelets are compactly
supported. With J m log N there is only log N of all d - 0. Thus each row in
B, (1.4), has log N elements, bjk O. The matrix B2 is also a transform of an idealized
matrix A and will have N log N elements different from zero. This means that each iteration
step in the algorithm (1.4) produces O(N(log N)2) flops when F 0. We have assumed
that calculations are only carried out for those B2 elements that are different from zero. In
practice, a slightly larger number of elements needs to be computed and then truncated. This

corresponds to the case when the location of the &functions is only approximately known.
Compare the wavelet technique for the Burgers equation by Maday, Perrier, and Ravel [6].

Each row of C, (1.4), is a transform of a step function

const O<x<at,
(x)

0, else.
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Since ?(x) constant only at x at, this function can also be represented by log N wavelets
and thus the overall cost is O(N(log N)3).

In numerical computations the rows of A are only approximations of 8-functions. If an
upwind scheme

(2.4)

"+ " (uUj ldj Uj_1),
0

uj uo(xj), j 1, 2 N,

aAt/Ax < 1,

is used, A will have the form

1-.

0

The matrix A will have Toeplitz structure. Each row is still an approximation of a 8-function.
The first order smoothing effect of (2.4) is given by the modified equation (see [5])

Otu + aOxu (aAx/2)2x u.

Equation (2.5) is parabolic with a fundamental solution of the form

(2.6) G(x y, t) (2rraAxt)-1/2 exp(-(x y- at)2/(2aAxt)).

Compare the solution formula for parabolic problems (3.2).
Each row of Av is thus a close approximation to the function G(x y, t) above. The

computational complexity of the algorithm (1.4) depends on how many wavelets are needed
to represent G(x y, t) as a function of x, (0 < < T) with a given accuracy.

Higher order accurate (say, order 2p 1) dissipative finite difference approximations to
(2.1) are usually modelled by the equation

(2.7) ut q-aUx (--1)p+lkp(Ax)2p-1 u

with kp > > 0, 3 independent of Ax.
The fundamental solution for this parabolic equation is:

I FGp(x, t) d exp(i:(x at) kp(Ax)2p-l2pt).

The key, simple estimate we shall obtain here (and which we certainly do not claim is
new) is:

(2.8) xm+l(O)
m

-x Gp(x -[- at, t) <_ Cm,p

uniformly in 0 < and Ax and for all nonnegative integers m.
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Proofof 2.8. We wish to bound

)mxm+l eix-kp(AX)2’-1t2pd
2zr

(i

f_= [ ]eiX
0 m+l

2zr oo
me-kpfAx)p-lpt d

ix [ m+l

The result is now clear. Also, an inspection of the right-hand side of the above equation
shows that C, can be chosen to be arbitrarily small if (x)-1 is large enough. Discrete
estimates analogous to (2.8) uniform in powers ofA are needed so that the compression method
described below is valid.

Remark R1. Let the general space dependent coeNcient, one-dimensional system of
hyperbolic equations

ut + A(x)Ux C(x)u

be approximated by a dissipative finite difference scheme of order 2p 1, where u is an e
vector, A is a uniformly diagonalizable smooth e x e matrix, with all real eigenvalues Xi(x),
and C(x) is smooth. Typically, its model equation is a systems version of (2.1)

ut + A(x)Ux C(x)u + (--1)P+I(Ax)ZP-IP x, xx u,

where (-1)P+I P(x, ) is a 2p order elliptic operator. A more involved argument shows that
the fundamental solution satisfies an estimate of the type (2.8) with the expression x + at
replaced appropriately by solutions of a Xi(.), 2-(0) x, and with Cm,p
possibly growing in time like Cm,pekt for k fixed.

Our numerical procedure involves the compression of the matrix A, which, for the
purpose of analysis only, we shall view as the discretization of the fundamental solution for
either (2.5) or (2.7),

(An)jk G(xj, yk, tn),

where the interval [0, is discretized via

J j=l N, N=2,Xj= N

[0, 1] X [0, 1] is discretized via (xj, y), and n nat nZAx, n O,
We now adapt the terminology, notation, and results of to this unsteady problem (1.1).
Finite difference schemes approximating (1.1), e.g., (2.4), are regarded as acting on a

vector ttsON,=1, which is to be viewed as approximating u(x, O) on the finest scale:

0 22 fsk o(2Vx k + 1)u(x, O)dx.

All functions, both continuous and discrete, are extended periodically:

u(x, t) u(x + 1, t),
0 0

Sk+N Sk
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etc.
The function 99 satisfies

2m

o(x) E hp+go(2x p).
p=O

The function 0 (x), which will generate an orthonormal basis, is obtained via

2m

(x) E gp+lO(2X p)
p=O

with gp (-1)p-lh2m_p+l, p 2m, and f o(x)dx 1.
The coefficients {hp}2pm=l are generally chosen so that

aPj,k(X) 2- /(2-Jx k + 1)

for j, k integers, form an orthonormal basis, and, in addition, the function ap (x) has rn vanishing
moments

Also we define

ap (x)xedx O, g=0,1 m-1.

Pjk 2-tP(2-Jx k + 1).

Finally, we assume as in [1] that there exists a real constant rm(rl 1/2) such that the
following conditions are satisfied:

tp(x rm)xedx 0 fore 1 1,+ rn

and f tp(x)dx 1.
In this case the quadrature formula becomes:

0 1 ((k- 1-+-7m)sk -- f N + O(N-(m+I

and the initial discretization error is O(N-(m+l)) up to uniform translation.
The decomposition ofthe vector {s s, into the basis we use to compute with comes

via

This is implemented in O(N) operations using:

p=2m
J

Sk E j-1hpSp+2k_
p=l

p=2m

dJkE j-I
gpSp+2k- 1,

p=l
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J Jand the s,, dr, are viewed as periodic sequences with period 2v-j.
The coordinates in the orthonormal basis consist of

n

The inverse mapping can also be done in 0(N) operations.
is thought of as approximatingEach of the

g
2

f(x)cp(2V-Jx k + 1)dx

2-(=2 ) [f(2-v+J (k

+ O(N(-v+j)(m+l))],
while each d is thought of as approximating

ai=2( -I f2 !
f(x)aPjt, (x)dx.

The numerical procedure effectively transforms the approximate discretization of the
matrix G(xj, yk, n) which is (An)#. Estimate (2.8) (corresponding to (4.5) and (4.6) of[1 ]),
uniform in all parameters, indicates (via an argument of ]) that truncating An by removing
elements of a band of width b > 2m around a shifted diagonal (and its periodic extension),
i.e., those for which

j-k-a)nl > b > 2m,

which replaces An by A’’b, leads to an estimate

IIAn An’bll < log(N)

for C depending only on G.
Figure 1 shows what the nonzero elements in An’t’ look like in the transformed basis for

a variable coefficient case when a a(x) in (2.1).

;&..,;.i,

:2! ’.: :.": ":L":. "’::.;::..

Fro. 1. Hyperbolic equation: the significant elements in (SAS-1) for n 1024.

Ourexamples are, ofcourse, academic. The gain will come for highly oscillatory problems
for which a large number of grid points are needed.
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It also follows easily that for large N and fixed precision e, only O(N log N) elements
will be greater than e. Alternatively, by discarding all elements that are smaller than a fixed
threshhold we compress it to O(Nlog N) elements. Again, following the discussion in [1],
we note that this naive approach is to construct the full matrix in the wavelet basis and then to
threshold. Clearly this is an O(N2) operation.

Since we have, a priori, the structure of the singularities of the matrix A, the relevant
coefficients can be evaluated by using the quadrature formulas. Estimate (2.8) guarantees that
this procedure requires O(N log N) operations.

Remark R2. It is interesting to note that certain so-called unstable difference schemes
can be used without any drastic loss of efficiency. If (2.1) is approximated by

(2.9)
tgn+l n /, n n 1)/2j Uj (Uj+ Uj_
0

uj uo(xj), j--l,2 N,

the algorithm is not stable for any fixed ,k > 0, see, e.g., [7].
The approximation does converge if At < CAx2, (. < CAx) with an amplification

factor + O(At). The number of timesteps for (.9(1) calculation will be large, n
O(Ax-2) O(N2). This is devastating for the standard explicit algorithm (1.2) but will only
affect the complexity of (1.4) by a constant factor. The number of iterations (m in (1.4)) will
increase from log(N) to log(N2).

Our approach is, in general, not as favorable for multidimensional hyperbolic systems

(2.10)

d

Otu + E Aj(x)xU f(x),
]=1

u(x, O) uo(x).

When u is a scalar, or if the system can be diagonalized, the algorithm (1.4) works well. The
solution is given by integration along characteristics and the support of the Green function is a
small number of points (see Remark R1 above). In the idealized case, each row of A consists
of a fixed number of 3-functions. Its wavelet representation will have log(Na) nonzero terms.
The overall complexity for (1.4) is then O((log N)3Na) when the knowledge of the location
of the 3-functions is used. This is better than the standard O(Na+l) estimate.

In general, however, the Green function for (2.6) has a support with positive volume
in Ra and with a singular support of positive measure in Hausdorff dimension d 1. The
representation of the singular support consists of O(Na-)5-functions in each row of A.
This corresponds to O(log(N)Na-) wavelets and the overall algorithm contains at least
(O(log N)2N2a-) wavelets.

For general multidimensional problems and for very large time, the new algorithm is still
of interest in special cases, e.g., if it is needed for a large number of different data u0, f.

3. Parabolic problems. The Green function for parabolic problems is smooth in contrast
to the hyperbolic case. The pure initial value problem for the heat equation

Otu Au, t>0, x 6 Rd,
u(x, O) uo(x),

has a solution of the form

(3.2) u(x, t) (47rt) -d/2 fl,, exp(-lx yl2/4t)uo(y)dy.
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In bounded domains the kernel has to be changed slightly depending on the boundary
conditions. For positive (= n At) each row in An is always an approximation of segments of
regular functions.

Our new technique is, in general, more favorable for parabolic problems than hyperbolic
ones. The structure of the matrix B in (1.4) is simpler. When increases, the kernel becomes
smoother and otjk can be truncated to zero for all k when j is large enough.

Explicit methods for (3.1) also require more operations than for hyperbolic problems
when the standard method is used. This follows from the parabolic stability requirement

(3.3) At _< const IAxI 2.

The new technique is only marginally affected by the constraint (3.3). Compare here the
discussion above for unstable hyperbolic methods.

In more general higher order multidimensional parabolic cases the fundamental solution
of, e.g.,

is

ut + (--zX)du 0

1 f_: d exp(i, x -[lEdt)Gd(x, t)

This is merely a multidimensional and rescaled version of the fundamental solution used in
(2.8), and a simpler, but multidimensional, version of (2.8) is just:

Ilxlm+l OGd(x, t) < Cmd.

Moreover, Cmd is arbitrarily small if is large enough (this of course requires the nonexistence
or other special behavior of lower order terms).

The matrix compression technique is easy here (for periodic problems without boundary
conditions) because the significant terms of [A v] lie near the main diagonal and its periodic
extension in one dimension. In two space dimensions (as is usual for elliptic operators), we
also need to consider diagonals j 4- kN for 0 < k < d. Recall .4 is an N2 x N2 matrix
in 2 dimensions.

It is clear that a priori thresholding (to obtain O(e) precision) near the image of these
diagonals will give us an O(Nd (log N)3) operation for each evaluation of the solution, where
d is the number of space dimensions for the problem.

4. Numerical experiments. The algorithm (1.4) was applied to hyperbolic problems in
one space dimensions and to one- and two-dimensional parabolic problems. Various difference
approximations and wavelet spaces were used. We present results concerning the accuracy of
the calculations and the sparsity of (S.4S-).

4.1. Hyperbolic problems. Consider the following scalar hyperbolic problem:

(4.1a)
Otu + a(x)OxU f(x),

u (x, O) uo (x),

with periodic boundary conditions (0 < x < 1). We made the following choices:

(4.1b) a(x) 0.5 + 0.115 sin(4rrx),

(4.1c) f(x) cos(4rx),

(4.1d) uo(x) sin(4rrx).
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In the discretization, Ax 1/1024 and At/Ax 1. The wavelet transform operator
S uses the Daubechies-8 wavelets, which have 8 coefficients and have 4 vanishing moments.
Finite difference schemes of order of accuracy 1, 2, 3, 4, and 5 are tested.

These finite difference schemes are obtained as follows. In each interval

(4.2) Iu_ {x/(v- 1)Ax < x <_ vAx}

a polynomial ofdegree k is constructed. This polynomial interpolates the two points (xu_ 1, u_)
and (x, u) and k 1 of its neighbors. If k is even, these interpolation points go from x-k/a
to xv+k/a. If k is odd, they go from xv-((-)/a)-i to xv+(-l)/a. This gives us a reconstruction
function that is a polynomial of degree k in each Iu-/a and is continuous, but generally not
differentiable, at the boundary points X_l and x. We call this function Rn’ (x).

To approximate (4.1) at the grid points (x, tn+l), we solve (4.1) "exactly" with initial
data

(4.3) Uzxx (x, n) Rn’k (x)

for n < < n+l evaluate the solution at (xv tn+l), and set un+lv U/x(Xv, n+l). We
require Sx Ilall < 1, so the solution depends only on data in I-1/2 if a(x) > 0 and I+/2 if
a(x) < O.

In the special case when a (x) a, constant, then

(4.4)
unv+ Rn’k(x a A

tn+l

+ f f(xu a(tn+l s))ds.
dtn

In the case when f 0, we get some familiar schemes" For k this is just the first order
accurate upwind difference scheme (2.4). For k 2 this is just the classical Lax-Wendroff
second order accurate three point scheme, see, e.g., [7]. For k 3, 4, 5 the schemes are less
studied, but are known to be L2 stable, see, e.g., [9] and the references therein.

For variable coefficients the result is

(4.5a)
UAx(Xu, n+l) Rn’k(xv(tn))

-ln+l
+ jtl f(x(tn+l s))ds,

where xv (t) solves

(4.5b)
dxv

a(xv), n <_ < n+l

dt
(4.5c) xv (t"+) x.

Afourth order Runge-Kuttamethod is used to integrate the ODE (4.5b), (4.5c) and the Simpson
rule is used to evaluate the integral in (4.5a). The result of this approximation to the right side
of (4.5a) is defined to be u+1

Returning to the present case, the computations ran 13 steps until 8, that is, (SAS-1)2"
was computed.

At each step n the number of elements of An and (SAS-1)n whose absolute values are
greater than 10-4 is shown in Table 1. This is for methods whose order of accuracies go from
1 through 5. The compression ratio decreases with the order of accuracy of the scheme. The
results are also plotted on Fig. 2.



FAST WAVELET ALGORITHMS FOR EVOLUTION EQUATIONS 765

dO xl0

I.$

S:-’":......................................................
:LL.:, ,.

FIG. 2. Hyperbolic equation: the number of elements in A and (SAS-I) w whose absolute values are

greater than 10-4 for thefirst throughfifth order accurate methods.

TABLe.
Hyperbolic equation: the number ofelements in A and (SAS-I)" whose absolute values are greater than 10-4.

Timesteps

2
4
8
16
32
64
128
256
512
1024
2048
4096
8192

Order

An(SAS-l)

2048 48564
3072 51172
5120 50258
9216 48830
14886 45326
21376 40110
29728 31538
41190 22160
56652 15268
78586 10320
113954 6836
155624 4640
211340 3126
284318 2104

Order 2 Order 3

An(SAS-1) An(SAS-I)

3072 48174 4096 49538
5120 52916 7168 53394
9216 54404 11264 53618
13996 52734 15502 53014
20822 53192 18480 52766
27860 54700 21788 51988
37032 56650 25656 51808
49420 58668 30462 51294
66054 58828 36074 47750
89838 55850 43358 41950
130366 52256 54574 35810
173238 47966 63564 30254
229458 44002 74226 25544
304854 40970 84896 21204

Order 4

An(SAS-I)
Order 5

An(SAS-I)

5120 49280
9216 54260
13588 53628
18596 54018
23462 55992
28370 57582
34702 60710
42602 63630
52600 67522
66560 71408
89112 73374
107704 75466
130084 75416
155688 74288

6144 49988
11264 54442
14736 52840
18732 54038
21372 54778
24796 55582
28188 56050
32192 56458
36344 56298
41820 55614
50456 53532
56242 50956
62384 47858
68536 43734

These significant elements are located near the subdiagonal corresponding to the char-
acteristic curve which is known a priori. As an example, for the equation ut + Ux 0 the
Green function (x y t) has singular support x y + t. Thus, we consider our discrete
approximation to have singular support concentrated near the diagonal closest to j
(mod N because of periodicity). The image of these locations in (SAS-1)n, shown in Fig. 1,
has total length of O(N log N) elements as N --> cx:. In this figure n 1024.

In the computation of (SAS-I)n, first, from the knowledge of the PDE, we figure out the
structure of the singularities of A and its image in (S.4S-1)n. Then we compute (SAS-)2n

(SAS- ) SAS- ) considering only the elements in a neighborhood ofthe singularities ofA.
In particular, we define the neighborhood of a singularity to be locations whose distance from
the singularity are less than or equal to 5, 6, 7, and 8. If the singularities lie on a subdiagonal
and its periodic extension, its neighborhood forms a subband of bandwidth 11 (the wavelet
filters have 8 elements). This bandwidth is independent of the time (the step n) and the size
of the problem. The errors due to the subband truncation, measured by Ilu" if" II/Ilu" II, are
shown in Table 2(b). Table 2(a) shows the relative error between the subband truncation and
the exact solution. Here and throughout, "11 I1" denotes the e2 norm. Table 2(c) shows the
relative error between the truncated subband and untruncated subband under grid refinement
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for the various orders. Unsurprisingly, since the relative length of the subband that is preserved
decreases linearly with grid size, the error increases, but only slightly, under this process.

TABLE 2
Hyperbolic equation: (a) the error measured by Ilu fin ii/llu compared with the exact solution; (b) due to

the truncation only; (c) due to the truncation only under grid refinement.

Error

Error
m

Order Order 2 Order 3 Order 4

.1621 .0125
Order Order 2

.0044 .0122
Order Order 2

1024 .0044 .0122
512 .0030 .0081
256 .0017 .0050
128 .0006 .0040

B=13

.0080 .0129
Order 3 Order 4

.0077 .0127
Order3 Order4

.0077 .0127

.0062 .0079

.0046 .0065

.0021 .0032

Order Order 2 Order 3 Order 4

Error .1602 0079 0056
Order Order 2 Order 3

Error .0025 .0075 .0055
m Order Order2 Order3

1024 .0025 .0075 .0055
512 .0019 .0052 .0040
256 .0013 .0032 .0031
128 .0005 .0024 .0013

B=15

.0125
Order 4

.0124
Order 4

.0124

.0057

.0047

.0018

Order Order 2 Order 3 Order 4

Error .1604 .0068 .0045 .0090
Order Order 2 Order 3 Order 4

Error .0019 .0064 .0042 .0089
m Order Order 2 Order 3 Order 4

1024 .0019 .0064 .0042 .0089
512 .0011 .0041 .0030 .0041
256 .0006 .0025 .0018 .0032
128 .0003 .0020 .0007 .0013

B=17
Order 2 Order 3

.0034 .0024
Order 2 Order 3

.0028 .0022
Order2 Order3

.0028 .0022

.0017 .0012

.0009 .0005

.0005 .0000

Error

Error
m

Order

1600
Order

.0009
Order

i024 .0009
512 .0004
256 .0002
128 .0000

Order 4

.0072
Order 4

.0071
Order 4

0071
.0020
.0010
.0002

Order 5 (a)

.0121
Order 5 (b)

.0119
Order 5 (c)

.0119

.0073

.0054

.0031

Order 5 (a)

.0082
Order 5 (b)

.0081
Order 5 (c)

.0081

.0058

.0039

.0019

Order5 (a)

.0090
Order5 (b)

.0089
Order5 (c)

.0089

.0042

.0026

.0012

Order 5 (a)

.0063
Order 5

.0062
Order 5 (c)

.0062

.0020

.0008

.0000

We note that the compression (as seen in Fig. 2 and Table 1) is better for odd order than for
even order schemes. This is perhaps not surprising since (2.7) models schemes of odd order
accuracy. Singularities behave a bit differently for even order (say, order 2p) schemes.
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These are modeled by

(4.6)

0 )2p+lUt "[" aUx P(AX)2P -x
Af-(_I)Pkp(AX)2P+ (,0 2p+2 U,

where kp > 0 and ep are nonzero constants. The odd order dispersive term above may tend
to spread singularities of the fundamental solution spuriously.

Finally, Table 3 shows the relative error due to truncation when the bandwidth of the
subband is 9, 11, and 13 for the methods of first and second order. Figures 3(a) and 3(b)
compare the truncated versus the nontruncated approximate solutions due to truncation of
bandwidth 9 for the first and second order methods (the truncated graphs are dotted). As
described in the previous paragraph, the first order method has a smoother truncation error
and is hence more compressible by the wavelet representation.

order I. width

"I’0 200 400 $00 I000

order 2, wldth

600 1200

(a) (b)

FIG. 3. (a) Truncated versus nontruncated approximate solution, first order method truncated at bandwidth 9.
(Truncated is dotted.) (b) Truncated versus nontruncated approximate solution, second order method, truncated at

bandwidth 9. (Truncated is dotted.)

4.2. Unstable schemes. For theoretical interest, we apply the method to a finite differ-
ence scheme that is unstable for xx " > 0

(4.7a)
(4.7b)

u+1= ’-. " " )/2,Uj (Uj+ Uj_
0

uj uo(xs).
The amplification factor of this scheme is

(4.8) 1 .i sin 0 r(ei), -rr < 0 _< rr,

so

Ir(ei)l (1 + Z2 sin2 0)1/2.

This means that if

(4.9) At _< 2c(Ax)2



768 BJORN ENGQUIST, STANLEY OSHER, AND SIFEN ZHONG

TABLE 3
(a) Errors measured by Ilu" 711/llu" due to truncationfor various bandwidths andfirst throughfifth orders.

(b) Errors measured by Ilu,xact 711/llu,xact due to truncationfor various bandwidths andfirst through fifth orders.

(a)

B=I1

B 13

B=15

B ’17

B=I1
B=13

B=I5

B=17

Order Order2

.0248 .0331

.0044 .0122

.0025 .0075

.0019 .0064

.0009 .0028

Order Order 2

.1771 .0333

.1621 .0125

.1602 .0079

.1604 .0068

.1600 .0034

Order 3

.0330

.0077

.0055

.0042

.0022

Order 3

.0330

.0080

.0056

.0045

.0024

Order4 Order5

.0378 .0374

.0127 .0119

10124 .0081

.0089 .0089

.0071 .0062

Order4 Order5

.0379 .0374

.0129 .0121

.0125 .0082

.0090 .0090

.0072 .0063

for some c > 0, then

(4.10) Ila" 11/2 _< echat.

The restriction (4.9) means that the operation count for this explicit method would be
O(N3) if we were silly enough to use it. However, our compression method allows for an
operation count of O(N(log N)3) for the reasons described above.

Table 4 shows the number of elements in An and (SAS-1)n whose absolute values are
greater than 10-3. We choose a bigger threshold here since we took ax2Zx----L-t and n At 2,
so IIA II, as estimated in (4.10), grows to be roughly e when we are finished computing.

The error as measured by 11,,"-,7" (subband truncation using bandwidth 11) was 0.0136.
We also performed convergence studies as we refined the grid for this method. Figures

(4a)-4(c) compare the numerical (untruncated) solution using dots versus exact solution for
m 128,256, 512 grid points. The result indicates a second order method, as it should,
since At (Ax)2. Figures (5a)-(5c) compare the truncated bandwidth (using dots) versus
the untruncated bandwidth for this method for m 128,256, and 512 grid points.

The relative error decreases with mesh refinement. The truncation error equation associ-
ated with this scheme involves limited antidiffusion. Perhaps this accounts for this behavior.

4.3. System of hyperbolic equations. We apply the method to solving the system of
hyperbolic equations:

(4.11a) Otl v
+ f ao -aO I [ v ] I 0logw 0

on 0 _< x _< 1, > 0 with the boundary conditions and initial conditions"

(4.1 lb)

v(O, t) w(O, t),
w(1,t)=v(1,t),
v(x, o) vo(x) sin(4zrx),
w(x, O) wo(x) cos(2rrx).
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TABLE 4
Hyperbolic equation "unstable scheme": the number ofelements in A and (SAS-l) whose absolute values

are greater than 10-3

n

2

4

8

16

32

_-I (ss-),

5121 512

750 512

1024 1336

1024 1764

1024 2328

1024 3060

4026

5273

6302

7447

8360

9308

9266

10557

13346

19255

29649

48595

84566

106197

110240

113276

64 10241
128 2048

256 2048

512 256’0
1024 3432

2048 566
4096 6330

8192 9362

16384 14332

32768 ’23872
65536 41490

131072 74750

262144 132916

524288 132454
1048576 132304

2097152 130164

The coefficient a is chosen to be constant:

a =0.115.

The numerical method used is the first order accurate upwind method described above.
The results are similar to the scalar case, except the structure ofthe singularities in the matrices
is more complicated. We must keep track ofreflections of singularities at the boundaries, which
is quite simple in this case. The number of elements in A" and (SAS-1)n whose absolute
values are greater than 10-4 is shown in Table 5 and is plotted on Fig. 6. The relative error
due to the subband of width 11 truncation, measured by Ilu 7 II/llu II, is 0.0149.

The structure of the elements whose absolute values are greater than 10-4 of A248 and
(SAS-)248 is shown in Figs. 7(a), (c), while Fig. 7(b) shows the image of a subband of
bandwidth 11 in (SAS-I)248.
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unstable: 128, 0.1234
1.5

-1.5
20 40 60 80 100 120 l,lO 150

(a) (b)

unstable: 256, 0.0351
1.5,

02

o
-0.5

ol

"1"51 50 100 2)

unstable: 512. O.O114
1.5

2;0

"1"50 100 200 300 4430 $00 600

FIG. 4. (a) Exact versus approximate solution,"unstable scheme," m 128. (b) Exact versus approximate
solution "unstable scheme," m 256. (c) Exact versus approximate solution "unstable scheme," m 512.

TABLE 5
System ofhyperbolic equations: The number ofelements in A and SAS-1) whose absolute values are greater

than 10-4.

20481
2 3074

4 5126

8 6154

16 9228

32 13332

64 19488

128 27692

256 37945

512 52308

1024 72814

2048 98456

(sAs-)"
19353

22589

25327

26440

25804

25747

22364

18985

14064

10116

8110

5685
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unstable 128 0.0263 unstable 256 0.0148
1.5 1.5

-0.5

-I

"1"50 20 40 60 80 I00 120 140 "1"50 50 I00 150 200

(a) (b)

unstable $12 0.0066

""So oo :oo 60 460 s
(c)

3OO

FIG. 5. (a) Truncated bandwidth 11 versus untruncatedfor the "unstable scheme’,’ m 128. (b) Truncated
bandwidth 11 versus untruncatedforthe "unstable scheme," m 256. (c) Truncatedbandwidth 11 versus untruncated

for the "unstable scheme," m 512.

FIG. 6. System of hyperbolic equations: The number of elements in A and (SAS-I) whose absolute values
are greater than 10-4

4.4. Parabolic problems. We experiment on the following parabolic problem:

(4.12)
3tu 3x(a(x)OxU) + f(x),

u(x, O) uo(x),



772 BJORN ENGQUIST, STANLEY OSHER, AND SIFEN ZHONG

(a),
o

-50

-100

-150
-250 I.___

50 100 150 200 250

(b)

FIG. 7. (a) System of hyperbolic equations pattern of significant elements (> 10-4) for An, n 2048. (b)
System of hyperbolic equations pattern of significant elements for (SAS-I)n, n 2048, image of bandwidth 11
around singular support. (c) System ofhyperbolic equations pattern ofsignificant elements (> 10-4) for (SA S-1 ),
n 2048.

with periodic boundary conditions (0 < x < 1). We made the following choices:

a(x) 0.5 + 0.25 sin(2zrx),

f(x) -zr2 cos(2zrx)2 + zr2(0.5 + 0.25 sin(2zrx)) sin(27rx),

uo(x) sin(4zrx).

The discrete setting and the wavelets are the same as in the hyperbolic problem. We use
the simple explicit central difference scheme (4.13)

(4.13) u+l n At
u + (6x)2 A_(a(xj)A+uj) + Atf(xj),

where

A:u q:(ug ug)

with At/(Ax)2 0.25. The number of significant elements in An and (SAS-1)n is shown in
Table 6, and is plotted on Fig. 8.

For the parabolic problem, the large elements of A are in the neighborhood of the main
diagonal. Their wavelet transform image is shown in Fig. 9. The relative error due to subband
truncation was 0.0025.
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-l)n
1000 2000 5000 4000 5000 6(XX) 7000 8000 9000

FIG. 8. Parabolic equation: the number of elements in A and (SAS-I) whose absolute values are greater
than 10-4.

TABLE 6
Parabolic equation: the number ofelements in A and (SAS- )n whose absolute values are greater than 10-4.

n

2

4

8

16

32

64

128

256

512 78078

1024 106976

2048 146466

4096 199878

8192 272050

3072! 15194

5120 17342

8462 19136

11682 19328

16214 18775

21900 17622

’30126 14389

41434 10387

56756 7392

5073

3554

2396

1658

1082

4.5. Two-dimensional parabolic problems. We consider the following problem:

OtU allOxxU + 2al2OxyU + a220yyU,
u(x, y, 0) Uo(X, y)

with periodic boundary conditions (0 < x < 1, 0 < y < 1). We choose

all (X, y) 0.5 + 0.25 sin(2zrx),

al2(X, y) 0.115 sin(2zrx) cos(2zry),
aEE(X, y) 0.5 d- 0.25 cos(27ry),
u0(x, y) sin(4zrx) + cos(8rrx).
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FG. 9. Parabolic equation: the pattern ofsignificant elenents in S4S )’.

Ta 7
Two-dimensional-parabolic equation: the number ofelements in A and (SAS-) whose absolute values are

greater than 10-4

n

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

6634

16612

40210

72360

105802

146292

198480
269882
365456

491936
658800

’891144
1048576’
1048576

(SAS-)

34190

52941

72420

87381

84827

67912

46856

31925

21497

13653

8703

5271

3373

1981

We use a standard two-dimensional explicit central difference scheme. The two-dimensional
data blj, k, j N, k N2 forms a one-dimensional vector in the following way

{/./1,1 b/l,N2, //2,1 b/2,N: UN,I blN,N2 }.

To reduce the size of the problem, N2 is much less than N. In particular we took N
128, N2 8 that is, Ax -f, Ay .

The compression worked quite well. Table 7 shows the number of elements in A" on
(SAS-1)n whose absolute values are greater than 10-4. The relative error due to subband
truncation was 0.0066.

Acknowledgement. The authors would like to thank V. Rokhlin for suggesting both
this problem and this approach to it, An Jiang for some help with the computations, and an
anonymous referee for some constructive comments on the first draft.
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A SIMPLE ADAPTIVE GRID METHOD IN TWO DIMENSIONS*

WEIZHANG HUANG AND DAVID M. SLOAN*

Abstract. This paper gives an interpretation of the concept of equidistribution in the context of adaptive grid
generation for multidimensional problems. It is shown that the equidistribution principle cannotbe satisfied throughout
the domain of the problem and, based on this recognition, a local equidistribution principle is developed. A discrete
formulation is described for grid generation in two space dimensions and a smoothing mechanism is presented
for improving mesh quality. The adaptive grid method that is constructed contains three grid-quality parameters.
Numerical examples illustrate adaptive grid generation using a prescribed monitor function and grid generation for
numerical solution of partial differential equations. Results show that the method produces high quality grids and
that it is fairly insensitive to the choice of parameters.

Key words, adaptive grid, equidistribution
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1. Introduction. Numerical grid generation has become a valuable device for use in the
numerical solution of partial differential equations. Many of the commonly used methods
of generating computational grids are derivations of a technique first proposed by Winslow
15] in which a potential problem is solved, with mesh lines playing the role of equipotentials.
Winslow’s approach involves the solution ofa nonlinear elliptic equation to generate a mapping
from the computational domain to the physical domain. This idea was developed by J. E
Thompson and coworkers, among others, and some of these developments may be found in
the text by Thompson, Warsi, and Mastin [14]. The initial developments from Winslow’s
method dealt with the construction of boundary-fitted coordinates for the solution ofproblems
in irregular physical domains. The objective with these methods is to adjust the coordinate
lines to match the geometry of the physical domain rather than adapt to the solution of the
problem. This geometrical approach is not entirely satisfactory when a solution involves near-
singular behaviour such as a boundary layer or a shock wave: in such cases the coordinate lines
should be adapted to the features of the solution as well as to the geometry. Grid generators
that are influenced by the solution are called adaptive grid generators.

Construction of adaptive grid generators is now an area of intense research activity, an
activity that finds much of its motivation and application in computational fluid dynamics.
A fairly common theme in methods used for adaptive grid generation is the idea of equidis-
tribution, which seeks to distribute some function equally over the domain of the problem.
The function is usually some measure of the computational error or the solution variation.
Equidistribution has the effect of producing grids with spacing that is related to the local rate
of change of the function.

The idea of equidistribution has been well defined for one-dimensional problems, but
a proper description of the concept has not been produced for problems involving many
dimensions. For two-dimensional problems useful progress has been made by Dwyer, Kee,
and Sanders [7], Dwyer [8], and by Catherall [3]. They have used equidistribution by applying
the concept in one dimension along sets of coordinate lines. In its simplest form this technique
may produce grids of poor quality in terms of smoothness, skewness, and orthogonality.
However, improvements in grid quality may be obtained if the equidistribution problem is
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supplemented by conditions that deal with qualities such as smoothness and orthogonality. For
example, Catherall [3] obtains good quality grids by conjoining his line-based equidistribution
principle to Laplace and Poisson equations which control mesh spacings. Brackbill and
Saltzman 1 used a variational approach to incorporate adaptivity (which may be regarded as a
high-dimensional extension of the one-dimensional equidistribution principle) into Winslow’s
[15] method. They included terms in their variational formulation designed to improve grid
properties such as smoothness and orthogonality. Dorfi and Drury [5], in considering one-
dimensional problems, used a very effective device for incorporating smoothness into the
equidistribution principle. Their one-dimensional device ensures that the ratio of adjacent
grid intervals is restricted, thus controlling clustering and grid expansion. The power of the
smoothing capability in [5] is clearly demonstrated in the valuable comparative study by
Furzland, Verwer, and Zegeling [9].

The objective of this paper is to clarify the concept of equidistribution for multidimen-
sional problems and to describe a simple method which produces high-quality meshes in two
dimensions. The equidistribution principle is described in continuous form in 2.1 and in
discrete form in 2.2. A mechanism for improving mesh quality, based on the ideas of Dorfi
and Drury [5], is described in 2.3, and a simple 3-parameter generator is presented. Adap-
tive grid generation using a prescribed function is described in 3, and generation associated
with the numerical solution of differential equations in two spatial dimensions is described
in 4. Numerical examples are presented in 3 and 4. Conclusions and comments on our
3-parameter method are contained in 5.

2. Simple grid adaption based on equidistribution principles.

2.1. Equidistribution principles. The equidistribution idea, first used by de Boor in
1974 [4], is the most important concept in the field of adaptive grid generation. Most adaptive
grid methods are related in some way to this concept (see, for example, Hawken, Gottlieb,
and Hansen 10]). However, although equidistribution is understood in one space dimension,
it does not seem to have been well formulated mathematically in more than one dimension.

In this subsection we shall construct equidistribution principles based on the idea of
equivariation of certain functions. Let x [Xl, x2, x3] r be the spatial coordinate in a three-
dimensional physical domain, Dp, where the superscript T denotes transposition. Suppose we
select a function u on Dp whose variation is being considered. To simplify the presentation,
we introduce a one-to-one coordinate transformation from the computational domain Dc to
the physical domain Dp as

(1) x--x(), Oc,

where [, 2, 3]r denotes the spatial coordinate on the computational domain Dc.
Obviously, for a prescribed mesh on the computational domain, the problem of finding a cor-
responding mesh on the physical domain will be that of determining a discrete transformation
(1), which is defined for all j on the given mesh. Henceforth, the determination of a mesh,
or a distribution of nodes, on Dp will be regarded as being equivalent to the construction of a
(discrete) transformation (1). A distribution of the nodes of a mesh will hereinafter be referred
to as a distribution.

It is well known (see, for example, Thompson, Warsi, and Mastin [14]) that the scaled
arc-length measurement of variation of u along the element of arc from x to x + dx can be
expressed as

(2) ds [ct2(du)2 + dxr dx] 1/2 [dxr Mdx] 1/2,
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where M is defined by

(3) M otVu Vur + I,

(4) Vu=[Ou Ou Ou]
r

OXI’ OX2’ OX3

and I is the unit matrix. An appreciation of scaled arc-length is more readily obtained by
considering the one-dimensional situation, with x and in Dp and Dc, respectively. An
increment of arc-length, ds, on the solution curve u u(x) between locations x and x + dx
in D, is given by

dx.

To obtain a scaled increment, which allows the relative effects of changes in u and x to be
altered, we may replace the above ds by

where ot2 > 0 is a real parameter. If ot2 0, the increment simply measures the change in x,
and as c2 increases the influence ofthe variation in u becomes more significant. Returning now
to the multidimensional problem, if we use transformation (1), equation (2) can be expressed
in computational coordinates as

(5) ds [djr jrMJd]t/2
where

(6)
Ox Ox Ox ]J
0:1’ 0:2’ 0:3

is the Jacobian of coordinate transformation (1).
The equidistribution principle follows from a simple observation on (5): if u(x(j)) is

required to have the same variation ds along any element of arc in the computational domain
which.has fixed length [drdj] 1/2, the term on the right-hand side of (5) must be independent
of coordinate j. Therefore, this equivariation requirement on u implies that jrMJ should be
independent of j; that is,

(7) [djr jrMJd]1/2 [djr/l/d] 1/2,

where/Q is a 3 x 3 symmetric positive definite, and j-independent, matrix. Thus, ifa coordinate
transformation (1) can be found to satisfy (7), u will have the same variation at any point on
Dp along any arc that has length

OXd
1/2
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In this sense, any one-to-one coordinate transformation (1) that satisfies (7) for some constant,
symmetric positive definite matrix AT/will be called an equidistribution, and (7) will be called
an equidistribution principle (in continuous form).

Now let’s consider how we might use the equidistribution principle (7) to determine a dis-
tribution on Dp (physical mesh) corresponding to a given uniform mesh on Dc (computational
mesh). The equidistribution principle (7) may be discretised by any suitable discretisation
method, and this process yields an equation corresponding to each link between adjacent pairs
of nodes on the computational mesh. The physical mesh may then be obtained by solving
these equations, in conjunction with some discrete boundary conditions for the coordinate
transformation (1). Some method has to be given for the determination of the constant matrix
AS/in (7). In the following, we shall consider two common cases.

Case 1. The number of nodes is not restricted. This case often occurs in unstructured
mesh generation and refinement mesh generation. Noting that M defined by (3) is a symmetric
and positive definite matrix, we may choose the coordinate transformation (1) such that M
has the special form

(8) 2I,

where c > 0 is a constant. For example, this can be achieved by choosing the computational
coordinate system to coincide with the principal directions of M. Therefore, (7) takes the
form

(9) [dr jrMJd]l/2 1/2

In this case, c may be given in advance. Similar ideas have been used for the adaptive generation
of unstructured meshes (see, for example, Peraire et al. [13], Bristeau et al. [2]).

Case 2. The number of nodes along any coordinate line is given in advance and the global
structure ofthe mesh is also required. This is the case in structured movement (or redistributed)
mesh generation. Usually (7) cannot be satisfied by the coordinate transformation (1) (or by
a mesh on Dp) on the whole computational domain. In fact, this can be seen easily from the
following analysis.

Suppose (7) can be satisfied by some coordinate transformation on the whole compu-
tational domain. Then (7) must hold along any coordinate line. For example, along the
coordinate line

(10) ll 2 constant, 3 constant,

(7) reads as

(11)
Ox r 8x

M --1,

where cl is a positive constant. On the other hand, the equidistribution along line l can be
regarded as a one-dimensional case. Therefore, the assumption that the number of nodes along

is prescribed implies that c can be determined by the equidistribution, and this gives

(12) cl
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where the integration is along in Dc. If the number of nodes on is prescribed in advance,
then the denominator on the right-hand side of (12) is fixed at a value determined by this
number. Hence, when the number of nodes along any coordinate line is given in advance,
it may be seen that Cl will usually be a function of 2 and 3. Since Cl in (11) is assumed
to be constant over the entire computational domain it follows that there does not exist an
equidistribution on Dp for this case. However, if we weaken (7) and require the coordinate
transformation (1) only to satisfy (7) locally, it will be possible to find an equidistribution on
Dp. Of course, this equidistribution is only locally-equidistributed. Here we consider (7) to
be satisfied along any coordinate line: for example, along line Ii we have (11), but with Cl now
a function of 2 and 3. Similarly, along the other two coordinate lines analogous formulae
can be obtained. Hence, we have

(13)

The equations in (13) give the essential formulae in our simple adaptive grid method. The
idea of using a curve-based equidistribution principle is not new, having been used by Dwyer,
Kee, and Sanders [7], Dwyer [8], and Catherall [3]. However, it does not seem to have been
presented in a form as simple as that offered by (13).

It is instructive to look at the two- and one-dimensional forms of (13).
Two Dimensions

(14)

where

1/2

I/2

Cl (0),

C2()

(15)
Ou’ 2

M Ol
2

(3x!
Ou Ou

Ox Oy

and (, 0) denotes the spatial coordinate in Dc.
One Dimension

(16) C,

where

(17) M=l+az(du)dx]
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and is the spatial coordinate in Dc. Equation (16) is the well-known, one-dimensional
arc-length equidistribution principle.

The remainder of this paper deals with structured, redistributed, adaptive mesh generation
in two dimensions.

2.2. Finite difference discretisation of the two-dimensional equidistribution princi-
ple. In this subsection, a finite difference discretisation of (14) will be presented. Suppose
that a uniform mesh is given on Dc by

| i i, 0 n,(18) I oj=j, j=0 m,

where n and rn denote the numbers ofintervals in the and 0 directions, respectively. Equations
(14) are discretized on the internodal links containing (i + 1/2, j) and (i, j + 1/2), respectively,
to give

(19)
x,+,-x,, c (0),L Yi+’.J-Yi.J Mi+1/2,J yi+l.j-yi.j

i=0 n-l, j=l m-l,

and

(20)
xi.j+l-Xi,j Mi,j+1/2 xi,j+l-X,,j c2 (i)Yi,j+l --Yi,j Yi,y+l --Yi.j

j=O m-l, i=1 n-l,

where mi+l/2,j M(i+l/2, j) and mi,j+l/2 M(i, lr/j+l/2). Equations (19) and (20) may
be rewritten as

(21)
}
1/2

[x,,-x,-,,] rlYi.j-Y,-I.y Mi-1/2,J[ xi’j-xi-l’j]yi.j-yi-l.j

T [Xi+l,j_Xi,Xi+l’j--Xi’j Mi+Yi+l.j-Yi4 1/2’J k yi+l,j-yi.j

i=1 n-l, j=l m-l,

=0,

(22)
=0,

Regarding the discretisation ofmatrix M, it needs to be transformed into computational coordi-
nates and then discretised on the computational domain. To be more specific, M is transformed
into

(23) M(, r/) o2 uY uoY -ux 2r" loX
-,,,xo+,,x, c + I,
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where xyo -xoy. M(, 0) can now be discretised at point (i+1/2, Ylj+I/2) by second-
order central differences. For example, in M, u and uo can be discretised by

( )U i+1/2, Oj+1/2 - (Ui+l,j Ui,j + b/i+l,j+l Ui,j+l)

and

(U0 i+1/2, /’j+1/2 (Ui,j+I bli,j "l- Ui+I,j+I Ui+I,j),

respectively, where Ui, j bl(Xi,j, Yi,j) b/(X(i, Yj), Y(i,
Then Mi+l/2,j and Mi,j+i/2 can be obtained by

(24)
1( )Mi+1/2,: - Mi+1/2,:+. + M+k,:_1/2

’( )M,,:+k - Mi+1/2,:+1/2 + M,_,:+1/2

2.3. Smoothness of mesh and the simple grid adaption. It is known that the mesh
quality, such as smoothness of mesh and orthogonality along boundaries, is another important
aspect of grid adaption (see, for example, Thompson, Warsi, and Mastin [14]). As seen in
previous subsections, the equidistribution principle does not offer any mechanism to handle
the mesh quality. Some mechanism should therefore be incorporated into the equidistribution
principle in order to control the quality. In the popular variational approach to grid adaption, the
balance between grid adaptivity and mesh quality is introduced by using a linear combination
of terms associated with adaptivity, smoothness, and orthogonality. Recently, the same idea
was used by Catherall [3]. He combines the equidistribution principle linearly with a Laplace
and a Poisson equation for the nodal locations, with the combination designed to improve
the grid quality. Suitable choices of the balance parameters can give good quality meshes.
However, the proper balance depends on the physical problem and the ideal selection strategy
is still an open question. An insensitive way to smooth the mesh in one dimension has been
used by Dorfi and Drury [5] (see also Furzland, Verwer, and Zegeling [9]). They achieve their
objective by smoothing the matrix M given by (17).

Here we follow the approach proposed by Dorfi and Drury [5]. In this approach, matrices
(21) and (22) are replaced by smoothing matrices

(25)

i+1 j+l
]/I + j

k=i-I l=j-1
mk+1/2,l (y) Ik-il+ll-j’

i+1 j+l

Ji,j+1/2 E E gk,l+ y+l
k=i-1 l=j-1

Ik-il+ll-jl

where y, called the smoothing parameter, is a positive constant. The summations in (25)
are understood to contain only elements that are well defined. It is of interest to note that
the smoothing introduced by (25) couples three coordinate lines in each direction (l j
1, j, j + in. the first equation of (25), for example). The smoothing process adds numerical
dissipation, rather like an increase in viscosity in a fluid flow--a process that reduces the
tendency for fluid shear. The analogy here is that the smoothing produces an effect that
prevents the mesh from skewing. Using (25), equations (21), and (22) read as



A TWO-DIMENSIONAL ADAPTIVE GRID METHOD 783

T
Xi,j Xi-l,JXi,j Xi-l,j )/Ii_1/2,j

Yi,j Yi-1 j Yi,j Yi-l,j

Xi+l’J Xi’J ]’[i+’,j Xi+l’J Xi’j
0,

Yi+l,j Yi,j Yi+l,j Yi,j

(26) {IXi,jXi,j_I]T I ]]I/2Xi,j Xi,j-1
Mg,_1/2

Yi,j Yi,j-1 Yi,j Yi,j-1

Xi,j+l xi,j xi,j+l Xi,j O,
lYi,j+l Yi,j lYi,j+l Yi,j

i=1 n-l,
j=l m-1.

The adaptive grid method presented here consists of (3), (25), (26), and suitable boundary
conditions at 0, ,, and 0 00, 0m. It should be noted that low-order discretisations
are often used along the boundaries, and these should take the form of mesh orthogonality
conditions.

In practical calculations involving very stiff problems it is found that dangerously small
physical grid spacings and mesh tangling ("overkill") can occur when I’ul becomes too large
somewhere. This problem can be avoided by imposing a cut-off condition onu in (3). That
is, (3) is replaced by

O2 ’7’U. 7’b/T
(27) M + I,

+ flur’Vu
where/3, called a scaling parameter, is a nonnegative constant. Equation (27) implies that

ot2

(28) IIMII2 +-

for positive ft. Therefore, positive fl imposes minimum values on the increments of x and y
along every computational coordinate line and thus obviates "overkill."

Thus, the three parameters c (concentration),/3 (scaling), and ’ (smoothing) are intro-
duced in the current adaptive grid method. The sensitivity of choice of these parameters will
be discussed in the following sections.

3. Grid generation for given analytic functions. Before we apply the adaptive grid
method to numerical solutions of differential equations, it will be useful to look at how to
choose values of the parameters and how good meshes can be produced for some given
function u. Two functions defined on a rectangular physical domain will be considered in this
section. Dirichlet and Neumann (orthogonal) boundary conditions for x and y are used, that
is,

(29)

XO,j -’-0, Xn, j 1,

Yl,j YO,j O, Yn,j Yn-l,j O,
Xi,1 Xi,o O, Xi,m Xi,m_l O,

Yi,0 0, Yi,m--1.

0,...,m,

n- 1,

The nonlinear system (29) and (26) is solved by homotopy and a Newton-Raphson method,
wherein c serves as continuation parameter (0 --+ or). The Jacobian is calculated by forward



784 WEIZHANG HUANG AND DAVID M. SLOAN

differences and linear systems arising from Newton linearisation are solved by Gaussian
elimination. The uniform mesh is used as the initial mesh.

Example 3.1. In this example we use the analytic function

(30) u(x, y) [1 -eR(x-1)] sin(wy).

This function is the exact solution of the convection-diffusion equation which is considered in
4 (Example 4.1) and it has been used for grid generation by Dvinsky [6]. When R is large,
u(x, y) has a boundary layer near x 1. In this example, the scaling effect has not been
considered (/3 0).

First, let us consider the case R 15 and co rr. The exact function (on physical
domain), meshes, and functions evaluated on these meshes are shown in Fig. 3.1. From
Fig. 3.1 we make some observations"

a. Adapted meshes can be obtained by the equidistribution principle. However, meshes
may be very unsmooth and skewed if ?’ 0 (without control of smoothness).

b. The method described in 2.2 offers a good mechanism for handling mesh smooth-
ness. The choice of values of ?’ is not sensitive.

c. The larger the values ofc, the more adaptive the mesh becomes. The choice of values
of ot depends on how much adaptivity is needed. Usually, c will suffice.

d. The more grid points we use, the better the quality of the generated mesh.
Adapted meshes and functions on these meshes are shown in Figs. 3.2 and 3.3 for the

case R 35, co r, and the case R 15, co 1.5zr, respectively. These figures confirm
our observations.

Note that with Neumann boundary conditions, orthogonality of the grid lines is imposed
at the boundary, and this may lead to discontinuities in grid line slope at points adjacent to
the boundary. This did not give rise to noticeable inaccuracies for the problems considered
here since the resulting skewness at points adjacent to the boundaries was never too severe.
The slope discontinuities could be avoided if the Neumann conditions were replaced by an
imposition of the equidistribution principle on the boundary lines.

Example 3.2. Here we use the analytic function

[(1 t(31) u(x, y) tanh R - x - y- -This is a more difficult problem than Example 3.1 because the mesh needs to be adapted in all
directions. The function, with several values of R, is plotted in Fig. 3.4.

Adapted meshes obtained by the adaptive grid method described in 2 with ct 1, ?, 2,
and/ 0 (no scaling) are shown in Fig. 3.5. Although a good mesh can be obtained for
R 15, the "overkill" phenomenon appears for larger R (-- 20) near the four corners, where
Tur7u is very large. As suggested in 2.2, the "overkill" phenomenon may be avoided
by cutting off (or scaling) Tu. Figures 3.6 and 3.7 show adapted meshes obtained with
/3 0.01 (five times smaller than 0.05) and with/ 0.005 (ten times smaller

// m

than 1 +/- 0.05), respectively. It can be seen that the "overkill" phenomenon disappearsn m
even for much larger R(= 100) and good quality meshes can be obtained for a wide range of
values of/3. It is also interesting to notice from Figs. 3.5-3.7 that positive/3 provides a safe
guarantee for large values of R.

In summary, it has been shown that adapted meshes with good quality can be obtained
for given analytic monitor functions by using the simple adaptive grid method described in

2. The ideal values of the parameters ct,/, and , will depend on the monitor function.
The method is fairly insensitive to the choice of values of the parameters, however, and we
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FIG. 3.1. Continued.

experienced no trouble in selecting suitable values, even in the difficult case of Example 3.2
with R > 20.

4. Grid adaption for numerical solutions ofdifferential equations in two dimensions.
In this section, the adaptive grid method described in 2 is applied to numerical solutions of
the convection-diffusion equation given below.

Example 4.1. Consider

(32) R
0u a2u O2u 092 eR(X_])0- OX2

q- y2 Jr" [1 sin(wy), 0 < x, y < 1,
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FIG. 3.2. Solution and meshesfor Example 3.1 with R 35.0, o r.

subject to Dirichlet boundary conditions that are chosen such that (32) has the exact solution

(33) ble(x, y) [1 eR(’-I)] sin(wy).

This differential equation has been used by Dvinsky [6] to show the efficiency of his adaptive
grid method.

In our calculations, (32) is first transformed into computational coordinates and then dis-
cretised on the uniform mesh (18) by first-order upwind differences. The resulting algebraic
equations will hereinafter be called discrete convection-diffusion equations (DCDE) for sim-
plicity of description. The equations (26), (29), and DCDE constitute the algebraic system
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FIG. 3.2. Continued.

that is needed to determine the unknowns IXi,j, Xi,j, and Yi,j, 0 n, j 0, m.

Obviously, the equations in this algebraic system should be solved simultaneously. However,
the complete system is dealt with in an uncoupled way in this section in order to reduce
the scales of algebraic systems to be solved. To be more specific, DCDE is solved by the
Gaussian elimination method for given xi,j and Yi,j (i 0 n; j 0 m), and (26)
and (29) are solved by the Newton-Raphson continuation method described in 3 for given
gli,j (i 0 n; j 0 m). It should be noticed that during the solution of (26) and
(29), an interpolation procedure must be used for u because the computed values of u are
given only on the previous mesh (xi,j, Yi,j) (i 0 n; j 0 m). Routines E02SAF
and E02SBF from the NAG library are used for this purpose.
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In the solution procedure described below the subscripts and j take the values 0 < < n
and 0 <_ j < m. The process is initiated with the continuation parameter, c, set to zero and
ui,j given by the solution of DCDE on a uniform mesh. ot is increased by increments until it
reaches the preselected value that is displayed with each set of results. At each value of or, the
complete system is solved iteratively for (Xi,j, Yi,j) and ui,j, and the superscript it denotes the
iteration number. The algorithm may be written as:

Set it:=0. Initial values (x.0,_,., y,0j!) are values on a uniform mesh and initial values(i)
a(0)

i,j are given by solution of DCDE on the uniform mesh.
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FIG. 3.3. Continued.

(it)(ii) Based on current values ui,j solve (26) and (29) by homotopy and a Newton-
Raphson method (c serves as the continuation parameter). The previous mesh

Ot) (,t)(xi,ii, yi, is used to initiate the continuation process. The new mesh obtained
(it+l) y.(it+l)in this step is denoted by xi,) ,j ).

(it+l) .(it+l) (it+l)(iii) Solve DCDE on the updated mesh [xi,j y,) to obtain ui,)
(it+l)(iv) Check convergence criterion on u,j If this is not satisfied, then set it := it +

and return to (ii).
(v) Obtain final mesh by solving (26) and (29).
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FIG. 3.4. Exact solutions ofExample 3.2for different values of R.
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The convergence criterion is given by

(34) E(it+l)-max -maxF’(it)
(it)
max

where Emax is defined by

< 0.005,

Three cases have been considered in this section. In these cases, the parameter/3 is set to zero
(without scaling).

Case 1. R 15, w zr. The convergence histories, solutions at y 0.5, and adapted
meshes for several values ofc and , are shown in Fig. 4.1 (a) and (b), respectively. It is observed
easily from these figures that more accurate solutions can be obtained and the boundary layer
can be resolved more sharply by grid adaption. These figures also show that the accuracy
of the computed solution on a smooth mesh is better than that on an unsmooth mesh (a
1.0, ?’ 0.0). By comparing Fig. 4.1(b) with Fig. 3.1, it can be seen that nearly the same
mesh is obtained for given analytic function u and for computed solution hii, j.

max lui,j (xi,j, yi, j)l.(35) Emax
e-R ,,j
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FIG. 3.6. Adapted meshes obtained using fl 0.01 and N 20, M 20, ot 1.0, , 2.0for Example 3.2.
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FIG. 3.7. Adapted meshes obtained using fl 0.005 and N 20, M 20, u 1.0, , 2.0for Example 3.2.

Case 2. R 35, o r. In this case, the solution has a sharper boundary layer near
x 1. Figure 4.2 shows the convergence history, solutions at y 0.5, and converged adapted
mesh for ot 1.0 and ?’ 2.0. This figure consolidates the observations made for Case 1.

Case 3. R 15, w 1.5r. By comparing the graphs of exact solutions (Figs. 3.1-3.3),
it is evident that this case is more difficult than the previous two cases because more adaption
in the y direction is required. Figure 4.3 shows that although a less accurate solution is obtained
for this case than for Cases 1 and 2, a more accurate solution is obtained on an adapted mesh
than on a uniform mesh. It is also interesting to note in Fig. 4.3 that the solution obtained
on the adapted mesh is less accurate than that obtained on a uniform mesh at points far from
the boundary layer (x < 0.7) along y 0.5, but the adapted mesh still gives a solution with
much better resolution of the boundary layer.
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exact solution
comput solution with adapted mesh
computea solution with unitorm mesh
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*’o.0- o’. ;% ,".," ’’.o :’., ’.0 :,’., --.o
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( a = 5.0, /= 2.0 )

FiG. 4.1(a). Convergence histories and solutions at y 0.5 for Example 4.1 (R 15.0, aJ zr) with

N= 10, M= 10.

Cases 1 and 3 have been considered by Dvinsky [6]. Indeed, our convergence criterion
(34) has been chosen as in [6] to enable us to make comparisons with Dvinsky’s work in terms
of accuracy and efficiency. We notice that the present method gives results that are at least
as accurate as those obtained by Dvinsky’s method. But more flexibility is available in the
present method, and much better results can be obtained by suitable choices of the parameters
or, 1, and ?,. For example, as may be seen in Fig. 4.1, larger values of c+ can lead to better
results.

5. Conclusions and comments. An understanding of the equidistribution principle is
described and it is found that the equidistribution principle cannot be satisfied simultaneously
on the whole structured mesh. Based on this understanding, a local (coordinate-line-based)
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FIG. 4.1(b). Adapted meshesfor Example 4.1 (R 15.0, o9 r) with N 10, M 10.

equidistribution principle is developed and a simple adaptive grid method with three parameters
ot (concentration), fl (scaling), and ?, (smoothness) is presented.

Numerical experiments have been performed on grid adaption, both for given analytic
function and for numerical solutions of partial differential equations in two dimensions. They
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FIG. 4.2. Convergence history, solutions at y 0.5 and adapted mesh for Example 4.1 (R 35.0, 09

withN=lO, M= 10, a= 1.0,/=2.0.

show that the present adaptive grid method is fairly insensitive to the choice of values of
parameters and it can lead to much better results than those obtained on uniform meshes.
The equidistribution principle presented here has only been applied to a simple, steady, two-
dimensional convection-diffusion equation. It should be possible, however, to apply the mul-
tidimensional adaptive grid method to time-dependent problems. A step in this direction has
recently been made by Huang, Ren, and Russell [11], [12] with their moving mesh partial
differential equations based on versions of the one-dimensional equidistribution condition
(16). The moving mesh equations control the locations of the nodes in such a way that the
equidistribution condition remains satisfied as time evolves.
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FIG. 4.3. Convergence history, solutions at y 0.5 and adapted meshfor Example 4.1 (R 15.0, 1.5zr)
with N 10, M 10, o 1.0, y 2.0.

Obviously, this method needs further investigation and it also needs to be applied to more
problems. The efficiency of the proposed method relative to fixed-grid methods is also an
area which has to be investigated. At this stage we can only say that for problems with steep
gradients, adaptive methods are usually better in terms of computational efficiency. The reader
is referred to the work by Hawken, Gottlieb, and Hansen 10] for further commentary on this
matter. We hope that our presentation of the equidistribution principle in multidimensions
may be useful for the development of other new adaptive grid methods.

Acknowledgements. The authors wish to thank the referees for their helpful comments.



A TWO-DIMENSIONAL ADAPTIVE GRID METHOD 797

REFERENCES

J. U. BRACKBILL AND J. S. SALTZMAN, Adaptive zoning for singular problems h two dimensions, J. Comput.
Phys., 46 (1982), pp. 342-368.

[2] M.O. BRISTEAU, R. GLOWINSKI, L. DUTTO, J. PIRIAUX, AND G. ROGi, Compressible viscousflow calculations
using compatiblefinite element approximations, Internat. J. Numer. Methods Fluids, 11 (1990), pp. 719-
749.

[3] O. CATHERALL, The adaption ofstructured grids to numerical solutionsfor transonicflow, Internat. J. Numer.
Methods Engrg., 32 1991 ), pp. 921-937.

[4] C. DE BOOR, Good approximation by splines with variable knots II, in Lecture Notes in Mathematics 363,
Springer-Verlag, New York, 1974, pp. 12-20.

[5] E. A. DORFI AND L. O’C. DRURY, Simple adaptive gridsfor 1-D initial value problems, J. Comput. Phys., 69
(1987), pp. 175-195.

[6] A. S. DVlNSKY, Adaptive grid generation from harmonic maps on Riemannian Manifolds, J. Comput. Phys.,
95 (1991), pp. 450-476.

[7] n.A. DWYER, R. J. KEE, AND B. R. SANDERS, Adaptive grid methodfor problems in fluid mechanics and heat
transfer, AIAA J., 18 (1980), pp. 1205-1212.

[8] n.A. DWYER, Grid adaptionfor problems influid dynamics, AIAA J., 22 (1984), pp. 1705-1712.
[9] R.M. FURZLAND, J. G. VERWER, AND P. A. ZEGELING, A numerical study ofthree moving-grid methodsfor 1-D

PDEs which are based on the method oflines, J. Comput. Phys., 89 (1990), pp. 349-388.
10] D. E HAWKEN, J. J. GOTTLIEB, AND J. S. nANSEN, Review ofsome adaptive node-movement techniques infinite

element andfinite difference solutions of PDEs, J. Comput. Phys., 95 (1991), pp. 254-302.
11 W. HtJANG, Y. REN, AND R. D. RUSSELL, Moving mesh PDEs based on the equidistribution principle, SIAM J.

Numer. Anal., 31 (1994), pp. 709-730.
12] ,Moving mesh methods based on moving mesh PDEs, J. Comput. Phys., submitted.
13] J. PERAIRE, M. VAHDATI, K. MORGAN, AND O. C. ZIENKIEWICZ, Adaptive remeshingfor compressible computa-

tions, J. Comput. Physl, 72 (1987), pp. 449-466.
[14] J. E THOMPSON, Z. U. A. WARSI, AND C. W. MASTIN, Numerical Grid Generation, North-Holland, New York,

1985.
[15] A, WINSLOW, Numerical solution of the quasilinear Poisson equation in a nonuniform triangular mesh, J.

Comput. Phys., 2 (1967), pp. 149-172.



SIAM J. ScI. COMPUT.
Vol. 15, No. 4, pp. 798-818, July 1994

() 1994 Society for Industrial and Applied Mathematics
003

ERROR EQUIDISTRIBUTION AND MESH ADAPTATION*

KE CHEN

Abstract. The author reviews a number of strategies on mesh adaptation from a mathematical point of view and
compares their performances in solving nonlinear diffusion models from semiconductor process modeling. Some
new strategies are then proposed that improve on the existing ones. The analysis of the strategies based on monitoring
interpolation errors and local truncation errors leads to a new theory on error equidistribution. Several implementation
methods for equidistributing an error monitor function are also reviewed and outstanding problems are highlighted.

Key words, error equidistribution, monitors, nonlinear parabolic PDEs, automatic mesh adaptation
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1. Introduction. Most numerical methods for solving partial differential equations
(PDEs) demand a minimum number ofdiscretization points (or subdomains) of the underlying
domain so as to expect a required accuracy tolerance. However, this number is generally not
available in advance. What one can realistically achieve is to obtain a numerical solution with
optimal accuracy for a given number of discretization points. This implies that the numerical
solution so obtained should have, to some extent, its error distributed uniformly throughout
the domain, which follows from the study of error bounds. Here we investigate various meth-
ods of achieving uniform error distributions (i.e., error equidistributions) through appropriate
mesh selection procedures.

Our main application is to the solution of parabolic PDEs. We concentrate on one-
dimensional (1 D) model equations, although extension to higher dimensions is also discussed.
In particular three two-dimensional (2D) examples are given.

Research in the area has largely been centered on the numerical solution of boundary
value problems (BVPs). Often a good mesh is obtained either by simultaneously finding the
mesh points along with the numerical solution or by redistributing the mesh points through
error equidistribution after an initial approximation has been obtained. See [4], [10], [36],
[38], and [44] and the references therein.

When these mesh selection ideas are applied to solve time-dependent PDEs, the former
category of methods becomes the so-called moving mesh techniques (see [36]); while the
latter category aims to select a mesh for the new time level based on the mesh redistribution
at the present time level.

The idea of using moving meshes is attractive and many successful applications have been
reported. Refer to [36] and many useful references listed therein that include [17], [23], [29],
[35], and [45]. More work can be found in [6] and [21 ]. However, the combination of a mesh
selection equation with the PDEs as a system of PDEs often leads to a more ’stiff’ problem.
A good method of implementing the idea is still to be found.

We pursue the second category ofmethods with error equidistribution, which is sometimes
called "static regridding." There are two common cases: the total number of grid points is
either not restricted or fixed. The former case corresponds to the so-called local refinement
methods that have been extensively studied in [7], [33], and [43] among others. These methods
tend to require complex data structures for implementation. Here we shall restrict our work
to the latter case of distributing a fixed number of nodes.

*Received by the editors December 16, 1991; accepted for publication (in revised form) June 16, 1993. This
work was supported by the Department ofTrade and Industry through the Science and Engineering Research Council.

tDepartment of Statistics and Computational Mathematics, The University of Liverpool, Liverpool L69 3BX,
England (chen@scmp. scm. liv. ac. uk).
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Equidistribution of some known quantity of the solution to select a suitable mesh usually
corresponds to the use of a transformation of the original equation, so that the transformed
equation has equal error distribution on the uniform mesh with the same number of nodal
points. While the choice of such a quantity generally appears to be somewhat arbitrary and
hard to identify (see [41 ]), we note that many known techniques do equidistribute some error
measurement of the underlying solution. In theory, the best numerical strategy for an operator
equation should be that of [34] by equidistributing the local truncation error of the method.
This however has been proved to be false in practice. See [38], [41 ], and 6 here.

This paper attempts to do the following:
Review some of the known methods for mesh selection.
Show their connections and propose some new variants.
Review some commonly used techniques for implementation.
Test the.effectiveness and robustness of these mesh selection strategies on a nonlinear

diffusion model.
Introduce a new class of robust methods.
Present some test results on a few 2D examples.

Before proceeding, let us introduce some notation and formal definitions to be used later.
We denote by

(1) .N’(u) O, x 6 [a, b],

a nonlinear operator equation governing a BVP, satisfying some suitable boundary conditions
and having a unique solution. Define a mesh of (N+1) points by

(2) rI a xo < xl < < XN b.

It is the purpose of this paper to address the problem of how to suitably select such a mesh
determined by a given number N. Denote by Sn the space of those functions that are piecewise
kth degree polynomials in each interval Ij [xj-1, xj] for j 1, N. Let h max{hj }.
We shall seek the solution of (1) in space S. Such an approximation, denoted by uh, satisfies
the discretized equation

(3) Arn (uh) =0,

which follows from the application of a finite difference or finite element method. In 6, an
example using the finite element method is presented.

Assuming that the numerical method adopted is stable, we have for h sufficiently small

(4) Ilu Uhllp < cllVn (u) A/’l-l(Uh)llp,

where the Lp norm also includes the case of p oo and c is a generic constant independent
of the mesh rI and N.

We now review some theory of mesh selection with regard to error minimization. As
already discussed, each mesh selection method will be ass,._’ated with a positive weight
function M(u, x) such that the mesh rI generated for variable x corresponds to the uniform
mesh for the new variable

(5)

where

X

(x) ,o(u, y)dy,

p(u, x) M(u, x) M(u, y)dy ’(x),
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that is,

1
(6) (xj) (Xj-1) Cl N’
or

j=l N

(7) p(u, y)dy Cl.
-1

We call this weight function M (often representing some error measurement of the solution)
a monitor function, p the density function, and the grading function (or a transformation)
for the mesh selection strategy. We call the mesh FI equidistributing when, (6) holds and
subequidistributing when (6) holds with <, with respect to M and Cl. For similar definitions,
see [26], [38], and [44].

2. Optimal monitors for operator equations. For the operator equation (1), we shall
discuss the problem of selecting the mesh I-I with a given fixed N which gives the optimal
solution. For this purpose we shall try to sharpen, by mesh selection, the error bound (4), i.e.,
to

(8) Ilu uhilp clln(u)llp.

Suppose that the local truncation error (LTE) has the following form (when uh S)
(9) A/’n(u)i h/k+l T(xi) + O(h/k+2), N,

where T(x) is known for a numerical method, independent of FI, and given usually by some
function of derivatives of u. Furthermore, [34] has shown that the best choice of monitor
functions is, for the Loo norm,

(10) Moo gl/(k+l), g max(llTlloo, e)

and, for the Lp norms,

(11) Mp gp/tvtk+l+ll, g max(llTIIp,

where e is some small constant. Such a choice ensures that the global error is given by

(12) Ilu uhll _< c2N-’- + O(N-(’+2)),

where the constant c2 is minimal over all admissible choices of the mesh FI (in either norm).

3. Optimal monitors for interpolating polynomials. Although our underlying solution
to be solved numerically is unknown, we now investigate the theoretical problem of finding the
optimal monitor for polynomial interpolations to have the minimal interpolation error. Such
a problem was first solved in [10].

3.1. Hm-seminorln. We again seek a polynomial approximation to u in the space of

Sn. We are only interested in those piecewise polynomials that interpolate the function u at
one fixed node ri in each interval Ii for 1 N, although any v Sn is a kth degree
polynomial. This setting is a slight generalization of that of 10], where only interpolations at
nodal points are assumed, but can be easily validated. Define the Hm-seminorm of a function
v by

b

(13) Iv[ 2 [v(m)]2dxrn
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We now seek the optimal monitor M (satisfying (7)) that minimizes e u vh for vh Sn
in the Hm-seminorm. The fundamental inequality given in 10] states the following"

N

(14, [e[2m <i=()2(j+l-m)f[u(J+l)]:Zdx,
where j > m. Furthermore, for an arbitrary monitor satisfying (7), by taking j k, it is
shown that

[u(k+l/]2
(15) [elEm <- (zrN)Z(+l-m [p]E(+-mdX(1 + O(h)),

where p ’. Minimization .of the right-hand side of (15) over leads to the solution of a
Euler equation, whose solution produces the optimal monitor

(16) M [u(k+l)]2/[2(k+l-m)+l].

3.2. Sobolev seminorm. Generalizations of the work in [10] may be obtained by the
use of new error norms. Here we attempt to find the optimal monitor in the Sobolev (ll, 12)-
seminorm defined here as

(17)
12 fablilell z z

t,t lelr [e(r)]2dx,
r=ll r=ll

where 0 < 11 < 12 < k. Obviously, the previous nm seminorm corresponds to the (m, m)-
seminox’m.

THEOREM 3.1. Assume that vh S interpolates u at the point ri of each interval
(i N). Then the optimal mesh for minimization of e u vh in the Sobolev
seminorm (17) is given by the monitorfunction

(18)
12 }

l/[2(k+l-l)+l]

M= E [lt(k+r+l-l’)]2
r=ll

Proof Following 3.1, by taking j k + r l for r ll /2, we obtain

(19)
N ()2(k+l-ll)fl2 < i [u(k+r+l-l)]Zdx"

Furthermore, in the similar way (15) was derived, we can verify the following for r 11 12

fb [u(+r+l-6)]a
[el <

(TrN)2(k+l_l) [p]2(k+l-ll)
dx(l + O(h)),

that is,

12

b
E{ttg(k+r+l-")]2}
=6 dx(1 + O(h))(20) [[e[[l,,12 <_

(7rN)2(k+l_l,) [p]Z(k+l-l,)

where p ’. We then can solve the Euler equation that minimizes the right-hand side of
(20) with respect to , giving the optimal monitor (18). Thus the theorem is proved.



802 K. CHEN

For instance, the choice of l 0 and 12 2 (for the quadratic case k 2) gives the
optimal monitor

(21) M-- [uttt2 -- utttt2 + uttttt2] 1/7

while the choice l 12 0 (for the k 2 case) gives the same monitor as that from using
the H-seminorm, i.e., the L2 norm,

(22) M [u"]2/7

4. Equidistribution based on adaptive integration. The previous two sections intro-
duced optimal monitors explicitly involving derivatives of the unknown solution function u.
These are theoretical results. In practical applications (see 6), however, we usually replace u
by extrapolation or recovery of the available approximate solution uh. One natural question
to be asked here is the following: Can we derive computable monitors involving the nodal
values of u only7 The answer is yes and there are several approaches. Refer to 16], [37], and
[46] for methods using the residual for refinement.

Here we develop a simple approach based on adaptive integration. For the mesh FI given
by (2), we consider the problem of approximating the integral fa udx using interpolating
polynomials from the space Sn. The error is measured by

(23)
Xi

Ei (u u,)dx,
i-1

where u 6 S is the approximation polynomial. For a given N, we wish to minimize max(Ei)
over all admissible meshes. In the spirit of 1-3, we propose the following equidistribution
criterion for selecting FI

(24) Ei <c3 fori=l N.

Using the Taylor expansion, it can be shown that Ei is determined by some high derivatives
of u. At this point, instead of attempting to compute these derivatives, we use the extrapolation
technique to estimate such quantities as we do in the context of adaptive integration; see [24,
6.3]. It turns out that generally

ix, ix, )uhdx- uhdx + uhdx
i-I \tl Xi-1 mid

provides a good estimate for El, where Xmia denotes the midpoint of Ii. Therefore, given an
appropriate constant c3, the criterion (24) is ready to be applied.

For simplicity and practical use, we give the example of using the trapezoidal rule; high-
order methods may be similarly discussed. Define

I(u) u(x)dx, II(u) uh(x)dx, I2(u) + ffh(x)dx,
i-1 i-I \tl Xi-I hid

where h denotes the piecewise linear approximation in [xi-, Xmid] and [Xmid, Xi]. As is well
known, the integration error is given by

h?I(u) I1 (u) --::u"(O) for some xi-1 < < xi.
Iz
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Furthermore, it can be shown that ([24, 6.3])

I(u) I2(u) [I(u) II(u)] " [I2(tt) II(tt)],

where I2 I1 is computable. Therefore, we can define the equidistribution error in (24) as

12Umia ui Ui-ll(25) Ei 112(u) 11 (u)l hi 4

In identifying (25) with (7) for monitor functions, we see that the error monitor from using
the adaptive trapezoidal integration is

2Umid U Ui_ hi 02U
(26) M

4 " -Z x"
5. The use of arc-length norm. Roughly speaking, the use of the arc-length norm puts

an emphasis on the error control near rapid variations of the solution function, or, in other
words, allows one to have more accuracy near the nonsmooth part of the solution.

Recall that the usual Lp norm for the error function e is defined by

Ilell lelPdx.

The modified norm using arc-length s is proposed as follows:

(27) Ilellffp lelPds lelPv/1 -k- u’2dx.

With such a modified norm, the definitions for the grading function (5) and the monitor function
(7) become, respectively,

zx(28) (x) M(u, y)v/1 + u’2dy M(u, y)v/i + u’2dy

and

(29) /xj

M(u, y)v/1 + u’2dy c4 M(u, y)v/1 + u’2dy N.
-1

This automatically brings up a large collection of new monitors to be considered. Examples
are illustrated in the next section.

We remark that (i) the arc-length monitor/(/= /1 / u’2, as first advocated in [44] and
used in [45], corresponds to the monitor

(30) M---

with our new modified arc-length norm. The monitor (30) alone defines a uniform mesh 1-I
for variable x. (ii) The arc-length norm in the case of p 2 (L2-norm) was previously used
in [29] and [30] in the so-called gradient-weighted moving finite element method (GWMFE).
There tte variational minimization was done for the L2 norm of the normal component of
the residual. The use of the arc-length norm helps to de-emphasize the steep portion of the
solution so that the problem of excessive clustering of moving finite element nodes near steep
fronts can be alleviated. See also [9] for the 2D generalization.
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6. Numerical experiments. The test example taken here is the 1D nonlinear dopant
diffusion equation (as tested in 14])

(31)
Ot 0-- -x + D(ef -x for x e [0, 1],

which is the equation transformed from its standard form (as studied in [25])

OC O(D(c)OC)ot

The diffusion coefficient and initial/boundary conditions are given, respectively, by

D(C = g

C(x, O) Hexp[-S(x R)],
OC

0 atx=0, andl
Ox

(see [25] for details). We solve (31) by a Petrov-Galerkin finite element method using quadratic
interpolating B-splines (k 2). The approximate local truncation error in space has been
shown to be determined by (refer to (9))

D oafT=
40x4

(see 14] for details).
We have selected the following three test problems of increasing difficulty:

1. H=100, S=100, R=0.25,

2. H=ll0, S=121, R=0.15,

3. H=500, S=100, R=0.25,

where fl 100 is assumed. We set the diffusion time to be ?=20,000 seconds (corresponding
to 10-3) for the first two test problems and/=4,000 seconds (or 10-4) for the third test
problem. Note that for a typical arsenic diffusion with intrinsic arsenic concentration of n
5.0 x 1018 cm-3, the above specifications correspond, respectively, to arsenic implantation
doses of

1. N 6.25 x 1019 cm-2,
2. N 6.2665 x 1019 cm-2,
3. N 3.125 x 1020 cm-2.

Considering that k 2 in our case with quadratic polynomials, we test the following
monitors

MI [utt’]2/7

M2 [uttt]2/5

M3 [uttt]2/3

M4 gl/3

(L2-norm of 3.1),

(H -seminorm of 3.1 ),

(H2-seminorm of 3.1 ),

(L-norm of 2),
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M5 gl/4

M6 g2/7

M7 [tgttt2 "J" utttt2 -" uttttt2 1/7

M8 [uttt2 + utttt2 1/7

(L 1-norm of 2),

(Lz-norm of 2),

((0, 2)-seminorm of 3.2),

((0, 1)-seminorm of 3.2).

Incorporating the modified norm using arc-length (5), we also test the monitors

Mi+10 Mi(1 + b/tZ) 1/2 for 8.

In addition, we may wish to compare with those monitors that are only optimal for lower-order
polynomials (k 0 and 1)

mzl [utt]2/5

M22 [bltt]2/3

M23 [/g,]2/3

M24 [utt2 -I- tgtttz] 1/5

(L2-norm and k of 3.1),

(H-seminorm and k of 3.1),

(Lz-norm and k 0 of 3.1),

((0, 1)-seminorm and k of 3.2),

and their counterparts in the modified norm using arc-length (5)

Mi+5 Mi(1 + utZ) 1/2 for 21 24.

The idea presented in 4 offers a way of constructing a monitor function for the case of
k 2. But this monitor would be expensive to implement as more extrapolations or recoveries
are required. Instead for testing we only use the monitor introduced for k

h igttM31-- l
M32 M31 (1 "1" u’2) 1/2

(trapezoidal monitor of 4),
(arc-length norm of M31).

Finally, it may be argued that the optimal monitor is only for a particular polynomial space
and it would be more robust to have monitors that are optimal for all low-order polynomial
approximations. This is generally difficult to realize. One way to obtain suboptimal monitors
is to use the averaging of known monitors. To be more specific, we take the following for
tests:

M33 [ut2/3 -Ji-- utt2/5 -Ji- U"’2/7]/3
M34 M33(1 + ut2) 1/2

(L2-norm and average of MI, Mz, M23),

(arc-length norm of M33).

Once a monitor function has been chosen, there are several e’isting approaches that one
can adopt to equidistribute the error. Since the exact equidistribution is difficult to realize,
one usually looks for ways to subequidistribute an error monitor. Among the useful methods
are those found in [10] and [44], which use Newton iterations, and those found in [26] and
[39], which approximate the integrals numerically. Here we prefer the simple approach of
removal and insertion introduced in [22] and [32]; see [12]. With this method, we remove
points where the error is relatively small and insert points where the error is relatively large,
while maintaining the total number of points.

In our tests, we take the number of intervals N=64 for the first two problems and N=200
for the third problem. We show the experimental results in Tables 1-3, where we denote
by "Steps" the number of timesteps taken (using the same time stepping criterion), "CPU"
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TABLE
Resultsfor Test Problem 1.

[..Mnitor [I Steps cPu Updates Error(RMS)II Comment

116
116
112

196
224
145
191

116
116
113
64

206
63

213
195

284
328
202
284

130
267
344
130

36 43
2 37 43
3 39 39
4 * *
5 61 69
6 96 197
7 39 41
8 49 15

11 37 43
12 37 43
13 45 40
14 37 48
15 60 94
16 23 61
17 54 4
18 51 33

21 87 127
22 98 129
23 59 15
24 86 127

26 42 71
27 88 143
28 94 18
29 46 71

31 169 51 29
32 3211 911 621
33’" ll301 87 0
34 246 74 11

0.188
0.222
0.166 N+18

* Diverge
0.169
0.184
0.202
0.097

0.229
0.230
0.145 N+2
0.389
0.166
0.358
0.132
0.089

0.099
0.062
0.092
0.099

0.146
0.039
0.054
0.146

0.127
0.080

0.046
0.079

the CPU seconds used on a Sun 4, "Updates" the number of mesh adaptations that actually
happened in the time history and "Error" the root mean square (rms) norm of the absolute error
against an accurate solution at 101 evenly spaced points in [0, ]. With the equidistribution
algorithm adopted, some test runs may demand the increase of the number of points "N" in
which case we denote in the "Comment" column the real number of points used. From the
results in Tables 1-3, we can observe the following:

1. For Problem 1, only monitor M4 (via the L-norm of the LTE) failed to obtain a
reasonable solution. The failure from using this monitor was previously reported in [44].

2. For the more difficult Problems 2 and 3, more monitors failed to solve the equations.
In particular, note that these include M and M4.

3. The following monitors were successful for all three test problems of which the first
two monitors are justified theoretically for quadratic approximations, (see 2, 3.2, and 5).

(a) M5 gl/4
(b) M8 [uttt2 q- utttt2]l/7(1 q- ut2) 1/2

(c) m21 [utt]2/5

(d) M22 [lgtt]2/3

(e) M23 [ut]2/3

(f) M24 [lg tt2 -JI-" uttt2] 1/5

(L 1-norm of 2),
((0, 1)-seminorm of 3.2),
(L2-norm and k of 3.1),
(H-seminorm and k of 3.1),
(Lz-norm and k 0 of 3.1),
((0, 1)-seminorm and k 1 of 3.2),
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TABLE 2
Resultsfor Test Problem 2.

[Monitor Steps CPU Updates Error(RMS)II Comment

5
6
7
8

11
12
13
14
15
16
17
18

21
22
23
24

26
27
28
29

104 33 15
104 28 15
104 28 15
267 68 86
500 117 108
295 110 267

325 109 9

104 28 15
104 33 15
104 30 15

479 177 134
289 119 272

380 126 26

500 132 241
500 133 155
405 98 18
500 134 241

500 122 111
500 124 160
312 75 18
500 128 111

0.415
0.415
’0.415
0.225
0.104
0.206

* Diverge
0.022

0.415
0.415
0.415

* Diverge
0.160
0.239

* Diverge
0.036

0.068
0.092
0.167
0.068

0.094
0.075
0.051
0.094

0.131
0.115

* Diverge
0.077

(g)

(h)

(j

M27 [b/it]2/3 (1 + U’2) 1/2

M28 [/,/t]2/3 (1 + Ut2) 1/2

h"
bltt[ Ut2)l/2M32-- l (1

M34
U2/3 -+" U2/5 -Jr- U2/7

3(1 + b/t2) -1/2

(H1-seminorm and k of 3.1),

(L2-norm and k 0 of 3.1),

(trapezoidal monitor of 4,
in arc-length norm),

(average of M1, M21, M23,
in arc-length norm).

The final comparison is made in 8, where more monitors are tested.

7. A new theory on error equidistribution. We have introduced two main types oferror
equidistribution methods, those based on errors of interpolation polynomials approximating
a "known" function (3 and 4) and those based on numerical solution errors of operator
equations (2). In the context of solving an operator equation such as (1), the underlying
function u is obviously unknown and only given implicitly. It is natural to consider the
equidistribution of the solution error of some kind for the particular numerical method used.
Unfortunately, the use of local truncation errors as error monitors has not been found effective
in 6. Our experiments also confirmed similar conclusions reached by a number of previous
workers; see [38], [41 ], and [44].

The failure to compute local truncation errors accurately is believed to cause the problem.
In such cases, the use of interpolation-based monitors (3 and 4), or data-dependent grids as
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TABLE 3
Resultsfor Test Problem 3.

1.’..Mnitor Steps cPu Updates Error(RMS)II Comment

* * *
2 * * *
3 * * *
4 * * *
5 100 187 97
6 * * *
7 * * *, * *

II * * *
12 * * *
13 * * *
14 * * *
15 * * *
16 * * *
17 * * *
18 91 134 80

21 100 169 99
22 100 185 99
23 100 144 72
24 100 170 99

26 * * *
27 100 176 99
28 100 149 85
29 * * *

31 * * *

33 100 147 [’ 28

.’.’... 34 961 1611 851

* Diverge
* Diverge
* Diverge

Diverge
0.364

* Diverge
* Diverge
* Diverge

* Diverge
* Diverge
* Diverge
* Diverge
* Diverge
* Diverge
* Diverge

0.348

0.340
0.358
0.361
0.340

* Diverge
0.374
0.400

* Diverge

* Diverge
0.342

0.405

they are called in [40], is generally recommended. However, our experiments in 6 showed
that this is not always sufficient, simply because such monitors also fail in some cases.

Our new idea in this section is to sharpen the error bounds from which previous error
monitors were derived. Let us again consider the numerical solution of equation (1) in the
space S. Suppose that the L g. norm is considered. Assume that u C and uh S is
interpolated at one point zi Ii (i 1 N). This leads to two error bounds that we
can consider minimizing at the same time over admissible monitors. The first bound for any
grading function with monitor M is given by (refer to m 0 in 3)

1 f.b [u(k+l)]2
(33) 11el[22 < (7rN)Z(k+l) [p]Z(k+l------dx(1 + O(h)),

where ,o ’. On the other hand, we have the following estimate:

(34)
xi

c2h k+3e2dx <_ T2(u(xi_l/2))(1 + O(h)) + h.o.t.
i-I

where h.o.t, denotes the high-order terms in h (negligible), since lel < c h/+1T(u(xi-1/2))+
O(h/+2); see (4). For the same grading function with monitor M, we again have

hi
Np(xi-1/2)

(1 + O(hi)),
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and furthermore,

2 T2(u(xi-1/2))
hi(1 + O(h)) + h.o.t.][el] --< N2(k+l) p2(k+l)

i=1

C2 fa
b T2

(35) Ilel122 --< N2(k+l) p2(k+l)
dx(1 + O(h)) + h.o.t.

To obtain a minimization solution for right-hand sides of both (33) and (35), we now combine
the two error bounds, giving (since p ’)

(36) Ilell
C2 fb [u(k+l)]2 .. T2

(1 + C272k+2)N2(k+l) Ja [,]2(k+l)
dx(1 + O(h)) + h.o.t.

THEOREM 7.1. Assume that uh Sn is the numerical solution of (1)from using the
numerical method satisfying (10). Then ifuh is also interpolatory at one point in each interval
Ii ofmesh H, the optimal monitorfunction in the L2 norm is

(37) M {[u(k+l)]2 q- T2 l/[2(k+l)+l]

Proof We can minimize the right-hand side of (36) over all admissible grading functions
by solving the Euler equation

d [b/(k+l)]2 -- T2

dx [t]2(k+l)+l
=0,

which yields
X

(x) p(u, y)dx with p M(u, x) M(u, z)dz,

where M is as in (37). Refer to the proof of Theorem 1. The proof is complete. q

As examples, the choices of k 0 and lead to the following optimal monitors, respec-
tively,

M [ut2 -Jr- T2] 1/3,

M [llit2 --1-- T2] 1/5.

Remarks. (i) Note that the minimization of the right-hand side of (35) alone would result
in the same optimal monitor as that given in (11) due to [34]. This may then be viewed as an
alternative proof for (11). (ii) Other treatments of simultaneously minimizing (33) and (35)
may lead to the similar "optimal" monitor functions, e.g.,

M {F} l/[2(k+l)+l]

where F max {[u(k+l)]2/72(k+l), T2}. These alternatives have also been shown to be
useful in other experiments.

8. Further numerical experiments.

8.1. The 1D examples. Having presented a new theory in 7, we now test its practical
performance by comparing it with the experiments carried out in 6. At this point,we include

Thus the second error bound is given as
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TABLE 4
Resultsfor the new monitors vs. the arc-length monitor.

1’ Problem M II, Steps CPU Updates Error(RMS)II Comment

35 322
36 469
37 301

2 35 476
36 401
37 *
35 100
36 *
37 *

110
209
127
193
224

192

263 0.129
345 0.129
0 0.055

339 0.179
359 0.176

100 0.373

No adaptation

Diverge

* Diverge
Diverge

the results from using the well-known arc-length monitor 5 (due to White [44], [45]), which
is here denoted by M37. Again we solve the model equation (31) using the same finite element
method as in 6. Since k 2, we choose to test the following monitors:

M35 [u’’’2 + T2] 1/7

M36 M35 (1 + Ut2) 1/2

M37 (1 + Ut2) 1/2

(the new monitor for k 2 with L2-norm),

(arc-length norm of M35),

(arc-length monitor from (30)).

Solving the three test problems of 6, we show the results in Table 4. We observe that the
new monitor M35 works well for all three problems, although M36 failed for Problem 3. The
arc-length monitor, not theoretically favoured, failed for both Problems 2 and 3.

Now in terms of efficiency, accuracy, and theoretical justification, a comparison of results
of Tables 1-4 suggests that the most robust monitors are

M5 gl/4,

M18 [blm2 -[- Utm2 1/7 (1 + u’2) 1/2

M35 [utit2 + T2] 1/7

although the following monitors also performed well: M21_24 M27_28, M32, M34. (See 6.)
We shall make further comparisons in the next subsection.

8.2. Some 2D examples. Our 1D tests have shown that some monitors may not perform
well practically, although they prove to be useful theoretically. Now we further apply those
good 1D monitors (for quadratic approximations) to some 2D examples and see how they
behave.

We use the adaptive tensor-product meshes for our tests. The simple strategy of equidis-
tributing the average errors in both coordinate directions is adopted. That is, the mesh genera-
tion is done in a "ID" fashion. Similar meshes were previously used in [5], [31], and [40] for
higher dimensions, where in [40] the averaging process was referred to as "equidistributing
in slabs." The precise details of our implementation are described in 12]. Thus a new mesh
is obtained after one sweep of 1D error equidistribution in both x and y directions, resulting
in new rectangular grids. Our simple choice of strategies has also made it possible to use an
existing code that is based on a rectangular structured grid.

The advantages as well as disadvantages of using tensor-product meshes were first dis-
cussed in 18]. Basically "diagonal features" in the underlying solution (e.g., errors are large
along one diagonal direction of the domain simultaneously) will force the resulting mesh to be
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uniform, therefore rendering the whole mesh adaptation process meaningless. However, such
cases are physically rare in our primary application area of semiconductor process simulation
and the use of the tensor-product meshes is adequate. See 8.3 for using quadrilateral meshes.

The test problem, as described in 15], is the 2D dopant diffusion equations

(38) Div[DkgradCk +Z,Cgrad] k r and (x y) 6 f2

where Ck Ck (x, y, t) is the concentration of the kth dopant, Dk is the diffusion coefficient,
Zk 4-1 depends on the dopant used (-1 for singly ionized acceptors, + for donors), and

is the electrostatic potential. Taking the transform j log Ck, (38) becomes

(39)
Ot

Div [Dkgrad(J + Zk)] + gradj, grad(j + Zk).

The system (39) is now solved by the finite element code [28] using quadratic tensor-product
B-splines. See [15] and [28] for details.

We have chosen to test the following three problems in particular where all spatial sizes
are measured in microns.

TD-1. f2 [0, 2] x [0, 2], 100 Kev boron of dose 1015 cm-2 for 80-minute diffusion at
1000C, using 16 x 16 finite element boxes.

TD-2. fl [0, 1] x [0, ], 200 Kev arsenic of dose 1015 cm-2 for 50-minute diffusion at
1000C, using 32 x 32 finite element boxes.

TD-3. f2 [0, 1] x [0, 1], 20 Kev boron of dose 1012 cm-2 and 50 Kev phosphorus of
dose 1015 cm-2 for 5-minute diffusion at 1000C, using 32 x 32 finite element boxes.

The initial Pearson IV ion implantation profiles are shown in Figs. 1,2, and 3, respectively.
For comparison purposes, we denote by M0 the monitor presently used in the finite element
code of [28], which is

M0--IO"1 /2,

SILICON

3.00

2.00

0.00

X 1.0E19

t.OE*t8

t.0E,17

0.00 2.00

FIG. 1. The initial profilefor the 2D problem TD-1.
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POL-$I

SILICON

1.50

1.00

0.0|

0.00

Fro. 2. The initial profilefor the 2D problem TD-2.

POLV’SI

SILICI

t,00

1.0[,t7

0.00
0.0| 1.00

FIG. 3. The initial profilefor the 2D problem TD-3.

As in 15], we again use as an accuracy indicator the relative mass balance error, defined by

(M Mo)

where Mt and M0 are the initial and final total mass, respectively. Note that such a quantity is
not necessarily decreasing in absolute magnitude as increases.

The results from solving problems TD-1, TD-2, and TD-3 are presented in Tables 5-7,
where the same notation is used as in 6. We observe that the error monitors Ms, M]8, and
M35 performed rather well for all three problems, and also that the 2D test results are in good



ERROR EQUIDISTRIBUTION AND MESH ADAPTATION 813

TABLE 5
Resultsfor the 2D problem TD- 1.

[,, Monitor’ Steps CPV Updates Mass error Comment

I0 851 3 3.0E-3

18 29[ 1321 20 1.6E-3

21 18 82 12 6.3E-2
22 21 89 9 -8.1E-4
23 19 76 5 -1.5E-3
24 25 101 10 3.5E-5
34 20 79 3 9.6E-5

I’’ 35 11 25 119 23 2.4E-4 II Figs. 4&5

TABLE 6
Resultsfor the 2D problem TD-2.

[Monitor IIsteps CPU Updates Mass error Comment

18 33[ 615 31

21 45 728 41
22 * * *
23 72 875 15
24 58 819 26
34 54 753 20

35 29 504 30

* Failed

-2.4E-3 II1.9E-3

9.4E’5

3.0E-4
-318E-4
-2.1E-3

4.5E-4 Figs. 6&7

TABLE 7
Resultsfor the 2D problem TD-3.

Error I[ Time-] Sun Mesh Masserror Comment
,monitor ]l steps CPU updates Brn Phsphrus II

0 50 975 0 I- . E-2I 1.9E-3

5 15 466 5 1-2.9E-31 -3.0E-Sll18 20 1790[ 16 1-2.5E-31 1.7E-3

21 13 539 13 -5.2E-4 1.2E-4
22 16 639 14 -5.1E-4 -2.4E-5
23 13 514 11 -2.2E-4 5.5E-3
24 17 692 16 2.4E-4 2.5E-4
34 17 588’ 8 1.1E-3 1.9E-4

35 13 532 13 -6.1E-4 -8.8E-4 11 Figs. 8 & 9

agreement with the 1D experiments of 6 and 8.1. It perhaps requires more experiments to
make conclusive remarks. However, monitors such as M35, which take more account of the
solution error, appear to be the overall winners and are therefore recommended. For further
illustration, we show in Figs. 4-9 the final solution and the adapted finite element mesh from
using the monitor M35, where in all cases the p-n junctions of physical importance lie in the
region well represented by the mesh adaptation strategy.

8.3. Discussion of2D equidistribution strategies. Our implementation of 2D equidis-
tribution in 8.2 is one of the simplest of many such strategies, although some may not give
unique meshes. To allow generality, the tensor-product meshes may in practice be replaced by
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SILICON

3.00

2,00

0.00
0.00 2.00

FIG. 4. Thefinal solutionfor the 2D problem TD-1.

POLY-SI

SILICON

3.00

2.00

0.00
0,00 2.00

FIG. 5. Thefinal adapted meshfor the 2D problem TD- 1.

quadrilateral meshes. Recently, much work has been done on the use of adaptive quadrilateral
meshes. Refer to [2], [3], [11], [41], [20], and the references therein.

However, there appears to be no analogous and elegant error equidistribution analysis
(predicting good monitors) or methods (guiding the implementation) in the 2D case. Ofcourse,
one must deal with the problem of ideal error distribution and mesh (structure) requirement
for a particular numerical method. As far as the generalization of equidistribution strategies
is concerned, there are two main approaches: (i) the curve-by-curve grid line equidistribution
approach in the computational space; see [19]. (ii) the weighted area (volume) variation
minimization approach; see [8]. In fact, the grid system from the latter case will not have
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POL-$I

SILICON

1.00

0.00

1.0E’16

0.00

FZG. 6. Thefinal solutionfor the 2D problem TD-2.

POLY-SI

SILICON

1.50

t.00

0.00
0.00

|m m

FiG. 7. Thefinal adapted meshfor the 2D problem TD-2.

unique solutions (as also noted in [2]) and must be combined with some smoothness control
measure to ensure uniqueness; see [8] and [27].

The performance of these adaptive quadrilateral meshes for solving nonlinear diffusion
equations is to be observed and is under current investigation. Our recent work has provided a
better understanding of the curve-by-curve grid line equidistribution approach and has further
shown a new way of enhancing mesh smoothness; see [13] for details. Besides, there are also
methods that one can adopt for direct 2D grid generation. Refer to [1 ], [42], and [47] among
others.
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POI.Y-$I

SILICON

1.0+18

|’00

f t.0Ct9

0.0|

0.00

FXG. 8. Thefinal solutionfor the 2D problem TD-3.

1,50

POLY-S]

SILICON

1.00

nnnn m’  nnu mi";i n ii
m,I Ill,,nl Iliiiiiiiiiiiiiiiiii,,,, lll ,,,,,,,,,,,II,l
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"I IIIIIIIII ’""’"""’"’""IIIIIIIIIIIII,.,, II 1111 ,,,,,,,,,,,,,,,IIIII
IIII IIIIIIIII IIIIIIIIIIIIIIIIIIII

0.00
0.00 t.00

FIG. 9. Thefinal adapted meshfor the 2D problem TD-3.

9. Conclusions. We have developed as well as reviewed a number of error equidistri-
bution strategies for the purpose of mesh adaptation in the solution of parabolic PDEs. New
and optimal monitors have been derived and tested in the context of solving 1D and 2D non-
linear diffusion test equations that show improvements over certain well-known monitors.
The test results showing the success of the L 1-norm monitors using local truncation errors
have not been reported before, as far as we are aware. Our work for the new equidistribution
theory (7) also points to a way of constructing more robust optimal error monitors once fur-
ther information is available regarding the underlying numerical method. For the quadratic
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approximations tested, the overall "best" monitor is found to be M35, although certain monitors
optimal for lower-order polynomials (constants and linears) also performed well. The new
monitors proposed may be applied to solve more general operator equations. However, it
remains to be seen how they compare with existing monitors for wider applications.

Acknowledgments. The author wishes to thank Drs. Mike J. Baines, Nancy K. Nichols,
and Pete K. Sweby for many helpful discussions and the referees for constructive comments.

REFERENCES

I. ALTAS AND J. W. STEPHENSON, A two dimensional adaptive mesh generation method, J. Comput. Phys., 94
(1991), pp. 201-224.

[2] D. C. ARrEY AND J. E. FLAHERTV, A two-dimensional mesh moving technique for time-dependent partial
differential equations, J. Comput. Phys., 67 (1986), pp. 124-144.

[3] An adaptive mesh-moving and local refinement methodfor time-dependent partial differential equa-
tions, ACM Trans. Math. Software, 16(1) (1990), pp. 48-71.

[4] U. M. ASCHER, R. M. M. MATTHEIJ, AND R. D. RUSSELL, Numerical solution ofboundary value problemsfor
ordinary differential equations, Chap. 9, Mesh selection, Prentice-Hall, Englewood Cliffs, NJ, 1988.

[5] J. V. ASHBY, E. M. AZOFF, R. E FOWL.R, R. J. FAWC.’rr, AND C. GREENOUGH, The adaptive solution of three
dimensional semiconductordeviceproblems, in Proc. of3rd lnternat. Conf. on Numerical Grid Generation
in CFD and Related Fields, Barcelona, Spain, 1991.

[6] I. BABUSKA, J. CHANtRA, AND J. E. FLAHERTY, EDS., Adaptive computational methods for partial differential
equations, Society of Industrial and Applied Mathematics, Philadelphia, PA, 1983.

[7] I. BABUSKA, O. C. ZIENKIEWICZ, J. GAGO, AND E. R. DE A. OLIVEIRA, EDS., Accuracy Estimates and Adaptive

Refinement in Finite Element Calculations, Wiley-lnterscience, New York, NY, 1986.
[8] J. U. BRACKBILL AND J. S. SALTZMAN, Adaptive zoningfor singular problems in two dimensions, J. Comput.

Phys., 46 (1982) pp. 342-368.
[9] N. CARLSON AND K. MILLER, Gradient weighted movingfinite elements in two dimensions, in Finite element

theory and applications, Chap. 7, D. L. Dwoyer, M. Y. Hussaini, and R. G. Voight, eds., Springer-Verlag,
New York, Berlin, 1988, pp. 15 l-164.

[10] G. F. CAREY AND n. T. DINH, Gradingfunctions and mesh redistribution, SIAM J. Numer. Anal., 22 (1985),
pp. 1028-1040.

11 D. CATHERALL, Solution adaptivity with structured grids, in Numerical methods in Computational Fluid Dy-
namics, M. J. Baines, et al., eds., University of Reading, England, April 1992, Oxford University Press,
1993.

[12] K. CHEN, Selection of optimal meshes for the solution of nonlinear dopant diffusion problems, Internat. J.
Comput. Math. EEL (COMPEL), 11 (1992), pp. 433-444.

13] ,Two dimensional adaptive quadrilateral mesh generation, submitted.
[14] K. CHEN, M. J. BAINES, AND P. K. SWEBY, On time step selectionfor solving 1D nonlinear diffusion equations,

Numerical Analysis Report 10/91, Dept. of Mathematics, University of Reading, England, 1991.
[15] ., On an adaptive time stepping strategy for solving nonlinear diffusion equations, J. Comput. Phys.,

105 (1993), pp. 324-332.
[16] J. CHRISTIANSEN AND R. D. RUSSELL, Error analysis for spline methods with applications to knot selection,

Math. Comp., 32 (1978), pp. 415-419.
[17] J. M. COYLE, J. E. FLAHERTY, AND R. LtJDWIG, On the stability of mesh equidistribution strategies for time-

dependent partial differential equations, J. Comput. Phys., 62 (1986), pp. 26-39.
18] C. DE BOOR, A Practical Guide to Splines, Springer-Verlag, New York, Berlin, 1978.
[19] E R. ESEMAN, Adaptive grid generation, Comput. Methods Appl. Mech. Engrg., 64 (1987), pp. 321-376.
[20] P. EISEMAN AND G. ERLEBACHER, Grid Generation for the Solution of Partial Differential Equations, NASA

ICASE Report No. 87-57, Langley Research Center, Hampton, VA, Aug., 1987.
[21] J. E. FLAHERTY, P. J. PASLOW, M. S. SHEPHARD, AND J. O. VASILAKIS, LOS., Adaptive methods for partial

differential equations, Society of Industrial and Applied Mathematics, Philadelphia, PA, 1989.
[22] D.O. GOUGH, E. A. SPIEGEL, AND J. TOOMRE, Highly stretched meshes asfunctionals ofsolutions, in Proc. 4th

Internat. Conf. Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, 35, R. D. Richmyer,
ed., Springer-Verlag, New York, Berlin, 1974.

[23] J. M. HYMAN, Adaptive moving mesh methods for partial differential equations, in Advances in Reactor
Computations, American Nuclear Society Press, La Grange Park, IL, 1983.



818 K. CHEN

[24] L.W. JOHNSON AND R. D. RIESS, Numerical Analysis, 2nd ed., Addison-Wesley, Reading, MA, 1982.
[25] J. KING AND C. PLEASE, Diffusion ofdopant in crystalline silicon, IMA J. Appl. Math., 37 (1986), pp. 185-197.
[26] J. KAtJTSKY AND N. K. NICHOLS, Equidistributing meshes with constraints, SIAM J. Sci. Statist. Comput.,

(1980), pp. 449-511.
[27] G. LIAO, Variational approach to grid generation, Numer. Meth. PDE’s, 8 (1992), pp. 143-147.
[28] J. LORENZ AND M. SVOBODA,ASWR-methodfor the simulation ofdopant redistribution in silicon, in Simulation

of Semiconductor Devices and Processes, G. Baccarani and M. Rudan, eds., Tecnoprint, Bologna, Italy,
3 (1988), pp. 243-254.

[29] K. MLLER,Alternate modes to control the nodes in the movingfinite elementmethod, in Adaptive Computational
Methods for Partial Differential Equations, Society of Industrial and Applied Mathematics, Philadelphia,
PA, 1983, pp. 165-182.

[30] Recent results on finite element methods with moving nodes, in Accuracy Estimates and Adaptive
Refinement in Finite Element Calculations, Wiley-Interscience, New York, 1986, pp. 325-338.

[31 K. NAKAHASm AND G. S. DEWERT, Three dimensional adaptive grid method, AIAA J., 24 (1986), pp. 948-954.
[32] C.E. PEARSON, On a differential equation ofboundary layer type, J. Math. Phys., 47 (1968), pp. 134-154.
[33] J. PERAIRE, M. VAHDATI, K. MORGAN, AND O. C. ZENKEWCZ, Adaptive remeshingfor compressible computa-

tions, J. Comput. Phys., 72 (1987), pp. 449-466.
[34] V. PEREYRA AND E. G. SEWELL,Mesh selectionfordiscrete solution ofboundaryproblems in ordinary differential

equations, Numer. Math., 23 (1975), pp. 261-268.
[35] L. R. PETZOLD, Observations on an adaptive moving grid method for one dimensional systems of partial

differential equations, Appl. Numer. Math., 3 (1987), pp. 347-360.
[36] Y.H. REN AND R. D. RUSSELL, Moving mesh techniques based on equidistribution, and their stability, SIAM

J. Sci. Statist. Comput., 13 (1992), pp. 1265-1286.
[37] W.C. RHEINBODLT, Adaptive mesh refinement processesforfinite element solutions, Intemat. J. Numer. Meth.

Engrg., 17 (1981), pp. 649-662.
[38] R.D. RUSSELL, Mesh selection methods, in Codes for boundary value problems, Lecture Notes in Computer

Science 74, B. Childs, ed., Springer-Vedag, Berlin, 1979.
[39] W. H. A. SCHILDERS, A novel approach to adaptive meshingfor the semiconductor problem in Simulation of

Semiconductor devices and Processes, 3, G. Baccarani and M. Ruden, eds., Tecnoprint, Bologna, Italy,
1988, pp. 519-527.

[40] E K. SWEBY, An approximate equidistribution techniquefor unstructured Grids, in Proc. Numerical Methods
for Fluid Dynamics III, K. W. Morton and M. J. Baines, eds., Oxford University Press, 1988.

[41] J. E THOMPSON, A survey ofdynamically adaptive grids in the numerical solution ofpartial differential equa-
tions, Appl. Numer. Math., (1983), pp. 3-27.

[42] J. E THOMPSON, Z. U. A. WARSI, AND C. W. MASTIN, Numerical Grid Generation: Foundations and Applica-
tions, North-Holland, Amsterdam, 1985.

[43] J. M. VERWER AND R. A. TROMBERT, Analysis of an adaptive finite difference method for time dependent
PDEs, in Numerical Analysis, D. F. Grifffths and G. A. Watson, eds., Longman Press, London, 1991,
pp. 2267-2284.

[44] A.B. WHITE, On selection ofequidistribution meshesfor two-point boundary value problems, SIAM J. Numer.
Anal., 16 (1979), pp. 472-502.

[45] ,On the numerical solution ofinitial/boundary-valueproblems in one space dimension, SIAM J. Numer.
Anal., 19 (1982), pp. 683-697.

[46] K. WRIGHT, A. H. A. AHMED, AD A. H. SELEMAN, Mesh selection in collocationfor boundary value problems,
IMA J. Numer. Anal., 11 (1991), pp. 7-20.

[47] O.C. ZIENEWCZ AND J. Z. ZHtJ, Adaptivity and mesh generation, lnternat. J. Numer. Meth. Engrg., 32 (1991),
pp. 783-810.



SIAM J. ScI. COMPUT.
Vol. 15, No. 4, pp. 819-845, July 1994

() 1994 Society for Industrial and Applied Mathematics

A SCHEME FOR CONSERVATIVE INTERPOLATION ON OVERLAPPING GRIDS*
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Abstract. This paper describes how to interpolate in a conservative manner when solving systems ofconservative
laws on overlapping grids. Overlapping grids are a flexible and efficient way to create grids for complicated regions.
Before now, however, no general method had been developed for conservative interpolation. The basic idea consists
of assuming that the interpolation coefficients are free parameters and then deriving constraints to ensure that the
interpolation is conservative. A system of equations is then solved to determine the coefficients. A two-dimensional
viscous Burger’s equation is solved to demonstrate the conservative nature of the scheme.
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1. Introduction. Standard interpolation procedures for overlapping grids do not lead to
conservative methods for the solution of conservation laws. To obtain conservative schemes, it
is necessary to interpolate fluxes at the overlapping boundaries instead ofinterpolating solution
values. In one dimension we show that any consistent interpolation scheme for the fluxes is
conservative. In two or three dimensions the result is not as easy. We describe a scheme to
interpolate conservatively in two or three space dimensions. We implement the method in
two dimensions, on a viscous Burger’s equation, and show results of shocks passing through
interfaces between grids. These computations demonstrate the conservative nature of the
interpolation.

We are interested in numerically solving a system of conservation laws using a finite-
difference or finite-volume method on overlapping grids. An overlapping grid consists of
a set of logically rectangular curvilinear grids that cover a domain and overlap where they
meet. Grid functions defined on the domain are matched by interpolation at the overlapping
boundaries between component grids. For solving problems that are smoothly represented on
the grid, standard interpolation procedures result in accurate solutions to partial differential
equations (PDEs), as shown, for example, in Chesshire and Henshaw [7]. In this case it is
not necessary that the discrete scheme be exactly conservative. If one is willing to have a
fine enough grid to resolve sharp features such as shocks, then standard interpolation will give
accurate results. For solving problems whose solution is not smoothly represented on the grid,
however, it may be necessary to interpolate in a conservative way to ensure that the discrete
solution converges to a physically relevant solution and to ensure that the speeds and locations
of shocks are correct. For many applications it is not feasible with current computers to have
enough grid points to resolve shocks. Thus we are led to develop conservative schemes. Note
that, in principle, conservative interpolation is required only where shocks actually cross the
boundary between grids. In many cases the problem can be avoided by aligning grids with
the shocks. In general, however, it is difficult to avoid having a shock cross a grid boundary,
especially in three dimensions.

An excellent discussion of conservative interpolation can be found in the paper of M.
Berger [2]. She is concerned with both spatial and timewise discontinuities, the latter occurring
when the timestep is different on different grids. In one space dimension Berger shows how
to interpolate the fluxes in a conservative fashion given any discrete approximation to the
integral. In two dimensions she shows how to interpolate conservatively for a restricted
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class of problems, when the overlapping grids are related to each other in particular ways.
Although the paper suggests an algorithm for the general case, the details are somewhat
lacking, and it was apparently never implemented. Also of interest is the work of M. Rai 14]
who shows how to interpolate conservatively on patched grids. These grids are composite
grids whose boundaries match exactly on certain curves. Conservative interpolation in this
case is somewhat simpler since the boundary across which the flux must be matched is well
defined and the interpolation is in one dimension lower than that of the PDE.

A conservative difference scheme exactly conserves some discrete approximation to the
integral ofthe solution, up to contributions of fluxes through the boundaries. The conservation
property must be local in the sense that the scheme should be conservative on any subdomain.
For an overlapping grid the approximation to the integral is not clearly defined where the
grids overlap. In general, the method of Berger’s paper consists of starting with a discrete
approximation to the integral and then determining the interpolation coefficients. In the
approach presented here we leave both the weights in the approximation to the integral and the
coefficients in the interpolation of the fluxes as free parameters. The condition that the scheme
shouldbe locally conservative imposes constraints on these parameters. In this paperwe extend
Berger’s one-dimensional result to show that any interpolation of the fluxes is conservative. In
two dimensions we describe and implement a general algorithm for conservative interpolation
on overlapping grids, such as those created by the program CMPGRD 10], [5], [7].

We present numerical examples for the two-dimensional Burger’s equation that show a
(viscous) shock moving through an overlapping grid. The conservative interpolation weights
that we generate do indeed conserve the solution to roundoff errors. In the future we will study
the effectiveness of this approach to conservative interpolation when coupled with some of the
state of the art methods for computing solutions to the Euler or Navier-Stokes equations. For
now we remark that results from our preliminary investigations suggest that some care will
be required in this regard. It is important that interpolated fluxes are independent of the local
coordinate system of a component grid so that it makes sense to use the fluxes on a different
component grid. Further details and numerical experiments can be found in [8].

One of our motivations for doing this work was the fact that it has been reported, by
Pirt-Enander and Sj6green [13], for example, that very slowly moving shocks can become
stuck or distorted at the boundary between two overlapping grids. Whether this difficulty is
solely due to the interpolation or to a coupling between the interpolation and the integration
scheme is difficult to decide. Hopefully with the availability of a procedure for conservative
interpolation it will be easier to isolate the source ofthe problem in such situations. It should be
pointed out, however, that the problem only seems to occur for extremely slow moving shocks.
Many researchers have successfully used nonconservative interpolation on overlapping grids
to compute complex flows in two and three space dimensions, including Berger and Oliger [3],
Steger et al. [6], [17], Brown [4], and Pirt-Enander and Sj6green [12].

We have not considered the stability properties of time-stepping schemes combined with
our conservative interpolation. Stability of difference schemes on overlapping grids has
been considered by a number of authors including Starius 16], Reyna 15], Trefethen [19],
Berger ], and Thun6 18]. In practice we have not encountered problems due to instabilities
at the overlapping boundaries.

1.1. Weak solutions and conservation. We first review some well-known concepts
about conservation laws and weak solutions that will motivate our approach for develop-
ing a conservative interpolation scheme for overlapping grids. Consider the solution of the
conservation equations

(1) Ut +fx +gy O.
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We have in mind a nonlinear hyperbolic system such as the equations of gas dynamics. So-
lutions to this equation may develop discontinuities such as shocks. A solution with a shock
is not a classical solution because it is not differentiable, but it is still physically relevant in
the sense that it is the limiting behaviour as certain neglected quantities such as viscosity or
heat conduction tend to zero. Thus we wish to extend our notion of solution to this more
general class of solutions, called weak solutions. Typically such equations are derived from
the consideration of the conservation of some quantity such as mass, momentum, or energy
through a small control volume AV

udx + (f,g).nds 0,(2)
dt v av

and state that the time rate of change of the integral of u over AV is equal to the integral of the
normal component of the fluxes through the boundary 0 A V. The PDE formulation follows
by letting the size of this arbitrary control volume go to zero. The equivalence of the two
formulations requires certain smoothness conditions on the solution. We can extend our class
of solutions by looking for solutions that satisfy (2) for all possible control volumes. This
formulation does not require (f, g) to be differentiable. For later reference we define two types
of weak solutions.

DEFINITION 1.1. We say that u is a weak solution oftype I to the conservation equations
(1) ifit satisfies the integralform ofthe equations (2)for any (suitably smooth) control volume
AV.

The finite-volume method is the discrete version ofthis formulation. This method imposes
a discrete form of (2) for each cell in the computational grid. There is another common way
of defining a more general class of solutions.

DEFINITION 1.2. We say that u is a weak solution oftype II to the conservation equations
(1)if

it fo + 0

for all smooth testfunctions q(x, t) ofcompact support.
This expression can be formally obtained by multiplying the conservation law by q and

integrating by parts. The main point is that the possibly discontinuous functions u and f are
not differentiated in this formulation.

1.2. Conserative schemes on a rectangular grid. Let us now consider the numerical
solution of (1) on a single rectangular grid. A discrete scheme is said to be in conservation
form if it can be written as

(4)

where

d
-Uij "- (A+iFij Jr- A+jGij) O,

Jij approximate area of cell j,

Fij approximation to f on left face of cell j,

Gij approximation to g on bottom face of cell j,

and the difference operators are defined by

A+iFij Fi+I,j Fij, A+jGij Gij+l Gij,
A-iFij Fij Fi-lj, A_jGij Gij Gij-1.
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In particular the finite-volume method of discretization generates a scheme in conservation
form. If we consider any subdomain B C f2, then a scheme in conservation form conserves
an approximation to the integral of u over B

ijB

except for the fluxes coming through 0 B, the boundary of B. To see this, simply take the time
derivative of SB and substitute (4)

dt ijB duij
ij A+iFij "Jl- A+jGij}

ijB

q-Fij =]= Gij
ijB

fluxes crossing the boundary.

All of the fluxes in the interior of B cancel, leaving only boundary terms. In the discrete
case we see that the equation in conservation form satisfies the discrete analogue of the weak
solution of type I (Def. 1.1).

Suppose that we have a discrete approximation to the integral and a discrete scheme in
conservation form. Multiplication of the discrete scheme by ij Jij and integrating (summing)
gives

(5) $ij-duij J,’j + Pij(A+iFij + A+jGij) dt O.

Summation by parts gives

(6)
-(t)ijUij -’b {(A-iij)Fij + (A-jij)gij} } Jij dt

(O)uu(O)u Jq O.
ij

Since is smooth, if the solution converges then the above sums will converge to the integrals
appearing in the definition of a weak solution of type II. In this case the solution will be a
weak solution of type II. Thus we see that a scheme in conservation form, a discrete version
of the integrated form of the conservation laws, (2), is compatible with the definition of weak
solution type II (Def. 1.2). This idea that a solution to the equations in conservation form will
converge to a weak solution of type II, provided the solution converges at all, is due to Lax
and Wendroff 11 ].

It is important to understand that a conservative scheme must have the local conservation
property. The integral (or approximation to the integral) over any subdomain mustbe conserved
up to the fluxes crossing the boundary of the subdomain. It is not enough that the integral
over the entire domain be conserved since this alone does not ensure that the solution will be
a weak solution. In particular, shocks may travel with the wrong speed. Thus, for example,
the naive approach of adjusting all values by a fixed amount at each timestep to be globally
conservative is not locally conservative. This naive approach is not wrong in itself, but rather
it is a mistake to believe that it will generate a weak solution or that shocks must necessarily
move with the correct speed.
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2. Conservation on one-dimensional overlapping grids. We consider the solution of
the conservation equation

ut+f =0

on a one-dimensional overlapping grid on the interval [a, b]; see Fig. 1.

x--a

component grid k

component grid k 2 x b

FIG. 1. One-dimensional overlapping gridfor the interval [a, b].

Solutions to this equation conserve the integral

b

I(t) u(x, t)dx.

That is,

b OU fab-dx fxdx -[f]ab.

The overlapping grid has two component grids labelled by k 1, 2. The grid points on grid
k are numbered 0 N, -I- 1; see Fig. 2.

0 1 2 3 N1 N1 +

0 2 3 N2 N2+l

FIG. 2. Numbering ofgrid points.

Let uk,i denote the discrete approximation to u on component grid k 1, 2 for 0 Nk-I-
1, defined at the midpoints of the cells and let f,,i denote the discrete approximation to f on
the cell edges; see Fig. 3.

Olk,i

F:,i u,i Fk,i+l

FIG. 3. Location ofdiscrete variables.

The grid points will be denoted by x,i with grid spacings hk, Xk,i+l Xk, i. Define the
undivided difference operators

A+F:,/= Fk,i+l Fk,i, A_Fk, Fk, Fk,i_l,

and introduce the discrete scheme

(7)
duk,i
dt + 7-- A+F,i 0

nk,
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on the two component grids k 1, 2. Here the numerical flux Fk,i is some function of uk,i

Fk,i FN( Uk,i-1, Uk,i, Uk,i+l

such that FN( u, u, u f(u). On an overlapping grid, extra information is needed
on the boundary of a component grid that overlaps another component grid. The standard
approach is to interpolate the solution value at such an interpolation point in terms of the
solution values on the grid that is being overlapped. However, to achieve a conservative
method, the flux is interpolated. (This comes from the fact that the flux function appears in a
linear fashion in the conservation law while u has, in general, a nonlinear dependence.) The
interpolation conditions are of the form (see Fig. 4)

(8) F1,NI+I ’jF2,j 0 <_ M1 < M2 < N2,
j=M

L.
(9) F2,o [3jFI,j 0 <_ L < L2 <_ N1.

j=L1

FI,L F1,L2 F1,N+I

F2,0 F2,M’’’ F2,M

FIG. 4. Interpolation ofendpoints.

Introduce the discrete approximation to the integral I (t),

2 Nk
S(t) EZOtk,iUk,ihk,i.

k=l i=O

We will show that in one dimension, for any consistent interpolation of the fluxes (8), (9), the
scheme is conservative. We first show that the scheme satisfies the discrete analogue of the
local conservation property (Def. 1.1) since the algebra is somewhat simpler. We then show
that the scheme is also consistent with the definition of a weak solution of type II.

THEOREM 2.1. If the interpolation coefficients arefirst-order accurate,

/3i I and

and are bounded,

131 0(1) and I’1 O(),

then there exist ak,i so that dS/dt -[f]ab for any interval [a, b] and S(t) I(t) + O(h),
where h maxk, h k,i. If the interpolation is second-order accurate, then the integral is
approximated to second order" S(t) I(t) + O(h2). Note that the ak,i must be chosen
independent ofuk and Fk.

Proof It holds that

dS N du1,i
N: du2,i

dt Oll’i dt
h I,, di- E 12’i dt

h2,i

i=0 i=0
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N N2y Oel,i A+FI,i y t2,i A+F2,i
i=0 i=0

NI
ct,oF,o + A_(Otl,i)FI,i --Otl,NF1,N+I

+ c2,0F2,0 + A-(oe2,i)F2,i -Ct2,N2F2,N2+I

Using (8) and (9) for F1,N+I and F2,0 gives

We now impose the conservation condition, dS/dt f(a) f(b) for all F,,i. For simplicity,
we assume that the boundary conditions are F,o f(a) and F2,N+I f(b), so

01,0 1,

C2,N2 1,

A-(OI,i) 0

A-(tI,i) -+- t2,0]i 0

A_ (O2,i) 0

L1- 1, L2 + N1,

i=L1 L2,

M1- 1, ME+ N2,

A_ (Ct2,i) 0/2,0 }"i 0 M M2.

These equations are equivalent to the following set of equations, where we have defined
/z 2,0 and have used the fact that Y-.j/j and j yj 1"

(10)

Oel,i =0 L1- 1,

Ctl, Ol,i_ /,ti LI L2 1,

01, 1-/z L2 NI,

02, "--"/., 0 M1 1,

O/2, "--Ct2,i_ + (1- tx)Yi M1 M2- 1,

oe2,i =1 i=ME N2.

These last equations define the general solution to the problem in terms of the one free parame-
ter/z. Thus we see that away from the overlap region and interpolation regions the integration
weights ak, are equal to 1. In the region of overlap but away from the interpolation regions,
the weights are also constant, with o1,i -/z and ct2, /Z (see Fig. 5).
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1 p !) !)

1 1 1 1

FIG. 5. Solutionfor the integration weights Otk,i. The weights are constant outside the interpolation regions. In
the overlap region one grid has Otl,i v and the other has ot2,i # with lz + v 1.

The parameter # defines how to weight the two component grids in the sum S(t) in the
region where they overlap. Component grid k is weighted by 1 -/z and component
grid k 2 is weighted by #. Taking/z would give equal weight to each component
grid in its contribution to the integral, although note that the numerical scheme (7), (8), (9) is
independent of

The equations (10) define a set of constraints on the interpolation coefficients Yi, i and
the weights ai in the discrete approximation to the integral that must be satisfied for the
scheme to be conservative. Provided we can choose coefficients that are consistent with these
constraints and that lead to accurate interpolation and integration formulae then we will have
a conservative scheme. In higher dimensions a similar result holds, although the constraints
become much more complicated.

To complete the proofofthe theorem it remains to show that S(t) approximates the integral
of u, for smooth functions u.

2 N
S(t) Eak,iUk,ihk,i

k=l i=0

L1-1 L2-1 Nt

E Ul,ihl,i + E Otl,iUl,ihl,i + E(1- bt)Ul,ihl,i
o L L2

M M:,-1 N2

+ E #u2,ih2,i + E 2,iu2,ih2,i + E u2,ih2,i.
o MI M2

The sums that apply to points outside the interpolation regions approximate integrals over the
appropriate intervals:

X,L L2-1 fX,N+
S(t) u dx + E tl’iUl’ihl’i -]" (1 #) u dx

,ca Zl X1,L2

u dx + E t2,iu2,ih2,i "+- U dx + O(h2),
M ,2

where x,,i is the position of the ith grid point on grid k. Consider the sum over the interpolation
interval [L1, L. 1] on component grid 1

L2-1
SI(LI, L2 1) E Oll,iUl,ihl,i.

i=L1

The variables involved in the interpolation are shown in Fig. 6.
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Xl,LI X1,LI+I X1,Lz

X2,0

FIG. 6. Grid variables in the interpolation region.

Since

Ctl,i 1 tz(flL + flL,+l + + fli) for L1 L2 1;

therefore

SI(L1, L2- 1) E Ul,ihl,i-lz [3j u,ihl,i.
i=L i=L j=L

The first sum in this last expression approximates the integral ofu from Xl,LI to X,L2. Changing
the order of summation in the second sum gives

j Ul,ihl,i-" i Ul,jhl,j i u dx + O(h2).
i=L1 j=L i=L j=i "= Xl,i

The fli were chosen to interpolate discrete functions on the grid points xL x2 to obtain
a value at x2,0. In this last expression we recognize that we are interpolating the function that
is equal to the integral of u from x to xL2 and thus

flj I1 l,ih l,i u dx + 0(h P),
i=L j=LI ax2,o

where p is or 2 depending on the order of accuracy of the interpolation and whence

Xl,L2 fXl,L’

S(L1, L2-1) udx-lz "udx + O(hP).
XI,LI X2,

Similarly we estimate the sum S2(M, M2 1)

fX2,M fXl,N +1

S2(M1, M2 1) u dx (1 -/z) u dx + O(hP).
X2,MI X2,MI

It follows that

b

S(t) u dx + O(hP).

The scheme that we have constructed for one-dimensional overlapping grids satisfies the
discrete local conservation property consistent with the definition of a weak solution of type
I. We now show that solutions to this scheme will also converge to weak solutions of type II.
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THEOREM 2.2. If the discrete scheme for one-dimensional overlapping grids (7,8,9)
satisfies the assumptions of Theorem 2.1 and the discrete solution converges as the mesh is
refined, then the discrete solution converges to a weak solution oftype II (Def 1.2).

Proof Multiplying the discrete scheme, (7), by Ck, hk,j and integrating (summing) gives

Olk, k,i-Uk, hk, + )k,i A+iFk, dt O.
k,i

Integration by pas in time and summation by paas in space (proceeding in the same fashion
as in the proof of Theorem 2.1) gives

k,i(tO)Uk,i(to)hk, "dt Uk,ihk,i dt
k,i

l,Ol,OFl,O + A-(l,il,i)Fl,i + A-(I,iI, i) + 2,02,0i FI,i
LI

N M-

L2+l
M2 N2

m M2+

]dt O.

Using A-(gi) A_() gi + - A_(gi) gives

A-(I,i*I,i) + 2,0’2,0i {A-(I,i) + 2,0i

+Ul,i-1 A-(el,i) + U2,0i (2,0

01,i-1A-(I,i) + 0/2,03i(2,0 1,i)"

Define
L.

I(L1, L2) ct2,0fli(2,0 ,i)F,i
LI

and note that for smooth functions p of compact support, P2,0 Pl,i O(h) and thus

I(L, L2)dt O(h)

provided IL2 Lll O(1), u,o O(1), and 3i O(1). If FI,i converges to a smooth
function then I(L1, L2) O(hP), but generally we can only assume that Fl,i is bounded.
Collecting terms, we get

qbk,i(tO)Uk,i(to)hki- ftk,i dCk:i
,i

dt
Uk,ihk, dt

f{ N, N2
o/1,0tl,oFl,o + Oll,iA-(l,i)Fl,i -- ol2,iA_(2,i)F2,

--Ot2,N22,N2F2,N2+l } dt + O(h) O.
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Since the test function q is smooth (and of compact support so that the boundary terms disap-
pear) and since the cti were chosen so the sum converges to the integral, this final expression
converges to

ffx(4)tu+qbxF)dxdt + fxg)(x, to)u(x, to) dx 0

and thus the discrete solution converges to a weak solution of type II.

3. Conservation in two dimensions. We now describe how to interpolate in a conser-
vative way in two space dimensions. The algorithm we describe generalizes easily to three
space dimensions. In two dimensions we consider the solution of the conservation equation

(11) ut + fx + gy 0

on a domain f2. The equation is conservative in the sense that the integral

I(t) fa u(x, y, t)dx dy

has the property that

dI(t)dt fo otou-27dx dy (fx + gy) dx dy (f, g). nds.

The domain is discretized using overlapping grids as described in Chesshire and Hen-
shaw [7]. The domain is completely covered by a set of curvilinear grids. For each component
grid k 1, 2 ng there is a mapping

d: :[0, 112 __> f2

from the unit square to domain f2k, x dk(r) (Xk(r), yk(r)). It will be convenient to
introduce a related mapping for which the grid spacing in each direction will be one. Suppose
component grid k is discretized with Nr and Ns grid lines in the r and s directions. Then
define

D(R) d(R/(Nr 1), S/(Ns 1))

where

R=(R,S), R[O,N-I], S[0, N’I].

The Jacobian of this mapping is

Ox Oyk Oxk
OR OS OS OR

We transform the conservation equation (11) on each component grid to

(OF OG(12) U -[- k--- q- ---: O,

where

(13)
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Let Uk, ij denote the grid function values on grid k. The Uk,ij is cell-centred, while Fk,ij and
Gk,ij is face-centred (Fig. 7).

Gk,j+l

F/c, ij u,ij

(

Gk,ij

Fk,i+lj

Fro. 7. Cell variables in two dimensions,

The discrete approximation is given by

dUk,ij (A+iF,ij + A+jGk,ij) O,

Fk,ij FN( Uk,i-lj, Uk,ij ),

Gk,ij GN( Uk,ij-1, Uk,ij ).

The numerical fluxes are approximated by some functions Fv and GN (N stands for numerical
approximation) which for consistency should satisfy

FN( U, u F(u) and GN( u, u G,(u).

To completely specify the discrete scheme, we need some appropriate boundary conditions at
true boundaries and some interpolation conditions at the interpolation boundaries. The latter
will be specified shortly.

Introduce the discrete approximation to the integral

S(t) Olk, ijUk,ijJk,ij.
k, ij

Note that by the definition of R and S, the Jacobian Jk, ij will be approximately the area of the
cell. Taking the time derivative of S(t) and substituting the conservation equations gives

dS

d--- otk,gj
k,ij

duk,ij
Jk, ij -- Olk,ij(A+iFk,ij -" A+jG,ij).

dt ,j

Discrete integration by parts gives

(14)

d._S (_i(Olk ij)Fk,ij + A-j(Otk,ij)Gk,ij)
dt k, ij

-Jr- Otk,ijFk, ij Olk,ijFk,i+lj -Jr- Olk,ijGk,ij Olk,ijGk,ij+l,
OfL OfR OfB Ofr

where the boundary terms involve points on the Left (0fL), Right (0fn), Bottom (0fB), and
Top (Ofr) of the boundary cells. Some of the boundary terms will be obtained from boundary
conditions on the PDE, while others will be obtained from interpolation.
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We take the following approach to determine a conservative scheme.
1. All boundary terms appearing in (14) are defined using boundary conditions on the

PDE or by interpolation equations. In the case of interpolation we define the flux on the
interpolation boundary in terms of interior flux values on other component grids.

2. We substitute the boundary conditions and interpolation equations and collect like
terms in the fluxes (Fk.ij, Gk.ij). We then set to zero the coefficients of all interior fluxes since
we require that dS/dt converge to the integral of the fluxes through the boundary.

3.1. Interpolation of fluxes on overlapping grids. Certain details of the approach we
take are dependent on the way in which overlapping grids are generated by the grid genera-
tion program, CMPGRD [7]. CMPGRD can generate either cell-centred or vertex-overlapping
grids. For a cell-centred grid, values of uk,j are assumed to lie at cell-centres and interpolation
is performed at cell-centres. In a vertex grid, function values lie at vertices and interpolation
is done at vertices. Neither of these choices is optimal for implementing conservative inter-
polation since we would prefer to interpolate fluxes on cell faces. As a compromise we use
a vertex grid but think of u,ij as being located at cell-centres. The fluxes are interpolated
from the faces of one grid to the vertices of the second grid and these vertex values are then
averaged to obtain face-centred values (see Fig. 8).

ij+2

ij+l

Fij+1/2

uij+l

Uij Ui+lj

Gi+1/2j Gi+lj Gi+2j

(ij, -,ij) interpolated value

FiJ+1/2 (ij " ’ij+l) Gi+1/2j 1/2(ij " i+lj)

FIG. 8. Fluxes are interpolated to vertices and then averaged to obtain values onfaces.

Suppose we wish to interpolate a point on component grid k from points on component
grid k’. CMPGRD supplies the information needed to perform this interpolation, such as
the points to be interpolated from and the (r, s) coordinates on grid k’ of the point to be
interpolated. The interpolation equations are of the form

(15) 1, F F , G
}/’k,ij,k,,mn Gk,,mn-’,ij,k’,mn k’,mn

mn mn

where the interpolation weights }/F and ,G are left unspecified for the time being (see Fig. 9).
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Fk’,mn+l

E’I Fk,,mn

Gk’,mn

1 ’nFnFk’,mn

Gk’,mn+2

Fk’,m+In+

Gk’,mn+

Gk’,m+ln+2

Fk’,m+2n+l

Gk’,m+b

E3 Fk’,m+ln

+1

[’l Fk,,m_l_2n

Gk’,m+b

J’ E )’ffnGk’,mn

FiG. 9. The interpolatedfluxes (I, al)for grid k are interpolatedfromface-centredfluxes ofgrid k’.

The fluxes (’i, Ji) now have to be transformed from the coordinate system of grid k’ to the
coordinate system of grid k. This transformation is defined by (13). Introduce the matrix
transformations

1 Ox,/aR ax,/aS aye -axeAl -,, [Oy#elOR OylelOS]’ Ak= [_yIIR OxklOR

The interpolated vertex flux is given by

I
_

"FFk’ ]

The matrix A; is the transformation from the fluxes in grid k’ coordinates to the fluxes (f, g)
in physical coordinates. The matrix Ak is the transformation matrix from the physical fluxes
(f, g) to the fluxes in grid k coordinates. The matrix A; should be evaluated at the same

position as (li, i); thus the matrix coefficients should be interpolated from the vertices.
To obtain a flux on the face, we average the values from the two adjacent vertices obtaining

either

(k,ij -" k,ij+ )(17) Fk,ij+l/2 -for a vertical face or

(Jk,ij-’6ki+lj)(18) Gk,i+ l2j -for a horizontal face.
Let us define some sets of indices:

1. " Set of interior cells.
2. F" set of all faces which are used to interpolate FI.
3. o" set of all faces which are used to interpolate i.
4. nF: Points on true boundaries that require a value for F.
5. no: Points on true boundaries that require a value for G.
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Substituting the interpolation equations defined by (15)-(18) into (14) and collecting like terms
in F,j and G,] gives

dS
d---[ y(A-i(otlc,ij)Fk,ij W A-j(otk,ij)Gk,ij)

Here kv,ij and flk,ij are the sum of all terms which contribute to F,ij and G,,ij, respectively,

(19)

(20)

where

1
Ck,,mn,k,ij +K {+Oyk/OS 19x,,/OR Oxk/OS Oy,,/OR}

Jk"
1FG

ck,,mn,k,ij +K {+Oyk/OS Oxk,/OS- Oxk/OS Oyk,/OS}
jk,,

GF
ck,,mn,k,ij +K {-Oyk/OR Oxk,/OR + Oxk/OR Oyk,/OR}

Jk"
GG

ck,.mn,k,ij +K {-Oyk/OR Oxk,/OS + Oxk/OR Oyk,/OS}
jk,,

1
K orl.

2

The constant K is equal to except at a boundary where it will be equal to i for the following
reason: The flux that is interpolated at the vertex is averaged to the adjoining faces by (17) and
(18). There will normally be two faces adjoining each vertex that is interpolated, in which case
the flux at the vertex is used twice and K 1. When the interpolation boundary intersects
a true boundary, however, the vertex that lies on the true boundary will only have one face
adjacent to it, in which case K -2"We require that dS/dt be equal to some approximation to the integral of the fluxes
through the boundary of f2. Thus we set to zero the coefficients of the interior fluxes. Thus
the constraints on the otk,ij are of the following types

1. For those c belonging to interior cells

(21) A-i (otk, ij) 0 or

(22) A_j(otk,ij) 0 for k, ij ’2I.

2. For those cells that are interpolated from

(23) A_i(ot,ij) F for k, ij f2F,k,ij

(24) A-j(ak,ij) k,ij for k, ij f2G.

We will call (21)-(24) the conservation constraints. These equations impose conditions
on the integration weights ak,ij and the interpolation coefficients (that appear implicitly through
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/F and/a). As long as these equations are satisfied we will have a conservative scheme. We
are free to add extra equations to specify the interpolation coefficients, as long as these new
equations are consistent with the conservation constraints.

3.2. lnterpolee cells and the conservation constraints. In Fig. 10(a) we show an over-
lapping grid consisting of a rotated square (grid k 2) sitting on an unrotated square (grid
k 1). The edge of the rotated square is interpolated from points on the unrotated square.

(a)

FIG. 10. Overlapping grid and interpolee cells on each component grid.

The unrotated square has points near the centre that are not used. The points on the boundary
of this cut-out portion of grid are interpolated from the rotated square. Since we often refer
to those points or cells that are used in the interpolation of another point, we define such a
point or cell to be an interpolee point or interpolee cell.

DEFINITION 3.1. A point on grid k that is used to obtain an interpolated value on grid
k’ is called an interpolee point ofgrid k. Cells that are completely surrounded by interpolee
points are called interpolee cells.

In Figs. 10(b) and 10(c), we show the location of the interpolee cells for component grid
and component grid 2 in the (R, S) unit squares. The interpolee cells are outlined with thick

lines. Interpolee cells are those cells that are used by another grid for interpolation. Thus the
values on the vertices of the interpolee cells on grid are used to interpolate a value to the
interpolation points ofgrid 2. Note that the set ofinterpolee cells partitions the grid into distinct
regions. This partitioning property is a necessary condition for the existence of a conservative
interpolation scheme. A cell that is not an interpolee cell will have a value of ot if it is
not in an overlapping region and a value of ot 1/2 if it is in a region where two grids overlap.
Thus the dotted cells exterior to the region bounded by the interpolee cells on grid will have
c while the dotted cells inside this region will have a . Conversely, the dotted cells
interior to the region bounded by interpolee cells on grid 2 will have c while outside this

Thisregion ot . An interpolee cell may have a value for ct that is different from or .
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value is determined in the process of determining the conservative interpolation coefficients.
In Fig. 11 we show, in detail, a set of interpolee cells. For some of these cells we have

marked the unknown ct’s and/3’s that must be determined. It is assumed that the region to the
upper right of the figure lies in an overlapping region and thus ct 1/2. The region to the lower
left is a non-overlapping region and ct 1. Recall that each interpolee cell must satisfy the
conditions given by the conservation constraints, (21)-(24). At the bottom of the figure we list
some of these equations that must be satisfied in order that the interpolation be conservative.

L

FIG. 1. Some interpolee cells and some sample conservation constraints.

3.3. Accuracy and smoothness of the interpolation coefficients. The enforcement of
conservation constraints impose certain restrictions on the interpolation coefficients. To fully
specify the interpolation coefficients it is necessary to add further constraints. These con-
straints can be chosen for accuracy requirements. We may also want to impose smoothness
requirements on the interpolation coefficients since coefficients that have large negative and
positive values do not enhance the stability characteristics of a scheme.

Accuracy. It is natural to impose conditions to increase the accuracy of the interpolation.
Suppose we want to interpolate a function f(r, s) at some point (rc, Sc) in terms of the values
of f at a set of points {f(rmn, Smn)}:
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f(rc, sc) . E gmn f(rmn, Smn).

By Taylor’s formula

f(rmn, Smn) f(rc, Sc) + (lmn rc) fr(rc, Sc) + (Smn Sc) fs(rc, Sc)

+ (rmn rc)2 - frr(rc, Sc) + (rmn rc)(Smn sc) frs(rc, Sc) +""

and thus

mn mn - frr(rc’ Sc) -l"

Thus to interpolate to an accuracy of O(h P) we require that the interpolation coefficients
satisfy

E ’mn + O(hP),
mn

E }/mn(rmn rc)P(Smn Sc)q O(hP)
mn

for p+q < P.

Smoothness. There are a number of ways to impose smoothness constraints on the inter-
polation coefficients. Here is one reasonable way: if we think of representing the interpolation
coefficients as a Fourier sine series then we can choose to make the coefficients of the highest
frequencies in this series vanish. In particular, consider the coefficients ’’,mn,k,ijF for a given
interpolation point (i.e., for fixed (k’, k, j)). Then we write

M N (imzr jF sin sin
i=l j=l

where for clarity we drop some of the subscripts. The Fourier coefficients FY ij are given by

4 M Nn (imrc) (jnr)MNE y,i,Fsin\M+l sin
N+Im=l

The first smoothness constraint is obtained by setting tN O, followed by FM_IN O,

tv- O, and so on.

3.4. Determination of the conservative interpolation coefficients. Here is an outline
of the algorithm we use to compute the conservative interpolation coefficients. We work on
one component grid at a time. We determine the

Olkij, F G F G
kij flkij ’’,mnk,ij and ’’,mn,k, ij

for a given component grid k. Note that we determine the interpolation coefficients for points
which interpolate from grid k as opposed to the interpolation points on grid k.
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Step 1. Mark the interpolee cells. Mark the cells used for interpolation. Make sure that
these interpolee cells divide the grid into separated regions. The algorithm for marking the
interpolee cells follows.

1. For each interpolation point on grid k’ - k, mark the cells on grid k which are used
for interpolation.

2. For neighbouring interpolation points, check whether the set of interpolee cells used
by one interpolation point is connected to the set of interpolee cells used by the second
interpolation point.

3. If the sets of interpolee cells are not connected, add extra interpolation coefficients to
each ofthe two interpolation formulae so that the interpolee cells Used by the added coefficients
will connect the two sets of interpolee cells.

Step 2. Form the equations. Determine the equations for/3if/7 using (19) and (20).
This defines the/’s in terms of the interpolation coefficients ,"

F BF(F, ,G),
/3G B(,F,

or in matrix form,

I 0 A13

Step 3. Conservation constraints. Form the conservation constraints (23)-(24) for inter-
polee points

A_i(Olk,ij) [kF, ij or

A_j(ok,ij) /ka,ij for interpolee cells on grid k

with boundary conditions

Olk, ij in nonoverlapping regions,
1

where two grids overlap.Olk j -By taking Olk,ij where two component grids overlap we choose to equally weight cells
in the one-of the same area on any two grids. This corresponds to,choosing/z v i

dimensional case. If three component grids all overlap in a common region then the boundary
At this point we have a system of equations, whichcondition would be taken as Olk,ij ".

has the form

I 0 AI3
A21 A22 0
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Step 4. Initial factor. Factor the matrix to eliminate ,421 and to put ,422 into upper

I 0 A13
0 U22 A23
0 0 A33

triangular form:

r0q
a

After this step the/3’s have been eliminated. U22 is a square upper triangular matrix that
defines the area weights ot in in terms of the ,’s. The rectangular matrix A33 multiplies the
}/’s and represents the constraints that must be satisfied by the ?"s so that the interpolation is
conservative. At this point we need only to consider the constraint equations for the }/’s:

(25) A33x b

The problem now is to choose accurate interpolation coefficients that are consistent with the
above conservation constraints.

Step 5. Interpolation accuracy and smoothness. For each point (kt, j) interpolating from
grid k there is a set of interpolation coefficients }/kF,,ij,mn and F

}/l’,ij,mn defining the interpolation
of the fluxes. For each interpolation formula we construct sufficiently many equations based
on accuracy and smoothness to determine the interpolation coefficients completely (ignoring
the fact that the coefficients will be constrained by conservation). Our choice of equations is
described in 3.3. If we write the equations that determine all ,’s in one large matrix equation
it will have the form of a block diagonal system:

(26) Gx r

G1 0 0 0

0 G2 0 0

0 0 G3 "’.

0 0 0 GN

Y2 r2

}/3 r3

YN rN

Each diagonal block G is square and invertible. A typical dimension for a block G is 6 6,
corresponding to the interpolation shown in Fig. 9.

Step 6. Solution method. It is now necessary to find a good solution to the over-determined
system consisting of the conservation constraints, (25), and (26) defining the interpolation
coefficients in terms of accuracy and smoothness. There are various possible approaches to
this problem; we present two here.

Solution method I. In method I we augment the constraint equations A33x b by suf-
ficiently many accuracy and smoothness equations from the matrix G so that the resulting
system is nonsingular. This system can be solved to determine the interpolation coefficients.
This method is harder to implement in practice than it sounds. The equations taken from G
may be dependent on those found in A33 or even slightly inconsistent with those equations.
Thus it is not easy to know which set of equations should be used. We have been unsuccess-
ful at devising a stable and efficient technique for this approach and thus we have devised
method II.
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Solution method II. In method II we solve the constrained least squares problem

(27) min IIGx rll subject to A33x b.
xE

To be specific, assume that A33 E ]Imn and G ]1nn. The number of constraints m is
assumed to be less than the number of interpolation coefficients n. This method generates a
solution that is exactly conservative but only satisfies the accuracy and smoothness equations in
a least squares sense. However, by weighting the accuracy equations more than the smoothness
equations it is possible, in practice, to obtain accurate interpolation equations with no large
interpolation coefficients. If the interpolation is intended to be accurate to O (hP) then we scale
the smoothness constraints so that the 12 norms of the rows corresponding to the smoothness
equations are O(hP). The accuracy equations, as defined by (25), are naturally scaled in the
proper way. Note that if we were only interested in weighting all the equations in Gx r the
same then we could replace minxEr, IIGx rll in (27) with minxr, IIx G-lrll. The solution
to this new problem is somewhat simpler than the solution to (27) that is outlined below.

We can solve problem (27) as follows. Since the matrix G is nonsingular we can make
the change of variables x G-1 y to give an equivalent formulation of the problem:

min y r subject to A33G-ly b.
y"

Recall that G is block diagonal and thus its inverse is quickly computed. Letting A
A33G-1 mn be the new constraint matrix, then our problem becomes

(28) min IlY rll subject to Ay b.
y’

The transpose of .4 can be factored using the QR decomposition method to give

0

where R Iim xm is an upper triangular matrix, which is nonsingular if A has full rank. If we
partition the orthogonal matrix Q ]nxn into Q [QI Q2], with Q1 ]lnxm consisting of
the first m columns, then the general solution to the underdetermined system Ay b is

Y Q1 (Rr)-lb + Q2w,

where w E/tn-m is arbitrary. Thus the solution of the constrained least squares problem (28)
is found when w is the solution of the following least squares problem:

min IIQ2w (r Ol(RV)-lb)lI.
W n

The solution to this problem is

Ws Of (r Q1 (Rr)- b) Qr,
since Q Q2 I and Q2r Q1 o. Therefore the constrained least squares solution Ycs is

Yes QI(RV)-Ib-+- QzWls

Or
Q

Q;r
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and the solution to (27) is

Although the matrix Q nx,, is large, it can be stored in an efficient manner as a product of
rn Householder matrices. See, for example, the discussion in the LINPACK Users’ Guide [9].
The cost to compute Xcls is O(m2n) floating-point operations and O(mn) words of storage.

4. Numericalexperimentswith conservative interpolation. In this section we describe
a method for discretizing conservation laws in a conservative manner on overlapping grids,
and we present numerical results that show the propagation of a shock through an overlapping
grid. We study a two-dimensional analogue of Burger’s equation,

(29)
Ou
Ot

with the initial condition

:o u+ \Ox +

X XO
u(x, y, O) uo(x) "= c tanh

2v

The exact solution to this problem is a shock layer moving to the right with speed c,

u(x, y, t) uo(x ct).

To compute a numerical solution to this problem on the rectangle - < x < , -1 < y < 1,
we choose x0 -1 so that the shock is initially within the domain under consideration. We
use periodic boundary conditions at y + and Dirichlet boundary conditions

u -t--,y,t =u0 4---ct
at x 4--. In particular, we consider the case c 3[60 and compute the solution for 0 <
< 100, so that the shock should move from x -1 at 0 to x at 100. We

discretize the problem on overlapping grids consisting of an overall uniform rectangular grid
covering the entire domain and a smaller "obstacle" grid located approximately in the centre
of the domain. The shock starts to the left of the obstacle at 0 and should have passed
entirely through it when 100.

4.1. Discretization on a curvilinear grid. The two-dimensional Burger’s equation (29)
is of the form of a system of conservation laws

Ou 0

Ot + -x f(u) + -yg(u) O,

where the flux functions are given by

OuOu 1
tg2 g(l) go(u) V (U) O.f(u) fc(U) V-x fc(U) - -y, gc

Before discretizing this equation on a curvilinear grid, we transform it into a coordinate system
where the grid is a uniform rectangular grid,

0u1(00__7- -r os+ F(u) + =-G(u) O,
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where

J XrYs yrXs,

P( OU 2) 0/,/)F(u) ysf(u) xsg(u) ysfc(u) Xsgc(U) + (XrXs + yrYs)s (xZs + yj -r

v( OU (x + )
Ou )G(u) Xrg(U) yrf(U) Xrgc(U) yrfc(u) "b -j (XrXs "b yrys)-r -S

The overlapping grid-generation program CMPGRD represents a curvilinear grid as a
uniform grid on the unit square and a smooth transformation d(r, s) [0, 1 ]2 _. 112, so that
the gridpoints of the curvilinear grid are (xij, Yij) d(iAr, jAs), where Ar 1/(Nr 1)
and As 1/(Ns 1). CMPGRD also provides the derivative

Xr X Od (i Ar, jAs)
y y O(r, s)

at the gridpoints (cell vertices). The subscript ij is assumed for xr, xs, y, and y wherever
they appear below. To aid in the discretization, we define the averaging operators

1
Id,_iUij -(Ui_l,j "+" Uij), t-q-iUij -(Uij -}- Ui+l,j)

tz-juij -(ui,j-1 -al- uij), lal+juij -(uij -q- /i,j+l),

the undivided difference operators

A-il,lij lgi,j Ui-l,j, A+iUij Ui+l,j Ui,j,

A_juij Ui,j ui,j-1, A-t-jUij lgi,j+l Ui,j,

and the cell-centred quantities

AOil,lij -(Ui+l,j Ui_l,j)

Aojuij - (tti,jq-1 --/,//,j-l),

Aij ]z+ilJ,+j
AFAsJij

Bij +i+j
j

Aij is an approximation to second-order accuracy of the reciprocal of the area of the cell (i, j).
Then we discretize equation (29) in space to second-order accuracy as

duij
(30)

dt
Aj(+ E.j + A+jGj) O,

where

(31) 2 s[(>+2y,)(>-i(ui)) (>+x,)(>-gc(Ui))]

+v (-i Bij)(-i AojUij) AS2(-i Aij)[(+jXs)2 @ (+jYs)2](A-iuij)

(32) Gij Ar[(+iXr)(-jgc(Uij)) (+iYr)(-jA(uij))]

@P (-jBij)(-jAOiUij) Ar2(-jAij)[(+iXr)2 @ (+iYr)2](A-juij)}.
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4.2. Discretization on an overlapping grid. To discretize (29) on an overlapping grid,
we must supply interpolation boundary conditions in the regions of overlap between grids.
The program CMPGRD is designed to generate overlapping grids where the solution uij is
defined either at cell-centres or at cell vertices. In either case it guarantees that all eight
neighbours of any "discretization point" are either discretization points themselves or they
are "interpolation points" where function values may be interpolated from the corresponding
function values at discretization points of another grid. We have implemented conservative
interpolation of fluxes using "cell-vertex overlapping grids," as explained in 3. On such
a composite grid, CMPGRD labels the vertices as either discretization points, interpolation
points, or unused points. We discretize the problem with uij represented at cell-centres and
the fluxes represented on the sides of each cell, as shown in Fig. 12. The computation of Fij

G G G

u u uF +, F +, F A, F

G G

U Fij l’tij F uF A, B Aij, Bij A, B F

G Gij G

U U UF A,B F A, F A,, F

G G G

FIG. 12. Gridfunctions.
uses the stencil consisting of ui-,j, ui-l,j+, uij and bli,j+ Suppose u is known at every cell-
centre that is surrounded by vertices all of which are labelled as either discretization points
or interpolation points. CMPGRD guarantees that all eight neighbours of a discretization
point are either discretization points or interpolation points. Therefore we can compute F/j
on any cell side that connects two discretization points (i, j) and (i, j + 1). Similarly, we
can compute Gij on any cell side that connects two discretization points (i, j) and (i + 1, j).
We can update uj using (30) anywhere that we can compute the expression for duij/dt; for
this, we need values for F/j, F/+l,j, Gij, and Gi,j+l. We know how to compute these fluxes
for any cell surrounded by discretization points. To update u in a cell, one or more of whose
neighbouring vertices is an interpolation point, we must first interpolate the fluxes that we
could not otherwise compute. We must interpolate the flux on each cell side adjoining two
vertices, at least one of which is labelled as an interpolation point and the other is labelled
as either an interpolation point or a discretization point, we interpolate these fluxes by the
procedure explained in 3.1.

We use the classical fourth-order accurate four-stage Runge-Kutta timestepping method.
We choose the timestep to be close to the stability limit, which we determined experimentally.
In particular, we use

At min{.8h, .3--}, where h min{ X2r + y2rAr, + y2As}.
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The minimum here is taken over all gridpoints on all component grids. In the numerical
examples we took v .01, which resulted in sharp shocks with little or no overshoot.

4.3. Numerical results. Figure 13 shows the numerical solution at time 0, 20
100 for the case c of a slowly-moving shock, obtained using an overlapping grid

t=0 t=20

40 60

=80 t= 100

FIG. 13. Numerical solution at times 0, 20 100.
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consisting of an overall rectangular grid of 90 by 60 square cells and a square grid in the
centre of the region, with sides of length 1.2, rotated 45, with 36 x 36 cells of the same
size as those of the overall grid. The numerical solution shows an undistorted shock whose
location is correct to within the width of one grid cell at all times. Figure 14 is a graph of the

xlO-tt

FIG. 14. Conservation error as afunction oftime.

difference between the conserved discrete integral of u and the analytic integral of the exact
solution. The mean value of this conservation error, 3.26 x 10-6, has been subtracted out, as
this error is only due to truncation error in the discrete integral of the initial condition. The
resulting conservation error is less than 3 x 10-11 at all times. It changes most rapidly at 0
and 100, when the shock is nearest to the domain boundaries at x +. This effect
is due to the truncation error in the discretization of the boundary conditions and not to the
interpolation of fluxes between grids.

5. Conclusions. We have described a scheme for interpolating in a conservative manner
when solving systems of conservation laws on overlapping grids. The technique is described
in one and two space dimensions; the extension to three dimensions is straightforward. We
consider the interpolation coefficients and the integration weights in the conserved integral
as free parameters. The condition that the scheme be conservative imposes constraints on
these parameters. We have shown how to derive these constraints and how to determine
accurate interpolation coefficients consistent with the conservation constraints. This requires
the solution of a system ofequations with number ofunknowns essentially equal to the number
of interpolation coefficients on one component grid. We have written a code to generate the
conservative interpolation coefficients for two-dimensional grids generated by the overlapping
grid generation program, CMPGRD.

We have numerically Solved a two-dimensional viscous Burger’s equation using conser-
vative interpolation and have demonstrated the exact conservative nature of the method. In
future work we hope to solve the full Navier-Stokes or Euler equations using the conservative
interpolation and to study the problem of slowly moving shocks passing through the interface
between grids.

Acknowledgment. The authors are grateful for valuable discussions with Professor Heinz-
Otto Kreiss.
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HIGH ORDER ACCURACY OPTIMIZED METHODS FOR CONSTRAINED
NUMERICAL SOLUTIONS OF HYPERBOLIC CONSERVATION LAWS*

C. CORAY AND J. KOEBBE

Abstract. A high order accuracy generalization of accuracy optimized methods (AOMs) for the numerical
solution of scalar hyperbolic conservation is described. This process includes a presentation of a general framework
for the construction of high order accurate base schemes that are linearly stable, consistent, and conservative. The
AOM defines and solves a quadratic programming problem at each discrete time level to minimize perturbations
from the high order base schemes subject to imposed constraints. The constraints are used to imposed desired
behavior on the numerical approximation to the solution of the conservation law. The resulting schemes retain the
high order accuracy of the base scheme away from shocks, and minimally perturb the high order base schemes
locally where necessary to meet the imposed constraints. The resulting schemes compare favorably with other high
resolution schemes for scalar conservation laws. Numerical examples are presented to illustrate convergence rates for
the high order methods, stability regions, and AOM results for linear advection of discontinuities and development
and transport of shocks in Burgers’ equation. The constraints used in this work lead to a systematic method for
construction of high order accurate total variation diminishing (TVD) schemes.

Key words, scalar conservation laws, accuracy optimization, total variation diminishing, high resolution
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1. Introduction. The problems of limiting numerical diffusion, resolution of shock
fronts, maintaining high order accuracy, and preventing spurious oscillations that arise in
numerically approximating the solution of scalar hyperbolic conservation laws of the form

(1) Ut + f(U)x O, > O, x ,
u(x, O) uo(x)

have long been a concern of physicists, engineers, and mathematicians. It is not possible
to maintain, for example, monotonicity of a numerical solution near a shock front with an
unmodified higher order accurate method. One only needs to examine the second order
method of Lax and Wendroff [6] to find a scheme that may introduce spurious oscillations
for a variety of initial conditions even in the linear advection problem. Many authors have
contributed significantly to this general topic, including Boris and Book ], Harten [3], Osher
[8], Osher and Chakravarthy [9], Van Leer [11], Zalesak [12], Sweby [10], and others. For
general reference, a recent comprehensive overview of the subject of numerical methods for
conservation laws has been published by LeVeque [7].

In [2] a different approach, via schemes called AOMs, was introduced in which second
order base schemes were modified locally through an optimization process to satisfy imposed
constraints. The optimization process preserves second order accuracy whenever possible and
allows the scheme to reduce locally to first order accuracy if needed. The purpose in this paper
is to generalize the AOM approach to include higher order base schemes. The base schemes
are constructed in a systematic way so that accuracy, linear stability, flux consistency, and
conservation are satisfied. The construction allows efficient local modification of the base
scheme within the AOMs.

*Received by the editors March 11, 1992; accepted for publication June 24, 1993.
tDepartment of Mathematics and Statistics, Utah State University, Logan, Utah 84322 (coray@
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There are many physical or mathematical reasons for imposing constraints on approxi-
mate solutions of scalar conservation laws, e.g., a requirement that the scheme be monotonicity
preserving. The AOM minimally perturbs the higher order base scheme where necessary to
meet imposed constraints. This process defines at each timestep a constrained optimization
problem with a simple sum of squares objective function. The nature of the optimization
problem and the conditions placed upon the base scheme guarantee the existence of a global
solution. We note here that the methods constructed in this paper are more expensive compu-
tationally than other methods, but the results and the ability to control the degree of accuracy
of the approximation in regions where the solution is smooth justify the investigation of the
AOM framework.

The AOM is built to treat general constraints on the numerical solution. In this paper the
constraint addressed will be that the AOM is monotonicity preserving. The sufficient condition
prescribed to guarantee that property was shown in [2] to also be sufficient for the AOM to
be TVD as well. In fact, the framework developed here allows the systematic construction
of arbitrarily high order TVD schemes. By this we mean the scheme is high order accurate
where the solution is smooth.

A somewhat surprising and positive result is that although the AOM approach with the
monotonicity preserving constraints is entirely motivated by a minimal perturbation of a higher
order method where necessary, the resolution of shock fronts with this method compares
favorably with the high resolution methods presented in Sweby [10] and others. The AOM
approach to modify high orderbase schemes locally to meet constraints is significantly different
from other traditional TVD schemes, e.g., flux limited schemes, in which limited amounts of
"antidiffusive" flux are added locally.

The solution of the optimization problem adds to the computational effort necessary
to numerically approximate the solution of (1). However, in [2] the optimization problem
was shown to be a local problem in the linear advection case. In all numerical experiments
performed on nonlinear problems to date the optimization problem again appears to be local
in nature. In such cases the smaller disjoint optimization problems can be solved in parallel.

In 2 we review the fundamental properties of the AOMs, including the optimization cri-
teria and methodology used to achieve approximate solutions that satisfy imposed constraints
while minimally perturbing higher order accurate base schemes. In 3 an overview is pre-
sented of a systematic way to construct higher order base schemes for (1). In 4 a condition on
the numerical solution, which will guarantee that the method is both monotonicity preserving
and TVD, is introduced as well as the resulting inequality that becomes part of the AOM
optimization problem. Section 5 contains numerical results illustrating the AOM with higher
order base schemes.

2. Accuracy optimized methods. In this section we describe AOMs in general terms.
We begin by considering (1) and we write a numerical scheme to approximate the solution to
(1) in conservation form

(2) n nu+ n .{f(uj+ )},uj f(uj_1/2

where U+I/2 are grid line values to be determined below to impose specified conditions on
the discretization. The spatial mesh is defined by nodes xj and grid lines xj+/2, tn, and tn+l
represent discrete time levels, Ax and At are the grid sizes in space and time, ,k S-x, and

u’j
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Before application of the AOM a base scheme is constructed. Values/ff4-1/2 given by

(3) Tn mn n

+ + (cj+_)
are used in the base scheme

(4) uj-n+l uj-n ,{f(uj+1/2-n f(ti._ 1/2)].
The mj+l/2 are functions that depend on the initial profile, u(x, tn), and u)+/-l/2n are evaluation
points of the functions used to determine appropriate values of u at the grid lines. The
AOM then modifies the grid line values tT+/-/2 locally to meet imposed constraints. That is,
the AOM generates the values Ujrkl]2n used in the discretization (2) by modifying Ujrkl/2.~n A
general method for construction of base schemes is presented in the next section. The form of

m+/-/2 and evaluation points c+/-/2 are chosen to determine a base scheme that satisfies the
four properties:

1. high order space and time accuracy,
2. linear stability,
3. flux consistency, and
4. conservation of u.

In many applications other properties of a numerical method are desirable. Two such
examples are

5. achieving high resolution at discontinuities, and/or
6. satisfying some physical or mathematical constraint on the approximate solution,

e.g., monotonicity preserving or TVD. Conflicts arise when a numerical method attempts to
accomplish all objectives simultaneously. Godunov’s Theorem, for example, limits linear
monotonicity preserving schemes to first order accuracy. On the other hand unmodified high
order accurate methods such as the second order Lax-Wendroffmethod often produce spurious
oscillations near steep solution profiles.

The AOM approach relaxes the first property locally to achieve properties such as the last
two. This is accomplished by solving an associated optimization problem. Specifically, the
AOM uses the modification

n mn n(5) u+1/2 +/- (.+),
n n nwhere tO+/- .+/-1/2 + .+/-1/2 are modified evaluation points and ej+1/2 represent perturbations

of the base scheme evaluation points. The AOM minimizes

subject to imposed constraints such as Properties 5 or 6. With the restrictions we will place
on the grid line functions and their points of evaluation this gives a well posed constrained
quadratic programming problem.

While the optimization problem is solved over the entire domain at each timestep in this
paper, it appears the problem can be broken into small, localized optimization problems on
those disjoint regions where the unmodified base scheme would violate the imposed con-
straints. In [2] the localization of the optimization problem was shown in the linear advection
problem. On those disjoint regions (generally where steep solution profiles occur) the smaller
optimization problems may be solved in parallel.
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We conclude this section with the remark that this methodology is different from that of
the flux-limiters described by Sweby [10] and others. Here we seek to "optimize" accuracy
by varying minimally from a high order method subject to constraints imposed to preserve
desirable properties on the approximation of the solution rather than adding a maximal amount
of"antidiffusive" flux. We are now ready to address the details of construction of higher order
base schemes and examples of imposed constraints within AOM.

3. Construction ofhigher order base methods. In 2 the AOM introduced requires the
construction of a base scheme that will be perturbed locally to satisfy imposed constraints. In
this section the higher order accurate base schemes are constructed using polynomial repre-
sentations at the grid lines as in [5]. After first fixing the evaluation point of the polynomial,
the coefficients of the polynomial are chosen so that accuracy, linear stability, flux consistency,
and conservation conditions are satisfied for any smooth solution. It should be noted that the
polynomial framework discussed below is an alternate way of looking at the construction of
numerical methods for scalar conservation laws. The motivation for using this framework is
twofold. First, the first four properties of a base scheme may be developed in an efficient
algorithmic way, and second, the required perturbations for the AOM are easily imposed on a
base scheme within the framework.

The conditions developed here are for the linear conservation law with f(u) au and
a > 0. The conservation form of the discretization in this case is

(7) /,n+l n a,(u.+1/2 n=u -u_1/2),

with

Un n n n
j4-1/2 mj+1/2 (o+1/2 ai,j+ (o+1/2 )i

i=0

chosen as the representation ofthe unknown at the grid lines xj+/-/2. The tilde used to denote the
base scheme value in the previous section has been dropped here for convenience of notation.
The evaluation point ot)n/2 has been scaled so that the distance upwind increases with oz. In
the linear advection case,

%.1/2 +aZ.
represents the scaled distance fromHere it is assumed that the grid is uniform and thus the i

the downwind node to the grid line where the polynomial is defined. Within this framework
it is essential to choose the following representation for the coefficients"

(8) an. n n
,,j-1/2 (bi,j-1/2,rUj-l+r + bi,j_1/2,_rUj_r).

r=l

The values bi,j+/-l/2,+/-r are the nodal multipliers that must be determined to completely specify
the method. The upper limit Ki on the sum is the stencil width of the coefficients an

i,j+/-1/2’
and thus determines the number of nodes upon which the coefficients a.,j+/-/2 depend. Define
K as the maximum stencil width over all coefficients. The form in (8) may look cumber-
some, but is invaluable in determining appropriate accuracy and stability conditions for the
method.
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Before proceeding with the development of the conditions on the nodal multipliers
bi,jl/2,+r for specifying base schemes, we note that the computations to obtain the con-
ditions for accuracy, linear stability, and flux consistency below are long and tedious and most
are not included here. For a thorough development of the conditions on the multipliers see
[5].

The desired accuracy for the method is imposed via a standard truncation error analysis
on the discretization of the conservation law in (7) with

n
Uj+r E I (fAX)m.

m--0

Assume that integer spatial accuracy Mx and time accuracy of Mt are desired. Equating
coefficients in the expansion yields a system of equations of the form

Ki

1i,k -[bi,j+1/2,rrm -.1.- bi,j+1/2,_r (1 r)m

(9) i=k r=

-bi,j_1/2,,.(r 1)m bi,j_1/2,_r(-r)m],

i-k,where m,k is the Kronecker delta function, /i, ()() m 0 Mx and k
Mr. The above expression yields (Mx + 1)Mr linear equations for the multipliers

bi,j+_/2,+r. Note that the maximum degree of accuracy is limited by the degree of the poly-
nomial and the stencil width of the coefficients, a.",,j+/2. In particular, the maximum degree
of accuracy is + 1.

The second condition in the determination of the nodal multipliers is linear stability. By
doing a standard yon Neumann stability analysis with

Uj
n n eiWX,,

the following condition can be obtained:

Ki

k=0 i=k r=l

"(r)Oei(l-r)O --k b j ei(r-1) -t- bi,j_ e ),(bi,J+1/2,r eirO + bi,j+1/2,-r -1/2,r ,
where 0 ooAx. Separating the real and imaginary parts gives

K

k=0 i=k r=l

[(bi.j+1/2, bi,j_1/2,_r) COS(rO + (bi.j+1/2,_ bi,J_1/2,r) COS((1 r)O)]

and

k=0 i=k r=l

x[(bi.j+1/2, + bi,j_1/2,_r) sin(rO) + (bi.J+1/2,_ + bi,J_1/2,r) sin((1 r)O)].
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Next consider the elementary solution

u(x, t) e-i(x-at)

for the linear partial differential equation. The ratio of the solution at successive timesteps is

u(x, + At)
u(x,t)

eiwaAt eia.O

Ideally should represent eia’O. Conditions sufficient for linear stability at the point a. are
as follows:

cos(a,k0) R(O), sin(a.0) I(0).

The important point here is that the expressions for the real and imaginary parts of are
truncated Fourier cosine and sine series that may be used to represent the real and imaginary
parts of the elementary solution. To determine the coefficients in the Fourier series, the
standard formulas for the coefficients may be used. Thus on the interval [-zr, zr ], the stability
conditions become

cos(a.0) cos(mO)dO R(O) cos(mO)dO

and

sin(aZ0) sin(nO)dO I(0) sin(nO)dO

for rn 0 K and n K, where K max0<i<t Ki.
After the integration is carried out the conditions due to the real part are

2 sin(a,kzr)
2rr i,k(a.)k(bi,j+1/2,_ bi,j_1/2,1)(10)

a.
i=0 k=0

for rn 0;

2(a.) cos(mzr) sin(a.zr)

(11) m2 --(U)2
--7r /--0 k-’O ii’k(a’)k

)][(bi,j+1/2,m bi,j_1/2,_m) q- (bi,j+1/2,_m_ bi,j_,m+
for 0 < rn < K;and

(12)
2(aZ) cos(Kzr) sin(a.zr)

K2 (a,k)2
--Tr li,k(a)v)k(bi,j+1/2, K bi,j_1/2,_K)

i=0 k=0

for rn K. For the imaginary part the conditions are

2m cos(mzr) sin(aZzr)

(13) m-(a’k)
-N i=0 k=O i’k(a)k
x[(bi,J+1/2,m + bi,j_1/2,_m) (bi,j+1/2,_m_ + bi,j-1/2,m+l)]
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forl <rn <K;and

(14)
2K cos(Krr) sin(aJvrr)

--Jr EZ fli’k(a’)k(bi,j+1/2,K + bi,j-1/2, -K)K2 (a’)2 i=0 k=0

form K.
The result ofthe conditions given in (10)-(14) is a system of2K+ linear equations in the

multipliers bi,j+l/2,+r. These equations allow for the input of a desired stability limit, a,k, since
this parameter appears explicitly in all the equations resulting from the stability conditions.
In Theorem of [4], a condition on the relationship between stability and accuracy is stated
that is applicable to the framework developed here. If the discretization (7) is written in the
form

then this theorem implies the maximum order of accuracy p of a stable scheme is given
by

p min{r + s, 2r + 2, 2s}.

In the polynomial framework, if a system of equations is formed that attempts to violate the
above condition for the maximum order of accuracy, the system of equations is necessarily
inconsistent.

Next, flux consistency is imposed on the numerical scheme. Flux consistency for a
discretization of the form

n--I n (h+l -h._us us 1/21
implies that the approximate flux function hi+l2 hj+l/2(uj_ Uj+r) satisfies

h+ (u, u) f(u)

Since in the polynomial framework hj+l/2n f(u+l/2) and mj+l/2(ot)n mj+l/2(uj_
Uj+K, or), the flux consistency condition reduces to the following condition on the evalu-

ation of the polynomial:

" (u, u c).u =rnj+1/2

If flux consistency is to hold for all possible values ofa., and thus all values of ct, the condition
above becomes

(15)
K,.

fli,o -.(bi,j+1/2,r + bi,j+1/2,_r)
i=0 r=l

and

(16)
K

0 fi,k E(bi,j+1/2,r bi,j+1/2,-r)
i=k r=l
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for < k < l. These conditions are given at the grid line located at xj+/2 and there are
similar conditions at the grid line located at xj-1/2. Thus the flux consistency requirement
on the discretization will generate a total of 2(/+ 1) linear conditions on the multipliers,
bi,j+ /2,zkr.

If the base scheme is forced to be conservative then the perturbed scheme in the AOM
will also be conservative due to the way the perturbation value ej+/2 is chosen. Conservation
of u requires that the polynomial centered at each grid line must be the same. This implies
bi,j+l/2,+/-r bi,j-1/2,zlzr, which reduces the number of unknowns by a factor of two.

In summary, the framework presented in this section provides an algorithmic way for
determination of higher order accurate base schemes to be used as input for AOM. Thus this
step can be thought of as initial overhead in the application of the AOM. The framework lends
itself readily to automation. A computer code to generate the multipliers, bi,j+l/Z,+r, has been
written and used in this work.

4. AOM example: monotonicity preserving constraints. With a base scheme devel-
oped as in the previous section to meet the first four objectives, we are now ready to address
Properties 5 and 6 from 2 in the AOM. A monotonicity preserving constraint is introduced
to illustrate an example of an imposed constraint that fits neatly under the AOM umbrella.

n < n then a sufficient condition for preservingIf we assume a decreasing profile, i.e., uj uj_,
monotonicity would be to require

n _< n+l _< n(17) uj uj uj_.

If the initial profile is increasing, the inequalities are reversed. With the basic discretization
(2), the monotonicity preserving inequality becomes

n n8 o <_ -zlfu.+1/2 fu_1/2 <_ u_ u.
For general f the base scheme uses evaluation points

(19) o+/-1/2 - + J tuj+1/2 ).

With (3) this implies that the grid line values u+/2 are defined implicitly. In general, this
implicit definition requires an iterative loop at each timestep to solve for the u+/2. If one
makes reasonable assumptions about the smoothness of f, then a fixed point iteration will
converge for small enough . (Koebbe [5]). We note that this computation lends itself readily
to massively parallel computer architecture. As discussed earlier, the AOM scheme redefines
the evaluation points to be

(20) r/.+1/2 .n1/2 + jn1/2,
where the ]+/2 represent perturbations of the base scheme evaluation points. The optimiza-
tion portion ofthe AOM minimizes the sum of squares ofsuch perturbations subject to meeting
constraints such as (18) imposed at each node xj.

A consequence of the consistency condition is that the polynomial representation of the
approximation interpolates the initial condition at upwind nodes. The upwind interpolation
implies that the optimization problem has a feasible solution. This feasibility condition has
the additional property that it permits the AOM to become first order accurate in local regions
where shocks or steep profiles occur. This reduction to first order must be attainable by the
AOM to satisfy Godonov’s Theorem [7].
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Another important class of methods are those that are TVD. The total variation TV(u")
of the numerical solution at time level n is defined by

(21) TV(u") U+l Ul"
J

A difference scheme is said to be TVD (after Harten [3]) if TV(un+) < TV(un). It was
shown in [2] that the sufficient condition (17) for a monotonicity preserving scheme is also
sufficient for the AOM to be TVD. Thus the nonlinear constraint equation (18) serves equally
well to guarantee that the AOM solution that results from application of this inequality is also
TVD. Thus the AOMs in this paper form a class of TVD schemes whose order of accuracy in
smooth regions can be specified.

5. Numerical resuRs. In this section numerical results are presented to demonstrate
properties of the methods constructed in the paper. The numerical results are split into two
parts. First, numerical convergence rates are presented for a sample ofbase methods generated
in the polynomial framework introduced in 3. In particular, several methods up through order
six are presented. In the second part, results of computations using AOMs on a variety of
initial data for both linear advection and Burgers’ equations are presented.

5.1. Convergence rates for the higher order schemes. To compute convergence rates
for the base methods for the AOM approach, the linear advection equation

ut+Ux =0, x,t >0

with the initial condition u(x, 0) sin(4rrx) was used. This problem provides the basis for
the computation of convergence rates against the analytic solution

u(x, t) sin(4yr(x t)), x 6 , > O.

All methods were run on meshes with 20, 40, 80, and 160 nodes on the unit interval and errors
were computed on these meshes with the analytic solution. Numerical convergence rates were
then computed between successive refinements in the mesh.

Three methods were tested in the work; second, third, and fourth order methods generated
by linear, quadratic, and cubic polynomial representations, respectively. The base methods
were generated using a computer code written to form and solve a linear system of equations as
defined in 3. The polynomial generation computer code requires the degree ofthe polynomial,
stencil width of the coefficients, and an imposed stability limit as input. The flux consistency
and conservation conditions are implicitly imposed on the nodal multipliers. The code outputs
the nodal multipliers for use in another computer code that provides approximations of the
solution of (1).

In most cases the solution of the system of linear equations is not unique. There are a
variety of ways to specify the extra degrees of freedom. In this work the extra conditions
necessary for unique determination of a method were obtained by setting as many downwind
nodes as possible to zero.

The second order method generated by a polynomial of degree one, coefficient stencil
width one, and stability limit one is specified by the multipliers:

3b0,.,-1 b0,., ,
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The third order method that was generated by a polynomial of degree two, coefficient stencil
width of two, and stability limit of two is specified by the nodal multipliers:

5! bo,., bo,.,1 bo. 2 O,bo,.,-2 -8’ , ’_
2b2,., b2,., b2, ,2 O.b2,.,-2 -Finally, the fourth order method was generated using a polynomial of degree three, coeffi-

cient stencil width of four, and imposed stability limit of three are specified by the nodal
multipliers:

b0,.,-3 0.078125, bo,.,-2 -0.359375, bo,.,- 0.734375,

bo,., 0.546875, bo,.,2 0.0, bo,.,3 0.0,

b3,.,-3 0.041666, /93,.,_2 -0.125, b3,.,-1 0.125,

b3,.,! -0.041666, b3,.,2 0.0, b3,.,3 0.0.

As an aside, both the second order methods of Lax-Wendroff and Warming and Beam can be
generated in this framework by using a linear polynomial representation, stability limit one,
and stencil widths of one and two, respectively. When the maximum number of downwind
multipliers is set to zero the two methods are specified.

Tables 1-3 present the convergence rates at several timesteps during the numerical simu-
lation between 20 and 40 nodes, 40 and 80 nodes, and 80 and 160 nodes for the three methods
just described. In all three cases the numerical convergence rates are nearly the values pre-
dicted in 3. The values of the Courant number ,k shown in the tables were chosen to avoid
stability problems in the higher order methods. There are no problems with the second order
method, but some care must be taken when specifying stability limits larger than one in this
framework. To explain the stability problems, we return to the material in 3.

The stability condition specified in (10)-(14) can be used to compute the square of the
amplification factor I 12 as a function of the Courant number a,k. Since the stability conditions
are truncated Fourier series approximations to a function, oscillations should be expected in
the graphs of these functions. The three methods used in this section were specified so that
the stability limit was one, two, and three for the second, third, and fourth order schemes,
respectively. The graphs of the square of the amplification factor for the methods are shown
in Fig. 1 for the third and fourth order methods. The interval shown in each of the graphs
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TABLE
Table ofcomputational convergence ratesfor the second order method generated by a linear polynomial. This

is equivalent to the Lax-Wendroffmethod.

Time
level

2
3
4
5
6
7
8
9
10

20 vs. 40
nodes

0.25
1.98720
1.97268
1.98120
1.97498
1.97456
1.97660
1.96727
1.97758
1.95934
1.97791

20 vs. 40
nodes

0.75
1.94955
1.99377
1.94614
1.97838
1.94157
1.96194
1.93586
1.94448
1.92903
1.92600

40 vs. 80
nodes. 0.25
1.99684
1.99648
1.99610
1.99570
1.99531
1.99490
1.99447
1.99404
1.99360
1.99314

40 vs. 80
nodes

0.75
1.98759
1.98739
1.98719
1.98694
1.98670
1.98643
1.98613
1.98583
1.98549
1.98514

80 vs. 160
nodes

0.25
1.99926
1.99921
1.99914
1.99910
1.99905
1.99901
1.99895
1.99890
1.99885
1.99881

80 vs. 160
nodes

0.75
1.99690
1.99690
1.99687
1.99685
1.99683
1.99679
1.99676
1.99673
1.99670
1.99667

TABLE 2
Table ofcomputational convergence ratesfor the third order method generated by a quadratic polynomial.

Time
level

2
3
4
5
6
7
8

?o

20 vs. 40
nodes
=0.8
2.94321
2.97921
2.92898
2.97869
2.95773
2.92921
2.96581
2.91623
2.96500
2.94465

20 vs. 40
nodes. 1.8
2.92056
2.98200
2.98047
2.95941
2.99334
2.93840
3.00823
3.00141
2.98869
3.01680

40 vs. 80
nodes. 0.8
2.99570
2.99632
2.98524
2.98262
2.99076
2.99375
2.99464
2.98343
2.98090
2.98901

40 vs. 80
nodes. 1.8
2.99413
2.98629
2.98181
2.99528
2.99663
2.99809
2.99032
2.98542
2.99902
3.00049

80 vs. 160
nodes

,k 0.8
2.99831
2.99660
2.99913
2.99653
2.99810
2.99910
2.99589
2.99863
2.99612
2.99765

80 vs. 160
nodes
=1.8
3.00334
3.00396
3.00398
3.00055
3.00467
3.00150
3.00144
3.00322
2.99867
3.00284

TABLE 3
Table ofcomputational convergence ratesfor thefourth order method generated by a cubic polynomial.

Time
level

2
3
4
5
6
7
8
9
10

20 vs. 40
nodes. 1.8
3.95455
3.92539
3.92393
3.95253
3.98112
3.95306
3.92491
3.91970
3.94922
3.97865

20 vs. 40
nodes

L 2.85
3.92188
3.92257
3.96499
3.94493
3.91417
3.95785
3.96727
3.92521
3.95009
3.98903

40 vs. 80
nodes. 1.8
3.99371
3.98466
3.98596
3.99199
3.97793
3.99205
3.98488
3.98511
3.99204
3.97802

40 vs. 80
nodes

2.85
3.98827
3.98381
3.98020
3.99026
3.97714
3.98850
3.98392
3.98078
3.99059
3.97733

80vs. 160
nodes
k=l.8
4.00148
3.99255
3.99764
3.99827
3.99443
4.00042
3.99730
3.99821
3.99648
3.99654

80 vs. 160
nodes

2.85
3.98775
3.99728
3.99723
3.99695
3.99460
3.99421
3.99626
3.99781
3.99564
3.99399
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is slightly larger than the stability limit specified for the method so that the behavior can be
seen for the entire region of interest for the method. The graph of the second order method
is not included since it is well known that the Lax-Wendroff method, which is equivalent to
the second order method presented, is stable for 0 < a. < 1. Note that in the methods of
order higher than two, there are certain regions where the schemes are unstable. In the tests
for convergence rate, values of the Courant number were chosen based on these graphs to stay
away from unstable regions.

The breakdown of stability in certain regions is not a desirable behavior for any method.
In simple cases such as linear advection the stability problem can be avoided by choosing
appropriate timesteps using graphs like those in Figures 1 and 2. However, if the stability

CFL Polynomial CFL Po

(a) (b)

FIG. 1. Graphs of the square of the amplification factor as a fimction of the Courant numberfor (a) the third
order method generated by a quadratic polynomial and (b) afourth order method generated by a cubic polynomial.
The amplificationfactor is larger than onefor a. slightly less than one in (b).

region ofthe base method is disconnected, then the feasible region in the optimization problem
is not convex and standard sequential quadratic programming algorithms (e.g., NAG routine
E04UPF) cannot be applied. Thus methods that guarantee that the scheme stays stable over
some range of the Courant number must be used. Since it is necessary to allow the AOM
to reduce to upwinding, the interval [0, for the Courant number must be included in the
stability region. These methods can be generated by reducing the stencil width and the stability
limit imposed. The third order method proposed above generates a stable method provided
that 0 < a. _< 1. Thus one could choose At such that 0 < a. < 1. Figure 2 shows the
square of the amplification factor for another fourth order method and a sixth order method
where the stencil width has been reduced. Both of these methods will also be stable for
0 < a,k < 1. Note that for the original fourth order method presented, the amplification
factor is larger than one in a narrow region where the Courant number is slightly less than
one. This problem does not occur in the fourth order method of Fig. 2(a). The importance of
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stability .over an entire interval for the AOM is that this guarantees a convex feasible region
for the optimization problem and, if the stability interval contains all aJk in [0, ], a solution
exists for the optimization problem since this guarantees that the method can locally reduce
to upwinding.

CFL Po CFL Po

(a) (b)

FIG. 2. Graph of the square of the amplification factor as a function of the Courant numberfor (a) a different
fourth order method than the one used to generate Fig. (b) and (b) a sixth order method with stability limit one.

With these results we can now move on to applying the AOM to higher order methods
constructed in the polynomial framework.

5.2. AOM results. In this section results are presented to demonstrate the use of AOM
on linear advection problems and Burgers’ equation. That is, we treat (1) with f(u) u or

u2. In this work the higher order base schemes that were constructed for the linearf(u) -advection problem will be applied directly in the nonlinear problems presented. One can show
that the polynomial form used in the second order base scheme will also produce a second
order scheme for a general nonlinear conservation law; see [2]. A more complete discussion
of the AOM applied to general nonlinear problems will be the focus of another paper.

Several types of initial data were used to show different behavior in the numerical solution
using AOM. Comparisons were done with first order upwinding and an unmodified second
order method to show the improvement of the AOM over diffusive first order methods and the
elimination of oscillations generated by higher order schemes. Consider the following initial
data:

1. u(x, 0) for x _< 0.5 and u(x, 0) 0 for x > 0.5;
2. u(x, 0) for 0.25 < x < 0.5 and u(x, 0) 0, otherwise;
3. u(x, 0) sin(4rrx)l, x , > 0.

Figure 3 shows results from simulation of Problem in the case of linear advection and
where the third order method generated by a quadratic polynomial was used. Figures 3(a)
and 3(b) show the approximate unknown values for 80 nodes and 160 nodes after 40 and 80
steps, respectively, with . 0.25. Figures 3(c) and 3(d) show the perturbations necessary at
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the given timestep when the AOM is applied. There are two interesting types of behavior in
the approximate solutions. First, a steep shock is observed that becomes steeper as the grid is
refined. The AOM was not constructed as a high resolution method, but the result is a class
of schemes that resolve steep profiles.

Numerical Solution Numerical Solution

(a) (b)

Epsilon Values Epsilon Values

(c) (d)

FIG. 3. Transport ofa shock in the case oflinear advection using a third order method generated by a quadratic
polynomial. The approximations using (a) 80 nodes and (b) 160 nodes along with the corresponding perturbations
(c) and (d) are shown.

The second behavior is the difference between the way that the scheme treats the discon-
tinuity upwind and downwind of the shock. Even though a steep profile is observed, the width
of the shock region as measured by the interval where the perturbations are nonzero is not
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decreased as the grid is refined (Figs. 3(c) and 3(d)). In fact, after 40 and 80 time steps the
perturbations are still necessary at the original position of the shock. The problem is that the
schemes constructed in this paper are asymmetric in the sense that they are dissipative upwind.
This does not mean that all AOMs will have this type of asymmetric behavior. In [2] the same
problem was encountered when the second order methods of Lax-Wendroff and Warming and
Beam were used as base schemes individually. The use of the Lax-Wendroff method as the
base scheme resulted in an AOM that was dissipative downwind of a discontinuity, while use
of Warming and Beam as the base scheme produced an AOM that is dissipative upwind of
the discontinuity. To take advantage of both of the schemes, an optimized combination of the
two schemes was used that produced a symmetric AOM that was less dissipative than either
of the individual methods.

Figure 4 shows the results of a simulation ofthe transport of a square wave in Problem 2 by
the AOMs producedby using Lax-Wendroff, Warming and Beam, and a combination ofthe two
schemes as base schemes. The results in Figs. 4(a) and 4(b) show the asymmetric dissipation
downwind using Lax-Wendroff and upwind using Warming and Beam, respectively. Figure
4(c) shows the symmetric results of the AOM from the combination of the two schemes. In
[2] the symmetric method just described was compared to the flux limited method of Roe as
presented in [10]. The AOM shock resolution width was one half that of the Super-Bee flux
limited method. The same ideas can be applied to the more general class ofAOMs constructed
here and will be the topic of a paper addressing the relationships between AOM and essentially
nonoscillatory (ENO) schemes.

As an example, computational results using a higher order symmetric AOM are shown
in Fig. 5. This AOM was constructed using an optimized combination of two distinct third
order methods. Figures 5(a) and 5(b) show the same results as Figs. 3(a) and 3(b) except that
half as many nodes were used; 40 nodes and 80 nodes. The number of nodes was divided
by two so that the number of variables in the optimization problems was the same in both
cases; that is, the optimized combination of methods requires twice as many unknowns that
are evenly divided between the modifications of the two base schemes. The improvement in
the shock resolution is obvious. The width of the shock region is reduced and the support
of the perturbations as shown in Figs. 5(c) and 5(d) moves along with the shock instead of
increasing in size as in the asymmetric case (see Fig. 3).

As a final test result for this paper, Burgers’ equation with the initial condition of Problem
3 was solved using the AOM with 0.25, 99 nodes and a total of 100 timesteps. Figure 6
shows the results of the simulation at various timesteps. Figure 6(a) shows the initial condition,
Fig. 6(b) shows the approximation just before the expected shock develops, Fig. 6(c) shows
the approximation as the shock is forming, and Fig. 6(d) shows the approximation after the
shock has fully formed and has begun to move. The "lip" in Fig. 6(c) shows that the shock is
forming in a nonlinear fashion, which is expected due to the form of the initial condition.

As a comparison, the same simulation was performed using first order upwinding and an
unmodified second order method generated by the linear polynomial. The results are shown
in Fig. 7 for the same time level as the results shown in Fig. 6(d). The results show that the
first order method does not resolve the shock very well and dissipates the cusp at the bottom
more than the AOM results in Fig. 6. The unmodified higher order method fails near the shock
as expected; however, the second order method that fails in Fig. 7(b) was used as the base
method to obtain the better results in Fig. 6.

The solution of an optimization problem at each step over the entire spatial domain at each
timestep is of concern in the computational expense of the AOMs. However, as noticed in [2],
the optimization problem can be localized to those regions where the imposed constraints are
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(a) (b)

(c)

FIG. 4. Transport of the square wave in the case of linear advection using (a) AOM based on Lax-Wendroff,
(b) AOM based on Warming and Beam, and (c) AOM based on a combination ofLax-Wendroffand Warming and
Beam.

not satisfied by the base scheme for linear advection and Burgers’ equation. The numerical
results presented here also demonstrate this fact. In Figs. 3(c) and 3(d), Figs. 5(c) and 5(d),
and Fig. 8(b) the regions where the perturbation e is nonzero are small bands at the beginning
and end of the shock region. Fig. 8(a) can be used to see that the optimization is only needed
where the gradients become steep. The optimization problem can be split into two smaller
optimization problems that could be solved in parallel. Thus it appears that the optimization
problem need not consider the entire domain and the number of variables in the optimization
problem is reduced significantly. In the last test problem the same localization occurs. Figure
6(d) shows the graph of the perturbations over the entire domain. Again the nonzero values
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Numerical Solution

(a)

Numerical Solution

(b)

Second Epsilon Values First Eps Ion Values

(c) (d)

FIG. 5. Transport ofa shock in the case oflinear advection using a symmetric thiM order method generated by
a quadratic polynomial. The approximations using 40 nodes and 80 nodes ares shown in (a) and (b), respectively.
The computed perturbations in (b)for the two polynomial evaluations are shown in (c) and (d).

of the perturbation are localized to small bands. The localization of the optimization will be
addressed in a paper on the AOM applied to nonlinear problems.

6. Summary. In this paper we have presented a framework for the construction ofnumer-
ical schemes that provide constrained approximations of the solutions of scalar conservation
laws. The construction includes the ability to specify higher order accuracy in regions where
the solution is smooth. In regions where the solution has large gradients, the method perturbs
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Numerical Solution

(a)

Numerical Solution

(b)

Numerical Solution Numerical Solution

(c) (d)

FIG. 6. Transport ofl sin(2zrx)l in Burgers’ equation using an AOM with a second order base scheme. Thefour
figures include (a) the initial condition, (b) the approximation just before shockformation, (c) the approximation as
the shock isforming, and (d) the approximation after the shock isfullyformed and being transported.

the higher order base scheme locally to meet imposed constraints. The AOM examples pre-
sented here use monotonicity preserving constraints that require that the approximation reduce
to first order in regions where the solution is not smooth. The conditions also imply that the
approximation is TVD. Thus the framework provides a method for the construction of higher
order TVD schemes in a systematic way.
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Numericl Solution Numerical Solution

(a) (b)

FIG. 7. Transport of lsin(2rrx)l in Burgers’ equation using (a)first order upwinding and (b) unconstrained
second order method at the same time level as in Fig. 4(d).

NumerlcsI Solution Epsilon Values

(a) (b)

FIo. 8. Transport of lsin(2zrx)l in Burgers’ equation using AOM at the same timestep as in Fig. 4(b) with
perturbation values over the entire domain.
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DOMAIN DECOMPOSITION TO SOLVE
TRANSITION LAYERS AND ASYMPTOTICS*

MARC GARBEY

Abstract. The author considers the numerical computation of stiff nonlinear partial differential equations (PDEs)
that can be studied by the methods of singular perturbation. Two domain decomposition methods that solve numeri-
cally the layers of the singular perturbation problem are presented. These numerical methods use at different stages
the information given by the asymptotic analysis. The simplified model of reacting flow of Majda [SLAM J. Sci.
Statist. Comput., 7 (1986), pp. 1059-1080], a singular perturbation problem with a turning point [L. Abrahamsson
and S. Osher, SlAM J. Numer. Anal., 19 (1982), pp. 979-992], and a combustion problem [J. Pelaez, SlAM J. Appl.
Math., 47 (1987), pp. 781-799] that models a sequence oftwo chemical reactions will be considered as test problems.

Key words, domain decomposition, singular perturbation

AMS subject classifications. 65M55, 65M70, 65M35

1. Introduction. Our aim concerns the numerical computation of stiff nonlinear PDEs
that can be studied by the methods of singular perturbation analysis. We present some do-
main decomposition (DD) methods that solve numerically the layers of singular perturbation
problems of the following type:

(1)
0 ( 0u) 0u

ex P(U)-x + + x F(U) + D(U, v) O.

We show with two different DD methods that the combination of asymptotic and numeri-
cal analysis provides improved accuracy and/or improved efficiency for such multiple scale
problems.

We focus our study on singular perturbation problems with strong reaction term, i.e.,
D(U, v) > > 1 in some transition layers. It is well known that strong reaction terms give
rise to numerical difficulties: for example, a splitting method with finite differences to solve
a spiked strong detonation profile, with an error less than one percent in the maximum norm,
can require 560 discretization points when e is not even small (cf. [20, p. 1066]).

Many physical problems have multiple scales [15], [22]; a typical situation occurs when
physics on the fastest scale induces narrow regions where the variation in the solution is large.
Such regions are called boundary layers (BL) or transition layers (TL) depending on whether
they are near a boundary or inside the interior of the domain. Examples of such situations are
laminar flow of a slightly viscous fluid or combustion with high activation energy. Classical
schemes applied to these types of situations generally fail to describe correctly the behavior
inside the layers and sometimes the speed of propagation of the interfaces. Also, most of
the previous problems can be seen as singular perturbation problems. It seems a natural
idea to implement some of the results of the singular perturbation analysis in the numerical
computation. Interest in this field of research has been increasing in the last few years, see
[2], 10], 11 ], and their references.

In this paper, we present first an asymptotic-induced numerical method based on a hyper-
bolic scheme. The idea is that the matched asymptotic technique is typically a DD method; in
such asymptotic analysis, we split the domain into subdomains where different processes oc-
cur; we look for the right scaling in each subdomain and derive the appropriate subproblems.

*Received by the editors February 12, 1992; accepted for publication (in revised form) May 4, 1993. This work
was supported by Direction de la Recherche et des Etudes Techniques/SR/901968.

University Claude Bernard Lyonl, LAN, Batl01, 69622 Villeurbanne cedex, France (garbey@lanl.univ-
lyonl.fr).
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We use the matching relations to connect the subproblems and so on. So the asymptotic-
induced numerical method that we present is a numerical algorithm that is in some sense the
image of the matched asymptotic analysis. Also, the matched asymptotic relations that are
difficult to check are validated through the computation of the residual. This method has
been applied to singular perturbation problems driven by conservation laws, for example the
isentropic gas dynamic equation with a physical viscosity, in [8], 17]. In this paper, we extend
the method to equations involving a source term e- D(U) as in reacting flows.

We present second an adaptive DD method in the context ofpseudospectral approximation
with Chebyshev polynomials. The idea is to use as part of the criterion for the adaptivity what
one knows from the analysis. Stiff fronts are a major difficulty in the use of spectral methods
[3]. Very efficient adaptive methods have been developed in [6], [4], [25], [13] that solve
stiff problems. This method has been extended in [5] to the case of multiple fronts via an
adaptive domain decomposition. We show how one can enhance this adaptive method for
singular perturbation problems" the position of the interfaces, the choice of the mapping, and
the strategy of the DD can be effectively related to the asymptotic analysis.

The two DD methods presented here are complementary approaches. The first method
starts from scratch and builds a new numerical algorithm based on the matched asymptotic
method. The second method starts from an existing adaptive method and adds some improve-
ment using asymptotic analysis. We will also see them as complementary methods because
they are best on different types of singularities, i.e., formation or interaction of shocks as
opposed to shocks waves.

We will consider mainly as a test problem the simplified model of reacting flow of Majda.
It has been shown in [20] that this model contains some of the difficulties of the numerics for
reacting flows. This model plays the role of the Burgers equation for the Navier-Stokes equa-
tion. In particular, in the computation of reacting shock waves, one can see in the simplified
model that the viscosity balances the source terms in the layer and influences the speed of
propagation. So one cannot expect to compute such phenomena with a classical hyperbolic
scheme. In addition, as shown in [20], a splitting method applied to the operator required an
order of magnitude with more discretization points needed than to compute, for example, a
Buckley and Leverett equation in the one-dimensional case. So we demonstrate the efficiency
of our DD methods on the difficult case of reacting shock layer. In the context of pseudospec-
tral method, we will give some results on a singular perturbation problem with a turning point

], [21 ], and on a combustion problem [24] that models a sequence oftwo chemical reactions.

2. Asymptotic-induced numerical methods based on an hyperbolic scheme. Let us
first review briefly our asymptotic-induced numerical method in the case of a singular pertur-
bation problem driven by a conservation law 16], i.e.,

8U 8 8( 8U)O + x F U -x P U -x
The solution of the inviscid problem, --i-+ou F(U) 0, can exhibit some singularities

such as shocks, weak discontinuities that propagate along the characteristics, and interaction
of singularities. To each singularity corresponds a thin layer, where the viscous perturbation
cannot be neglected. One can identify using a matched asymptotic technique the order of
magnitude of the residual and the scaling of the layer for each type of singularities in the
scalar case cf. Table 1.

In particular, this result holds for a shock layer in the case of a system of conservation
laws. When we use a hyperbolic scheme as, for example, a Godunov scheme to compute a
conservation law with or without viscosity, we can use this information to identify the zone
of a shock, based on the computation of the residual. This may require the use of two grids or
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TABLE
Asymptotic order of residual.

Type of zone Order of residual

ut + f(U)x

Local coordinates

Regular zone O(E) x

Shock layer 0(-1) (x S(t))/

Weak singularity

Shock interaction
with other singularities

(X- S(t))/6. I/2

Discontinuity with
f locally linear

o(1)

(x So St)/e

Formation of shock

(x SO- Slt)/ 1/2

(t to)/e

(t to)

O(:-1/4) (X SO Slt)/3/4 (t to)/63/4

more; however, we can identify three categories of points depending on whether it is a regular
zone, a shock, or something else. Layers that correspond to weak singularities can be solved
using a regular correction technique as in 17] (with eventually some adaptivity). Interaction
of singularities needs a stretching in time and space in the subdomain according to Table 1.
We will emphasize here the treatment of the shock layer. We first review briefly the analysis of
a shock layer based on the asymptotic technique of matching 14] for a singular perturbation
problem driven by a system of conservation laws.

2.1. Shock layer analysis and system ofconservation laws. Let us consider the Cauchy
problem:

(2)

ou
-ff + F(U)= (P(U)5-;)u

U(x, O) V (x) for x IR.

for (x, t)

Here the solution U f2 IRn is a vector-valued function, the domain is f2 lRx]0, T[,
and e < < 1 is a small parameter.

We assume that V is piecewise smooth. We also assume that F and P are smooth functions
of U. We suppose that P is a suitable viscosity matrix 12] for the shocks of the following
associated inviscid problem:

(3)

ou
5-i + x F(U) 0

V(x, o) v (x)

for (x, t) e f2,

forx IR.

Namely, a shock wave solution to (3) can be obtained as a limit of progressive wave solutions
of (2). Problem (2) is a parabolic-hyperbolic singular perturbation problem driven by (3).

One obtains easily the regular expansion

(4) OUter U0 .-[-’U -[-62U2 -[-

that is a priori valid outside the neighborhood of the singularities of the solution to (3). We
substitute [router in the differential equation of (2) and use identification in to find that Uas



DOMAIN DECOMPOSITION TO SOLVE LAYERS AND ASYMPTOTICS 869

must be a solution of (3). We also find that U must be a solution of the following linear
hyperbolic problem:

(5)

O (DF(UO)U1 ( o)+ )=

U (x, O) 0 for x IR,

for (x, t) ,

where DF denotes the Jacobian matrix of F. The inviscid problem (3) has many weak
solutions; we shall uniquely define U as the analysis progresses.

We assume that solutions U of (3) are smooth except on piecewise regular curves Sk(t).
It is assumed for [to, tl that the Sk are isolated from each other. Without loss of generality,
we may drop the subscript k. S is assumed to be smooth for [to, hi. In particular, we
assume no focusing of characteristics. To make this more precise, we suppose that there is an
interval of time [to, tl] such that for each [to, h] and for each S the following limits exist:

H0. Ut limxsq)- U(x, t), Ur limx_Sq)+ U(x, t).

Let us define the change of variable: x S’(t) and r t. We denote (, r)
U(x, t). We further assume that:

ouH1. U’Y lim0- --&--,I--"
Vlr,r lim7o+ ---,U

U[’i lim0- oiuJH2. U/’i lim_o+ -b-B-, for (i, j) (1, 0), (0, 1),

The shock layer profile will not have rapid temporal variation, so it is appropriate to scale
and translate only the spatial variable (and not the temporal variable). Such a transformation
is defined by

x S(t)
(6) = and r=t,

where we denote 0(, r) U(x, t). Under this transformation the differential equation of
problem (2) becomes

(7) 8 + if-1 (F(O) S()O) -1 P(O)
This suggests an expansion in the TL of the form

(8) ],inner O0 + 01 +...--as

where Do and D are functions of and r. Using this expansion in (7) and imposing the
matching relations 14] 16] with the outer expansion [[outer we derive ordinary differentialas

equation (ODE) problems for 0 and . The equation for the first term is

(  oo) o0---) + - (F(O) (t)O) O,

(9)
O0-- U/ as-oo,
0 ty as
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and for the second term we have

(p(O)
(10) I1- (U,t + U,t)llo 0 as

1181- (U,r + U,r)llo --+ 0 as ---> +o,

where IIUIIo maxi= n(luil) and U (ui)i--1 n. The temporal variable r can be
considered as a parameter in the transition layer because the above problems require only
the solution of ODEs. Also, the problems for is linear.

Next we discuss the existence of U0 and the uniqueness of U0 as well as the uniqueness
of the curve S. Using a matching relation on the first spatial derivates on the terms in the
expansion r/inner one looks for 0 such thatas

---- 0 as --+ +o.

We integrate (9) from -o to to obtain:

(11)
080

P(8)- H(8) H(U),

where H(U) F(U) S’(t)U. Thus, the existence of a solution to (9) implies the Rankine-
Hugoniot (RH) condition

.(v,o)

This means that Ut and Ur are critical points of the dynamical system (11).
In addition to the RH condition, we must be able to construct the layer; thus, we assume

that:

There exists a unique trajectory for the

dynamical system (11) from Ut to Ur.
For scalar conservation laws, H4 is equivalent to the classical geometric entropy condition

(GEC); however, this equivalence is not true in general. The existence of a viscous profile
(i.e., H4) is not of the same nature as the GEC. However, we restrict our problems to cases
where the RH condition and H4 are enough to uniquely define U and S (and, consequently,
U:sUter).

Now we have determined 0 up to a translation in the spatial variable .
A solvability condition for the problem that t) satisfies and a construction of1 up to the

kernel function 0 may be derived. We leave the details of the computation to the interested
reader.

We can prove that/) is a smooth function if and only if 0 satisfies the relation

0( t) U(t) d + l.)( t) Ur (t) d
}t

S’(t)U DF(U). U + P(U)----x
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where [’]1 denotes the jump across the shock. This is simply an area relation that determines
the shift in se for ff0. Let us assume for simplicity that U and its space derivatives vanish at
infinity. One can show that this relation is a consequence of the conservation relation

OU
dx=0,

o Ot

satisfied by solutions to (2) and (3). This relation is also satisfied by our uniform approximation
of the solution to (2), where

Uas (1 K(v))Uasuter + K(v)(O0
at- 5."1) -J- 0(62).

Here (x S(t))/e is the intermediate variable and K is a smooth cutoff function such
that:

[ 0 iflyl>2,

K(y)

I if lyl < 1.

More precisely, we have

d ()(12) 0
at

2.2. Numerical treatment of a shock layer. We first review briefly the ideas of an
asymptotic-induced numerical treatment of a shock layer. We refer to [8] and 17] for more
details about the method and some numerical experiments. We know that in the neighborhood

o U F(U) and the viscosity (P(U)U)of strong singularities, the residual b-/ +
are of order -. Thus such zone of singularity is easily detected based on the numerical
approximation of the viscous problem (2) or the inviscid problem (3). For example, we can
use a Godunov scheme to compute (3) and enhance the accuracy on the localization of the
singularities using two or more levels of grids. Let f20(t) be a zone of singularity for a
given time t; let Uh be the numerical approximation of (2) outside 20. For a given curve of
discontinuity S(t) inside f20(t) one can construct Ws that extrapolates Uh inside 20(t) on
each side of S(t). Let Ws_, W+ be the left and right values of Ws on S(t); the conservation
of mass, i.e."

(13) fa U’ W’ O
o(t)

gives us an approximation of S(t). Then we can check numerically the assumptions H0 to Ha
and conclude if it is a shock layer or not.

Then we implement numerically the asymptotic analysis of the shock layer: that is, a
DD method; we solve the layer by computing the solution of the ODE (11) that matches with
the interface condition on 0f20. The correction for the slope on 0f20 is satisfied by the next
order term in the layer. Let us mention that we can also use this DD method to minimize the
viscosity of the hyperbolic scheme in the layer: we take W’ as the solution of the inviscid
problem in the layer except on a grid point that neighbors S(t) in order to keep the scheme
conservative. We refer to [8] and 17] for more details.
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2.3. Asymptotic-induced numerics for reacting shock layer. Now we are going to
describe more precisely the method extended to the simplified model of reacting flow of
Majda, that is."

(14)
Ou 0 Ou
0-- + xx [F(u) qoZ]

Ox

(15) Zx e-qb(u)Z,

where b (u) 1 if u > 0 and 0 elsewhere. We refer to [20] for the derivation of this model
and its precise statement.

This model can be compared to the following class of diffusion-convection-reaction prob-
lem:

O( Ou) -Ou -x(16) e-x P(u)-x + + F(u) + D(u, e) 0,

when D(u, e) is of order except possibly in some transition layer; if D(u, e) is uniformly
bounded, D(u, e) occurs as a regular perturbation in a shock layer, i.e., D(t0, e) appears only
in the ODE problem satisfied by 1. Therefore, the previous asymptotic analysis of a shock
layer extended to (16) has only some minor modification.

We will emphasize the case when D(u, e) balances the viscosity in a transition layer, that
is D(u, e) e-lDl(/) with Dl(t) Os(1). We will refer in this case to a reacting shock
layer.

Now, the first order term in this layer satisfies the ODE problem:

+ + 0,

(17)
00--+ U/ as
0 ---> U as --> +x,

Thus, the RH relation becomes the following jump condition:

Jx

In particular, a hyperbolic scheme applied to (16) will not, in general, give the right speed
of propagation for a reacting shock layer, since the numerical viscosity of the scheme will
interact with the source term.

The asymptotic analysis of a reacting shock layer for the Majda problem shows that the
first order term in the layer satisfies:

(18)

]o, H(Oo, 20) H(UI/r, Zl/r),
2o. c(8o)2o,

]0 Ul/r for --+

(Ut) 1; (U,.) 0,

20 --> 0 for --> -oo, J,

:0 -> for -->
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" S’(t)uwhere H(u, z) - qoZ.
To ensure the ability to construct the layer, more precisely the existence of a solution of

(16), we suppose the jump condition:

1 S’-U (t)Ut -U2r S’(t)Ur qo

and assume that there exists a trajectory of (18) from (Ut, 0) to (Ur, 1). An extensive study
of (18) is given in [20].

Also, we obtain the shift on U0 using a conservation relation analogous to (12), i.e."

(19) 0")-- Uas qo I[F(U)lut + O(e).

Now, we present the numerical method based on these results. We start from the following
elementary finite difference scheme:

U.n. l_2Un+Un+, F(U.n+I)_F(Uin. ,)--+-- eAt Ax 2Ax

Z.+ Z.+ 7n+l,+l K UT+ .+Ax

i+1 i-I+ q0 2Ax

This explicit scheme must be improved by using a Riemann solver to compute the flux.
However, for our purpose, we do not need a more sophisticated scheme, as long as the scheme
is conservative. We are interested in the reacting shock layer: so, our numerical test identifies
the zone of strong singularities where both the viscosity and the reaction terms are of order
-18

As in [8] we obtain Ut, Ur, and some approximation of the position of the interface.
Let us notice that in our numerical experiment we solve a Riemann problem and Ut, Ur are
independent of the time. Therefore, U0 is the only nonzero term of the reacting shock layer.

A solution (U0, Z0) of (16) is then computed with any ODE scheme. Then, one substitutes
to (U’, Z’) in the reacting shock layer, the only travelling wave (0, 0) that satisfies the
conservation relation (19).

We have experimented first with this DD method in the spiked strong detonation case
with Ut 1.0, with Ur -1.5, and q0 2.375. We use 40 points on the regular grid to
solve the problem with e 0.05 (see Fig. 1). Numerically, the thickness of the layer is about
12e. One can see the e jump at the interface between the inner domain and the outer domains.
We obtain some analogous results with 400 points on a regular grid and e 0.005 (see Fig.
2). Because Ut and Ur are so easy to obtain numerically, there is no significant error in the
speed of propagation of the layer. In the future, we will solve the more difficult case where
singularities interact.

The problem of the initial formation of this reacting shock layer will be solved with the
DD method presented in the next section.

We can also apply the minimum viscosity method of [8] to this problem in a straightforward
way. We keep only one artificial point in the layer to let the scheme be conservative. Figure 3
shows the result with 40. We have done this computation with various numbers ofdiscretization
points: in any case, the composite scheme tracks the interface with an error on the location of
the interface that is less than the meshsize.

We have solved a weak detonation case with Ut 1.0, Ur -0.4, q0 0.568. This case
requires a high order ODE scheme to compute the layer. However, the minimum viscosity
method works as well as for the case of a strong detonation.
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0.625
N" 400

-1.0 -0.9 0.9 1.0

FIG. 1. Majda problem with e 0.05.

u

Fro. 2. Majda problem with e 0.005.

3. Adaptive domain decomposition with pseudospectral. When solving a regularprob-
lem with DD and a fixed total number of collocation points, the accuracy decreases as the
number of domains increases. This is characteristic of pseudospectral accuracy. However,
for stiff problems, numerical experiments demonstrate that one can improve drastically the
numerical accuracy of the pseudospectral approximation by adapting the DD. This adaptivity
is based on the a priori estimates of [6]. However, for PDEs with moving layers, the cost of
adaptivity obviously increases as a function of the speed of propagation of the layers and more
generally the complexity of its dynamics. This cost can be reduced by using the information
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Plajda Hodet reduced probtem

N=40

interface

FIG. 3. Majda problem with the minimum viscosity method.

given by the asymptotic analysis to localize the layers and obtain the magnitude ofthe mapping
parameters for each type of layer.

We show how one can improve the efficiency of the adaptive DD method for singular
perturbation problems.

Let us consider the typical singular perturbation problem studied in (see also 19] and
[21]). We have an example of a TL in the neighborhood of Xo , 0.1 and a BL at the right
end of the interval. These layers are the major difficulties in the application of the Chebyshev
pseudospectral method (see Fig. 7). In the singular perturbation theory [14], one introduces
subdomains and stretching variables to solve these layers and obtain a uniform approximation
of the solution. We will use some analogous tools in the numerical method that follows.

3.1. Mappings and subdomains. Let us introduce two one-parameter families of map-
pings [4]:

[-1, 1] [-1, 1],
(20) s y f(s, or),

with: Ji(s, c) +[ tan-l(c tan(%(+s 1)))+ 1] andj(s, or) =or tan(s tan-l(c-l)).
The small free parameter, c, describes how one concentrates the collation points in the physical
space.

We will call f a mapping of BL type and J a mapping of TL type. We use in j] a plus
sign (respectively, a minus sign) for a BL on the right (respectively, on the left) of the interval.
A number of other mappings are possible of course; we will restrict ourselves to the previous
mappings.

In singular perturbation, one uses stretching variables of the form (x xk)/E, where
x, is the location of the layer and e is a measure of the stretching. It is easy to see that the
parameter c in the nonlinear mappings fi and j plays an analogous role as E in the numerical
method. One needs also to focus the stretching on a subdomain [xk Lk, x, + L,] of if2. So
we introduce a second one-parameter family of affine mappings; to solve a TL, we use:
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[-1, 1]
(21) y

[x, L,, xk + Lk],
x gk(y, Lk),

to solve a BL on the right, for example, we use:

[--1,1] ---+ [xk--Lk, xk],
(22) y x gk(y, Lk).

A difficult problem is to compute the free parameter, a, which is characteristic of the
stretching and to localize the layer, i.e., to compute xt,. We have two tools at our disposal.
The first tool is the asymptotic analysis of the PDE involving a critical parameter. This tool is
strongly related to the PDE, so we will emphasize this aspect in the last section where we study
specific examples. The second tool is approximation theory and requires a purely automatic
treatment cf. [4]-[6]; we refer to these papers in the following for the exact definition of
the a priori estimates. We will extend these ideas in the context of an arbitrary number of
subdomains to solve singular perturbation problems.

3.2. Itow to adapt? Let us present the pseudospectral technique from the simplest case
to the general situation: let us first consider the single domain case with no adaptivity. Let
u be any smooth real function on f2, a compact subset of 1, and h an affine function from
[- 1, 1 into f2. In the Chebyshev pseudospectral method, u (x) is approximated as a finite sum
of Chebyshev polynomials: Pvu 7=0 aj Tj(h -1 (x)), where Tj(y) cos(j cos-1 (y)) and
the coefficients aj are obtained from collocating the solution at the points (xj)j=o N such
that {h-l(xj) cos(rJ); j 0 N}./V

Let eN be the error eu u PNu; let us denote l" the maximum norm. Let if(h-1 (x))
be u(x). One has the a priori estimate" leNI _< C , where p is an integer and C is a real
number that depends specifically on the choice of the Sobolev norm II.

Let us suppose now that u exhibits one BL orTL in f2. Now we consider the single domain
case with adaptivity. We choose the appropriate BL mapping J] or TL mapping j to solve the
layer. We obtain a one parameter approximation of u: PN,aU =0 aj Tj(f/-1 (h -1 (x),

Let tT(f-1 (h -1 (x), u)) be u(x); we have the a priori estimate: eN,a 1<_ C , where
C is a constant independent of

Now the norm I[ is depending on or. One observes that as in singular perturbation
analysis, sharp estimates require norms parametrized by the singular parameter. The optimum
choice of a can be obtained by solving the minimization problem:

min (11 t7 I1).
u[O,1]

Practically, we will look rather in the numerical computation for the minimum of
Pv,aff Ila. Therefore, N must be large enough (according to the stiffness of u) such that the

discretization does not miss the layer.
Now, let us consider a DD with M subdomains [Q0, QI], [Q1, Q2] [QM-1, QM],

and adaptivity within each subdomain; the unknown function u on the interval f2 is approxi-
mated by a piecewise polynomial Pv,i ofC (g2), that is C inside each subdomain, depending
on a set of parameters I {ag, Lklk=l nd.

Let us denote by

k(A-lo hl(x)) u(x),

the unknown function in the Chebyshev space restricted to the subdomain
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One extends easily the previous a priori estimate to the multiple domain case with the
nornl;

that is,

(7 7,d) IIz-- max 7 I1,.,,;
k=l nd

lu PN,II < C
(/1 nd)

NP

where p and C depend only on the choice of the Sobolev norm in each subdomain. We will
have to compute nd free parameters cti and nd- interfaces Qk. Thus we need to adopt the
choice of a strategy to minimize (ff, ffd III in case of multiple layers: in other words,
we have to fix some constraints on the set of parameters I in order to keep affordable the
problem of minimization. This strategy will be studied in 4.

3.3. Multiple domains technique and parallel computing. Let us briefly recall the
multiple domain technique introduced in 18] and described here for an arbitrary number of
domains. We consider the example of a nonlinear PDE:

(23)
0(R) 020

+ F((R)); (x, t) e f2 x [0, T],
0t 0x2

with some boundary and initial conditions. For simplicity, we restrict ourselves to use an
implicit predictor corrector scheme in the following.

Moreover, we are using both vectorization and parallelization facilities to run our codes.
Since most of our applications required few collocations points per subdomain, less than
40 usually, it is more convenient and efficient in our applications to use a matrix-multiply
approach in the implementation of the pseudospectral method. Let us first consider the single
domain case; the algorithm can be written for the predictor step:

0n+l/2 0n

(24) D20n+l/2 + Fn,
0.5At

and for the corrector step:

ton+l_ on 1 (DEn+ -I- D20n) "+" Fn+l/2(5
zxt

where D is the operator of differentiation. Each step of the time differencing scheme is
equivalent to the solution of a linear system for the predictor step:

(26)

and for the corrector step:

(27)

/)On+l/2 Gp(On, At),

/)ton+l Gc((R)n, on+l/2 At)

with/) =I 0.5 AtD2.
Now, we look for the general construction of/3 in the case of a DD computation of

(23) when we impose tO(., t) 6 cl(f2). We suppose 2 split into nd subdomains (without
overlap). We assume, for simplicity, that we are using nd processors or clusters of processors
of a parallel computer. Therefore, because of the load balancing of these M units, we assume
the same number of collocation points N inside each subdomains. However, depending
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on the parallel computer, some other choices might be more appropriate. We denote by
Xi,k, N, k M, the discretization points in physical space.

Let On be tO (X,. k, tn) and let Dk be the differentiation operator for each subdomaini,k
g2k, k M. D, is parametrized by ck and Lk. We impose the continuity conditions

(28) tO0,k+l
DkOnN,k Dk+ O,k+

fork 1, ...,M- 1.
/) has the following characteristic structure:

A
toT(l)

/(1)
,(1)

dr(i) Ai
o(i) tfft(i)

(i)
y(i)

c(i 4- 1)
tfl(i) 3(i)
Ai+ (i + 1)

where
y(i), 3(i), o(i) e JR;
Ai is an (N 2) x (N 2) matrix except for 1 and :/: nd; A1 and A are
(N 1) x (N- 1) matrices; and
c (i),/ (i), 6 (i),/ (i) are some vectors.

The rows that do not contain Ai correspond to the continuity of the first derivative at the
interface given by (28).

The time marching scheme requires the solution of the linear system:

(29)
b t[tO(l)(tn) W tO(2)(/n) m mT.(,) tO(M-1)(tn), WM_I tO(M)(/n)]

t[F(1)(tn), O, F(Z)(tn), 0 0(*) F(M-1)(tn), O, F(M)(tn)],

where
t0 (k) (respectively, F(k)) is the restriction of tO (respectively, F) inside the subdomains

Wff k M- is the value of tO (tn) at the interface Pk, i.e. Wff tOnN,k
0,+

We solve the linear system (29) in the following way: first the Wy are solutions of the
tridiagonal system of dimension M 1"

(30)
(o(J) ta(j)g(j))Wj_l + (’(j) tot(j)h(j) tfl(j)g(j + 1))Wj
+(3(j) tfl(j)h(j + 1))Wj+I -(tg(j)F(j) + th(j)F(J+)),

where
g(j) Ala(j), h (j) A 3(j);
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tg(j) tJa(j)A-f th(j) tJfl(j)Aj
Next, we obtain the (R)(]) by solving the M decoupled linear systems:

(31)

AI(R)1) F1) WI/(1)

AMO(M) f(M) -WM-lC(M).

Since most of the time in the time marching scheme is spent in building and solving these
M previous linear systems, this DD technique is valuable for parallel computation.

However, (31) is not the only source of parallelism in the adaptive DD. We remark that
because of the DD, most of the adaptivity process can be parallelized. Moving from an old
physical grid parametrized by Iod to a new grid parametrized by/new requires three steps"

a minimization process with respect to I such that (/1 /M) IIlo,d>
071 M) IIInew;

an interpolation from the old grid to the new grid; and
a construction of the new operator/).

In most cases, the computations are either local to a siogle domain or depend on two
adjacent subdomains. Therefore, M or (M 1) parallel processes are involved in each step.

4. Asymptotics and adaptivity with pseudospectral approximations methods. We
will examine several issues in adaptive DD with pseudospectral. We first compare and analyze
different strategies to solve a TL.

Then we apply the method to singular perturbation problems including the spiked strong
detonation case for the reacting flow problem of Majda.

4.1. What kind of mapping for a transition layer? It is quite clear that the Chebyshev
method more easily solves a BL than a TL because of the O(N2) clustering of the collocation
points at both ends of the interval [-1, 1]. Also, a mapping of BL type will improve the
numerical accuracy of the approximation when boundary layers are solved. However, it is
unclear for a TL what will be the best mapping and subdomain technique.

As a matter of fact, let us suppose that u exhibits a single TL at x0 6 fS. One can use
either:

two subdomains with their mapping of BL type and their interface in x0 or
three subdomains with an inner domain centered in x0 and its mapping of TL type.

We report here some error results based on the numerical approximation of a typical
profile. By typical profile we mean the kind of behavior that we observe in the numerical
computation of a reacting shock wave or a combustion problem.

Table 2 (respectively, Table 3) gives the best values ofthe parameter mapping and interface
positions with 30 (respectively, 50) collocation points per subdomain. We approximate in this
table the function:

h(x) (1 tanh())/2 + 0.5exp --- -.
When using two subdomains we find the best accuracy in the symmetric case, i.e.,
an interface at x 0 and the same parameter value for the mapping of BL type
inside each subdomain. We observe that the value of that minimizes the error is of
order e /2.
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When using three subdomains we find the best accuracy in the symmetric case, i.e.,
the inner domain centered at x 0. We observe that the value of t that minimizes
the error is of order E.

We also notice that as a greater fraction of the points enter the layer, the conditioning of
the matrix of differentiation deteriorates: for a given arithmetic and a fixed E, we reach
easily the limit of accuracy of the method as we increase the number of collocation points;
when we increase further the number of collocation points, the conditioning of the matrix
of differentiation is so bad that even in double precision, the accuracy of the pseudospectral
approximation starts to decrease.

TABLE 2
Best mappingfor 2 and 3 subdomains, b) this table norm k (respectively, norm 1, respectively, norm 2) is the

error in the maximum normfor thefunction h (respectively, thefirst derivative h’, respectively, the second derivative

epsTLon 0.1

-95.10

0.01

1.6 10
-6

0.08

-45.10

0.05

0.001

-5
2.10

0.015

-22.10

0.009

481

0.4

9.6 10.5

3

0.2

0.07

-44.7 10

0.04

0.14

0.04

4O

0.03

0.009

-32.7 10

0.005

3

0.003

6485

0.003

norm

alfa

norm

alfa

norm 2

alfa

norm

alfa

norm

alfa

norm 2

alfa

ei ther

2 domains

30 collation points per domain

[-2, Ol O, 21

3 domains [-2, -1] [-1, I] 1, 2]
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TABLE 3
Best mappingfor 2 and 3 subdomains. In this table norm dp (respectively, norm 1, respectively, norm 2) is the

error in the maximum normfor thefunction h (respectively, thefirst derivative h’, respectively, the second derivative

epsi’Lon 0.1

0.4

0.4

0.01

0.09

0.08

0.001

-88,10

0.016

0.012

483

0.006

-102.8 10

0.3

1.8 10-6

0.03

0.04

-3
4.10

0.04

-42.6 10

0.005

0.004

0.04

1000

0.004

norm

alfa

norm 1

alfa

norm 2

alfa

norm

alfa

norm I

alfa

norm 2

alfa

either

2 domains

3 domains

50 collation points per domain

[-2, o! o, 2]

[-2, -11 [-I, 11 1, 21

Tables 2 and 3 show clearly that with the type of layer profile chosen the BL mapping is
better than a TL mapping. Let us notice that the same experiment on the hyperbolic tangent
profile gives comparable results for both decompositions. In Figs. 4 and 5 we can see the
density of discretization points in the physical space that corresponds, respectively, to the
results of Tables 2 and 3. These figures show that the width of the layer and the density of
collocation points in the layer are bigger in the 2 subdomain case than in the 3 subdomain
case.

Let us analyze asymptotically the action of the mapping of BL type when ot O (.v/-). It
is easy to show that in physical space, the image of the Chebyshev points in the neighborhood
of one end +1 (respectively, -1) collapses in the BL when the Chebyshev points in the
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domM
N:30

FIG. 4. Density ofpointsfor the best mappings with 2 subdomains.

domains
30

-0. 7 -0. 2 0.2 0.7
0.001

FIG. 5. Density ofpointsfor the best mappings with 3 subdomains.

neighborhood of the other end -1 (respectively, /1) spray out in the outer domain. Let
AXinner (respectively, Axuter) be the order of magnitude of the distance between two points
of the discretization in the layer (respectively, in the outer domain). One has"

O(/-) Axinne AxOUte
N2’ N2v/"

Therefore, this mapping meets the scaling required in the asymptotic expansion of h, i.e.,

ZXinner
8 AXuter.
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On the contrary, in the 3 subdomain case, we have:

Ol O(E) AXinner E AxOUte 1
N eN2’

therefore, the 3 subdomain case does not satisfy the stretching required by the asymptotic
analysis.

In the previous case, the size of each subdomain is of order 1, and we only use a mapping
inside a subdomain to solve the layer. But we can also use some subdomain ofe order thickness
to solve the same layer. We have obtained some good results using the 3 subdomain technique
when the size of the inner domain is of order e. However, in this later case, the accuracy is
very sensitive to the localization of the layer.

Remark. The adaptivity scheme relies on the fact that the minimization of a Sobolev type
norm gives the best value of the mapping parameter; a large number of numerical experiments
on the previous profiles in the one-dimensional case suggest the fact that the following Sobolev
norm denoted 12:

if_,, (L2f)2 ]1/2I2(f)
(1 X2) 1/2

dx

where L (1 x2)/2(d/dx), may underestimate the optimum value of c. We found better
approximation of c with the next order Sobolev type norm 14 [6]:

[f_l (l(L4f)2 ]1/2I4(JO
_X2)1/2

dx

For example, with a 2 subdomain strategy to solve a TL with e 0.1, when the optimum
cr is 0.4, one can get cr 0.3 with the a priori estimate based on I4, and ot 0.2 with the a
priori estimate based on I2. These examples show that an asymptotic estimation of the best cr
might be from the practical point of view as efficient as the use of a rigorous a priori estimate.
We found the same conclusion in the numerical experiments of the following section.

4.2, Strategy to adapt and split the domain. We illustrate our strategy to adapt and
split the domain on three singular perturbation problems.

4.2.1. A two point boundary value problem. Following a suggestion of R. J. O’Malley
[23], we apply the adaptive DD technique with pseudospectral approximations on the two
point boundary value problem:

ey" + (1 4y2)y 4y O,
(32)

y(0) 0, y(1) 1.

This singular perturbation problem has a shock layer of order e thickness around x 0.1; in
makes the structure of the BL at x rather complex:addition, the turning point at y

the mean layer thickness of this multiple layer is of order e/2 [23], but the approximation is
dominated by a boundary layer analogous to a shock layer of order e thickness.

A Godunov scheme applied to the corresponding time dependent problem:

(33)
ut + eUxx + (1 4u2)Ux 4u 0,

u(O,t) =0, u(1, t) -1,

u(x, O) Uo(X),
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converges to the solution of (32) when one includes in the numerical scheme the viscosity, i.e."

uT+l n n n

(34) At-- ui ui-1
AX

+ Ui+ -+" Fin+l/2AxF/l/2 -4u,
where Fin+l/2 is the flux of the Godunov scheme. We refer to 1 for the numerical analysis of
finite difference schemes that solve (32).

In our numerical experiment, we use as an initial condition Uo(X), a numerical approxi-
mation of the steady solution of (33) given by this finite difference scheme with x of order
1; Fig. 6 shows this initial condition interpolated to the pseudospectral grid; the finite differ-
ence scheme is used with one hundred points and one thousand timesteps. Figure 6 looks
good, however, since the numerical viscosity of the Godunov scheme interacts with the given
viscosity eUxx, the numerical approximation does not really solve for the layers with the
given e.

Intttat condition

FIG. 6. L. Abrahamsson and S. Osher problem with e 0.01 and e 0.001" initial condition obtain with
a modified Godunov scheme.

Figures 7 and 8 show the result of the adaptive DD method with e 0.01 and e 0.001.
Our numerical criteria for terminating the time marching scheme of the adaptive DD scheme
is"

n+l
max

u u7
At

o(e).

We use either the BL mapping (situation A) or the TL mapping (situation B) strategy to
solve the shock layer. We use a BL mapping to solve the BL at the right end ofthe interval. For
the initial condition Uo(X), the shock layer can be identified by computing the viscosity and/or
the residual. Basedon this criteria, we find an approximate location ofthe layer at Xo 0.09. In
situation A (respectively, B) we start with the DD: Q(0) 0, Q(1) Xo, Q(2) 0.7, Q(3)

(respectively, Q(0) 0, Q(1) Xo, Q(2) 2Xo, Q(3) 0.7, Q(4) 1). Then the best
interface positions are computed adaptively.

With e 0.01, we obtain for the steady solution:
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0.01 0.001

FIG. 7. L. Abrahamsson and S. Osher [1] problem with e 0.01 and e 0.001 steady sohtion.

=0.01

I---I I-I
0.3 o.v ..o 0.0 0.3 o.v ..o

(a) Oh’ (b) *b’

FIG. 8. L. Abrahamsson and S. Osher[1]problem with e 0.01 and e 0.001 second derivative ofthe steady
solution.

in situation A, Q(1) 0.170, c’ 0.324 with 12 collocation points per subdomain;
in situation B, Q(1) 0.0787, ot’* 0.58, Q(2) 0.1787, or2 0.42 with 12
collocation points per subdomains.

We notice that the adaptive choice of the interfaces are in agreement within of the choice
of the interface position based on the asymptotic criterion. The ratio of ot/c’* is also in
agreement with the asymptotic analysis of 4.1.

We have solved (32) with e 10-3; we obtain for the steady solution:
* 0.324 with 15 collocation points per subdomain;in situation A, Q(1) 0.170, c

in situation B, Q(1) 0.0787, c’* 0.58, Q(2) 0.1787, c2 0.42 with 12
collocation points per subdomains.
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We have checked that both situations A and B give comparable results, i.e., we have a very
good agreement on the maximum value of Ux and Uxx. Also, Fig. 8 shows that the interface
between subdomains do not induce significant numerical problems.

We notice that the adaptive choice of the interface is in agreement within e of the choice
of the interface position based on the asymptotic criterion. We notice that the subdomain
technique stretches e to roughly 10e for the first layer in the subdomain [Q(0), Q(1)]: that
explains why we found in our experiment a’, ct2 (respectively, c’*, c.) roughly in agreement
with the column e 0.1 (respectively, e 0.01) of Tables 2 and 3.

Finally, we have remarked that the adaptive choice of ot based on the a priori estimates
([6]) has the tendency to underestimate a. In our numerical experiment it is especially clear
for the last subdomain that solves the BL at the right end of the interval. In the adaptive
scheme, we had to impose a lower bound to the last ct. During the convergence process to
the stationary solution, we have seen that most of the time evolution occurs in the layers. It
suggests that we should use different timesteps for different subdomains.

4.2.2. Majda’s simplified model of reacting flow. We have applied the DD technique
with pseudospectral approximation to the initial boundary value problem (16) on the domain
[a, b] with the initial condition:

1 tanh() x
U(X, O) (gl gr) "- gr; -,

2 e

and the boundary conditions

U(a) U; U(b) Ur.

We report here some numerical experiments ofthe spiked strong detonation case discussed
in 2.3 with Ut 1, Ur -1.5, q0 2.375, and a -6, b 8. Our numerical scheme
solves explicitly the nonlinear convection term (u2/2)x; therefore, the timestep is limited by
the Courant-Friedrish-Levy (CFL) condition. We found it more accurate, robust, and easy to
adopt the two subdomain strategy to solve the reactive shock layer. Also, it is very convenient
and efficient to move the interface by tracking the maximum value of the Arrhenius term
qoe-l(u)Z. The numerical method solves the initial formation of the reactive shock layer
and then as increases, the solution converges to the travelling wave (17).

We have obtained a numerical error of order 1% on the maximum value of u and on the
speed of propagation of the travelling wave for e 0.1 (respectively, e 0.01) with 20
(respectively, 42) collocation points per subdomain (see Fig. 9, respectively, Fig. 10). We
observe that the method is conceptually very well adapted to solve the initial formation of
the layers as well as interaction of singularities. However, because of the CFL constraint and
because the minimum distance between two discretization points has to be of order less than
e in the layer, this method is computationally expensive when solving for a traveling wave.

Figure 11 shows the initial formation of a strong detonation.
We have also solved a weak detonation case (see Fig. 12) with Ut 1, Ur -0.4, and

q0 0.568.
A further step in our research is to implement a DD method that is a mixture of both

methods presented in this paper. Strong singularities as simple shock or reactive shock that
are easily identified can be solved by the first DD technique presented in this paper. Interaction
of singularities or initial layers may be solved by the adaptive DD based on pseudospectral
approximation methods. In addition, at each stage of the computation, we use asymptotic
analysis to select the best method.

Let us mention that to extend the method to solve problems in two space dimensions, we
may use DD to solve layers as well as the difficult problem of geometry due to the curvature of



DOMAIN DECOMPOSITION TO SOLVE LAYERS AND ASYMPTOTICS 887

4 6

FIG. 9. Strong detonation with e O. 1.

2

1.5

0.5

-0.5

-1

"1""-6 -4 -2 0 2 4 6 8

FIG. 10. Strong detonation with e 0.01.

the fronts. We expect both DD methods described here to be useful tools for parallel computing
of singular perturbed problem in two space dimensions. Finally, we shall illustrate an easy
use of asymptotics in the numerical computation of a nontrivial combustion problem.

4.2.3. A combustion problem with two thin flame fronts. We look for the long time
behavior of a thermal diffusive model of combustion with a two step reaction: Y -- X --P. We use as a test problem for our DD the following model see [24] with separate reaction
layers:

X, Xrr/Zl (K- 1/L1)Xr- DalXRl((R)),
(35) Yt Yrr/L2 (K- 1/L2)Yr + DalXRI((9) Da2YR2((9),

(gt (grr (K- 1)(gr + Da/2XRl((9) + Da2/2YR2((9).

This model is a system of reaction diffusion equation of dimension 3. Two equations give the
evolution of the concentrations for each component Y and X. The third equation gives the
evolution of the temperature (9. K is a given constant. Typically, for this class of problem
the small singular perturbation parameter(s) is (are) the inverse of the activation energy of the
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-1. 5

domains 32 col, Locatlon points domain
epslton 0.05
T,O.5

FIG. 11. Initialformation ofa strong detonation with e 0.05.

ueak detonat |on
=0.1
domains, 20

t=7

FIG. 12. Weak detonation with e O. 1.

reaction(s): consequently, the coefficients Da(1) and Da(2) are large numbers. The source
terms R1 and R2 are exponential nonlinearities given by the Arrhenius law. We refer to [24]
and [7] for the precise statement of the problem. This model belongs to the general model
problem (1) modulo eventually a rescaling for long time behavior.

Under the assumption of large activation energy, the asymptotic analysis of this model
indicates that the transition layers coincide with the sharp zones where the Arrhenius terms
are of the order one strictly. We base our choice to move the interfaces on this general criteria.
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In our numerical experiment, we take the Lewis number and activation energy to be the
same for each reaction. We have chosen the Lewis number to be one, and we have chosen
as a large activation number N=22. We compute the radial symmetric solution with a radius
bounded by 1 and 41. We know that the thickness of the two layers is of order (). Figure 13
gives an approximation of the steady solution.

1.1

FIG. 13. Pelaez problem: steady radial symmetric solution.

The strategy used to solve this problem is to use six subdomains: two of them are outer
domains and we use 2 subdomains to solve each layer with a boundary layer mapping. We
need 12 collocation points per domain. Figure 14 shows the Arrhenius source terms Dai Ri
for the first and second reaction. The distance between the maximum of each Arrhenius term
is in agreement with the distance predicted by the asymptotic analysis of Pelaez. Figure 15
shows that most of the dynamics happen in the combustion layers, as it should.

I)a

4. 0 11. 3’ 18. 7 213.

FIG. 14. Pelaez problem: Arrhenius terms.
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FIG. 15. Pelaez problem: graph of 104(un+l un)/At.

The very important point is the fact that we have chosen to fix the interfaces between the
subdomains by tracking the maximum value of the Arrhenius terms for each reaction: more
precisely, we impose Q(2)=Q(3)-l, Q(6)=Q(5)+l, Q(3) to be at the maximum of the first
reaction, Q(5) to be at the maximum of the second layer and Q(4)=(Q(3)+Q(5))/2. We update
the position of the interfaces depending on their speed. Our experiments suggest that for this
case, it is not necessary and, in fact, more difficult to adapt the position of the interfaces based
on the a priori estimates of 3.2. This experiment shows again on a nontrivial problem that an
asymptotic understanding of the nature of the problem can decrease the cost of adaptivity. The
numerical computation of this combustion problem can be extended in two space dimensions.
This joint work with A. Bayliss and B. J. Matkowsky is reported in [7].

Acknowledgments. The author is very grateful to A. Bayliss and B. J. Matkowsky who
introduced me in the field of adaptive domain decompositions with pseudospectral approxi-
mation. Thanks also to A. Harten and R. J. O’Malley who suggested that I study, respectively,
the Majda model and the turning point problem mentioned in this paper.
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LOCAL PIECEWISE HYPERBOLIC
RECONSTRUCTION OF NUMERICAL FLUXES

FOR NONLINEAR SCALAR CONSERVATION LAWS*
ANTONIO MARQUINA

Abstract. This paper constructs a local third order accurate shock capturing method for hyperbolic scalar
conservation laws, based on numerical fluxes with a total variation diminishing (TVD) Runge-Kutta evolution in time,
using the idea recently introduced by C. W. Shu and S. J. Osher for essentially nonoscillatory (ENO) methods. The
constructed method is an upwind conservative scheme that is local in the sense that numerical fluxes are reconstructed
without using extrapolation from the data of the smoothest neighboring cell. To design the method, a new concept of
local smoothing is introduced to prevent the increasing of total variation of the solution near discontinuities and to
achieve third order accuracy. The method becomes third order accurate in smooth regions of the solution, except at
local extrema where it may degenerate to 0(h3/2), thus giving better accuracy than TVD methods at local extrema.
The main advantage of this method lies on the property that is more local than that ofENO and TVD upwind schemes
of the same order, (and, thus, giving better resolution of corners, i.e., jumps in derivative), because numerical fluxes
depend only on four variables. Numerical experiments for scalar conservation laws one-dimensional (1 D) and two-
dimensional (2D) are presented, and they show that the author’s method is stable and behaves as an entropy-satisfying
method for nonlinear fluxes. This method becomes efficient since it is low cost and it is not sensitive to the Courant-
Friedrichs-Lewy (CFL) number.

Key words, nonlinear conservation laws, Runge-Kutta, total variation diminishing, essentially nonoscillatory

AMS subject classifications, primary 65M05; secondary 65M10

1. Introduction. In this paper, we consider numerical approximations to weak solutions
of the scalar initial value problem

(1) ut + f(U)x O,

(2) u(x, O) uo(x).

The initial data uo(x) are supposed to be piecewise-smooth functions that are either
periodic or of compact support.

Let u uh(xj, tn) denote a numerical approximation to the exact solution u(xj, tn) of
(1) and (2) defined on a computational grid xj jh, tn n At in conservation form:

(3) u =u
Atwhere y, the numerical flux is a function of 2k variables

nf(uj_k+ uj+/c),(4) fj+1/2
n

which is consistent with (1), i.e.,

(5) f(u u) f(u).
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892



PIECEWISE HYPERBOLIC METHODS 893

The total variation of a discrete solution is usually defined by

(6) TV(un) lu+ u I.
J

This is the total variation with respect to x of the numerical approximation uh(x, t) in (3)
considered as a piecewise-constant function defined by

(7) Uh (x, t) uj

for xj-1/2 < x < Xj+l/2 and nat < < (n + 1)At, where Xj+l/2 (j + )h.
We say scheme (3) is TVB (total variation bounded), if there exists a constant M > 0,

independent of h for 0 < < T (T fixed), such that

(8) TV[uh(., t)] <_ M. TV(uo).

If M 1, the scheme is called TVD.
The importance ofTVB and TVD methods relies on the fact that any refinement sequence

h O, uh has a subsequence hn, such that uh,, L 1-converges to a weak solution of (1) and
(2). The notion of the TVD scheme was introduced by Harten in [3], where he constructed
TVD schemes that in the sense of truncation error are high order accurate everywhere except
at local extrema, where they necessarily degenerate into first order accuracy, (see [2], [3], and
[7]).

To get high order accuracy in smooth regions, Harten, Osher, Engquist, and Chakravarthy
constructed ENO schemes that use adaptive stencils obtaining information from regions of
smoothness if discontinuities are present. The analysis and numerical experiments of these
methods can be found in [4]-[6]. However, the most efficient implementation ofENO methods
has been investigated by C.W. Shu and S.J. Osher in the remarkable papers [9] and 10], where
they reconstructed numerical fluxes from point values by applying the adaptive idea of the
ENO interpolation and using a TVD Runge-Kutta-type time discretization. Originally, ENO
schemes were based on the reconstruction of the solution from cell averages. The following
lemma (taken from 10]) establishes a useful relation between the numerical flux and the flux
of a solution to (1).

LEMMA 1.1 (Shu and Osher). Ifafunction g(x) satisfies

fx+(9) f(u(x)) -dx_ g() d,

then

f(u(x))x
g(x + ) g(x )

Lemma 1.1 implies that to approximate the numerical flux fj+l/2 to a high order accuracy,
it is enough to reconstruct g(xj+l/2) up to the same order. The reconstruction "via primitive
function" (see [5]) seems to be the most efficient one and it is used in 10] in an ENO fashion.

In this paper we construct a local third order accurate method by using a piecewise
hyperbolic reconstruction of the function g in (9) instead of the polynomial ENO interpolation
of the primitive function of g as in [10]. The evolution in time is performed by means of
the Shu-Osher third order TVD Runge-Kutta method (see 10]) computed by the recurrence
formula

i-1

(10) uj Olik tgj "- 3ik (--)
j+[ fj_1/2 1, 2, 3,

k=0



894 ANTONIO MARQUINA

where

n .(3) +1

with coefficients of Table 1. The one time-stepping procedure described in this paper is
assumed to be total variation stable for scalar 1D nonlinear problems under a suitable CFL
restriction

At
<iko(12) ,k=

h

and .0 is inversely proportional to max If’(u)l; as usual, (i.e., .0 max I/’(u)l is less than one
for this scheme). This stability cannot be proven for third order ENO or for our method,
but there is some theoretical and numerical evidence to indicate that the methods are indeed
stable as we shall see later (see [41-[61, [91, and [101 for details about ENO methods). The
obtained method is local in the sense that the numerical flux depends only on four-point values
in contrast with the corresponding third order accurate ENO that uses six-point values. When
discontinuities are present, some smoothing becomes necessary to prevent the increase of the
total variation of the solution. This is achieved in our method by means of a "preprocessing
of derivatives" carried out in every computational cell as explained in 2. The method is
constructed using the Roe entropy-fix framework as presented in 10]. It becomes third order
accurate in smooth regions except at local extrema where it may degenerate to O(h3/2) due
to the shifting of the fluxes and the monotonic character of the reconstruction, which may
degenerate into second order accuracy along the cell of transition at local extrema (see Tables
2 and 3). We present two piecewise hyperbolic reconstructions: the first one is satisfactory for
contact discontinuities and is unstable for nonlinear fluxes and consists of natural hyperbolas
without "preprocessing" ofderivatives; the second one is satisfactory for all fluxes and consists
of hyperbolas with "preprocessed derivatives." Concerning the method built from the second
reconstruction, the following features were found through numerical experiments (see 4):

(a) third order accuracy in smooth regions of the solution except at local extrema where
it may degenerate to 0(h3/2);

(b) correct position and speed of discontinuities;
(c) good resolution of linear discontinuities and jumps of derivatives, where the smearing

appears to be more local than in ENO methods and upwind TVD schemes of the same order
with a satisfactory behavior for high CFL (see Figs. (a), 3(c), and 6(c));

(d) The artificial compression method (see [10] and [11 ]) for linear discontinuities works
efficiently in 1D and 2D linear problems with low CFL (as in ENO methods) (see Figs. (c),
2(b), and 3(d)). The artificial compression method is a procedure used to sharpen linear
discontinuities in a way that preserves monotonicity.

TABLE
Third order TVD Runge-Kutta scheme (10).

Our method behaves as a TVB method, as the third order ENO method (as it appears in
10] with r=2), but we have not yet been able to prove this property. However, we have found
some theoretical evidence about that problem from a weaker property, which we called "local
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TVB property", satisfied by our method (and also by the above-mentioned third order ENO
method) and very easy to check. A maximum principle appears to be necessary to prove the
TVB property of the scheme.

The paper is organized as follows: 2 contains the reconstruction step, the complete
algorithm is presented in 3, and 4 contains numerical experiments including 1D nonconvex
Riemann problems, 1D and 2D contact (linear) discontinuities, and a Riemann problem for
2D Burgers’ equation.

Before going further we must pay attention to the following two issues.
(i) The upwind scheme presented in this paper (as well as the Shu-Osher ENO scheme)

is based on flux point values and is implemented for a uniform fixed grid. We alert the readers
who try to implement our scheme for adaptive grids by pointing out that we do not know if
our approach is still valid in that case. Some experiments for nonuniform fixed grids are still
under investigation.

(ii) We compare our scheme with the third order ENO scheme based on point values
introduced by Shu and Osher in [10] through numerical experiments. The reader must take
into account that the features encountered for our scheme are always relative to the order of
the method and the number of grid points chosen as well as to the spatial stepsize and the CFL
number. We point out that to be concise in our study, we omitted the comparison with other
remarkable shock-capturing methods such as the Colella and Woodward piecewise parabolic
method (PPM) ].

2. Piecewise hyperbolic reconstruction. The most important step in our method, as
well as in ENO methods, is the reconstruction step. Since we look for the reconstruction of
the function g in (9) up to third order accuracy in the sense of truncation error, we define the
grid data and the reconstruction procedures.

Let g(x) be a piecewise smooth function that is either periodic or of compact support.
We have defined a computational grid xj jh, j integer, h > 0, where the cells are

(13) Ci {x x1_1/2 < x < x]+1/2 },

where xj+/2 xj + -. Our grid data are (i) for every j the mean value of g(x) in Cj, vj is
given, i.e.,

fxTJ+1/2 g(se)dse.(14) vj--

-1/2

(ii) For every j, dj+/2 is given, which is either (xj+/2) or

{15) d +1/2 h

(dj+l/2 g’(xj+l/2) + O(h2)). For our purposes we suppose that (15) is satisfied all the time.
Let be a class of elementary functions. We are only concerned with third order ac-

curate reconstructions, i.e., for every j we must look for rj in ,, defined on Cj, such that

rj (x) reconstructs g(x) on Cj up to third order accuracy. When we say third order accurate
reconstruction, we mean that every time g(x) is smooth enough at x in Cj, then

(16) g(x) rj(x) O(h3).

To get consistent third order accurate reconstruction procedures from the grid data with
different classes of functions ,ql, we require that the following two conditions be satisfied for
every j:
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I’lxv+1/2 rJ(eS d,(17) vj -x_1/2

(18) dj+1/2 r(xj+1/2 ).

Taylor series expansion shows that (17) and (18) imply third order accuracy.
Our discussion includes the following two classes of elementary functions"
(i) The class of parabolas of the form

(19) pj(x) aj + bj (x xj) .at. () (x xj)2

defined on Cj. We denote this class by 9tt,.
(ii) The class of hyperbolas of the form

(20) rj(x) aj +
(x x) + e

defined on Cj. We denote this class by h.
We are interested in reconstructions with the following property.
DEFINITION 2.1. We say a method ofreconstruction {rj} ofg(x) is local iffor every j the

function rj depends only on vj, dj-1/2 and dj+l/2.
The simplest example ofa local third order method ofreconstruction is the local parabolic

reconstruction (LPR). Indeed, for every j there is a unique parabola of the form (17) defined
on Cj, and determined from vj, dj-1/2, and dj+l/2 by

(21) cj

(22) bj

(23)
h2

We use the following notations:

(24)

(25) d)

If dj is nonzero, then we define the adimensional parameter

(26) aj 2. dj

Obviously, we can also determine the parabola from vj, dj, and Dj through (21)-(23).
The reconstruction procedure is repeated at every timestep, and, therefore, the change

in total variation of the reconstruction must be controlled. The local total variation of the
reconstruction {rj} is defined by

(27) L TVj TV (rj),
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where TV(rj) means the total variation of the function rj(x) in the cell Cj. The size of
LT Vj determines locally the increasing of the total variation of the reconstruction. Then, we
introduce the following definition.

DEFINITION 2.2. A method of reconstruction is local total variation bounded (LTVB) if
there exists a constant M > O, independent ofh (depending only on the function g(x) to be
reconstructed), such that

(28) L T Vj < M. h for all j.

The LTV for LPR is

(29) TV(pj) - [dj-1/21 + [dj+l/2[ e(j)
2. Idy_1/2l. Idy+1/2
Idj/1/21 + Idj_1/21

where e(j) 0 if dj-1/2, dj+/2 > 0 and e(j) otherwise. If discontinuities are present in
g(x), then for some j, dj+/2 O(h-1), and therefore (28) is not satisfied for that j. Thus,
the LPR method is not LTVB. We have seen, through our numerical experiments, that when
using the LPR method for Burgers’ equation with smooth data with the algorithm of 3, the
total variation of the numerical solution blows up near discontinuities (when they appear).
The LTVB condition appears to be necessary for a method to own enough "smoothing" to deal
with discontinuities and to behave as a TVB method.

Thus we must look for methods of reconstruction satisfying Definition 2.2 to prevent the
increase of total variation. Since the total variation of the function g(x) on a cell Cj where it
is smooth depends essentially (up to O(h3)) on the size of dj+l/2 and dj-1/2 (this follows from
the trapezoidal rule), then to get local total variation bounded methods of reconstruction, it is
necessary to correct the values of dj+/2 and dj-/2, on every cell, preserving the third order
accuracy of the reconstruction. For this purpose we introduce the following definition.

DEFINITION 2.3. A numerical left derivative is afunction of2k + 2 variables (k > O)

(30) d/j dl(dj_k_ dj+k+1/2 ),

which is "consistent" in thefollowing sense:

(3 l at a_1/2 O(h.

The concept of numerical right derivative drj is defined analogously and satisfies

(32) drj dj+1/2 O(h2)

instead of (31). The numerical central derivative d] is also defined in the same way by using

(33) d] dj O(h2),

where dj is defined by (25). The numerical difference, D, is defined also as a function of the
same variables and the following consistency property:

(34) D] Dj O(h),

where Dj is defined by (24).
A consistent preprocessing ofderivatives is a set of pairs of lateral numerical derivatives

{dlj, drj defined as above associated to the grid data. A preprocessing is called local if the
numerical derivatives are functions of only two variables.
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A preprocessed reconstruction procedure is a third order method of reconstruction con-
sisting of functions chosen from such that for every j, (17),

(35) ab
and

(36) dry r(xy+1/2
are satisfied. We need consistency properties (3 I)-(34) since they keep preprocessed solutions
third order accurate.

Then we have the following theorem.
THEOREM 2.1. The polynomial ENO third order method of reconstruction "via primitive

function" ofthefunction g(x) is a nonlocal preprocessedparabolic reconstruction procedure
that is LTVB.

Proof. The following algorithm determines the lateral numerical derivatives in the ENO
third order method on a cell Cj.

if Idj_1/21 Idj/1/21 then

if IOl _< IO/-ll then

drj aj+1/2
else

ab +
else

dr;
if IDjl <_ IDj+I

alj dj_1/2
else

then

Thus, we determine the parabola (19) by substituting in (.21) and (22), dj-/2 and dj+2 by
dlj and dry, respectively. We denote that parabola by p;. Since the numerical derivatives
are functions of four variables, then this preprocessing is not local. On the other hand, let
us choose a number h > 0, such that there is at least two ceils between two jumps of g(x).
Since g(x) is a piecewise smooth function, it is easy to see that there exists a constant M > 0
depending only on derivatives of g in smooth regions, such that for all j, except for a finite
number of "isolated" j’s (for which dj+l/2 O(h-)),

Ida/1/21 M.

Thus, by the definition of the preprocessing, we have that for all j,

(37) Id/l + Idrjl <_ 4. M.

Therefore, according to (29) applied to p, we obtain

(38) LTVj TV(p]) < 4. M. h

and the ENO reconstruction will be LTVB. [3
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Next, we look at local piecewise hyperbolic reconstructions. For the class ,h, we have
no natural reconstruction procedure if local extrema are present in g(x) because hyperbolas
are monotonic. However, we can find a unique hyperbola rj of the form (20) in every cell Cj,
such that dj-1/e dj+l/9. > 0 satisfying (17) and (18). We say a cell Cj is a transition cell
if dj-1/e dj+i/e < O. Since we look for a hyperbola at every cell including transition cells,
we study more general conditions for the existence. For our purpose we need the following
simple lemma.

LEMMA 2.2. We consider the generic cell

Co= x’lx-xol_<
Let 0 be a real number between and 1. We set x (0) xo + O . Let vo be the mean value
ofg(x) in Co. Let d be a nonzero real number Then thefollowing statements are true.

1. The hyperbola

(39) / )ro(x)-vo+d.h.-, log
2+u(l+O) (x-xo)--.(O+)

with derivative

(40) r(x) d
h2

Ol2" ((X --Xo) - (0 +
is well defined according to the following restrictions on the range of values of the para-
meter ot

(a) if-1 < 0 < then +2o < ot < 1-
(b) if0 0 then 2 < ot < 2,
(c) ifO -1 then ot < 1,
(d) ifO then c > -1.

2. The mean value ofro(x) in Co is vo, i.e.,

(41) fxo+h/2 ro( d.u - dxo-h/2

3. The derivative ofthe hyperbola at x (0) is d:

(42) r(x (0)) d

4. Ifd is a nonzero real number, such that d. d > 0, and Ol is a real number, such
that -1 < O1 < and O1 #: O, then we can determine the value ofor by theformula

(43) ot (01 2_o).
such that

(44) r) (x (Ol d

Thus the hyperbola is completely determinedfrom v0, d, and d 1, when d. d 1 > 0, supposing
thatparameters 0 and Ol are given. Moreover, the derivative ofro(x) at the midpointx(----is

(45) rD (x (O+O1)) =sgn(d). (2"x/-[ [12



900 ANTONIO MARQUINA

5. We set dlo r(xo anddro r(xo+ ). Then the total variation ofthe hyperbola
on Co is

(46) r V(ro h. v/a o a o.
6. lfO 0 then the lateral values ofro are well definedfor -2 < ot < 2 by theformulas

(47) r0 (x0 + )=vo+d.h.o(t),
(48) ro xo- =v0-d.h.r/(-ot),

where thefunction 0 is defined as

(49) r(a) - log
2

(the function 0 is positive in -2 < o < 2 and has a removable discontinuity at o 0 by
defining 0 (0) ).

7. Let D be a nonzero preprocessed difference satisfying (34). Ifor defined by

2.d

satisfies the restrictions in (1), the hyperbola ro satisfies (42) and r’(x (0)) ---.
Proof The proof is straightforward.
First, we study the "most natural" local hyperbolic reconstruction (LHR) procedure. Since

our reconstruction is local, we restrict our discussion to the cell Co and the grid data of the
cell: vo, d-l and dl/2. To fit the hyperbola, we establish formulas to obtain d and ct with
0 0. The LHR algorithm computes for the generic cell Co the derivative at the point x0 and
the adimensional parameter ot from d-1/2 and dl/2. If Co is a nontransition cell, then the value
assigned to d is the average (45) and c is computed by means of (43); therefore, the hyperbola
obtained has as derivatives at the endpoints of the cell d-l and d/2. If Co is a transition cell,
we change the derivative with largest absolute value by the other one multiplied by h2, thus,
the reconstruction on this cell may degenerate to second order.

Let tol be a constant such that tol O(h2), e.g., define tol h2.

LOCAL HYPERBOLIC RECONSTRUCTION (LHR)

if (Id_1/2[ < tol) and ([d1/2[ < tol) then

d 0 and c 0

else

if (Id_1/21 _< tol) or (Co is a transition cell with Id1/2l <_ Id_1/2 I)

d=4.d1/2. ( h )21-
cg=21-h

l+h

else

if (Id1/2l _< tol) or (Co is a transition cell with Id_1/21 < Id1/21)

then

then
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else

d=4.d_1/2.( h )
1-h

d sgn(d_1/2).

if Id_1/21 < Id1/21

else

4.1d__ I.Id!

1_1/21+11/21+2.v/_ 1/2.1/2
then

In Table 2, we present the numerical order at each point for the lateral values of the
1. (1/2 + sin(2zrx))for0 < x < 1 usinghyperbola for the LHR method applied to the function

40 grid points. (In fact, we only show the numerical orders for the grid points between 0 and
0.5 because we have the same values for the other half interval.) We computed numerical
orders by applying extrapolation to the errors for 40 and 80 grid points. We have second order
accuracy on transition cells near local extrema with abscissa x .25. In Table 2 we also
included the pointwise errors of the right-side approximations.

TABLE 2
Numerical orders and pointwise errors ofthe LHR method.

Abscissa 40(right err.) 80(right err.) r. ord. 1. ord.

.025 .85.10-4 .10.10-4 3.02 2.99

.050 .94.10-4 .11 10-4 3.04 2.97

.075 .11.10-3 .13.10-4 3.06 2.95

.100 .13.10-3 .15.10-4 3.08 2.94

.125 .16.10-3 .19.10-4 3.10 2.92

.150 .21.10-3 .25.10-4 3.12 2.90

.175 .31.10-3 .34.10-4 3.17 2.88

.200 .55 10-3 .56.10-4 3.30 2.84

.225 .38.10-2 .14.10-3 4.79 2.73

.250 -.20.10-2 -.51 10-3 1.99 1.99

.275 -.50.10-3 -.75.10-4 2.73 4.79

.300 -.30.10-3 -.42.10-4 2.84 3.30

.325 -.21.10-3 -.28.10-4 2.88 3.17

.350 -.16.10-3 -.21.10-4 2.90 3.12

.375 -.13.10-3 -.17.10-4 2.92 3.10

.400 -.ll. 10-3 -.14.10-4 2.94 3.08

.425 -.94.10-4 -.12. l0-4 2.95 3.06

.450 -.85.10-4 -.11.10-4 2.97 3.04

.475 -.81.10-4 -.10.10-4 2.99 3.02

.500 --.81. 10-4 --.10. 10-4 3.01 3.01

In spite of the smoothing made on transition cells in LHR, the method of reconstruc-
tion is not LTVB, because for nontransition cells, Cj, such that dj+l/2 O(h-1), we have
that TV (rj) O (h 1/2) according to (46). However, this method of reconstruction works
satisfactorily for contact discontinuities when it is used with the Shu-OsherTVD Runge-Kutta
time evolution of 3. For nonlinear fluxes, the method becomes "unstable." According to our
numerical experiments, the LHR method shows that for nonlinear fluxes, more smoothing
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appears to be necessary and that the LTVB condition provides enough "smoothing" to prevent
excessive increasing of the total variation of the solution.

Next, we introduce a piecewise hyperbolic reconstruction with a local smoothing such
that the method of reconstruction becomes LTVB. We use the same structure as the LHR
method, but we assign a different value to the central derivative d (this is the preprocessing
we do). If Co is a nontransition cell, then we define d by

2.d l.d
(50) d -d__ +d_

which is the harmonic mean of d-l/2 and dl/2. Then the algorithm defines the hyperbola such
that its derivative interpolates d at x0 and the lateral grid derivative with smallest absolute
value. Since the harmonic mean is smaller in absolute value than (45), it is easy to see that
the hyperbola has a lateral derivative at the nonsmooth side smaller in absolute value than the
original one. Taylor series expansion arguments show that the preprocessing defined in this
way is consistent, since the harmonic mean provides an O(h2) approximation of the derivative
at x0. Thus, we have the complete algorithm.

LOCAL HYPERBOLIC HARMONIC RECONSTRUCTION (LHHR)
* tol O(h2)
if (Id_1/21 _< tol) and ([d1/21 _< tol) then

d 0 and c =0

else

if (Id_1/21 < tol) or (Co is a transition cell with Id1/2l < Id_1/2 I)

else

then

if (Id1/21 < tol) or (Co is a transition cell with Id_1/21 < Id1/2 I)

=-2.(+-l)
else

then

2.d__l .dl
d= d +dl

if Id_1/21 < Id1/21 then

else

Transition ceils are treated analogously to the LHR method, but use the harmonic mean
instead of (45). In Table 3, we show the pointwise numerical orders and pointwise right error
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for the LHHR method computed for the function used in Table 2 in the same way. We also
show the half interval because the obtained values are the same.

TABLE 3
Numerical orders andpointwise errors ofthe LHHR Method.

Abscissa 40(right err.) 80(right err.) r. ord. 1. ord.

.025 .90.10-4 .11 10-4 3.05 2.98

.050 .11. 10-3 .13. 10-4 3.07 2.96

.075 .13. 10-3 .16. 10-4 3.10 2.94

.100 .18. 10-3 .20.10-4 3.11 2.92

.125 .24.10-3 .27. 10-4 3.13 2.91

.150 .34.10-3 .38.10-4 3.16 2.89

.175 .52. 10-3 .56. 10-4 3.22 2.87

.200 .95.10-3 .94.10-4 3.35 2.83

.225 .41.10-2 .24.10-3 4.07 2.72

.250 -.20.10-2 -.51.10-3 2.00 2.00

.275 -.66.10-3 -.10.10-3 2.72 4.07

.300 -.39. 10-3 --.54. 10-4 2.83 3.35

.325 -.26.10-3 -.36.10-4 2.87 3.22

.350 -.19.10-3 --.26. 10-4 2.89 3.16

.375 -.15.10-3 -.20.10-4 2.91 3.13

.400 -.12.10-3 -.16.10-4 2.92 3.11

.425 -.10. 10-3 --.13. 10-4 2.94 3.10

.450 -.87 10-4 11 10-4 2.96 3.07

.475 -.81.10-4 --.10. 10-4 2.98 3.05

.500 -.82.10-4 -.10.10-4 3.01 3.01

Now, we show that the LHHR method is LTVB. We need the following lemma.
LEMMA 2.3. The range of values of the adimensional parameter for the LHHR

method is

(51) 2(,/ 1) < c < 2(q/- 1).

Proof For transition cells the proof is trivial. If Co is a nontransition cell, then we will
suppose that [d_1/2[ _< [d1/2[ (the other case is symmetric). Then the algorithm defines

dThus it is enough to prove that < 2 and this follows from d-l dl/2 > O. [-]

THEOREM 2.4. The LHHR method of reconstruction of the function g(x) is a local
preprocessed hyperbolic reconstruction procedure that is LTVB.

Proof Following the same argument used in Theorem 2.1, we can find a constant M > 0
such that for all j except for a finite number of "isolated" j’s (for which dj+/2 O(h-1)),
]dj+l/2l < M. From (40) if Cj is a nontransition cell and ]dj-1/2] < ]dj+l/2], then the
preprocessed derivatives at the endpoint of the cells are the following:

(52) dlj dj_1/2,
2 2

(53) drj=dj_1/2" (2-ct)
From (46) and Lemma 2.3, it follows that

(54) L TVj TV(rj) < 2. M. h.

The argument is similar for transition cells. U
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In theory, it is possible to choose other means (averages) between the harmonic mean and
(45) by giving methods of reconstruction that are LTVB, but we have not found any others
that are as computationally convenient as LHHR.

3. Piecewise hyperbolic methods (PHMs). In this section, we describe the algorithm
that is based on the first order Roe scheme [8], with the entropy-fix correction due to Shu
and Osher [10], for local piecewise hyperbolic reconstructions. This gives us what we call
PHMs. Since the evolution in time is performed by means ofthe third orderTVD Runge-Kutta
method (10) with positive coefficients (see Table 1), we have that the numerical solution at
every timestep is a convex combination of Euler forward time substeps (3). Thus, we restrict
our description of the algorithm to the computation of numerical fluxes fj+l/2 in (3).

Roughly speaking, the reconstruction procedure is integrated in (3), taking into account the
dynamics of the differential equation (1). Indeed, the numerical fluxes are reconstructed from
the upwind side (i.e., according to the direction of the wind), except that if the wind changes
direction at the cell (i.e., there is a "sonic point" at the cell), then a local Lax-Friedrichs
flux decomposition is performed. Thus, we have two alternative phases: upwindness or flux
decomposition. Flux decomposition is only used in cells containing "sonic points," and since
these points are isolated, the cost of the algorithm depends on the "upwindness phase." The
"upwind side" is determined according to the local sign of if(u) at Xj+l/2. In our case we use
the "Roe" speed

f(u+l) f(u)
(55) a+1/2

Uj+I Uj

to determine the sign of f’(uj+i/2). For a detailed explanation on the local Lax-Friedrichs
flux decomposition, we refer to 10]. We then have the following algorithm with the LHHR
method.

ALGORITHM PHM-REF

Step 1: Computation ofGrid Data
From uy we compute the grid data by means of:

(56) vj f(uy),

(57) a+ h

for all j.

Step 2: Local Preprocessing ofDerivatives
Computation of d(j) and otj using LHHR for all j.

Step 3: for every j do

begin

if if(u) does not change sign between u and u+ then

Upwindness Phase
Y/+’ 7v/ (Roe speed)(UP1) aj+

if a-j+1/2 >0 then
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else

else

(UP21) fj+1/2 vj + d(j) h O(j) (using (47))

(UP22) fj+1/2 vj+t d(j 4- 1). h. r/(-aj/t) (using (48))

Flux Decomposition Phase

(FD ) Mj+ maxuy u<,y+ If’ (u)l

(FD2) vk
+ 1 (vk 4- Mj+1/2 uTc ), k j 1 j, j 4-

v-vL k j, j + 1 FD3) +_1/2- h

(FD4) Computation of d+ (j) and af using LHHR from d+’s.

(FD5) f+ v + d+(j). h.

(Vk Mj+ u) k j, j + j + 2(FD6) v;
(FD7) d+-- h k=j,j+l

(FDS) Computation of d-(j) and f using LHHR from d-’s.

(D9) f- jl d-( 1). h" (-jl)

f+ + f-
end

If we use the LHR method instead of LHHR, we obtain another PHM method that we
refer to as CPHM-RE

Some remarks are in order here.
Remark 1. From the algorithm it follows that numerical fluxes are functions of four

variables. This is also true if we use any local reconstruction method instead of LHHR.
However, the third order NO reconstruction in this case (due to Shu and Osher 10]) give
numerical fluxes that are functions of six variables. That point is crucial to distinguish the
behavior between local and nonlocal upwind third order methods. As we will see in numerical
experiments, the spreading of "noise" coming from the singularities of the solution is clearly
reduced in local methods. Since "local smoothing" does not use second differences of the
data, then the "corners" of the solution Oumps in first derivative) are well preserved during
the evolution, as numerical experiments show (compare Figs. l(a) and l(b)).

Remark 2. The "pseudocode" that describes Algorithm PHM-REF was made for better
comprehension and it is not optimal in the sense of computational cost. In spite of obvious
improvements, the cost of the algorithm is a bit higher than third order ENO. The cost depends
on the computation of the first differences and the ealuation of the parameters d, , and the
fnction . To evaluate at values close to zero, it may be computationally convenient to use
a Pad6 approximant near zero because of the removable discontinuity at zero. On the other
hand, local methods constcted in this way are stable and accurate for high CFL constants
and also reduce computational cost.

Remark 3. To shaen contact discontinuities, we have used the Yang aificial compres-
sion method (sec 11] that is applicable to the PHM-REF Algorithm in the version given by
Shu and Osher in 10, p. 42, Algorithm 3.2, formula (3.2)]. We have found that this method
works efficiently for "small" CFLs. The interested reader can find details about that method
in [11].
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(58)

Remark 4. Scalar multidimensional initial value problems of the form

d

ut + fi(U)x, O,
i=1

(59) u(x, O) Uo(X)

are approximated by applying the 1D procedure to each of the terms f (U)xi in (58) keeping all
other variables fixed. Then the Runge-Kutta method (10) is used with CFL numbers shrunk
by a factor d-1. Indeed, a classical CFL restriction

is replaced by

At
max If’ (u)l < .0h ,,

d

At max/. /f (u)l _< o.

4. Numerical experiments. We combine the algorithms PHM-REE CPHM-REE and
ENO3-REF (described in 2), with the LHHR, the LHR method, and the Shu-Osher third
order ENO reconstruction methods (described in 3), respectively. If we add the label AC,
that means that the Yang artificial compression method in the version of Shu and Osher (see
10]) has been applied. We have run most examples for different CFLs and time levels, but

here we only include what we consider as representatives. In Figs. 1-6, circles are approxi-
mate numerical solutions and solid lines are piecewise-linear functions that interpolate exact
solutions computed either at grid points or at points of a finer grid. The 3D figures represent
level curves of the numerical solution.

Example 1. To study the accuracy of our methods, we consider the scalar linear equation

(60) ut + ux O O <_ x <

with the 1-periodic smooth initial data

1(1 )(61) u(x, O) / sin(2zrx)

We have solved (60), (61) at with CFL 0.8 and the refinement sequence N
20, 40, 80, 160 grid points for the PHM-REF and CPHM-REF methods, respectively, and in
Table 4 we show the corresponding Lo-errors and L -errors that compare with the exact
solution. We observe that both methods are O(h3/2) accurate in the L-norm because of the
loss of accuracy at local extrema. In Table 5, pointwise errors and numerical orders r20 and
r40 are shown for the method CPHM-REF computed by Richardson extrapolation, on 20 and
40 grid points taken as starting grids, respectively. We list only the values corresponding to
the first half interval because the errors and numerical orders are symmetric. Figures for the
PHM method are similar. Thus, the behavior is clearly better than TVD methods.

Example 2. We consider the following periodic initial value problem:

(62) ut+ux=O -l_<x < 1,

sin(rr x+0.3) if -0.3_<x_<0.3,(63) u(x, O)
0 otherwise.
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FIG. 1.

TABLE 4
ofut + Ux O, 0 < x < u(x, O) 1/2 (1/2 + sin(2zrx)) at and CFLNumerical sohltion 0.8.

Loo-error
N PHM-REF CPHM-REF
20 6.45.10-2 5.14.10-2

40 2.36.10-2 1.79.10-2

80 8.60.10-3 6.30.10-3

160 3.10.10-3 2.20.10-3

L -error
PHM-REF

2.53.10-2

6.90.10-3

1.70.10-3

5.32.10-4

CPHM-REF

1.80. 10-2

4.50.10-3

1.10.10-3

3.39.10-4

We solve (62), (63) at t=2 and CFL 0.8. In Table 6 we list the Loo-error and L 1-error
for a refinement sequence with N 20, 40, 80, 160 for PHM-REF and CPHM-REF methods,
comparing with the exact solution. We observe that both methods retain first order accuracy
in the Loo-norm in spite of the presence of two jumps in the derivative of the solution, which
shows the good resolution ofcorners in both methods. In Table 7 we show pointwise errors and
numerical orders r2o and r40 computed at 20 points following the same method as in Table 5.
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(b): PHM-REF-AC, (65), 100 points, t--4.0, CFL=0.2

FIG. 2.
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(d): ENO3-REF, (68), 100 points, t=0.04, CFL=0.05

TABLE 5
Numerical orders r2o and r4o for the CPHM-REF method with the periodic smooth data (61) at and

CFL 0.8.

Abscissa 20 40 80 160 r2o r4o

.00 .66.10-2 -.10.10-3 .67.10-5 -.92.10-6 5.96 3.80

.05 -.65.10-2 .46.10-3 -.25.10-4 -.36-10-5 3.85 4.49

.10 -.11.10-l -.20.10-2 .59.10-4 -.74.10-5 2.21 4.94

.15 .20.10-2 -.55.10-2 -.39.10-3 -.22.10-4 .56 3.76

.20 .32.10-l .33.10-2 -.18.10-2 -.48.10-3 2.50 1.98

.25 .52.10-l .18.10- .63.10-2 .22.10-2 1.54 1.52

.30 .32.10- .50.10-2 -.18.10-2 -.67.10-3 1.99 2.60

.35 .85.10-2 -.61.10-2 -.96.10-3 -.14.10-6 1.50 2.43

.40 -.15.10- -.41.10-2 .10.10-3 -.96.10-5 1.38 5.21

.45 -.15.10- -.38.10-3 -.33.10-4 -.44.10-5 5.40 3.61

.50 -.66.. 10-2 .99.10-4 -.82.10-5 -.10.10-5 5.96 3.90



PIECEWISE HYPERBOLIC METHODS 909

!.5

0.5

-0.5

-1

-I.5

-1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

(a): PHM-REF, (69), 100 points, t=0.2, CFL=0.05 (c): PHM-REF, (71), 40x40 grid points, t--2, CFL=.4
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(b): ENO3-REF, (69), 100 points, t=0.2, CFL--0.05

Fit3. 3.

(d): PHM-REF-AC, (71), 40x40 grid points, t=2, CFL=.

Numerical orders marked with an asterisk (.) correspond to transition points of jumps of
the first derivative of the solution and are meaningless. We have tested our schemes with
longer time levels, observing that both methods are not sensitive to the CFL number. We
illustrate in Fig. l(a) the behavior of PHM-REF for CFL 0.8 at t=4. It compares with
that of the Shu-Osher third order ENO method shown in Fig. (b), showing the value of the
localness for upwind schemes. Figure (c) shows the PHM-REF method with the Yang artifi-
cial compression, (see 10] and [11 ]) where a lower CFL number is used for such a filter to
be efficient.

Example 3. We consider the following periodic initial value problem:

(64) ut+ux=0 -1 <x < 1,

(65) if-0.2 < x < 0.2,u(x,0)= 0 otherwise.

We solve (64), (65) at t=4. Figures (d) and 2(a) show the solution with CFL 0.2 for the
CPHM-REF and PHM-REF, respectively, and we can observe that discontinuities smear less
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FIG. 4.
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(d): PHM-REFAC, (71), Section $x=0.45. t=2, CFL=.I

TABLE 6
( x+’3)for-0.3 < x < 0.3 and u(x, O) 0Numerical solution ofut + Ux O, -1 < x < u(x, O) sin o.-EK-

otherwise, at 2 and CFL 0.8.

Loo-error
N PHM-RE CPHM-REF

20 4.03.10-I 3.68.10-I

40 1.62.10-I 1.51.10-I

80 8.40.10-2 8.06.10-2

160 4.96.10-2 4.72.10-2

L -error
PHM-REF CPHM-REF
2.01.10-I 1.82.10-I

6.84.10-2 5.92.10-2

2.96.10-2 2.69.10-2

1.34.10-2 1.19.10-2

for CPHM-REF than for PHM-REE The artificial compression method is used for PHM-REF
(with CFL 0.2) to solve the same problem. The effect of such a filter is shown in Fig. 2(b).

Example 4. PHM-REF solves nonlinear scalar conservation laws with a convex flux and
different initial data and, therefore, we omit any comment or picture about this case. To test
the PHM-REF scheme with more difficult problems, we consider two Riemann problems for
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(a): CPHM-REF, (71), 40x40 grid points, t=16, CFL=.4
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(c): CPHM-REF, (72), Section $x=05, t=2, CFL=.2
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(b): CPHM-REF, (71), Section $x=05, t=16, CFL=.4
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(d): CPHM-REF, (72), Section $x=-0.555, t=2, CFL=.2

the following nonconvex flux example.

(66) ut + (f(U))x O,

where

(67) f(u) (u2 1)(u2 4)

with the following initial data:

(68) u(x,O)=-3 ifx<O and u=3 ifx >0,

(69) u(x,O)=2 if x<O and u=-2ifx>O.

For the Riemann problem (68), instead of the expected sonic rarefaction fan that appears
for convex fluxes, a nonconvex sonic stationary shock at x 0 is developed. Secondly, a
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(a): CPHM-REF, (72), Section $y--05, t=2, CFL=.2 (c): CPHM-REF, (72), 40x40 grid points, t=2, CFL=.2
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(b): CPHM-REF, (72), Section $y=-0.45, t=2, CFL=.2

Fro. 6.

(d): PHM-REF, (73), (-1,-0.2,0.5,0.8), 50x50 points, t=l

nonconvex sonic centered rarefaction fan breaks the initial discontinuity in two for the problem
(69) when it evolves in time. A complete discussion about the exact solution to these problems
can be found in [6]. Our scheme solves well both problems. In Figs. 2(c) and 2(d) we compare
the numerical resolution of (68) with PHM-REF and ENO3-REF, respectively, at 0.04
with CFL 0.05, and we observe that the shock (mainly the right side) is less viscous for
our method than for ENO3-REE The Riemann problem (69) is also solved for both methods
at 0.2. The numerical solutions are represented in Figs. 3(a) and 3(b), observing that
PHM-REF better solves the nonconvex sonic rarefaction.

Example 5. We consider the 2D linear equation

(70) ut + blx "+" Uy 0 <_ x, y < 1,

where u is 2-periodic in x and y. To study the behavior of the PHM-REF scheme with contact
discontinuities and corners in 2D, we test the following two initial data:

1 if(x,y) 6 S,(71) u(x, y, 0) 0 otherwise,
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TABLE 7
Numerical orders r2o and r4ofor the PHM-REF method with the periodic data (63) at 2 and CFL 0.8

abscisa 20 40 80 160 r2o r4o

-1.0 -.24.10-4 .60.10-5 .66.10-7 -.43.10-9 2.35 6.49
-.90 .41.10-3 .58.10-4 .24.10-5 .87.10-8 2.66 4.55
-.80 .68.10-3 .13.10-3 .94.10-5 .13.10-6 2.16 3.72
-.70 .ll. l0-2 .23. l0-3 .27. l0-4 .ll. 10-5 2.08 2.97
-.60 -.59.10-2 .34.10-3 .59.10-4 .55.10-5 4.46 2.42
-.50 -.44.10-l -.23.10-3 .94.10-4 .16.10-4 7.09 2.06
-.40 -.14 -.24.10-1 -.22.10-2 .26.10-4 2.38 3.29
-.30 -.31 -.16 -.84.10- -.50.10- 1.01" 1.12"
-.20 .78.10-2 .87.10-2 .37.10-l .62.10-2 -5.15" -.12"
-.10 .28 .67.10-1 -.14.10- -.46.10-2 1.38 3.06
.0 .40 .15 .47.10-l .17.10-1 1.23 1.85
.10 .29 .83.10- -.10.10- -.67.10-2 1.14 4.66
.20 .29.10-1 -.59.10-2 .23.10-1 .35.10-2 .29* .57*
.30 -.32 -.16 -.76.10-l -.46.10- .85* 1.47"
.40 -.14 -.19.10- -.11.10-2 -.29.10-4 2.74 4.07
.50 -.43.10-1 -.89.10-3 -.81.10-4 -.96.10-5 5.71 3.49
.60 -.80.10-2 -.30.10-3 -.36.10-4 -.25.10-5 4.85 2.97
.70 -.16.10-2 -.18.10-3 -.15.10-4 -.51.10-6 3.05 3.56
.80 -.95.10-3 -.95.10-4 -.51.10-5 -.77.10-7 3.25 4.16
.90 -.48.10-3 -.39.10-4 -.15.10-5 -.87.10-8 3.56 4.65
1.0 -.24.10-4 .60.10-5 .66.10-7 -.43.10-9 2.35 6.49

where

{ 1}S-- (x,y)’lx- Yl < --, Ix + yl < --is a unit square rotated by an angle of (due to Harten, see [9, Example 3]):

(72) w with to 2(x2 + 2y2) if to < 1,u(x, y, 0)
0 otherwise.

For both examples we have used Ax Ay and a grid of 40 x 40 points. We
solve (71) at 2 using the PHM-REF scheme to study the smearing and stability of our
method and the effect of artificial compression. In Figs. 3(c), (d) and 4(a)-(d), the numerical
resolutions are displayed including three dimensional plots and cross sections x 0 and
x 0.4. In spite of the smearing near discontinuities, we have observed that the symmetry
and the shape of the function are relatively well preserved as well as the efficiency of the
artificial compression relative to each cross section. On the other hand, we remark that the
smearing near discontinuities for the central cross sections (x 0) is more asymmetric than
the one observed for lateral cross sections. For some time we have observed the good behavior
(concerning smearing and stability) of the CPHM-REF method and we have run it for (71) at

16 (8 periods); the numerical results are displayed in Figs. 5(a) and 5(b).
The second initial data (72) is an elliptic paraboloid truncated by the (x, y)-plane. We use

this example to study the smearing of corners (jumps in first partial derivatives) in different
directions. Figures 5(c) and 5(d) and 6(a)-(c) represent the numerical solution for the CPHM-
REF method at 2 with CFL 0.2 including a three-dimensional (3D) plot and cross
sections x 0, y 0, x -0.55, and y -0.4. In this case, we observe that our method
smears less in the x-direction than in the y-direction due to the asymmetry of the initial
function, and this phenomenon makes the cross sections less accurate than it is expected. For
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lateral cross sections, the loss of accuracy at local extrema is also due to the smearing (of the
jump in the partial derivative) coming from the other direction and vice versa.

Example 6. We solve a Riemann problem for the 2D Burgers’ equation

(73) Ut -- () -" () --0
x y

with the following Riemann data:

(74)

u ifx > O,y> O,

u(x,y,O)--
u2 ifx <O,y>O,

u3 ifx <O,y<O,

u4 ifx >O,y<O.

We represent a 2D Riemann data by a four-component vector (ul, U2, /’/3, U4), defining a
step function by means of (74). There are eight essentially different solution types depending
on the order of the numbers ui’s, (see [12] for details). We have tested the PHM-REF scheme
and we have observed that it converges, to the entropy solution with good resolution in all
eight cases. As a sample, in Fig. 6(d) we display the solution of the Riemann problem
corresponding to the vector (-1,-0.2, 0.5, 0.8) illustrating the resolution of a shock that is
not aligned with the computing grid. The experiment was performed for 50 x 50 grid points
using Ax Ay .

5. Concluding remarks. PHM upwind schemes based on fluxes and the Shu-Osher
third order TVD Runge-Kutta method designed for scalar conservation laws seemed to work
very well in our preliminary numerical tests. Two main advantages with respect to the third
order ENO scheme based on fluxes were found: PHM upwind schemes are not sensitive to the
CFL number and they are more local in the sense that numerical fluxes depend on four values.
In spite of the loss of accuracy of our schemes at local extrema where they may degenerate
to O(h .), according to our numerical experiments, the behavior of the PHM schemes in
presence of discontinuities is stable and the viscosity appears to be lower than that of ENO3-
REE To design our schemes, two reconstruction procedures based on piecewise hyperbolic
approximations have been introduced and tested. The first procedure works satisfactorily with
linear discontinuities and is unstable for nonlinear fluxes. The second procedure appears to be
stable for nonlinear scalar conservation laws according to our experience. Some theoretical
evidence about the stability of the second procedure was presented in 2.
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A DISPERSION ANALYSIS OF FINITE ELEMENT METHODS FOR MAXWELL’S
EQUATIONS*

P. B. MONK AND A. K. PARROTT

Abstract. A dispersion analysis ofsix different finite element methods for approximating Maxwcll’s equations in
space is presented. The study is limited to two space dimensions and triangularelements, but all the methods considered
can be generalised to three dimensions using prismatic elements. Spatial grids consisting of both equilateral and fight
triangles are considered.
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1. Introduction. In this report we shall use a dispersion analysis to compare a variety
of different finite elements methods for the spatial discretization of Maxwell’s equations. To
simplify the computations we shall limit ourselves to considering a two-dimensional model
problem, and we shall also consider only triangular elements (see [9] for similar, but less
detailed, results on quadrilateral elements).

The two-dimensional Maxwell equations considered here govern the behaviour of the
electric field E (El(X, t), EE(X, t)) and the scalar magnetic field H H(x, t) (where
x (Xl, x2) E R2). Precisely, the fields satisfy the following system:

(1 a) Et x H 0 in R2,
(lb) Ht + V x E 0 in R2,

where Et denotes the time derivative ofE (and similarly Ht) and the two curls are defined by

OH r OE2 OE1
(2) V x H Oy’ Ox Oy

In (1), we have set the constitutive parameters e and/z to one so that the speed of light for
these equations is unity.

To specify uniquely a solution of the Maxwell system (1), initial and boundary conditions
(or conditions at infinity) are required. However in a dispersion analysis one is interested in
plane wave solutions of the equations, and boundary or initial conditions are ignored. For a
standard dispersion analysis of the continuous system (1) we seek solutions of the form

(3) E Eo exp(i (k. x ot)) and H H0 exp(i (k. x tot)),

where to, k (kl, k2), E0 and H0 are independent ofx and t. Substituting for E and H in (1)
we find that there are three possible values of to for any given value of k:

(4) to Ikl, to -Ikl, and to 0.

The relation between to and k is called the dispersion relation. When to : 0, the wave vector
k is orthogonal to Eo (so that E0 k 0) and the electric field is divergence free. For the

*Received by the editors October 13, 1992; accepted for publication April 30, 1993.
Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716 (monk@math.udel.

edu). The research of this author was supported in part by a grant from Air Force Office of Scientific Research.
Oxford University Computing Laboratory, Keble Road, Oxford OX1 3QD, England (kevin.

parrott@comlab.ox.ac.uk).
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stationary solution (when o 0), the magnetic field is zero (H0 0) and k x E0 0. In this
case the electric field is curl free.

From the dispersion relation, we can easily compute the phase speed of the wave c
co/Ikl and the group velocity of the wave Vg Tko). Of these the phase speed (which is
exactly unity for the continuous problem) is easier to compute, but the group velocity is more
important since it governs the velocity of energy transport in the system [20].

In analyzing the dispersion behaviour of numerical schemes for approximating (1), we
suppose that the plane RE is tiled by an infinite uniform triangulation. Then, for a given
finite element method, we can compute the equations satisfied by the degrees of freedom of
the method for the given mesh, and we seek plane wave solutions of the discrete equations.
The dispersion relation for the discrete problem shows how plane waves will propagate in the
discrete problem.

Computation of the dispersion relations reported in this paper was carried out using
Mathematica.

2. Discretization. The mesh we shall use is the infinite uniform mesh generated by the
triangle with vertices (0, 0), (h, 0), and (a, b)h, where (a, b) is fixed for any given family of
meshes and h is an overall scale factor for the size of the triangles in the mesh. Equivalently,
the mesh is generated by translates of the "unit" quadrilateral with vertices (0, 0), (h, 0),
((a + 1), b)h, and (a, b)h (made up of the two triangles with vertices (0, 0), (h, 0), (a, b)h,
and (h, 0), ((a + 1), b)h, (a, b)h). A portion of the mesh is shown in Fig. 1. On the given
mesh, we can construct a finite element discretization of Maxwell’s system by using a variety
of combinations of finite element spaces for the electric and magnetic fields.

((a- 1)h,bh) (ah,bh) ((a+1)h,bh)

(-h,0) (0,0) (h,0)

(-(a+ 1)h,-bh) (-ah,-bh)

FIG. 1. A portion of the infinite uniform mesh used in this paper. The mesh is generated by translates (and
rotated translates) ofthe triangle with vertices (0, 0), (h, 0), and (a, b)h.

We select a set of vector basis functions {b oo}i=1 for the electric field, and a set of scalar
basis functions {apj }j=l for the magnetic field. Then the approximate electric field denoted Eh
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and the approximate magnetic field denoted Hh are given by

Eh(x, t) E Ei(t)Oi(x) and Hh(x, t) E ttj(t)apj(x),
= j=

where the time-dependent coefficients {Ei} and {Hj} must be determined. Let us denote
by (u, v) fR u v dA. Using the method of weighted residuals or Galerkin method,, we
determine the unknown coefficients as the solution of the following system of differential
equations:

c dEi(Sa) / ---()i, k)- E Hj(1/tj, V x k) 0 k _. 1,
j--1

(5b) d
j=l i=1

Notice that in deriving (5a) we have integrated the curl term by parts. Only the electric
field basis functions {bi need to have a well-defined scalar curl, whereas the magnetic basis
functions {j need not possess any global derivatives and so can be entirely discontinuous
across element boundaries. The requirement that V x qi be well defined implies that the
tangential component of each of the basis functions must be continuous across interelement
boundaries 14]. Thus even the basis {bi does not need to consist ofcontinuous elements. We
remark that even though (5) appears to involve infinite sums, the fact that the basis functions
have small support implies that at a given point x, all the sums involve only a small number
of terms.

In describing the various finite element schemes, we shall make specific (but nonunique)
choices for the degrees of freedom of each pair of spaces (one for the electric field and one
for the magnetic field). The degrees of freedom then imply a particular basis for the finite
element space. However, the dispersion relations (and the solution ofthe discrete finite element
problem) do not depend on the choice of degrees offreedom provided the choice is conforming
and unisolvent for the particular finite element space in question. Thus we can simply choose
a convenient set of degrees for each space.

In the next section we shall describe some different constructions ofthe basis functions for
Eh and Hh We note that we need only describe the basis functions and the degrees offreedom
on a single triangle, since all the finite elements under consideration are defined elementwise.

3. Finite element spaces. In this section we shall present the finite element schemes
analyzed in this paper. We start with the simplest case of continuous linear elements.

3.1. Linear-linear elements. The simplest choice for the finite element spaces for dis-
cretizing E and H is to use standard continuous piecewise linear elements for both fields.
Thus, on a given triangle K, the electric field is linear and has standard degrees of freedom.
If P denotes the set of linear polynomials, then

Enlr (P1)2

and the degrees of freedom (unknowns) are the values of the vector field at the mesh vertices.
We denote the set of electric degrees of freedom on triangle K by E and we write

Zg {Eh(ai), <_ < 3},
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where ai, 1 _< _< 3 are the coordinate vectors of the vertices of triangle K. When we describe
other sets of elements, we shall simply give the set of basis functions and the set of degrees of
freedom.

For the magnetic field, we also use continuous piecewise linear elements so that on each
triangle K:

HhlK P and Zrn {Hh(ai), < < 3}.
The arrangement of degrees of freedom are shown in Fig. 2. It is clear that in this uniform
mesh all vertices are equivalent in the sense that the same equations will hold at each vertex.
Thus, to compute the dispersion relation we need only compute the equations for E1 and HI.
If we denote by Ei (Eil, Ei2), trivial computations show that

(6a)

(6b)

h- H + -d H2 + H3 + H4 + H5 + H6 + H7)

(() ( ) (o+1)2a- a,-2 E31 -+- E32- E41 E42+ b E21 + 2E22 + b b

(2a- 1) (a-2) (a+l))b
E51 2E52

b
E61 E62 q- b E71 -t-- E72 0,

h Ell q- (E21 q- E31 d- E41 + Es1 + E61 + E71)

3((1-1 2a (2 a)- (a+l (2a-1b ) 92+ b
93t- 6) 4+ b ) 95

(a-2) (a+l))-F
b

H6- b H7 =0,

h El2 d-- (E22 + E32 + E42 -t- E52 -t-- E62 -t- E72)

1
(6c)

3
(-2H2 H3 + H4 + 2H5 + H6 H7) 0.

Equations (6) have one important feature: the terms multiplying the time derivatives are quite
simple and do not involve any geometric information (apart from the number and area of
the triangles meeting at a vertex). This suggests (as we shall see later) that the linear-linear
element family may be mass lumped in a simple way.

The linear-linear scheme described above is a two-dimensional generalisation ofthe lowest
order spline-Galerkin scheme of [19], [1 ]. Given the very high order of convergence of the
one-dimensional spline-Galerkin scheme for the wave equation (O(h4) at the meshpoints),
one might hope that some of these accuracy properties will carry over to the two dimensional
case (this will certainly happen if we use a tensor product method on squares, but we are using
triangular elements).

To compute the dispersion relation, we substitute for E and H in (6) using (3). The
resulting matrix eigenvalue problem gives 09 in terms of k. For each triangulation (i.e., each
choice of (a, b)) we obtain three possible dispersion relations giving co as a function of
and h (see (4) for the continuous case). We report results for two triangulations. The first is
when the triangles are equilateral so that (a, b) (1/2, //2). Then if we define j kh we
obtain that

1 2 2 I- higher order terms(7) (coh)2 12 -1- 22 16 4 2 6
240 32 160
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E4 E 3

(ah,bh) ((a+1)h,bh)

E5 E E2

(0,0) (h,0)
H H2

E6 E7

Magnetic degree of freedom

Electric degree of freedom

H6 H7

FIG. 2. Notation used in the discretization ofthe electric and magneticfields using continuous piecewise linear
elements. The degrees offreedom.for thefields are associated with the vertices ofthe triangles, and the electric degree
offreedom is a vector (so Ei Ei (E/l, E/E)).

(the other root is co 0 as expected). The above expansion for 032 shows that co Ikl + O(h4)
so the dispersion relation is approximated to fourth-order accuracy. This is extremely accurate
given that we are using linear elements. More remarkably, this fourth-order accuracy is also
seen on a rather anisotropic mesh consisting of right-angled triangles. For this triangulation
we choose (a, b) (0, 1) and obtain the following dispersion relation:

152 4 2 5 6 - higher order terms.
36 36 36 36 90

Again the dispersion relation is approximated to fourth order in h.
The Taylor series for co given above show the behaviour of co close to k 0. In Fig. 3(a)

we plot the phase speed for the linear-linear elements as a function ofj on equilateral triangles
(we plot phase speed since for some other elements considered in this report we were unable
to obtain the dispersion relation in closed form and so could not compute the group velocity
in all cases). In Fig. 4(a) we plot the phase speed on the right triangle mesh. The contour lines
in these figures are 0.02 apart, so that the size of the region in the contour map containing the
origin corresponds to those values of (and hence k and h) in which the phase speed differs
by at most two percent from the exact value. This arbitrary value is chosen so that the relative
accuracy of different methods can be compared visually.

We can conclude that from the point of view of dispersion, the combination of continuous
linear-linear elements is very powerful. However, dispersion analysis does not provide infor-
mation on the behaviour ofthe numerical scheme at material interfaces or boundary conditions.
Let us point out that a disadvantage of the linear-linear scheme is that the standard perfect
conducting boundary condition is tricky to implement and that the finite element scheme must
be modified at interfaces where there is a jump in e (since the electric field is not continuous
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2.5

2.0

o.ot,,,..,
0.0 0.$ 1.0 1.5 2.0 2.5 :).0 0.0 0.$ 1.0 1.5 2.0 2.5 3.0

k,h

0.

2.6 2.6 0")2

(c) ’’s (d) "

It, k,

FIt3. 3. Contourmaps ofphase speederroras afunction of= khforfive ofthefinite element schemes considered
in this report. Ofcourse the exact phase speed is always unity, h this case the grid is a uniform mesh ofequilateral
triangles. The contours are 0.02 apart (2% of correct speed). In parts (a) and (c)-(e) the computed phase velocity
is less than the real phase velocity (at least when Il is small enough). Key: (a) linear-lhear, (b) linear-constant,

(c) edge( 1)-constant, (d) nonconforming constant (modified), and (e) edge( 1)-linear. Here edge(1) refers to thefirst
type edge elements described in 3.3.



922 P.B. MONK AND A. K. PARROTT

(e)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

k,h

I///

oo! \,,
0.0 0.5 1.0 1.5 2.0 2.5 3.0

kh

(f)

0.0 O.S 1.0 1.5 2.0 2.6 3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

k,h

FIG. 4. Contour maps ofphase speed errorfor the sixfinite element schemes considered in this report, h this
case the grid is a uniform mesh of right-angle triangles. Here we plot c4(x cos(r/4) + y sin(zr/4), -x sin(rr/4) +
ycos(zr/4)) against x and y. This rotation is chosen to displayfully the phase speedfor the symmetries in this mesh.
The contours are 0.02 apart (2% ofcorrect speed). Key: (a) linear-linear, (b) linear-constant, (c) edge( )-constant,
(d) nonconforming constant (modified), (e) edge(1)-linear, and (f) edge(2)-constant. Here edge(l) refers to thefirst
type edge elements described h 3.3 and edge(2) refers to the second type edge elements described in 3.6. In (c)
the phase velocity is greater or less than unity depending on the direction ofpropagation, so we have drawn velocity
contours on either side of unity.
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there cf. [5]). A further disadvantage of the method is that charge is not conserved exactly
(even in a discrete sense) and the magnetic field is not exactly divergence free. The problems
of boundary conditions, interfaces, and conservation make this choice inappropriate for some
applications.

We also note that the numerical results in [7] show that the linear-linear scheme on a quadri-
lateral grid performs rather poorly. This may be because the space- and time-discretization
methods are not well balanced (see 5) or may reflect problems with boundary conditions (there
are no interfaces in the relevant examples in [7]). Whether these results hold on triangular
meshes needs to be investigated.

3.2. Linear-constant elements. In order to obtain a method in which the magnetic field
H is exactly divergence free in three dimensions, we can modify the magnetic field space. We
use the standard continuous piecewise linear basis for the electric field so that, as in 3.1,

EhIK (PI)2 and Ec {Eh(ai), < < 3}.
For the magnetic field we use discontinuous piecewise constant elements

HhIKPo and EHK={Hh(al+a2+a3)}3

The unknown for the magnetic field is associated (arbitrarily) with the centroid of the triangle.
In this case there are three distinct points in the unit cell. The two electric degrees of

freedom are associated with the vertices of the mesh and there are two magnetic degrees of
freedom each associated with the centroid of a triangle in the unit cell. If we use the notation
in Fig. 5, we can easily derive the following equations for the distinct degrees of freedom:

( ( ) (a) (1))dill a
E + E22 + E21 E31 0,(9a) h-- + -El2 b

dH7 (E8 + b
a-1

(9b) h--- + )E8- E32-(-)E3 + ()E2 )=0,
d[ g ] ((a-l)bh-] EI q-- (E21 + E3 + E41 + Es + E61 -+- ET1) H1

a (a-1(9c) + ()n2+ ()n3+ b )n4-()n5-()n6) 0,

h-z. El2 + (E22 + E32 + E42 + E52 + E62 + E72)
(9d)

--(-H + H3 + H4- H6) 0.

To derive the dispersion relation, we allow H, HT, EI, and El2 to vary proportionally to
exp(i (k x wt)) since all four are in the unit cell. Substituting this dependence into the
above equations and obtaining H2 H6 and E2 E8 by translation, we obtain a four-
by-four matrix eigenvalue problem yielding four values for o as a function of k. Three of
these are "physical" (corresponding to the three values of 09 we obtained in (4) of 1), and one
is nonphysical. We refer to this as a "parasitic" solution. We shall not discuss the parasitic
mode more in this case, because this combination of elements can be ruled out as a practical
choice on the grounds of accuracy. In Fig. 3(b) we plot the phase speed for the linear-constant
elements as a function of j on equilateral triangles and in Fig. 4(b) we plot the phase speed
on the right triangle mesh. A quick comparison with the phase speed curves of other methods
considered in this paper shows that in all cases the linear-constant scheme is not particularly
attractive.
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FI(3. 5. Notation used when continuous piecewise linear elements are used to discretize the electric field and
piecewise constant elements are used to discretize the magneticfields (the lhear-constant method). The degrees of
freedom for the electric field are associated with the vertices of the triangles and those of the magnetic field are

associated with the centroids ofthe triangles.

Unfortunately, we could not compute, in closed form, the series for the dispersion relation
on equilateral triangles. However, for the right-triangle grid we find that

12 + 22 + 2 (14 2132 + 4222 4- 21 4- ) 4- higher order terms.(ooh)2

Clearly, the dispersion relation is second order accurate.

3.3. Edge-constant elements. The linear-constant element pair discussed above was
chosen to give an exactly divergence-free magnetic field in three dimensions, but all the
problems regarding interfaces, boundaries, and charge conservation still remain. Fortunately,
use of the edge elements of N6d61ec [14] allows all these problems to be circumvented [2],
[10]. In this section we shall analyze the use of first type edge elements for the electric field
and piecewise constant elements for the magnetic field. To distinguish this element family
from other edge element families, we shall sometimes refer to it as the edge(1 )-constant family.
Thus, on triangle K,

Ehlr=(ar+bxy)CK bKx

where ax:, b/c, and cx: are constants on each triangle K. The degrees of freedom can be taken
to be the value of the tangential component of the electric field at the midpoint of each edge
(scaled by the length of the edge and h). We denote by ai,j the coordinate of the midpoint of
the edge joining ai and aj so that ai,j (ai + aj)/2, and we denote by li,j the length of this
edge. The unit tangent "ri,j (aj ai) / li,j. Then the degrees of freedom for the electric field
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are

<i <j<3].
We remark that this rather complex choice of degree of freedom is made to simplify the
equations we shall compute.

The magnetic field space is again taken to be discontinuous piecewise constant elements:

Hh lr Po and

For this element, the node numbering and notation is summarised in Fig. 6. We easily
derive the following equations for the degrees of freedom El, E2, E3, H1, and H2

dHl 2
(10a) h d---- -I-- (El E2 -q- E3) 0,

dH2 2
(10b) h--_.. -!-- (E6 E1 E7) 0,

[dE1 \--(dE2 ---]dE6 \--(dE3 --d-t-dE7)l (H1- H2) O’(lOc) h It- +/12 d- d- I13 d-

[dE2 \(dE1-- dE9] \(dE3-- --dEs)](0d) h h- + + + :3 + + (n n3 0,

(lOe) h /33--;-7-. + I3 + + I3 +

where the scale factors Iij are given as follows:

1 (l+b2 a2 a)(lla) I1=- + +

a(llb)I13
12b (b + +a- 1)

) a)(llc)I3=(b+(a-1

1
I2 1- (1 (b2 + a(a 1))),

/22 b (b2 + (a 1)2 + 2- a),

/33= ), (3b2+a2+(a-1)2+a(a-1)).

Note that in comparison to the equations for the linear-linear or linear-constant element families
(see 3.1 (6) and 3.2(9)), the above equations have extremely simple approximations to space-
derivative terms Oust block-centred differences for the magnetic terms in the electric field
equations), but the time-derivative portion of the electric field equation contains complicated
terms involving the geometry of the mesh. This suggests that mass lumping must be carried
out with caution, and we shall discuss mass lumping in detail later (see 6).

The fact that there are five equations in (10) implies that there will be five values of to

corresponding to each k. Three of these correspond to the exact dispersion relations and two
are parasitic. Let us discuss the physical solutions first. One eigenvalue is always to 0, and
we need not discuss this case further. Corresponding to the exact dispersion relation to2 ikl 2,
we find a discrete dispersion relation that has an order of convergence depending on the mesh
configuration. On an equilateral mesh, the dispersion relation is fourth-order accurate since

l6 42 24 7262 - higher order terms.(toh)2 2 + 22 3840 256 768 11520
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E7

(ah,bh) ((a+l)h,bh)

E20 E E6

H

(o,o) E3 (h,0)

E 8 E4

C) Magnetic degree of freedom

Electric degree of freedom

FIG. 6. Position and numbering of the degrees offreedom for the space consisting ofNd6lec’sfirst type edge
elementsfor the electricfield and piecewise constant elementsfor the magneticfield. The degrees offreedomfor the
electric field are the tangential component of the field at the midpoint of each edge in the mesh. These degrees are
also usedfor the nonconforming-constant space in 3.4.

This compares very favourably with the corresponding dispersion relation for the linear-linear
element family shown in (7) since the order of convergence is the same and the constants
are smaller. Figure 3(c) shows that the phase velocity for the edge-linear elements on the
equilateral grid and illustrates the surprising accuracy of these elements on an equilateral grid.

Unfortunately, the order of accuracy of the dispersion relation depends on the grid. Us-
ing the right-triangle grid we compute that the dispersion relation is now only second-order
accurate:

1 2 123 2 t- higher order terms.(th)2 :? + :22 36 18 9 18 36

This dispersion relation does not compare well with the fourth-order convergent relation
derived using linear-linear elements (see (8)). Figure 4(c) shows the phase velocity as a
function of j for the edge-constant scheme. The accuracy of the phase velocity compares well
with all methods except the linear-linear family, although the waves travel with a phase speed
larger than unity in some directions (for example, k (1, -1)) and smaller than unity in other
(for example, k (1, 1)).

For the edge-constant family, the parasitic modes have a phase speed that is asymptotically
infinite as h tends to zero, but this may be an artifact ofthe analysis (see 4). On the equilateral
grid, the dispersion relation for the two parasitic modes is

(ogh)2 48 41:z 422 + higher-order terms,

while on the right-triangle grid the dispersion relation is

(12) (ooh)2 36- 52 + 8:12 522 "+" higher-order terms.
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The parasitic modes persist for all k and in the limit as k -- 0 (for fixed h), we find a time-
dependent solution with toE 48/h2 in the case of equilateral grids and to2 36/h2 for
the right-triangle grid. For the right-triangle grid, the limiting eigenfunction corresponding to
to 6/h is (using the notation of Fig. 6)

E1 1, E2 =-1, E3 1, H i, and H2 =-i.

The complex values for the magnetic field can be understood as phase shifts relative to the
electric field.

At first sight it may seem that parasitic modes are surprising since it is known that the use
ofedge elements avoids "spurious" modes in cavity resonator computations [3], [6]. However,
spurious modes and parasitic modes are different phenomena. Spurious modes are incorrect
eigenvalues (either by virtue of magnitude or multiplicity) that pollute the smaller eigenvalues
in the discrete spectrum, whereas the parasitic modes we report correspond to large eigenvalues
but with an incorrect velocity.

3.4. Nonconforming-constant elements. The use of tangential degrees of freedom for
the electric field allow the simple implementation of the perfect conducting boundary condi-
tion. Another element family with tangential degrees of freedom is the P-nonconforming
elements. In this section we examine the use of Pl-nonconforming elements for the electric
field and piecewise constant elements for the magnetic field. This combination of finite ele-
ments is suggested and computational results are presented in [1]. We shall use the notation
summarised in Fig. 6. The formal definition of the spaces are as follows:

EhIK El-r.2,3bl(X)q- E2T’3,1b2(x + g37"l,2qa(X) G (PI)2,

where i 1 2,i and i is the ith barycentric coordinate function (i.e., the linear function
such that .i(aj) 6i,j, < j <_ 3). The degrees of freedom can be taken to be the value of
the tangential component of the electric field at the midpoint of each edge:

li,j
(ai,j).’r’i,j, < < j < 3

It is clear that this choice of space for the electric field cannot be good in general since the above
electric field is discrete divergence free in the sense of 8]. Nevertheless, for divergence-free
fields (such as the waves we are computing here) this choice of space should be good.

Of course, since the above space is nonconforming for the curl operator, the curl and
integrals appearing in (5) must be understood as being defined element by element.

The magnetic field space is again taken to be discontinuous piecewise constant elements"

H’[I,:Po and EHK={Hh(a+a2+a3)}
On deriving the dispersion relation for this method, we see an immediate problem. Even

on an equilateral grid, the wave speed is incorrect. In fact, as h tends to zero, the asymptotic
wave speed is v/-. This fact is pointed out in ], where a Petrov-Galerkin and mass-lumping
scheme is introduced to compensate for the incorrect velocity. In effect, this procedure modifies
the coefficients ofthe time derivatives ofthe electric degrees offreedom by introducing a factor
of two at suitable places. It is inappropriate for us to go into details of the Petrov-Galerkin
mass-lumping scheme, and we instead report the modified equations directly:

dH1 2
(13a) h--d-[- / - (IE1 -lE2 / 123E3) O,
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(13b)

(13c)

(13d)

(13e)

h __d_t_ +
H2 2 (/62E6 121E E7) O,

2dEh- (H1- H2) O,
3 dt
2 dE2

h--. + (g H4 O,

2dEh--- (Hi H3) 0,
3 dt

where li is the length of edge on which degree of freedom Ei is defined (see Fig. 6).
As for the edge-constant element family, there are five eigenvalues to for each k. We

shall discuss only the physical values. On an equilateral mesh this method has a second-order
convergent dispersion relation and

(toh)2 12 + 22 14 22 42 2

48 24 48
I- higher-order terms.

Although only second order, the dispersion relation is quite isotropic, which might allow the
use of a suitable time-stepping scheme to improve the order of accuracy.

Unfortunately, on the right triangle grid, the method in (13) fails as is shown in Fig.
4(d). The method gives an incorrect wave speed even in the limit as h ---> 0. It is clear that
the simple-minded modification of the discrete equations that we have presented here is not
convergent for all meshes. It is possible that the Petrov-Galerkin mass-lumped scheme of
will work well on a general mesh, but it is clear from our results here that caution must be
exercised when using nonconforming elements in the electromagnetic context.

3.5. Edge-linear elements. We have seen that the edge elements have the advantage over
continuous elements from the point of view of charge conservation and the implementation
of boundary conditions. On the other hand, standard continuous elements (see 3.1) seem
to have better dispersion properties. In addition, the linear-linear element combination has
the aesthetic advantage of treating both electric and magnetic fields identically, while the
edge-constant element family treats the electric and magnetic fields quite differently. For
these reasons it is tempting to consider a method based on using edge elements for both the
electric and magnetic fields (in three dimensions). If prismatic elements are used in three
dimensions and the method restricted to two dimensions (by assuming suitable polarization
of the solution), one obtains the method presented in this subsection. The electric field space
is the first type edge element space introduced in 3.3, and the magnetic field space is the
standard piecewise linear continuous space. Thus

with

and

EIK=(ar+bry)CK bKX

Hlr e P1 with Z {H(ai), <_ < 3}.
The notation used in deriving the finite difference equations for this pair of finite element
spaces is shown in Fig. 7. Clearly, the unit cell has four degrees of freedom associated with
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it: H, and El, E2 and E3 (so we expect one parasitic mode). We easily derive the following
equations for the degrees of freedom:

(14a) h Il-- + I12 k-- + --] + I13 + (H1 H4) 0,

(14b) h I22-- + I12 k-- + --1 + 123 + (H5 H2) 0,

(14c) h I33-- + 113 + ----! + 123 k--- + ---! (H3 H6) 0,

h- H1W - H2 + H3-F Hs W H6-F HT W H8)

2
(14d) +- (El E5 Eo- El + E2 + E4) 0,

where the scale factors Ii,j are given in (11).

/ ah,bh) / ((a+l)h,bh)

A,’ # "’
/ / 0 Magnetic degree of freedom

ric degree of freedom

H8 E 12 H6
FIG. 7. Notation used to describe the edge-linear elementfamily. Degrees offreedomfor the electricfield are

associated with edges ofthe triangles, while thosefor the magneticfield are associated with vertices.

Using these equations we can compute the dispersion relation for this method (there is
one parasitic mode). On equilateral triangles we find the disappointing result that the method
is only second-order accurate since

2 + 24 12 24
I- higher-order terms.

The error term above is isotropic, and thus can be compensated for to some extent by the
correct choice of a time-marching scheme and a correct time step. A plot of the phase velocity
as a function of t for this method is shown in Fig. 3(e). Obviously, the method is not as
accurate as either the linear-linear or the edge-constant scheme.
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On the right-angle triangle mesh, the method is again second order and we find that

(toh)2 ? + 22 - higher-order terms.
12 12

We remark that this dispersion relation is the same as for the Yee finite difference scheme on
rectangles (at least to the order shown) [21]. The phase velocity is shown in Fig. 4(e). The
method does not compare particularly favourably with the other methods. In view of these
results we shall not discuss parasitic modes since it seems that the edge-linear scheme outlined
here has little to offer in comparison with the edge-constant scheme.

3.6. Second type edge-constant elements. The last element family we shall consider is
another edge element family due to N6d61ec 15] (we refer to this family as second type edge
elements or edge(2)-constant elements). This family was also suggested and used extensively
in [13], [12]. In this case the electric field is discretized using an edge element family that
contains all linear polynomials so that

/lh- e (p)2

for each element K. This choice results in six degrees of freedom per triangle. There are a
number of possible choices for these degrees and we elect to use the tangential component of
the electrical field along each edge of the triangle at the vertices (see Fig. 8). Let us recall,
however, that the dispersion relation is independent of this choice and depends only on the
structure of the space under consideration. Thus

E {E(ai). "Ci,j for < i, j < 3 and/-# j}.

For the magnetic field, we again use the piecewise constant field so that

Hhl/ceP with E= {H’(ai), <i<3}.
We refer to the discretization as the edge(2)-constant element family.

In this case the unit cell has eight unknowns (and so we expect five parasitic modes).
In fact, for the right-triangle grid, we find that o 0 is an eigenvalue of multiplicity four,
and that there is a pair of fast-moving parasitic solutions in addition to the physically realistic
dispersion relations. The equations for this system are quite complex in general, and for this
example we compute only the phase velocity as a function of j for the right-triangle grid (see
Fig. 4(f)). In comparing Fig. 4(f) to other results we should remember that for a given mesh
the second type edge elements have the most unknowns per unit area. In particular, there are
twice as many electric field unknowns per unit area as compared to the first type edge elements
(see Fig. 4(c)).

4. Parasitic modes and wave-guides. Here we want to explain the parasitic modes found
while analysing some of the element families in the previous section (particularly the edge
element families). We shall show that they are a natural by-product of the method of analysis.
For simplicity we shall consider only the right-triangle mesh. When we compute the dispersion
relation for edge elements (or other element families in the previous section), we consider a
unit cell K [0, h x [0, h and seek an approximate solution of Maxwell’s equations on this
cell such that the solution behaves like a plane wave when translated through a distance of h
in the x or y direction. Precisely, we are computing a very crude (two triangle) finite element
approximation to the problem of finding u and v such that
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FIG. 8. Position and numbering of the degrees offreedom for the space consisting of Ngddlec’s second type
edge elementsfor the electric field and piecewise constant elementsfor the magneticfield. Electric field degrees of
freedom are the tangential components ofthe electricalfield along the triangle sides at each vertex.

(15a)
(15b)

(15c)

(15d)

-io)u-Vxv 0 inK,

-iwv-Vxu 0 inK,

U (x, y + h) u (x, y)eik’-h

l/2(X "[" h, y) u2(x, y)eikh
in K,
in K.

Equations (15a) and (15b) are just the time-harmonic Maxwell equations corresponding to (1)
and can be derived by assuming that E exp(-iot)u and H exp(-iwt)v. The second two
equations (15c) and (15d) ensure that the fields behave like a plane wave under translations of
length h in the x or y direction.

By taking the scalar curl of (15a) and using (15b) we find that v satisfies the Helmholtz
equation

(16) Av --[-- 0921) 0 in K.

The quasi-periodicity conditions (15c) and (15d) can be rewritten in terms of derivatives of v
by using the two components of (15a). After cancellation of factors in and o, we obtain

(17a) 1)y(X, y + h) Vy(X, y)exp(ik2h),

(17b) Vx (x + h, y) Vx (x, y) exp(ikl h).

This system can be solved by separation of variables in the usual way. We find that in order
for (17) to have a nontrivial solution it is necessary that o tOm.n, where rn and n are integers
and
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09m,. h h h

Note that if n 0 and m 0, we recover the expected solution 092 kl2 4- k, which
corresponds to the exact solution of the dispersion relation discussed in the Introduction.
However, if m or n are positive we obtain values of 09 that are larger than Ikl and hence the
phase velocity of the solution, which is just 09/Ikl, is larger than the speed of light. This is
a standard observation for wave-guides (equations (17) are an example of an unusual wave-
guide!) [17].

If we select m 0 and n we obtain

h +

Thus as a function of h the leading term in the series is

0,1 h2 + O

Furthermore, 4x"2 39.5. Observe that the leading coefficient in equation (12) is 36. Given
that we have approximated the eigen-problem (17) with only two triangles our computed value
is remarkably close to the actual value. It is not clear why we do not pick up the first-order
terms (in kl) in the expansion (12) but maybe a manifestation of the use of a very coarse grid.

The above discussion suggests that the results of the numerical dispersion computations
carried out in the previous section should be more properly compared to a wave-guide com-
putation than to the actual dispersion computation for a continuous problem. In this light the
"parasitic modes" observed are nothing more than approximations to higher-order wave guide
modes (or Bloch modes). They are in fact inherent in Maxwell’s equations and should not be
expected to reveal themselves as nonphysical waves in a real computation.

5. Time stepping. To obtain a practical method for solving Maxwell’s equations, the
semidiscrete equations (5) must be discretized in time. We shall consider only the standard
leapfrog technique, which has been used with great success to time-step finite difference
schemes for Maxwell’s equations [21]. The electric field is discretized at times tn nat,
while the magnetic field is discretized at the half time steps tn+/2 (n 4- 1/2)At where
At > 0 is the time step. If E’ denotes an approximation to Ei(tn) and correspondingly

H]+1/2 denotes an approximation to Hj(t,+/2), then the fully discrete time-domain finite
element procedure is

E7+I E ((i, (k) /_/jn+I/2(/j, V X (k) 0 |,(18a) Vk >
i=

At
j=l

(18b) 0Pj, Pt) + (V x qi, Pt) 0 W > 1.
j=l

At
i=1

A dispersion analysis of the fully discrete scheme shows that, regardless of the finite element
used, if we denote by 09At the dispersion relation for (1 8) and by 090 the dispersion relation for
(5), then

09zxth sin-.
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where ,k At/h. Expanding to,xt as a sequence in . and j and assuming that

a k + k + (otk4 + kk2 + ?,kk + 8klk + lzk)h2 + higher-order terms

(where t,/, ,, d and # are constants) we find that

h2

(09Ath)2 (r.ooh)2 -1- -(kl2 q-k22)2At2 + higher-order terms.

Thus the leapfrog time step just contributes an extra isotropic second-order term in At. The
necessary condition for stability is that. (max lhcoo(l, <_2

(recall that with our definitions, (oooh) is a function of alone (independent of h)). From the
above inequality, we see that a necessary condition for stability is At <_ Ch for some constant
C depending on the finite element method and mesh. Unfortunately, even with and exact
expression for to0 it is difficult to derive a sharp value for the constant C, and so we will not
report the constants here.

For the linear-linear element family, which has a fourth-order dispersion relation, we
obtain that the fully discrete dispersion relation has the form

w,xt Ikl(1 + O((At)2 -I-h4))

and in order to make the error terms ofthe same order, we must take At O(h2). This implies
an extremely small time step. If we take the time step At Ch, we see that essentially all the
error in the fully discrete case is due to time-stepping error, and that we have reduced the order
of accuracy of the scheme to second order. It is clear that a more complex time discretization
strategy (maybe such as the Taylor-Galerkin method [4]) is required ifthe linear-linear element
family is to be used to ..its full potential.

All the remaining methods (with the exception of edge elements on equilateral trian-
gles) have a second-order accurate dispersion relation, and so the leapfrog method is quite
appropriate as a time stepping scheme in these cases. The leapfrog time-stepping scheme
is particularly attractive for those schemes in which co2 < [k[ 2 since in that case effects of
time-stepping error (increasing the numerical 09) and spatial error (decreasing the numerical
09) will cancel to some extent.

6. Mass lumping. It is clear from (1 8) that if the matrices multiplying the time difference
terms are not diagonal we must invert a matrix at each time step in order to compute the solution.
This is time consuming and so the numerical scheme is often modified by a more or less ad
hoc procedure ("mass-lumping") to obtain a diagonal matrix and so a truly explicit scheme.
We shall confine our comments on mass-lumping to the linear-linear and edge(1)-constant
element families. Furthermore, we shall consider only the semidiscrete problem.

Mass lumping of the linear-scheme is quite standard. We simply approximate the inner
products (q5i, tj) and (lpj, 1]tl) in (18) using the following quadrature rule on each triangle K

area(K)
f(x) dx (f(al) + f(a2) + f(a3))

3

where a is the coordinate of the th vertex of K. Using this quadrature scheme element by
element, we conclude that the mass lumped linear-linear scheme is
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d 1 ((2a- 1)2h-7 H1 + g b E2

(19a)

(19b)

(19c)

(a-2)-f- 2E22 + b E31 -+- E32 b E41 E42

_(2a--1 (..a..’b)ES1-2E52 2) E61E62+ E71 q- E72) 0,

d ((1-2a)b. (2-O).b (a+l)b (2o-1)b2h s n3+ n4+

(a--2) (a-f-l))q" b H6 b H7 =0,

d
2h-z:at El2 (-2H2 H3 + Ha + 2H5 + H6 H7) 0.

Again we can compute the dispersion relation for this scheme. The fourth-order convergence
of the fully consistent lumped scheme is lost (this is easy to see in one dimension). For
equilateral triangles, the dispersion relation becomes

4 2 4

while for the right-triangular grid we find that

42

higher-order terms,

123 2 :2/:21b2 13:2 14
3 3 3 3

t- higher-order terms.

The situation for the edge-constant scheme is more complex. The magnetic field equations
are mass-lumped without modification since we use piecewise constant functions to discretize
the magnetic field. It turns out that simple mass lumping of the electric field equations cannot
be carried out on an arbitrary grid. In order to mass lump the electric field equations, we can
again try to use a suitable quadrature scheme to approximate the inner product (i, thj). To
obtain a lumped system, we need to use the degrees of freedom as quadrature points. In the
case of edge elements, these degrees are the tangential components of the electric field at the
midpoints of the edges so that the quadrature scheme is nonstandard. By requiring that the
quadrature be accurate for all pairs of constant vectors on a given triangle K we find that we
must use the quadrature

area(K)
A(x). B(x)dx

b2 ([a(a 1) + b2]A(al,2) rl,2B(al,2) "t’l,2

+ [a((a 1)2 q-bZ)]A(a2,3) rz,3B(az,3).’t’2,3
+ [(1 -a)(a2 + b2)]A(a,3) r,3B(al,3), r,3).

Using this quadrature, and taking into account that the degrees offreedom for the edge elements
contain an edge length factor, we obtain the following mass-lumped equations for the edge-
constant element family"

dE1 (H1 H2) 0,(20a) I dt h

fl,,, dE2(20b) "22 - + (H1 H3) 0,

(20c) tim dE3
"33 dt h

(H1 H4) 0,
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(20d)

(20e)

dt

dt

where

1 --a/b, Izt (1 -a)/b and I’ (a(a- 1)+ bZ)/b.

We remark that the equations (20) are exactly the equations for the covolume method 16],
[8] applied to (1) on the given grid, so at least for the given uniform grid, the covolume and
mass-lumped edge element methods are identical. Of course, the nonlumped finite element
method has the advantage of higher-order convergence of the dispersion relation on some
grids, and the possibility of handling nonacute triangles (or more general grids). This is at the
cost of inverting a matrix at every time step.

Applying (20) in the case ofthe equilateral triangulation we obtain the following dispersion
relation

(ogh)2 12 + 22 ?22 14 + higher-order terms.
48 24 48

Again, by lumping, we have reduced the order of approximation in the dispersion relation. An
even nastier surprise awaits us if we try to lump in the case of the right-triangle grid. In that
case I( 0. Of course, if the triangles are not acute (if a < 0 or a > 1), the quadrature mass
lumping technique gives negative values for some of the coefficients of the time derivatives.
In this case, the time-stepping scheme may become unstable.

Proceeding in the case of the right-angle triangle grid, if we mass lump and accept the fact
that, since I’ 0, certain time derivatives do not appear in the lumped equations, we can still
compute a dispersion relation. Remarkably, there are only three eigenvalues corresponding to
the three physical eigenvalues (the parasitic modes vanish). We find that

(wh)2 ? d- 22 -i (14 -Jr- 24) d- higher-order terms

(to compute this solution, we have used the generalised eigenvalue and Taylor series routines
in MAPLE). This is exactly the same dispersion relation (to the order shown) as for the Yee
scheme on the corresponding quadrilateral mesh. The mass lumping has simply forced us to
use a more appropriate element for the given grid.

Clearly, the fact that the mass-lumping scheme on right-angle triangles results in a coeffi-
cient of zero for some of the time derivatives would complicate the programming of the fully
discrete Maxwell system. Thus it is reasonable to ask if a different mass-lumping strategy
would produce a more tractable system (i.e., positive weights for the time derivatives). If we
allow for general coefficients of the electric field time derivatives in (20) and consider only
right-angle triangles (so a 0 and b 1), we have the system (see Fig. 6)

dE1
(21a) 0/11 (H H2) 0,

dt h

dE2 1
(21b) t22--- "+" - (HI H3) 0,

dE3
(21c) 22 dt h

(H H4) 0,
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(21d)

(21e)

dHl

dt

2
+ (El E2 q- E3) 0,

2
q- (E6 E1 E7) 0.

Here we have set the coefficients of dE2/dt and dE3/dt to be the same on the grounds of
symmetry. Using a dispersion analysis, we obtain that for the physically relevant dispersion
relation

(wh)2 (19/11 -- 0/22)(:? -1-" ff) 2ct112 + higher-order terms.
ot22(ot22 d- 2tll)

TO make the dispersion relation second order in h, we are forced to choose 011 O(h2) and

Ctll d- oe22 + O(h).
ct22(ct22 q-- 2ot11)

Thus to first order in h, the only choice for cl and ct2 is oe 0 and ot22 as predicted
by our derivation using the quadrature method. It appears that it is possible to perform simple
mass-lumping for the edge-constant family only if the triangles are all acute.

7. Conclusion. On the basis of a dispersion analysis, it is clear that some combinations
of finite element spaces are not very attractive (linear-constant, edge(1)-edge(l), edge(2)-
constant), and some methods need more analysis before becoming truly reliable (nonconform-
ing-constant). Two methods, the linear-linear scheme and the edge(1)-constant scheme have
significant advantages and disadvantages. The linear-linear scheme has excellent dispersion
properties on both meshes studied here and can be mass-lumped (at the cost of a decrease in
accuracy). However, it is complicated to deal with boundary conditions, and the divergence
conditions on the field are only approximated. On the other hand, the edge(1)-constant method
is more sensitive to the mesh showing fourth-order convergence on the equilateral mesh, but
only second order on the right-angled mesh. Furthermore, the method has parasitic modes.
Mass-lumping ofthe edge-constant scheme is possible provided the mesh contains only strictly
acute triangles. On the other hand, the method deals with boundary conditions and divergence
conditions in a natural way. It has been suggested to use edge elements (second type edge
elements) at interfaces and standard linear elements away from interfaces [13], 12], and this
type ofmethod may indeed be a good way ofcombining the strengths ofboth element families.

The results in this paper are applicable in three dimensions if prismatic elements are used
to discretize Maxwell’s equations. The more interesting case of tetrahedral elements is yet to
be analyzed.
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COLLOCATION SOFTWARE FOR BOUNDARY VALUE
DIFFERENTIAL-ALGEBRAIC EQUATIONS*

URI M. ASCHER AND RAYMOND J. SPITERI

Abstract. The methods and implementation of a general-purpose code, COLDAE, are described. This code
can solve boundary value problems for nonlinear systems of semi-explicit differential-algebraic equations (DAEs) of
index at most 2. Fully implicit index-1 boundary value DAE problems can be handled as well.

The code COLDAE is an extension of the package COLNEW (COLSYS) for solving boundary value ODEs. The
implemented method is piecewise polynomial collocation at Gaussian points, extended as needed by the projection
method of Ascher-Petzold. For general semi-explicit inde-2 problems, as well as for fully implicit index- problems,
a selective projected collocation method is defined and its use is demonstrated. The mesh selection procedure of
COLSYS is modified for the case of index-2 constraints. Also discussed is shooting for initial guesses.

The power and generality of the code are demonstrated by examples. COLDAE can be obtained from the
electronic library net; 1 +/-b.

Key words, differential-algebraic equations, boundary value problems, collocation, projection, software

AMS subject classifications. 65L 10, 65L20

1. Introduction. Many mathematical models arising in various applications can be writ-
ten as systems ofDAEs; see, e.g., 16], [22]-[24]. The numerical solution of initial value DAEs
has received much attention recently, and robust general-purpose codes have been written and
extensively used 16], [24]. Similar developments for boundary value DAEs have been con-
siderably lagging behind, although such problems arise in a variety of applications; see, e.g.,
[2], [13]-[15], [18], [25], [26], [28].

In this paper we describe the methods and implementation of a general-purpose code,
COLDAE, which can handle boundary value problems for nonlinear systems of semi-explicit
DAEs of index at most 2 and of fully implicit index-1 DAEs. The code COLDAE extends the
package COLNEW 10], using the projected collocation method of [7] and extensions thereof.
To our knowledge, there is currently no other general-purpose code that handles such a class
of problems. COLDAE can be obtained from the electronic library net lib.

The package COLNEW 10] is a modification of the package COLSYS [4]. COLNEW is
a robust code which has been used by many scientists and engineers to solve practical problems
that can be formulated as systems of ordinary differential equations (ODEs) with boundary or
interface conditions. The ODE system which COLNEW handles has a generally nonlinear,
mixed order form

(1.1) )miui fi(t, z(u)), d,

where is the independent variable, a < < b, 73 denotes differentiation with respect to t, so
73J =_ d]/dt], u (Ul ua)r are the dependent variables, and for each

Z(U) (Ul, 73Ul 73m1-1 Ul, U2 Ud, 73Ud Z)ma-1 bld) T

In z(u)(t) there are m* ai= mg differential solution components. The system (1.1) is
subject to rn* side (boundary) conditions, which are each given as a nonlinear relationship in
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z(u) at one point,

(1.2) bj (j, z(u) (&)) O, j m*,

where a < ]1 < 2 < < m* < b. Thus, (1.2) includes the usual initial value and
two-point boundary value problems with separate boundary conditions as special cases.

The underlying numerical method used in COLNEW (COLSYS) is piecewise polynomial
collocation at Gaussian points. Thus, with k collocation points at each subinterval of a given
mesh,

(1.3) zr a to < tl <... < tN b,

the approximate solution for ui(t) is sought as a piecewise polynomial of order k + mi
(degree < k + mi) on each mesh subinterval [tn-l, tn] that is globally continuous together
with its first mi 1 derivatives, viz., u7 79k+m,,, tq c(m’-l)[a, b]. Then z’r z(u") is
determined by requiring that the ODE (1.1) be satisfied at Nk collocation points and that
the m* boundary conditions (1.2) be satisfied as well. We refer, e.g., to [1], [6], [10], [12]
for the theory justifying this method. Loosely speaking, the highlights of this theory are that,
assuming sufficient smoothness and convergence of a Newton method to an isolated solution
of the problem (1.1), (1.2), the following statements hold.

1. The discrete system for the approximate solution has a stability constant which is
close to that of the differential problem for h sufficiently small. Here, h max hn, where
h, tn tn-1, n N.

2. At mesh points there is superconvergence,

(1.4) Izi(t,,) zr (tn)l O(h2k), m*, n 0 N.

3. At points other than mesh points, the convergence order is lower, but local, as follows:

(1.5)
]z)Jui(t) 79Ju7 (t)l-- [cilDk+m’ui(tn)l -I- O(hn)]hkn+m’-j @ O(h2k),

d, j 0 mi,

where C are known constants and t,_ < < tn.
These results hold for problems that are not very stiff and form the theoretical foundation

for the mesh selection and error estimation procedures in COLSYS(COLNEW). In particular,
the local nature of the leading error term in (1.5) when k > max/mi is exploited.

In COLDAE, we extend the COLSYS class of problems by considering the case where
the ODEs in (1.1) also involve m additional dependent variables y(t) (referred to as algebraic
solution components) and are supplemented by m additional algebraic relations (constraints).
Thus, we have, in place of (1.1),

(1.6a) l:)mi ui f (t, z(u), y), d,

(1.6b) 0 f (t, z(u), y), d + d + m.

This is a semi-explicit DAE. The reasons that we have opted not to directly implement the
fully implicit case are that while many applications, especially of higher index, are in the semi-
explicit form, the theory, both for the analytic problem and for numerical approximations, is
much less solid in the more general case (see [2], [20], [22]). Even in the index-1 fully implicit

We employ the following notational convention: a superscript denotes power, unless it is a Greek letter (in
which case it denotes the approximate solution).
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case, none of the above three stability and convergence results holds for a straightforward
collocation approximation at Gaussian points (although there is often basic convergence [2]).
We handle fully implicit index-1 problems by imbedding them in semi-explicit index-2 ones;
this is discussed in 4.

For the semi-explicit DAE (1.6), we can do much better by collocating the differential
solution components as before, while collocating the algebraic solution components y(t) using
a generally discontinuous piecewise polynomial of order k: y,r e T’,.,r. This corresponds to
treating the constraints (1.6b) like ODEs of order 0, an obvious idea that was conceived by
many and implemented a while ago [25]. However, the code of [25] does not extend to the
more challenging classes of DAEs considered in this paper.

If the DAE has index 1, i.e., if the matrix E is nonsingular, where E (eij),

0fd+i i,j=l m,(1.7) eij Oyj

then y can be eliminated in principle, using (1.6b), and substituted into (1.6a) to form an ODE
system. Furthermore, a collocation approximation of (1.6b) (i.e., collocating both (1.6a) and
(1.6b) at the same Gaussian points) can then be viewed as the usual collocation approximation
for this obtained ODE with y eliminated, and the above cited convergence results are recovered
(cf. [2], [22]).

But if E is singular (i.e., the DAE has a higher index), then merely approximating y in
the "natural space" T’,.,r does not produce a collocation method for which the ODE results
hold. The simplest way to see this is to note that by writing Dw y, we obtain for (z(u), w)
at best a fully implicit index-1 DAE 19].

A projection method, which achieves the desired stability and convergence behaviour,
was therefore proposed in [7] and [9]. This method applies to a pure index-2 DAE2, i.e., for
the case where E 0 and CB is nonsingular wherever it is evaluated, where C (cij),
B (bij),

JOfd+i l rn pj=_,mt, j= l d,(1.8)

(1.9) bij
Oyj

i=1 d,j=l m.

With this method, at the right end of each mesh subinterval, following a collocation step as
described above (applied within a quasilinearization step), we modify the (m 1)st derivatives
of u by a vector from the range space of B so as to satisfy the constraints (1.6b) at the right-end
mesh point.

We restrict our implementation to DAEs of index at most 2 (this includes ODEs, which
are DAEs with index 0). For reasons of inherent problem stability and (related) lack of reliable
direct discretization methods, we require that higher index problems be (stably!) converted to
lower index ones by analytic differentiation (cf. [8]) prior to applying the code.

Many practical higher index problems are formulated in a pure index-2 form. But still
many others have a mix of index-1 and index-2 constraints (i.e., E is singular but not 0).
The rank of E may well depend on the iterate where this Jacobian matrix is evaluated and
it may vary depending on on the interval [a, b] (e.g., the index may change on a singular

2A pure index-2 DAE is often referred to as being in Hessenberg form. We will see that the term "pure" is rather
natural.
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arc in optimal control problems). COLDAE has the option of handling the more general
case at the price of a singular value decomposition (SVD) of E at each mesh point. This
feature also allows handling fully implicit index-1 DAEs. That and other implementation
details are described in 2-4. Specifically, in 2 we briefly recall the piecewise polynomial
collocation method [2], [12], and in 3 we recall projected collocation [7] and describe our
mesh selection modification. In 3 we also explain the requirements that the user-specified
multipoint side conditions (1.2) must satisfy. The problem of finding consistent boundary
conditions can be nontrivial even in the initial value case. With the generality of COLDAE,
we must require that the user supply rn* boundary conditions, even for an index-2 DAE. In the
index-2 case only rn* rn independent conditions are needed in theory, but we require that the
given boundary conditions include specifying the rn constraints (1.6b) at the left-end point a;
see the examples in 5. In 4 we then treat general semi-explicit index-2 DAEs, and describe
a selective projected collocation method. We also describe a simple trick for handling fully
implicit index-1 problems. A number of illustrative examples are then presented in 5. We
use these examples to also discuss further modifications to COLDAE that also improve the
usage of COLNEW, for both DAEs and ODEs.

We end this section with a warning: like any boundary value ODE code, COLDAE will
not be successful for all applications. Chances of success can improve significantly if the user
takes care to provide information such as an appropriate initial iterate for difficult nonlinear
problems (possibly uing continuation), an appropriate initial mesh in some extreme cases,
and appropriate boundary conditions (the latter being somewhat trickier here than in the ODE
case).

2. I)AE collocation. For a nonlinear boundary value DAE (1.6), (1.2), we implement
a quasilinearization method with a damped Newton scheme, as described in [4], [6], and
10]. Thus we may assume below, for purposes of the presentation, that the DAE problem is

linear(ized).
Let pl < p2 < < Pk be the k canonical collocation points on [0, 1]. In COLDAE

we use the zeros of the Legendre polynomial. (This yields a symmetric, algebraically stable
difference scheme with Pl > 0, pk < 1.) The collocation points on a mesh subinterval
[tn-1, tn] are then

tj tn_ -" hnpj, j=l k.

An (unprojected) collocation step requires that the DAE (1.6) be satisfied by the approximate
solution at the collocation points, viz.,

(2.1a) )rniu7 (tj) f(tj, z’r (tj), yr (tj)), 1 d,

(2.1b) 0 f(tj, zzr (tj), yr (tj)), d + d -t- rn

for j k. We use a monomial representation for the piecewise polynomial approximate
solution (i d),

(2.2)
"- (t t,_)u (t)

It/=0
Zn-l,p+l -Jr" (hn)mi 1 -h-n Wil,

/=1

where Zn-,p+t z+,(tn-1), p _Z_ mj + 1, and t are k polynomials of order k + mi on
[0, 1] satisfying

(2.3) 7)J$t(O) O, j 0 mi 1, rn, l[tl (Oj) tjl j, k.
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It follows that UOil )mi blT (t!).3 A similar representation is used for the algebraic components
y with m 0 in the above formulae (hence wt yr (tt) Yt).

Substituting this representation in the collocation equations (2.1), we obtain (d + m)k
equations, which we can use to locally eliminate the mith derivatives wl and the algebraic
components Yt in terms of the mesh values of z,

(2.4) Zn_ (z (tn_l) z,(tn_l)) T.

It is not difficult to see that for hn > 0 small enough, the local linear system of order (d + m)k
which is solved in this process is nonsingular. The matrix involved has a bounded inverse in
the case of a DAE of index 1. In the index-2 case, the inverse bound is O(h- 1), but at least for
a pure index-2 form this merely corresponds to scaling of the collocation rows corresponding
to the constraints. Thus, the approximate solution at any point in [tn-1, tn) can be obtained in
terms of z,,-1 using (2.2). The continuity requirements on zr are then obtained by evaluating
the approximate solution at t and equating it to Zn"

(2.5) Zn Fnzn-1 + Yn, n N.

A complete linear system of(N+ )m* equations for (N+ 1)m* unknowns is now obtained
upon requiring rn* side conditions to be satisfied by zr The structure of this system, and hence
the method for its solution, are the same as encountered with ODEs in COLNEW, and need
not be elaborated further here (cf. [10]). We note, however, that our approach to DAEs in
all cases is to eliminate the algebraic solution components, obtaining an ODE discretization.
This allows us to obtain stability and affects our decisions about the class of problems solved
by COLDAE and their error control and mesh selection: in the latter, only the differential
solution components z are considered.

3. Projected collocation for pure index-2 DAEs. While the straightforward collocation
method described above is feasible, and converges as h --+ 0 for all well-conditioned linear
problems of index at most 2 (except for a few pathological cases, cf. [2] and references
therein), the properties of nonstiff ODE collocation discussed in 1 are retained only for
index-1 problems. For a pure index-2 DAE (i.e., E 0, cf. (1.7)), we therefore apply
projected collocation [7], [9]. For the mixed-order DAE (1.6), let

(3.1) x-- (’m 1/,/1, Dm- 12 )ma- lld) T,

and denote similarly by x’ and x, the corresponding subvectors of zr and z,. Following a
collocation step as described in the previous section, we project

(3.2) x. x (t.) + B(t.)x.

with kn chosen so that the linearized (1.6b) be satisfied at tn, < n < N.
The projection requirements allow one to eliminate ,k,, locally, obtaining

(3.3) xn - (I- B(CB)-IC)xn B(CB)-r

(see (1.8), (1.9)), where r is the corresponding inhomogeneity of the linearized constraints
and all quantities are evaluated at tn. This, in turn, is incorporated into (2.5), where rows
m,m2 md of 1-’n and the corresponding elements of ?’n get multiplied by
(I- B(CB)-IC)(t,) and the term (B(CB)-lr)(t,) is subtracted from the projected ,n as

3The functions t depend of course on m as well, but note that they need be constructed only once, not d + m
times: if m max/mi, say, then ! for all solution components are appropriate derivatives of those used for u
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well. Once this is done, the rest of the solution process is again the same as for boundary value
ODEs.

The constraints (l.6b) are thus satisfied at all mesh points except to. In COLDAE we use
the convention that satisfying the constraints (1.6b) at the left end point to a is a requirement
on the boundary conditions (1.2). Indeed, recall that for an index-2 DAE, only m* rn side
conditions independent of the constraints are required to hold. To be able not to distinguish a
priori between index-1 and index-2 problems, COLDAE expects m* side conditions on z(u)
in any case: for index-2 problems these include the specification of the constraints at the left
end point.

With the above described projection, the superconvergence results (1.4) hold [7], [9].
Let us quickly recall that the proof is obtained by considering a (d m) x d matrix function
R(t) with normalized, linearly independent rows, which satisfies for each t,

(3.4) RB O.

Thus, multiplying (1.6a) by R eliminates y, and an essential underlying ODE (EUODE) is
obtained for

(3.5) v(t)- Ru.

The results (1.4), (1.5) are retrieved for v (this is simple to see, particularly when R is con-
stant), and the projection on the constraint manifold at mesh points then helps to retrieve the
superconvergence (1.4) for u as well.

The expression obtained in place of (1.5), however, is for v, not u. The first term on the
right-hand side of (1.5) is equidistributed when selecting a new mesh, and this now relates
to higher derivatives of v. In other words, the error equidistribution should be done on the
constraint manifold. In practice, we approximate R for this purpose by a piecewise constant
function, and thus project the approximate solution xr on each mesh subinterval [tn-1, tn],
multiplying it by the already computed (I B(CB)-1C)(tn). Divided differences are then
used to estimate the higher derivatives of v, as in COLSYS (see, e.g., [6, 9.3]). For nonlinear

problems, this is done only after convergence of the nonlinear iteration has been achieved on
a current mesh.

4. Selective projected collocation for the general case. In this section we consider the
general case for (1.6) where the matrix E(t) is possibly singular but not necessarily zero. We
will in fact allow the rank of E(t) to vary with t, except that we require a constant rank on
each mesh subinterval in the numerical approximation. This means, in practical terms, that
we allow for switching points/’t where the rank of E may change. These points must become
part of any mesh in COLDAE, so their location should be known in advance; however, there
are standard tricks (see, e.g., [6]) to convert a problem with unknown switching points to one
with known switching points, provided we know how many such points there are.

Given a matrix E(t) (using (1.7) for the linearized DAE (1.6)), consider its pointwise
SVD:

(4.1) E UEV’,

where U and V are orthogonal matrices and

(4.2) E (S 00)
4Note that now the global continuity has been lowered: u "]’)k+mi,r 1" c(mi-2)[a, b], with continuity from the

right in x at mesh points.
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with S a nonsingular diagonal matrix of rank r. (In general, r r(t, z(u)(t), y(t)).) Let

(4.3) U (U1 U2), V (V V2)

where U1 and V1 consist of the first r columns of U and V, respectively, and U2 and V2 are
the rest. Writing

(4.4) y V ap V + V2aP,

wc have

(4.5) Ey USI,

so can be eliminated from the constraints. This is the "index-1 part" of the algebraic
unknown vector y. Moreover, clearly U2rE 0, so upon multiplying the linear (1.6b) by Uf
and substituting Vry in (1.6a) we obtain a DAE in pure index-2 form for u and 2, the
latter being the "pure index-2 part" of the algebraic unknown vector y. In this transformed
DAE of pure form, the condition for index-2 is clearly that UfCBV2 be nonsingular.

Consider next applying a collocation scheme without projection, as described in 2, to the
linear (1.6). The transformationsjust described are all pointwise and involve no derivatives, so
the collocation equations for the transformed DAE are identical to the transformed collocation
equations applied to the original form.

The only difference arises for the projected collocation method, where the projection
should be carried out only onto the constraint manifold corresponding to the pure index-2
variables P2. But this is conceptually simple now: the procedure described in 3 applies here
with no change, except that

(4.6) B +-- B V2, C <--- UC.

The resulting method is referred to as selective projected collocation.
In COLDAE, the user has the following three options.
1. Collocating with no projection. This is good for ODEs and for semi-explicit index-1

boundary value problems. For index-2 problems and for fully implicit index-1 problems, one
of the next two options is usually preferable.

2. Projected collocation for pure index-2. This is the preferred option if the user knows
that the problem to be solved is indeed of this form (everywhere in t).

3. Selective projected collocation. This "rich man’s option" corresponds to the case
described in the present section. At the right end ofeach subinterval (within a quasilinearization
iteration) the code uses LINPACK routines to decompose E as in (4.1). The unprojected
collocation procedure is as usual, except that at the end of each subinterval processing, a
projection step is performed as in 3, but using (4.6). These updated matrices are also used
for the mesh selection procedure?

Fully implicit index-1 DAEs. The mixed index-2 option discussed in this section also
allows dealing with fully implicit index-1 problems. Consider the system of rn equations

(4.7) g(t, x, 79x) 0

(we suppress higher derivatives for notational simplicity), and denote

(4.8) y Dx, E gy, C gx.

5The expense of SVD computations is not very siginificant for small problems. Note that the decompositions
are carried out only on m x m matrices. To deal with larger problems more efficiently, we are considering smooth
factorizations [21 and [27]. This will be reported on in the near future.
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Applying SVD to E of (4.8) as before and using the notation (4.1)-(4.5), it follows that near
a given solution (4.7) has index 0 if the rank is r rn and index if r < m, r constant, and

U2rCV2 is nonsingular (see, e.g., [19] and [23]). This allows us to pose the index-1 (4.7) as
the semi-explicit DAE of index at most 2:

(4.9)
7x y,
0 g(t, x, y).

This DAE, subject to the same boundary conditions on x that come with (4.7), can be solved
by COLDAE using the general index option of selective projected collocation.

5. Numerical examples and further discussion. In the tables below we employ the
following notation, unless otherwise specified: Nj denotes the size of the final mesh needed
to satisfy the error tolerances (as estimated by the code), when using the jth projection option
among the three mentioned at the end of the previous section--if no such convergence is
reached then this is indicated by .; erruj denotes the maximum error on all components
of u measured at 101 equidistant points, in case the exact solution is known, when the jth
projection method is used; erryj denotes similar errors on y components; ermshj denotes
similarly the maximum error in u at mesh points on the final mesh.

5.1. Projected collocation and mesh selection.
Example 1. Consider for 0 < < 1,

x u
2-t

x+(2-t)uy+q(t),

v -1 ( vp(t) )Xl-X2+ v-1 y+q2(t),x2- 2-t 2+t
0 (t + 2- p(t))Xl + (t2 -4)x2 + r(t)

with Xl (0) and p(t) a known function to be specified below. This example has been
analyzed, in slight variations and with p 0, in [7] and [8]. Here v > is a parameter. The
inhomogeneities q and r are chosen to be

et 2-t-- (v+2)p(t)+p’(t) 2tp(t) et_4 t_4)

r =-(t+t-2)e
(t) .t eso that the exact solution is x e x2 (1 + )e y 2-t"

First we let p(t) =-- O. While this is a linear, pure index-2 initial value problem, it can be
particularly nasty, depending on the value of v:

The stability constant for unprojected collocation is exponentially large in v, while that
for projected collocation (and for the problem itself) grows only linearly in v.

Even the projected collocation scheme exhibits a behaviour common to nonstiff inte-
gration methods, requiring a small step-size h when vh >> (see [8]).

In Table 5.1 we record results of running COLDAE with and without projection. The
initial mesh in all cases was uniform with N 5, the number of collocation points per
mesh subinterval was k 4, a maximum mesh size of 100 subintervals was imposed and
the tolerance on both components of u x was 1.e 5. (Note also the additional boundary
condition used, x (0) 2x2(0) 1, as dictated by the constraint.)

The advantage of using the projected collocation method is clearly demonstrated for this
example. Note the recovery of the superconvergence results for moderate values of v.
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TABLE 5.1
Errorsfor Example 1.

v NI errul erryl ermsh N2 erru2 erry2 ermsh2
10 .86e-8 .10e-4 .86e-8 10 .12e-8 .87e-5 .89e-15

10 10 .13e-4 .23e-3 .13e-4 10 .15e-7 .87e-5 .80e-11
50 * 10 .44e-6 .86e-5 .80e-7
100 * 10 .37e-6 .87e-5 .11e-6

Next, we consider this DAE with

p(t)=-(l+ erf(t-1/3
with the parameter 0 < e << 1. This function varies rapidly (like e 1/2) around 3, and
this is reflected in the form of the solution x2(t). Note that the EUODE remains stable here,
because p < O, p’ < O.

We have used this example to test our mesh selection procedure (the fact that this is an
initial value problem is immaterial here: the approach remains as if this were a boundary
value problem). In Figs. 5.1 and 5.2 we display the mesh consisting of every second point of
the final COLDAE mesh (cf. [4]) and the solution x2 based on that mesh, when running for
e 1.e 5, v 20 (the latter excludes the nonprojection option proj), using a tolerance
1.e 5 on both components of x, a uniform initial mesh of five subintervals, and k 4. For
Fig. 5.1, we used essentially the COLSYS mesh selection procedure for x. While the layer
region has been detected, the mesh to the left of the layer is clearly much finer than it could
have been. In general, it has been our experience that this procedure needs a smaller h in
the current mesh, to recognize the need to redistribute it, than the same procedure requires
with the projected solution. For Fig. 5.2 we projected x on the algebraic solution manifold, as
described at the end of 3, before applying the mesh selection procedure. The resulting mesh
has the layer better located, and therefore a smaller mesh (80, instead of 139 subintervals) is
needed for achieving roughly the same accuracy.

4.5

3.5

2.5

1.5

20 eps 1.000000e-05 139

mesh selection solution and mesh

FIG. 5.1. Example 1" Unprojected mesh selection.
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4.5

3.5

2.5

1.5

20 eps 1.000000e-05 80

mesh selection solution and mesh

FiG. 5.2. Example 1" Projected mesh selection.

5.2. Selective projected collocation.
Example 2. The following example has been developed from one proposed by S. Reich

(private communication). It is an instance of a nonlinear, semi-explicit DAE of index at
most 2:

x (e + x2 pa(t))y + P’I (t),

x2 p’(t),
X3 y,

0 (x p (t))(y et),

which we want to solve for the boundary conditions

x (0) p (0), X2 (1) P2 (1), X3 (0) 1.

Here e > 0 is a parameter and pl, p2 are given functions. For the results reported in Table
5.2 we chose

Pl P2 --sin t.

This problem has two isolated solutions that can be easily computed.
One solution is obtained by setting y et. This yields x3 et, x2 p2(t) (in any

case), and Xl pl (t) + e(e 1). The linearized problem around the exact solution has
index and nothing exciting happens in addition, except that the conditioning deteriorates as
e --- 0.

The other solution is obtained by setting xl Pl (t), which is the other possibility for
satisfying the constraint. This yields x2 P2 (t), y 0, and x3 1. The variational problem
at this solution has index 2, with conditioning growing with e-1. For e 0, y and x3 are not
defined in a locally unique way. Yet, letting el (x’)’- P’l and e2 x P2, we see from the
equation for x that for all e _> 0 small enough compared to h, the error in y depends only on
e and e2, which in turn depend only on h and not on e. Thus, the same numerical solution is
obtained when eh- O. The numerical solution is locally unique and the stability constant
deteriorates only as a negative power of h.
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In Table 5.2 we record results of running COLDAE with and without projection. The
solution to which the code converges depends, of course, on the initial guess. Since the index
may be or 2, depending on the current iterate, the option of always projecting is not used,
and the options compared are never projecting (option 1) vs. selective projected collocation
(option 3). The initial parameter setup for COLDAE was as in the previous example. In
addition to the information described for Table 5.1, we also write under "sin" whether the first
or the second exact solution is approximated.

TABLE 5.2
Errorsfor Example 2.

sin e NI errul erryl ermsh N3 erru3 erry3 ermsh3
10 .75e-9 .16e-6 .lle-13 10 .75e-9 .16e-6 .lle-13

1.e-4 10 .65e-9 .16e-6 .41e-10 10 .65e-9 .16e-6 .41e-10
1.e-8 10 .58e-7 .46e-5 .54e-7 10 .58e-7 .46e-5 .54e-7

2 10 .10e-7 .20e-5 .10e-7 10 .12e-8 .19e-6 .14e-14
2 1.e-4 10 .10e-3 .20e-1 .10e-3 10 .12e-4 .19e-2 .48e-9
2 1.e-8 * * * * 40 .lle-3 .73e-1 .16e-6

We note that the values listed in Table 5.2 depend on the initial guess (e.g., for the last
entry, significantly better errors were obtained when starting from a different initial guess). For
the index-1 solution, both options give precisely the same results, of course. For the index-2
solution, the projection option is significantly better. When we set e 1.e 8, we could not
obtain convergence for any method, until we increased the initial mesh size to N 20. Then
convergence was obtained for the selective projection method, but not for the unprojected one.

5.3. Fully implicit, index-1 problems. A class of problems where (selective) projected
collocation proves useful, is fully implicit index- DAEs (4.7) converted to semi-explicit index-
2 DAEs (4.9). We have used COLDAE to solve the example in [3] in this way (the unprojected
collocation method does very poorly here and the projected method does very well, similar
to Example 1). We have also solved a version of the detonation problem considered in 15].
This is an instance where the availability of a general-purpose tool like COLDAE allows one
to spend less time on developing special-purpose methods and codes.

The price paid in solving (4.9) instead of (4.7) is that the size of the system appears to
have doubled. However, note that in applications (e.g., the detonation problem), often only
part of the given system is not in semi-explicit form to begin with. Thus, the size of the
resulting higher index DAE can be much less than doubled. Also, the resulting index-2 DAE
is often already in pure form, so no SVD is needed for its solution in such cases. Finally,
we remark that if the problem contains inhomogeneities with jump discontinuities, then such
functions should be defined like the approximate solution, i.e., with a mesh point placed at
the discontinuity location and the inhomogeneity defined to be continuous from the right.
Appropriately discontinuous approximate solutions are then possible.

5.4. Shooting for initial guesses. Let us turn now to the question of solving initial value
DAEs using COLDAE. This is certainly possible, in principle, viewing initial value problems as
a special case ofboundary value problems. But the code does not take any special advantage of
the relative simplicity and locality of initial value problems, and therefore it is not competitive
with initial value codes in general. One major difference is in the amount of storage required
by COLDAE, which increases linearly with the number of steps N, whereas the amount of
storage required by initial value codes is usually independent of N. The latter does not hold,
however, if the approximate solution is to be known for all values in a given interval [a, b]
simultaneously. That is the case when the intended use of the initial value solution is as an
initial approximation ("guess") for a boundary value problem solution.
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This is sometimes a useful idea (not only for DAEs, but also for boundary value ODEs). It
may happen that a major difficulty in practice when solving nonlinearboundary value problems
is in obtaining a sufficiently good initial guess to start a convergent damped Newton iteration
from. Some users have in fact claimed that this difficulty gives shooting methods an advantage
over COLSYS. But if a shooting method can indeed be applied (i.e., if the conditioning of the
initial value problem is not much worse than the conditioning of the boundary value problem,
and initial value solutions starting from a do reach b, cf., e.g., [6]), then we can also shoot
once to obtain an initial approximation in the context of COLDAE.

This can be conveniently done in one calling (driver) program that first calls COLDAE
to solve a (user-defined) initial value problem, and then calls COLDAE again to solve the
desired boundary value DAE problem by continuation from the solution of the initial value
one. Thus, the user has only to guess the initial valuesmthe initial guess for other values
of is taken, for example, to be the same, i.e., constant. The quasilinearization iteration of
COLDAE then amounts to a sort of waveform method. To facilitate this possibility further,
we have implemented an option in COLDAE that performs uncontrolled (standard) Newton
iterations without damping, until convergence of the nonlinear iteration is hopefully obtained.
This has been used to obtain good initial guesses for some examples in the class of problems
described next.

5.5. Optimal control and parameter estimation. There are many applications in which
a DAE for state variables involves control functions. The control is to be determined so as
to minimize some objective functional. For instance, in robotics one considers problems of
trajectory optimization (see [18] and [28])

(5.1) min J (p(T), p’(T)) + L(p(t), p’(t), u(t), t)dt

subject to the constrained multibody equations

(5.2a)
(5.2b)

M(p)p" f(p, p’, u) Gr (p).,

0 g(p),

and some side conditions

(5.3) b(p(0), p’(0), p(T), p’(T)) 0,

where p are generalized body positions, M is a positive definite mass matrix, and G Og/)p
is a constraint matrix with a full row rank. The control u appears in the applied forces f, and
the objective can be, for example, to find the trajectory that takes the system from one specified
position to another in a minimum amount of time T.

Replacing (5.2b) by its derivative

0 g’(p) G(p)p’

or by a combination

(5.4) 0 yg(p) + G(p)p’

(y > 0, cf. [11 ]), the state equations form an index-2 DAE. The necessary conditions for this
problem yield a boundary value DAE for p, p’, ,k, and their adjoint variables (i.e., the obtained
size is double that of (5.2); see, e.g., [17]). Assume that L is such that the resulting DAE
has index 2. This is a boundary value problem even if the conditions (5.3) are given only at
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0. When specifying the boundary conditions for COLDAE, note that the constraint (5.2b)
and its adjoint constraint equation must be specified by the boundary conditions at 0,
and that these constraints are satisfied automatically at T, so the conditions at T must be
complementary (see Example 3 below).

The use of COLDAE to solve a system like (5.1)-(5.3) has the advantage of availablity
of a general-purpose software. However, we do not recommend it as a general "cure." First,
there may be many equations in (5.2); second, the controls are often restricted by inequalities
and this cannot be handled directly by COLDAE. Another note is that by concentrating on
the necessary conditions for an extremum of (5.1)-(5.3), the sense of minimization is lost,
so some information is not being used. Nonetheless, COLDAE is an available tool that can
minimize the human effort in writing special-purpose programs for certain applications.

A somewhat-related problem is that of parameter estimation. A given DAE of a type
covered by COLDAE depends on unknown parameters w. The problem is to recover the
parameters so that the DAE solution best fits given observations on the solution. Such problems
are ill posed, and can be difficult to solve.

Example 3. Consider

X X2 "+" Xly,

X2 --O)2Xl + Xzy,

0=

X (0) 0, X2(0) 1,

where co is a constant parameter. This is a pure index-2 DAE and the exact solution for
o)=co := 3 is

X =o9-sinoat, x2=coso)t, y=0.

Now, suppose that we are to find o) that best fits an observed function r(t), where the
observations are on x(t) + x2(t), 0 < < 2. The necessary conditions for minimizing- f(x +x2-r)2dt yield the boundary value DAE problem with six ODEs and two constraints,
for x l, x2, 0), L1, )2, v, y, and/z,

X X2 + Xly,

X2 --O)2Xl + Xzy,

O) 0

Xlbt (Xl "l" X2 r),1 --Y)I + 0,)22 2
rr

’2 --.1 yk2 2X2/Z (Xl + X2 r),

V 209X1.2,

0=

0 Xll -I-X22,

Xl (0) 0, X2(0 1, V(0) 0, )2(0) 0,

v(2) 0, x2(2) (2)(_)2 X (2).2(2) 0.
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We now solve this problem twice, using COLDAE.
1. Setting r(t) 03-1 sin o3t / cos o3t, we recover co o3 to machine precision (with 20

uniform mesh elements and 4 collocation points per element).
2. Setting r(t) to be the piecewise linear interpolant of the values o3-1 sin o3t + cos o3t

at 21 equidistant points, we recover co 1.3792, which, as an approximation to o3, is in a
relative error of 31.7%. Smoothing r(t) by passing a cubic spline through these 21 points and
rerunning has not helped much. Obviously, this problem is not well conditioned.

5.6. On regularization. Various authors have proposed regularizing a given DAE by
adding to (1.6b) terms involving ey’, turning the problem (1.6) into an ODE. The parameter
e, 0 < e << 1, must be taken small to ensure that the solution of the obtained problem does
not deviate much from the desired one. (In this description we do not consider stabilization
methods, which maintain the exact solution in a reformulated problem, as regularization
methods.) WithCOLDAEone can ofcourse solve the obtainedboundary value ODE. However,
this approach is often unnecessary, and may introduce stiffness where none existed. It is not
difficult to conjure up examples where the obtained regularized problem is more difficult to
solve than the original one. An exception is a singularity point, where the local index of the
DAE increases at that one point. We proceed with an example for the latter.

Example 4. The DAE

X x2y or J,

x2 y--1

0 Xl-- (-+y)
has been investigated in [5] as a simple model for the hydrodynamic semiconductor equations.
The boundary conditions are

y(0) y(/) .
Here J, , > J, and/3 are known positive constants. The resulting solution y is positive on
[0,/]. The linearization of this DAE clearly has index 1, except where y J. Cases where
y becomes less than J (starting at y(0) > J) correspond to transonic flow. The solution is

then discontinuous where y jumps back from (< J) to (> J) (see [5]).
In such a case, where y is discontinuous at an unknown location at which there is a

singularity, one may be better off replacing the DAE by a regularizing ODE. The method used
in [5] is equivalent to replacing the constraint above by

y’=xl- (J---- + y)
insisting that the constraint be satisfied at 0, viz.,

j2
X1 (0) -t-

Solutions with rather sharp layer profiles were obtained in [5] using COLDAE (i.e., COLNEW
for the regularized boundary value ODE) by applying continuation in e.

While this example shows that replacing the DAEby a regularizing ODE can be beneficial,
we note that there are various types of possible singularities and that this is not necessarily a

cure for all problems. Also, the regularized ODE and its additional boundary condition must
be chosen with care.
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SHIFTING STRATEGIES FOR THE PARALLEL QR ALGORITHM*
DAVID S. WATKINS

Abstract. The use of high-order generalized Rayleigh quotient shifting strategies is advocated as a means of
improving the parallel performance of the double-shift QR algorithm for nonsymmetric eigenvalue problems.

Key words. QR algorithm, parallel implementation, shifts
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Consider the problem of finding all eigenvalues of a real or complex square matrix A.
Assume that A has no special structure to exploit. Thus it is not banded, sparse, or Hermitian,
for example. The QR algorithm [6], [21] has been the method of choice for solving such
problems for the past 30 years. However, in recent years it has been suggested that the days of
the QR algorithm may be numbered, for the QR algorithm has proven difficult to parallelize.
The purpose of this note is to suggest that such predictions are at best premature.. A simple
modification of the shifting strategy promises to improve the parallel performance of the QR
algorithm significantly.

Recall that the QR algorithm is an iterative process that produces a sequence of unitarily
similar matrices (Ak) that converges to something like upper triangular form, thereby revealing
the eigenvalues. Before the QR iterations are begun, the matrix is reduced to upper Hessenberg
form by a similarity transformation, so that the QR algorithm can operate on upper Hessenberg
matrices. Thus each Ak is upper Hessenberg. To accelerate convergence, we shift the matrix
at each step by a shift that approximates an eigenvalue (or so we hope).

An important feature of the QR algorithm is that it has an implicit version that allows
several QR steps (as many as one wants) to be taken at a time. The value of this feature was
recognized immediately and has been exploited for the past 30 years in the following way. If
A is a real matrix, one would prefer to work entirely in real arithmetic. However, A may have
some (perhaps many) pairs of complex conjugate eigenvalues. If one wishes to achieve rapid
convergence to these eigenvalues, one must use complex shifts, thereby introducing complex
arithmetic. Fortunately, if one performs two steps at once with complex conjugate shifts o" and
6, the result is real. Furthermore, the implicit double step can be carried out in real arithmetic.
For this reason, the standard implementations of the QR algorithm for real, nonsymmetric
matrices perform double steps. For details see [6], [7], [18], or [21], for example.

A few years ago Bai and Demmel [3] proposed the multishift QR algorithm, which
performs QR steps of multiplicity higher than two. (By a QR step of multiplicity m we mean
rn single steps carried out simultaneously by the implicit algorithm.) Steps ofhigh multiplicity
(say 30 or 60) entail a great deal more arithmetic than the standard single and double steps; the
amount of arithmetic is roughly proportional to the multiplicity of the step. Furthermore, the
arithmetic in a step with high multiplicity can be organized as matrix-vector and even matrix-
matrix operations, thus allowing the steps to be programmed in high-level basic linear algebra
subprograms (BLAS). The expected payoff of this approach is that the high-level BLAS can be
implemented in an optimal way for each computer, exploiting the vector pipelines, hierarchical
memory, parallel processors, or whatever features a given machine happens to have. This was
a very promising idea.

If one wishes to perform, say, 60 steps at once, one needs 60 shifts. Where are we to
get so many shifts? The standard strategy for the double QR algorithm is to use as shifts the
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eigenvalues of the 2 2 submatrix in the lower right-hand corner of the matrix. The natural
extension of this strategy for steps of multiplicity rn is to calculate the eigenvalues ofthe rn rn
submatrix in the lower right-hand corner of the matrix and use these as shifts. Although this
might seem costly, it is actually relatively inexpensive as long as rn << n, where n is the
order of the matrix. Recalling that the complexity of the Hessenberg eigenvalue problem is
O(n3), we see that we can easily afford to compute 60 shifts in this way if, say, n 600.
This shifting strategy is designed to force the entry an-m+l.n-m to zero, thereby isolating an
rn rn submatrix (and rn eigenvalues) in the lower right-hand corner. Watkins and Eisner
[20] have shown that the local convergence rate is usually quadratic. (The problem of finding
an efficient, globally convergent shifting strategy remains open.) We call this strategy the
generalized Rayleigh quotient shift strategy, because in the case where rn 1, it reduces to
the Rayleigh quotient shift. Various researchers have experimented with different strategies,
but this is the best that has been found so far.

When Bai and Demmel programmed the multishift QR algorithm with the generalized
Rayleigh quotient shift, they found out that the algorithm has a flaw. At the outset it must
grind for many iterations before the first batch of eigenvalues is deflated from the matrix. The
problem becomes worse as the value ofm is increased. Once the first deflation has taken place,
the algorithm begins to behave as one would hope, but by this time the damage has already
been done. For example, when I applied the QR algorithm with m 38 to a random matrix
with n 250, it took 20 iterations (of multiplicity 38) before the first deflation took place.
This is too many. The double QR algorithm typically isolates about one pair of eigenvalues
per five iterations, at least in the early stages. A step of multiplicity rn has about the same cost
in flops as rn/’2 double steps. Therefore, if the multishift QR algorithm is to be competitive,
it must isolate a block of rn eigenvalues in about five (multiple) iterations. Thus the algorithm
took something like four times as many iterations as we would have liked. Even though the
algorithm behaved well for the remainder of the run, it still took 71 seconds on a DECstation
5000 (working in double precision) to find all of the eigenvalues. In contrast, the standard
EISPACK [12] code HQR (post- 1989 version from NETLIB) took 24 seconds for the same
matrix on the same workstation. If the multishift QR algorithm is to be a success, this problem
must be overcome. So far nobody has found a solution. A multishift QR program has been
included in LAPACK [1], but the designers have decided to release it with rn 6, which is
small enough that the problem of delayed convergence is not observed. This modest value of
m hardly allows the kind of performance that had been hoped for. At this point it appears that
multishift QR was a good idea that did not pan out.

It is tempting to blame the shifting strategy. Perhaps in the early iterations the shifts just
are not good enough. This is what I thought until an eye-opening experiment by Dubrulle
[5] showed otherwise. Dubrulle wrote two codes that perform multiple steps in two different
ways. They both use the generalized Rayleigh quotient shift strategy to get rn shifts, where
rn is an even number, say, 30. The first code is a multishift code; that is, it performs steps of
multiplicity m, just as we have been discussing. The other uses the rn shifts to perform a batch
of rn/2 double steps, one after the other. In principle, that is, in the absence of roundoff errors,
the two codes should yield identical results. In practice the outcomes were quite different.
Whereas the multishift code had the convergence problem that we have just been discussing,
the code that performed batches of double steps had satisfactory convergence properties. I
replicated these results with experiments of my own. For example, I ran code that performed
steps with rn 38, implemented as batches of 19 double steps, on the same 250 250 matrix
as mentioned above. After only five such batches, the first chunk of 33 eigenvalues deflated
from the problem. Although we would have preferred to get 38 eigenvalues, 33 was not bad.
The main point is that the deflation happened after five batches, not 20. The modified code
took only 33 seconds to find all of the eigenvalues, so it was almost competitive with HQR.
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These experiments demonstrate that the fault does not lie with the generalized Rayleigh
quotient shift strategy. The fact that the two codes behaved so differently when they should have
produced identical results shows clearly that the problem lies with roundoff errors. Because
the QR algorithm is forward unstable, small differences in the roundoff errors can cause huge
differences in the result. Somehow the roundoff errors destroy high-multiplicity QR steps;
subdiagonal entries that are supposed to converge to zero simply do not. The process is not
yet understood.

The performance of the code that does double steps in batches can be made even better
by changing the deflation strategy. In the original implementation the code did not check
for the possibility of deflation except between batches. I wrote the code that way because I
wanted it to mimic the multishift QR code exactly, except in the way the step was executed.
However, if one performs the multiple step as a batch of double steps, one has the possiblity
of checking for possible deflations after each double step. This costs little, and it is the right
way to implement the step on a sequential machine. Otherwise deflations that occur in the
middle of a batch can be washed out and lost. With this more vigilant strategy, the code that
performed double steps in batches of 19 was able to finish off the 250 250 matrix in 24
seconds, the same as HQR.

It is interesting to look at the pattern of deflations. The first deflations took place in
the third batch, during which 18 eigenvalues were isolated. Two batches later another 22
eigenvalues emerged. On the following batch, 13 more came out, and each subsequent batch
delivered a few more. Thus with this deflation strategy the eigenvalues emerge in smaller
bunches but more frequently.

With the new deflation strategy the batch algorithm is not really a high-multiplicity algo-
rithm in any sense. It is simply an implementation of the double QR algorithm with a novel
shift strategy, the generalized Rayleigh quotient shift strategy with large m. My code does
not actually work with a fixed value of m; it adjusts rn depending on the size of the matrix.
As the deflations take place, the code must operate on submatrices of various dimensions. If
the size of the submatrix that is being processed at a given moment is k, it takes rn to be an
even number that is approximately k2/3, except that rn is not allowed to exceed 50. (Note that
38 2502/3.) Also rn is set to 2 whenever k < 50. This includes the submatrices from which
the shifts are calculated. Of course there are numerous other strategies that one might try.
Which strategy is best depends on the computer, the data structures, and other implementation
details.

With these parameters, the generalized Rayleigh quotient shift strategy has proved to be
competitive with standard implementations of the QR algorithm. Table illustrates run times
for four implementations of the QR algorithm on a 600 600 matrix on one processor of a
Cray X-MP in single precision. The matrix was obtained by reducing a matrix of normally dis-
tributed random numbers (mean 0, variance 1) to upper Hessenberg form using the EISPACK
code ELMHES.

The HQRcode is from NETLIB. The LAPACK code is the aforementioned multishift code
with multiplicity 6. GR is an LR/QR hybrid written by Haag and Watkins [4]. Here I have
the parameters set so that it performs straight QR. GR uses the standard rn 2 shift strategy.
GRBS (block shift) is identical to GR, except that it uses the generalized Rayleigh quotient
shift strategy as specified above. GR is included here so that we can compare apples with
apples. Clearly, the switch to the Rayleigh quotient shift strategy gives improved performance
on this problem. Ofcourse, one should not place too much importance on these exact numbers;
they vary from one matrix to the next. Furthermore, none of these codes has been optimized

Parlett and Le 11 have analyzed forward instability of single QR steps (m 1) in the symmetric case. Watkins
[19] has discussed the nonsymmetric case, also for rn 1.



956 DAVID S. WATKINS

TABLE

Time (seconds) Time (relative)
EISPACK’s HQR 16.24 1.00
LAPACK’s SHSEQR (m 6) 15.99 0.98
GR i4.50 0.89
GRBS 11.81 0.73

for the Cray. It was left to the compiler to decide what to vectorize. The important point is
not that GRBS beats the other codes but that it is competitive. Having raced GRBS against
HQR and other codes on various machines, using random and nonrandom matrices of various
sizes, I have found that GRBS is sometimes faster, sometimes slower, but generally in the
same ballpark.

The most important advantage of the new shifting strategy becomes evident when we
think about implementing the algorithm in parallel. A double QR step on a Hessenberg matrix
proceeds roughly as follows. An initial similarity transformation creates a small bulge in the
Hessenberg form at the upper left hand corner of the matrix. The subsequent transformations
return the matrix to upper Hessenberg form by chasing the bulge step by step down the diagonal
until it disappears off the edge of the matrix. If we have 60 shifts in hand, we have enough to
do 30 such bulge chases. Once we have set one bulge in motion, there is no need to complete
the step before setting the second bulge in motion. In fact, once the first bulge has travelled
just a small distance down the diagonal, there is room to start the second bulge. Shortly
thereafter we can start a third bulge, and so on. In this way we can chase a large number of
bulges at once in pipeline fashion. This scheme generates enough arithmetic to keep a good
many processors busy. The arithmetic is taking place not only on the diagonal, but all along
the rows and columns. It should be possible to implement this scheme on parallel computers
of both shared memory and distributed memory types 15], 17]. Also, the scheme could be
implemented in a systolic array.

The idea of pipelining QR steps is not new. For example, it has been considered by
Heller and Ipsen [8], Stewart [13], van de Geijn [14], [16], and Kaufman [9], but the idea has
not caught on in a big way so far. An important reason for this is that until now nobody has
advocated changing the shifting strategy. It has been assumed that one should continue to
use the standard shifts, the eigenvalues of the lower right-hand 2 x 2 submatrix. The entries
of this submatrix are among the last to be computed in a QR step, for the bulge is chased
from top to bottom. If one wishes to start a new step before the bulge for the current step
has reached the bottom of the matrix, one is forced to use old shifts because the new ones
are not available yet. If one wants to keep a steady stream of, say, four bulges running in the
pipeline, as in Fig. 1, one is forced to use shifts that are three iterations out of date. Van de
Geijn 16] analyzed the effect of using such shifts, which he calls deferred shifts, on the rate
of convergence. He showed that if deferred shifts are used, the convergence rate ceases to be
quadratic but remains superlinear. Precisely, he showed that if the shifts are deferred by h
iterations, the convergence rate is r, where r is the unique positive root of h+ h 1 O.
One easily shows that r lies strictly between and 2, which means that the convergence is
superlinear but subquadratic. When h 1, which means that the shifts are one iteration out
of date, r (1 + /)/2 1.62, the golden ratio. This is the same as the convergence rate of
the secant method for solving nonlinear equations [2]. As h is increased, r decreases steadily.
When h 3, r 1.38, and when h 20, r 1.11. Thus we see that if we pipeline large
numbers of bulges using the standard shifting strategy, the convergence rate will be degraded
severely.
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FIG. 1. Pipelined QR steps.

In contrast to these results, if we use the generalized Rayleigh quotient shifting strat-
egy with, say, m 40, we can chase up to 20 bulges in pipeline without losing quadratic
convergence. There is, however, a catch. If we wish to maintain quadratic convergence, we
must finish each batch, that is, we must empty the pipeline, before computing the shifts for
the next batch. If we wish to keep the pipeline full at all times, we cannot avoid using old
shifts. However, by choosing m large or spacing the bulges appropriately (the optimal strategy
depending on the architecture), we can always organize the computation so that the shifts are
never more than one batch old. The analysis of van de Geijn is valid not only for the standard
shifts but for generalized Rayleigh quotient shifts as well. Therefore, if our shifts are just one
batch out of date, we get a convergence rate of about 1.62, which is far better than 1.1 l, for
example.

Some preliminary results. Kaufman [10] has obtained some preliminary timings for
pipelined QR steps using a generalized Rayleigh quotient shifting strategy on a MASPAR
massively-parallel computer. This is a single instruction multiple data (SIMD) machine con-
sisting of an array of 16384 very slow processors connected to a much faster front-end proces-
sor. To get any benefit at all from the parallel processing unit, one must make very good use
of the processors. If an algorithm does not have a great deal of inherent parallelism, then there
is no point in using the parallel unit at all. For example, to calculate all of the eigenvalues of
a 400 x 400 matrix using HQR took 178 seconds on the front end versus 1074 seconds on the
parallel unit.

Kaufman wrote a version of QR that uses the generalized Rayleigh quotient shifting
strategy with m n/ 10 and performs batches of m/2 double steps. Each batch is completed
before the new shifts are calculated, so the shifts are always up to date. Checks for possible
deflations are performed only between batches. The shifts are computed by HQR on the front
end, and once the size of the matrix is deflated to 3m, the remaining submatrix is processed
by HQR on the front end. Some timing results for random matrices are given in the Table 2.

TABLE 2

n
400
600
8O0

Run times in seconds
HQR HQR New shift strategy

on front end on parallel unit on parallel unit
178 1074 223
’621 2829 472
1469 845
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The most striking result is that the new algorithm is some five times faster than HQR on
the parallel unit. For large enough matrices, it even beats HQR on the front end by a substantial
amount. From the trend illustrated by the table, we can expect that the new algorithm will
perform even better on matrices that are larger still.

The same tests were performed using the upper Hessenberg matrices given by hij j
for n 400, 600, and 800 with similar results.

Kaufman also wrote a code for symmetric, tridiagonal matrices that uses the generalized
Rayleigh quotient shift strategy and chases large batches of bulges in pipeline. This code also
performed well in certain situations. On one processor of a Cray Y- MP it was significantly
faster than a number of the fastest symmetric QR codes known. Some results are given in [9].

Acknowledgment. I would like to thank Linda Kaufman for very generously permitting
me to include her preliminary results in this paper.
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A SHADOWING LEMMA APPROACH TO GLOBAL ERROR ANALYSIS FOR
INITIAL VALUE ODES*

SHUI-NEE CHOW AND ERIK S. VAN VLECK*

Abstract. The authors show that for dynamical systems that possess a type of piecewise hyperbolicity in which
there is no decrease in the number of stable modes, the global error in a numerical approximation may be obtained as
a reasonable magnification of the local error. In particular, under certain conditions the authors prove the existence
of a trajectory on an infinite time interval of the given ordinary differential equation uniformly close to a given
numerically computed orbit of the same differential equation by allowing for different initial conditions. For finite
time intervals a general result is proved for obtaining a posteriori bounds on the global error based on computable
quantities and on finding and bounding the norm of a right inverse of a particular matrix. Two methods for finding and
bounding/estimating the norm of a right inverse are considered. One method is based upon the choice of the pseudo
or generalized inverse. The other method is based upon solving multipoint boundary value problems (BVPs) with
the choice ofboundary conditions motivated by the piecewise hyperbolicity concept. Numerical results are presented
for the logistic equation, the forced pendulum equation, and the space discretized Chafee-Infante equation.
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1. Introduction. In this paper we consider initial value ordinary differential equations
and their discretization. We investigate both theoretically and numerically the global error in
computing numerical approximations. It is well known (see [Ge], IS ]) that the global error
between the numerical approximation and the actual trajectory with the same initial condition
may become large. In fact, for a numerical method of order p with a fixed stepsize of h
and a differential equation with Lipschitz constant L, classical error estimates are of the form
exp(Lt)hp at time t. On the other hand, local error control provides a tight bound in many
instances. For example, the local error is a good estimate of the global error for many stiff
initial value problems in which one-sided Lipschitz constants appear. Our contribution is to
show that global errors stay reasonably bounded for the wider class of initial value problems
that are piecewise hyperbolic with no decrease in the number of stable modes where in fact
the number of stable modes may increase. These are not stable initial value problems in the
classical sense, and the global error may not be of the order of the local error. We will show
that if the initial condition for the discrete approximation is allowed to differ from that of the
continuous trajectory, then for a large class ofproblems the global error may be represented as a
reasonable magnification ofthe local error. This is important when one is employing numerical
simulations to study qualitative as well as quantitative features of dynamical systems. In this
paper we reserve the word orbit to denote a discrete sequence of points and the word trajectory
to denote a continuous function of time.

We consider the class of problems in which there is no decrease in the number of stable
modes ofthe linear variational equation along solution paths. This is reminiscent of the case in
which there are several hyperbolic fixed points (i.e., saddle points) and a trajectory that passes
near these fixed points in which the dimension of the stable manifold of these fixed points is
not decreasing. This situation arises in certain space discretized parabolic partial differential
equations that occur as models of chemical, biological, and other physical systems.
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Our method is based upon showing that there exists a nearby trajectory in which there is
no local error and is somewhat similar to defect correction (see [$2]). Our approach is different
from defect correction in that we do not attempt to provide a correction, but instead estimate
the magnification of the local error that gives the global error. In [Be it is shown that in a
neighborhood of a single hyperbolic fixed point, the discrete stable and unstable manifolds of
the map defined by the numerical method converge to the stable and unstable manifolds of the
fixed point of the continuous problem. Aspects of backward error analysis for initial value
ordinary differential equations are studied in [E2] and under certain conditions it is shown that
even on an infinite time interval there exists a nearby equation that is solved exactly by the
numerical result.

The idea of showing that near an orbit with a small local error there exists an orbit with
no local error is formalized in the dynamical systems community in terms of the shadowing
lemma. Results in this direction were first given by Anosov [A] and Bowen [Bo] for uniformly
hyperbolic maps on a differential manifold. These results were generalized, and recently an
analytic proof of the shadowing lemma has been given in [CLP] under the assumption of
exponential dichotomy. The infinite time result presented in this paper is proven under the
assumption of piecewise exponential dichotomy in which the rank of the projection onto the
stable subspace is, under certain assumptions, allowed to increase with time.

Numerical methods for computing the global error for maps, where the local error is
comprised solely of roundoff error (as opposed to roundoff error and discretization error when
one is solving differential equations numerically), were initially given in [HYG1 and [HYG2]
for the logistic map and the Henon map. These mappings are not uniformly hyperbolic in the
sense of Anosov and Bowen, but are on average hyperbolic. The methods used in [HYG1 and
[HYG2] are based upon interval arithmetic to provide a sequence of intervals containing both
the orbit with the small local error and the orbit with no local error. Othernumerical methods for
shadowing of maps have been given in [CP1 ], [CP2], and [CVV2]. In [SY] a new proof of the
shadowing lemma is given and numerical methods are presented that apply to both mappings
and ordinary differential equations. The methods in [SY] are based upon performing Newton’s
method to find a zero of a certain function. They answer a slightly different question than we
do, by showing that there exists a noisy discrete approximation with some unknown initial
condition near a trajectory of the same problem with a given initial condition. The methods in
[SY] provide a rigorous verification that there exists a nearby trajectory and rigorous bounds
on the distance from the trajectory to the discrete approximation using Taylor series methods
to integrate numerically. Taylor series methods are used to obtain explicit bounds on the local
errors although the methods in [SY] may be applied with only estimates ofthe local errors. The
methods presented here do not provide rigorous bounds, but instead provide estimates using
existing initial value software and local error estimates provided by the initial value problem
(IVP) software. Our purpose is to derive numerical methods for obtaining a posteriori global
error estimates that are compatible with existing numerical integration software.

In 2 we present a notion of piecewise hyperbolicity due to Pliss [PI and present results
that give sufficient conditions for the existence ofa trajectory on the positive real line uniformly
close to a discrete numerical approximation when the linear variational equation has this type
of piecewise hyperbolicity. We show that there exists a trajectory nearby by showing that
there exists a zero of a certain mapping, F. Under certain assumptions, Newton’s method
will converge to a zero of F given a numerically computed orbit as an initial guess. We do
not actually perform Newton’s method, but find a bound on the norm of a right inverse of the
linearized function DF to prove the existence of a zero of F in a neighborhood of our initial
guess. The main result of this section (Theorem 2.3) is essentially a shadowing lemma for
the case in which the linear variational equation is piecewise hyperbolic in the sense of Pliss.
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This includes the case in which the linear variational equation is exponentially dichotomic. In
3 we state a result for a numerically approximating orbit of finite length and give a simple
proof in terms of quantities that are numerically computable. The result is based upon having
a right inverse for an approximation of DF and a bound on the norm of this right inverse. The
challenge to obtain accurate estimates of the global error is to minimize the norm of the right
inverse over the set of all right inverses. Section 4 is devoted to developing numerical methods
to estimate quantities necessary to apply the result in 3. Most of our efforts are in finding a
suitable right inverse and in providing a bound or estimate on the norm of this right inverse.
Two methods are developed. One is based on the choice of the pseudo or generalized inverse
as our right inverse, and the second method is based on ideas related to the well conditioning
of multipoint BVPs. These multipoint BVPs correspond to right inverses and, motivated by
the concept of piecewise hyperbolicity the interior boundary conditions, are chosen to occur
at points in which there is an increase in the number of stable modes. To provide estimates
of the global error using existing numerical ordinary differential equation (ODE) software,
all of our global error estimates are in terms of the supremum norm. Numerical examples
are presented in 5. Our methods are apElied to the logistic equation, the forced pendulum
equation, and the space-discretized Chafee-Infante equation. Conclusions and references are
presented in 6 and 7, respectively.

2. Theoretical aspects. Throughout this paper we consider both sequences and con-
tinuous functions. We reserve the notation (t) for functions and the notation x := {Xn for
sequences. Given a function (t) defined on some possibly infinite real interval and a sequence
{tn with values in this interval, we will write the restriction of.(t) to {tn} as x := {Xn where
x, := x(tn) for all n. Unless otherwise stated I111 supt II(t)ll and Ilxll supn IlXnll. In
this section lYll denotes the Euclidean norm for y v.

Consider the initial value problem

(2.1)
J f(Y’, t),

(t0) x0,

where to /I,(t) N d andf Ck(IN,I;IN) for somek > 2 Letq
N x x N be the associated solution operator so that q(x0, to, to) x0 and
q(x0, to, t) is the solution at time with initial condition x0 at to. To solve this equation
numerically, we consider one-step methods of the form

(2.2) Xn+l x. + h.(R)(f, x., t., h.),

Xn given

to advance the solution from tn to tn+l := tn + h,.
Given an orbit x := {x,} produced by a one-step method, we define a corresponding

piecewise discontinuous function that is double valued at tn, n cz, called a pseudo
solution {,(t)} as

(2.3) Jn(t) dp(xn, tn, t) for tn <_ <_ tn+l

n 0 cx so that Yc.(tn) Xn. Let 3n J.+(tn+) .(tn+l), n 0 cx denote
the local error at the nth iterate, and let Y(t) J.(t) for t. _< < t.+ so that Y(t) is well
defined.

Letl(N) denote the sequences w {w.} with wn /IUv foralln and suPn I[w,,ll < o.
Consider the operator F" I(N) /(N), where the nth iterate (F(w)). is defined for any
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W (N) to be

(2.4) (F(w))n Wn+l Ck(Wn, tn, tn+l) for n 0 o

so that F measures the local error at each iterate. We wish to find a solution w (N) of
F(w) 0, i.e., a solution of the original IVP (2.1).

Consider the first variation DF(x) l(N) l(N) of F(x) defined by

(DF(x)u). Un+l x(Xn, tn, tn+l)Un,

where 4x ’= Oc/)/Oxn.
Given a pseudo solution 2(t), we construct (as in [Pal) a corresponding continuous func-

tion (t) defined by

(2.6) 5(t) [ 2(t) + (tn+l tn)-l(t Sn)6., t. < < Sn,

I :(t) + (tn+l tn)-l(t sn)n+l, sn <_ <_ tn+l,

where Sn (tn+l + tn)/2 SO that SUPn 3n implies I1 11 .
Let denote the principal matrix solution for the linear variational equation about 5(t)

so that

(2.7) OtdO(t, r) Df((t), t)dO(t, r), 0(, r) I

offor > r where Df := 53"
DEFINITION 1. Forpositive constants K, ., the system (2.7) is said to be (K, )O-hyperbolic

on the interval [a, b] iffor given s [a, b] there exists linear subspaces S(s) and U(s) of
dimension k and N k, respectively, such that, if Yo S(s),

IIO(t, a)-1 (s, a)y011 <_ Ke-Xt-SllYoll
for > s and s, [a, b], and, if yo U(s),

IIO(t, a)O-l(s, a)y011 <_ Ke-X(’-t)llYoll

for s >_ and s, t [a, b].
This is identical to the definition of exponential dichotomy on an interval that may be

found in [Co] and [AMR], where S(s) and U(s) represent the decaying and growing solution
components, respectively.

Given subspaces L, M in IRN we say that these subspaces intersect transversally if

dimL -t- dimM dim(L N M) + N.

Define Z(L, M), the angle between subspaces L, M, where 0 < Z(L, M) < r/2 by

cos(/(L, M)) max lylry21,
Ily II--Ilyll--1

where Yl 6 L, Yz 6 M and Yi-I-L N M for 1, 2.
It is assumed that (2.7) satisfies the following three hypotheses.
(HI) There is a mesh made up of what we will call the switching points,/30 < 31 <
< /m < 3m+l, where/30 to and 3m+l +cx such that (2.7) is (K, Z)-hyperbolic

with decaying/growing solution spaces Sj(t) and Uj(t) on each of the intervals [3j, 3j+l], for
j=0 m.
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(H2) The inequalities

dimUj(flj+) > dimUj+ (/j+)

are satisfied for j 0 m 1, and the subspaces Uj(j+) and Sj+l(j+l intersect
transversally for j 0 m 1.

(H3) There is an u > 0 such that

(Uj(fj+I), j+l (j+l)) > ot

forj 0 m-1.
Remarks.
(i) Note that (H2) implies that necessarily m < N; i.e, the number of switching points is

less than or equal to the dimension of the problem.
(ii) It is shown in [P12] that (H1)-(H3) are satisfied for differential equations of the

form (2.1) that are periodic in t, hyperbolic on the nonwandering set and satisfy the strict
transversality condition (see [Rol] and [Ro2]).

(iii) The switching points denote points in time where there is a decrease in the number
of unstable modes.

Consider now the inhomogeneous linear equation

(2.8) t(t) Df((t), t)i(t) + , (t).

The following theorem shows that (H1)-(H3) are sufficient to imply the existence of
uniformly bounded solutions of (2.8).

THEOREM 2.1 ([Pll]). There exist constants T(K, ;k, ) and o(K, ;k, or) such that if(2.7)
satisfies (H1)-(H3)for some switching points {/3j}+ with

j+ j > T(K, Z, ot)

for j m 1, thenfor any continuousfunction (t) with

II(t)ll o(K, ,
the system (2.8) has a solution Ft(t) satisfying

117(t)ll forallt.

The following theorem is an approximate implicit function theorem (basically Newton’s
method) that we use to find a zero of the function F defined in (2.4) given a sufficiently small
local error and a bounded right inverse for DF(x) defined in (2.5). Theorem 2.2 is easily
generalized to the case of doubly infinite sequences and finite sequences without change in
the proof.

THEOREM 2.2. Let F (N) --+ (N) be a C2 map. Let x be a point in (N) such
that DF(x) has a bounded right inverse DF(x) and let o > 0 be chosen so that

(2.9) IIDF(x)- DF(w)II <_ 1/(211DF(x)tlI)

for IIw xll 0. IfO < o and

(2.10) IIF(x)ll < /(2llDF(x)tll),

then the equation F(w) 0 has a solution w such that IIw xll .
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Proof. For the proof see [CVV ].
The following theorem gives sufficient conditions for the existence of a trajectory near an

orbit x := {xn} with IIF(x)ll _< . The result is based upon the uniform boundedness result
of Pliss (Theorem 2.1) and an application of Theorem 2.2.

THEOREM 2.3. Consider the IVP (2.1) and assume that it is solved using a numerical
method to produce an orbit x :-- {xn }o with local error uniformly bounded by > O. Let (t)
denote the corresponding pseudo solution and (t) the corresponding continuous function
constructed as in (2.6). Let hmax supn {hn and hmin infn {hn denote the maximum and
minimum stepsize, respectively. Let Lzf(, ’) denote a bound on the Lipschitz constantfor
Df in a ),-neighborhood of (t) and let Bzf(, y) denote a boundon Df in a },-neighborhood
of (t). Assume that

(i) the linear system (2.7) satisfies (H1)-(H3) with o(K, ;k, t) and T(K, ), t) defined as
in Theorem2.1 with j+l j > T(K, X, )for j m 1;

2(ii) the inequality c > r is satisfied where r hmaxL of(Yc, /2);/2+ hmaxBof(Y, 8/2)/2
and c o(K, ), t)hmin(1 p) for an arbitrary p such that 1 >> p > 0;

(iii) the inequality

hmaxLDf(, e)e<(c+s)-lc-r_
c 2

2is satisfiedfor s := hmaxBDf(, 3/2)r/(K, ., or)/2 and := 26(c r)-1

Then there exists, a solution (t) of the IVP (2.1) such that IIt(t) xll _< e for
n 0,..., cx.

Proof Since (i) holds, the Pliss Theorem implies that the inhomogeneous equation (2.8)
has a solution 8(t) satisfying I111 <_ for all continuous functions (t) such that I111 _<
r/(K, ., c). If gn "= Jt,ft"+l ,(s)ds and un "= (tn), then

(2.11)

tn+l

Un+l Un + f Df(3(s), s)(s)ds gn

tn

x(X, t,, t,+)Un gn d- rn,

where Px is defined in (2.5) and

Then we have IIrll rllunll + h2maxBzgf(, 8/2)o(K, , or)/2 --- rllull + s.
Let z,, z(tn) for n 0 o so that by (2.11) we have

(DF(x)u)n (G(z)u)n rn, for n 0 o,

where the linear operator G(z) is defined so that G(z)u g implies
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tn+l

(G(z)u)n Un+l Un f Df((s), s)(s)ds gn

tn

for all n.

Given a sequence g "= {gn} with IIg#ll c there exists a continuous function (t)
such that I111 _< 0(K, ., a). By the Pliss Theorem, G(z) is onto; i.e., given any sequence
g 6 (N) there exists a sequence u 6 (N) such that G(z)u g. Therefore, G(z) has a
right inverse G (z)t with

IIG(z) tll sup
IIG(z))gll

< sup
{llu}l u G(z)tg}

_< c-
IIg[l_<c Ilgll_<c

In general, if u {u,} satisfies (G(z)u), g, + r,, then (DF(x)U)n gn and Ilull
IIG(z)tll(c + rllull + s) so that (ii) implies (1 r/c)llull <_ IIG(z)tll(c + s). Thus, if (ii) is
satisfied,

IIDF(x)tll sup
IlDF(x)tgll

< sup
ilgll_<c C ilgll_<c

{llull u DF(x)tg}

c+s)< (C r)-1
c

Now apply the Fixed Point Theorem to F with IIF(x)ll _< and IIOF(x)ll _< (c+___)(c_
r)-1 For e0 := e and Ix w ll _< 0 and using (iii), we have (2.9) satisfied since

IIDF(x) DF(w)ll < hmaxLDf(, )llx wll <
c 2 < (2IIDF(x) II)-.

Thus, there exists a solution w I(N) of F(w) 0 such that IIw. x.II < . Define
o(t) ck(w,, t,, t) for tn < < tn+l and n 0 to complete the proof. [3

3. Numerical aspects. We now consider the case in which we have produced a finite
orbit using a numerical method. We would like to know whether there is a trajectory satisfying
the same differential equation but with a nearby initial condition such that the trajectory is
close to the numerically computed orbit at the mesh points. Our intent is to provide verifiable
assumptions given certain numerically computable quantities so that we may apply the theorem
and obtain an a posteriori bound on the global error.

In this section, let lyll denote the supremum norm for y 1v. Consider the IVP (2.1)
and for some finite positive integer M consider the orbit {xn }0 produced using (2.2). Let ’n (t)
denote the pseudo solution defined as in (2.3) and let (t) := :7,,(t) for tn < < t,,+l. Let
denote a bound on the local error. Consider the linearized problem about the pseudo solution

(3.) Df(;(t), t)u.

Define the operator F"/({0, M}) -->/({0 M }) by

(3.2) (F(x))n x,,+ ck(xn, t, tn+)

and its first variation DF(x) /({0 M}) --->/({0 M }) by

(3.3) (DF(x)u)n Un+ Ckx(X., t., t.+)un,

where bx is defined as in (2.5).
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Let (t) be a function with the property that liar(t) (t)l[ 8 for all t. For one-step
methods with an associated Taylor polynomial, an obvious choice for the function (t) is the
interpolant defined locally by the Taylor polynomial corresponding to the numerical method.
In particular, for the Runge-Kutta Felberg integrator RKF45 used for the examples in 5 we
employ the associated fifth-order interpolant. The function (t) may be discontinuous at the
mesh points. Consider the linearization about 3,

(3.4) fi Df((t), t)u.

We define G(z) l({0 M}) --+ l({0 M- }) by

(3.5) (G(z)U)n Un+l (l)(tn+l, tn)Un,

where is defined as in (2.7).
Let A,, denote a quadrature formula used to approximate (t,+l, t,,). Let s denote a

bound on the relative error in the quadrature approximation, i.e.,

(3.6)

Define the operator H(A) :/({0 M}) --+/({0 M 1 }) by

(3.7) (H(A)u)n Un+l Anun.

We now state the following theorem similar to Theorem 2.3, but with assumptions that
may be easily verified computationally.

THEOREM 3.1. Consider the IVP (2.1) and assume that it is solved numericallyproducing
an orbit x :-- {xn} with local error uniformly bounded by > O. Let (t) denote the
corresponding pseudo solution and let 3(t) denote a function with the property that [[2(t)
3(t)ll < 3 for all t. Let An denote the quadrature formula used to approximate the linear
variational equation about 3(t) from tn to tn+. Let hmax suPn{h,} denote the maximum
stepsize. Let LDf(2, Y) denote a boundon the Lipschitz constantfor Df in an y-neighborhood
of(t). Assume that

(i) the inequality c > r + s is satisfied where IIH(A)tll <_ c- and H(A) is defined in

(3.7), H(A) is a right inverse of H(A), r hmaxLDf(c, ), and s is defined in, (3.6);
(ii) the inequality

hmaxLof(J, ) < (c r s)/2

is satisfiedfor e 2(c r s) -1

Then there exists a solution Co(t) of the IVP (2.1) such that II(t) xll for
n--0 M.

Proof Given a sequence g:= {gn}y-, we have that u :-- {Un}ou is a solution of
(DF(x)U)n gn if (H(A)u)n gn + rn + sn, where sn is defined to be

s. := [(t.+, t.)

and

+1

’n [)x(Xn, tn, tn+l) (I)(tn+l, tn)lUn f s, s)]u,ds.

t.
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By (3.6) we have that IlSnll sllu.II and we have that

IIrll hmaxZDf(., )llu,,ll,

so that Ilrnll rllull. For IIgll 1, we have

Ilull IIH(A)tlI sup{llgll + IIrll + IIsll} c-1(1 q- rllull + sllull)

so that by (i)

Ilull (c r s) -1.

Thus,

IIDF(x)tll sup IlOF(x)tgll <_ sup {llull" u- DF(x)tg}
Ilgll--1 Ilgll--1

<(c-r-s)-1.

Now apply the Fixed Point Theorem to F with IlF(x)[I and [IDF(x)tll (c r
s) -1 For e0 := e and IIx wll _< 0 and using (ii), we have (2.9) satisfied since

IIDF(x) DF(w)II <_ hmaxLDf(., E)IIx wll (c- r- s)/2 <_ (2llDF(x)tll) -1.

Thus, there exists a solution to 6 /({0 M}) of F(to) 0 such that Ilw xll .
Define t(t) (wn, tn, t) forth < < tn+l andn 0 M- 1 to complete the
proof. [3

Remarks. (i) Note that no explicit bounds on the inverses of f or Df or on higher-order
derivatives are required.

(ii) The theorem may be applied to maps by simply using 3 as a bound on the roundoff
error and by setting r s 0.

4. Algorithms. In this section we present algorithms to estimate quantities needed to
apply Theorem 3.1. To apply Theorem 3.1 we must supply a bound on a right inverse of H(A).
Since the norm of the right inverse of H(A) measures to a large degree the magnification of the
local error that gives the global error, it is advantageous to find, if possible, a right inverse of
H(A) that has small norm. Our philosophy is to use existing ODE solvers and other existing
software to develop methods for obtaining an accurate estimate of the global error. As such,
our error estimates will be in terms of the supremum norm, I1’ II := I1" I1, since most
ODE solvers provide error estimates in this norm. We will use the absolute and relative local
error tolerances that are provided by most standard solvers. Our intent is to provide practical
estimates but not necessarily rigorous bounds on the global error. Most of our effort will be
devoted to finding a suitable right inverse H(A)t and to obtaining a bound or estimate of
IIn(A)tlloo.

An obvious choice for the right inverse is the pseudo or generalized inverse. In this case
finding the right inverse is trivial, but estimating or bounding its norm may be difficult. If
we consider H(A) as a matrix and write H(A) in terms of its singular value decomposition,
then H(A) UE VT where U, V are orthogonal and E is a nonnegative diagonal matrix. If
H(A) is full rank, then IIH(A)*IIa 1/trl where tr is the smallest singular value of H(A).
The difficulty with using the pseudo inverse is that although the pseudo inverse is optimal
in the 2-norm sense it is not necessarily optimal in the cxz-norm sense. In fact, in general,
IlH(A)tlloo < /NMIIH(A)tIIz for an ODE in IN and an orbit of length M.
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For explicit one-step methods, H(A) has the matrix form

(4.1) H(A) ".. "..
--AM-1 IN

where H(A) is an M. N x (M + 1) N matrix, A is an N x N matrix, and IN is the N x N
identity matrix. The matrix A advances the discrete solution of the linear variational equation
from ti to t+. Note that H(A)H(A)r is a symmetric block tridiagonal matrix. We will restrict
attention to explicit one-step methods, although similar results will apply for implicit one-step
methods and multistep methods. The matrix H(A) has the form of a multiple shooting matrix
for a linear boundary value problem, but without the N additional rows that are used to specify
the boundary conditions. The next approach will be to outline strategies for adding boundary
conditions and thus specifying a right inverse for H(A).

Our second approach to finding a right inverse involves appending boundary conditions
at multiple points to obtain a well-conditioned BVP (see [dHM2] and [Ma2]). In this way
we obtain a linear multipoint BVP. Our challenge is to find boundary conditions, possibly at
more than the initial and terminal times, so that a BVP has a uniformly bounded solution.
When appending boundary conditions we look for switching points to dynamically change
the number of stable and unstable components. In particular, if we have k stable directions
initially, then up to a suitable orthogonal change ofvariables (see [MS]), we adjoin the boundary
condition

0 0,

where I, is the k k identity matrix. Similarly, if at the terminal time there are unstable
directions, then we adjoin the boundary condition

( ) u(mh’l) "-’0"

The intermediate switching points flj for j tn produce boundary conditions of the
form

0 0 u(flj) =0.
0 0 0k+j-I

These are linear boundary conditions so that appending boundary conditions is equivalent to

adding N rows to H(A) in (4.]).
To apply Theorem 3. I, we must have estimates of the following quantities:
I. 8, the local absolute error for the original problem (2. I);
2. hrnax, the maximum stepsize;
3. L Df, a bound on the Lipschitz constant of Df;
4. c-’, a bound on IIn(A)tllo;
5. s, the local relative error for the quadrature formula of the linearized problem.
Our basic algorithm is as follows.

ALGORITHM.
Step 1. Integrate simultaneously

Yc f(x, t),
ft Df(x(t), t)u
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from tj to tj+l with initial data xj and uj I for j 0 M 1, where hj tj+l tj is the
stepsize chosen by the integrator with given absolute and relative error tolerances to obtain
estimates for d;, s, and hmax. Thus, we obtain the xj and Aj for all j.

Step 2. Find a bound or estimate c- for IIH(A)rlloo, where H(A) is either the pseudo
inverse or a right inverse formed by adjoining boundary conditions.

Step 3. Compute a posteriori bounds for L zf.
Step 4. If (i) and (ii) in Theorem 3.1 are satisfied, then apply the theorem to obtain the

global error e := 26(c s r)-.
Remarks. (i) By integrating both the original equation and the linear variational equa-

tion simultaneously, we obtain an approximation of the linear variational equation about the
interpolant defined by the numerical method.

(ii) The local and relative error tolerances provide bounds for 3 and s, respectively.
(iii) The a posteriori bounds for Lzf may be obtained as in [SY] using Gronwall’s in-

equality or using coarse a priori bounds as we have done for the examples in 5.
(iv) The quantity r in Theorem 3.1 may be computed in terms of 3, hmax, LDf.
We now present the details of implementations for finding a right inverse and an oo-norm

bound or estimate on this right inverse in Step 2. The first method we consider is based on
finding the smallest singular value of the matrix H(A) in (4.1). The second method is based
on adjoining boundary conditions and solving a suitable linear inhomogeneous BVP.

Instead of directly finding the smallest singular value trl of the matrix H(A), we will find
the smallest eigenvalue 1 of the symmetric block tridiagonal matrix H(A)H(A)r and then
set trl /]. We find . by the Lanczos process (see [GvL]). The Lanczos process is an
iterative method for finding the extremal eigenvalues of a matrix. The method generates a
sequence of tridiagonal matrices whose eigenvalues are progressively better estimates of the
extremal eigenvalues of the original matrix that is typically large and sparse. The convergence
to the extremal eigenvalues is rapid provided the relative spacing between these eigenvalues
is large (see [GvL]). We have made modifications to the software package LAS2 (see [Ber])
to apply the Lanczos procedure to symmetric block tridiagonal matrices B := H(A)H(A) r,
where H(A) is of the form (4.1). We employ the error estimation procedure that is provided as
part of the software. Although there is no guarantee that we have actually found the smallest
eigenvalue, we were able to confirm that for smaller examples the Lanczos process did in fact
provide accurate estimates of the smallest eigenvalue.

Remarks. (i) The use of the pseudo inverse has the advantage that information about the
number of stable and unstable modes is not necessary.

(ii) The use of the Lanczos method to take advantage of the sparse structure of H(A) may
be implemented in a memory efficient or a time efficient manner by either recalculating the
Ai, M or by storing the Ai, respectively.

(iii) As was remarked above, we obtain a supremum norm estimate of --crl- as an
estimate of the norm of the pseudo inverse of H(A).

The boundary value problem approach is based on considering the difference equation

(4.2) Un+l Anun + gn

along with the appended boundary conditions where g {gn} is an arbitrary sequence with
lgl Ioo 1. We have that

(4.3)
IlH(A)tlloo= sup IlH(A)tglloo

sup {llulloo "u satisfies (4.2)}.
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Our task now is to replace the problem (4.2) for an arbitrary sequence g of norm one
with a problem for a fixed sequence and obtain a bound on IIH(A)t I1. This is similar to the
situation when one is attempting to estimate the norm of the inverse of a matrix for condition
number estimation. We will replace the arbitrary sequence g with a sequence in which every
element is of absolute value one.

Since our multipoint BVP may be thought as a several-coupled two-point BVP, it suffices
to consider the difference equation

Un+l Anttn q" gn,
0 IN-k 0

o
where for simplicity we let M denote the number of iterates between (possible intermediate)
boundary points, and we let u0 denote the value at the left boundary point. Here Q0is an
appropriately chosen permutation matrix (see [MS], [dHM1 ]) and QM is an orthogonal matrix
to be determined below.

To solve the BVP, we decouple using an orthogonal decoupling transformation. Using the
modified Gram-Schmidt method (see [GvL]), we obtain the decomposition Qn+l Rn A, Qn
for n 0 M 1, where Rn is upper triangular with positive diagonal elements and Qn+l

Tuis orthogonal. Then the decoupling transformation is given by v,, Qn n and the decoupled
equation is

l)n+l Rnvn + hn,
(4.4) (00 0) (IN-k O)Ik vo Yo, 0 0

where hn Qrn+l&" We note that for 0 or M if denotes the time of an initial or
terminal boundary point, then ?’t is the vector of all zeros. If the left boundary point of our
two-point BVP is an intermediate boundary point of the multipoint BVR then the components
of the vector Y0 are given by

Y(j)= { )0’j=l N-k+l,

Vj j N- k + 2 N.

Similarly, if the right boundary point of our two-point BVP is an intermediate boundary point
of the multipoint BVP, then the components of the vector YM are given by

(j)

1,,/) uM j N-k- 1,

O,j=N-k N.

We now write the recursion in block form by setting

where vn(2) is a k-vector and

Rn(ll) Rn(12)
Rn(22) )"

Then for any integer 0 _.< J < M we have that

(4.5a)
O(2)
n+J+l

n+d-I

-’ 0(22) (22)h(2)
n+d i+1

i=n

+ h.+ + +.
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and

(4.5b)

n+J-1

1)n(1) E [R}ll) "Rn(ll)]-I{R}12)v2)’k- h(1)}i

f/?(ll) ,0(11)]_1., (1) /(1) /?(12) .(2)+ t’n+J ’n tl)n+J+l "’n+J .n+J.Un+jl.I

For a matrix C and a vector b, let ICI denote the corresponding matrix and Ibl the cor-
responding vector whose elements consist of the absolute value of the elements of C and b,
respectively. Let 1:= (1 1)r denote the vector with all elements equal to one. Consider
now the sequence w {wn} formed as follows:

(4.6a)

n+J-1

+J+l- E I"n+j" ll
i=n

+l + I-.+.
and

(4.6b)

n+J-I

Wn(1) E I[Rll)’"e(nll)]-l[{lR12)lw}2)"’l}
i=n

() R(ll)-n (I) (12), .|(2),-I-It"n+j l{ + 1 +1 .wn+_.tOn+J+l ’n+J

It is easy to see that we have the following lemma.
LEMMA 4.1. If Yo, YM in (4.4) are nonnegative vectors, thenfor v computed in (4.5) and

w computed in (4.6), we have that Ilvll _> I]wllforallsequences h in (4.5) with Ilhll 1.
As a consequence of this lemma, we have that NIIvll _> I]H(A) I1 since the supremum

norm condition number of an N x N orthogonal matrix is bounded by N.
Remarks. (i) To determine the switching points (times where there is a change in stability),

/?(J’J)we monitor the diagonal elements of the upper triangular matrices Rn If I"m-l > and

IR"J)I < for some j, < j < N, then the ruth iterate is a candidate to be a switching
point. Since the number of unstable modes cannot be increased, we only decrease the number
of unstable modes when the magnitude of the diagonal element of Rn has magnitude less than
one over several iterates.

(ii) We compute the sequence w in (4.5) to account for roundoff errors using the methods
in [Wi].

(iii) Other decoupling transformations are possible besides discrete orthogonal decou-
piing transformation. In particular, the Riccati transformation (see [DOR1 ], [DOR2], [Me ])
allows us to integrate a subset of the N2 variables in the linear variational equation and may
be better conditioned in the supremum norm. Another choice for a decoupling transformation
is the continuous orthogonal transformation or continuous orthonormalization [D], [Me2].

5. Numerical examples. In this section we apply the algorithms for estimating the global
error to three example problems. All computations were performed on a Silicon Graphics
workstation with 64 megabytes of memory in double-precision arithmetic (machine epsilon
2.2E- 16). All computations were done using the Runge-Kutta Fehlberg integrator RKF45

of Shampine and Watts [SWD]. We have chosen RKF45 for convenience since it is a widely
used automatic integrator with absolute and relative error tolerances. In Tables through 6
we use T or Time to denote the final value of the independent variable t, Iterates to denote the
number of timesteps that were taken, and CPU Time is the CPU time recorded in seconds. For
the BVP method c- is a bound on the infinity-norm of a right inverse, and for the singular
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value decomposition (SVD) method c-1 is an estimate of the infinity-norm of the pseudo
inverse. We use to denote the local error tolerance and e is our global error estimate.

Example 5.1. The first problem we consider is the logistic equation

3) y(1 y), y(0) , >> > 0,

which was also considered in [Be ].
We let the switching point/1 be the time tn such that y(tn) " 1/2, where n {0 M}.

This choice for the switching point is consistent with our theoretical results. In fact, for the
exact solution x(t) of the logistic equation with x(0) 1/2, the fundamental matrix solution
about x(t) is (K, )-hyperbolic for K 4 and . 1 with S(t) I for [0, +c) and
U(t) for (-o, 0]. When employing the boundary value method as outlined in 4,
we adjoin the condition u (/1) 0 to the linear variational equation.

For this problem we have LDf 2. Tables and 2 show our results for approximate
orbits between the fixed points x 0 and x 1. For the SVD method presented in 4 we
have included the 2-norm bound for IIH(A)tll in parentheses. We compute our numerical
orbit with initial data y(0) - 0 and numerically integrate from 0 to T so that
y(T) - 1 . In Table 1, 1.E 2 and y(T) 1 , while in Table 2, 1.E 4 and
y(T) . 1- .

TABLE

Example 5.1. (T 9.22, Iterates 188, 8 1.E 07)

Method CPU time c-l

BVP .04 24.31 4186E-6
SVD .61 309.71 (22.6) 6.20E-5

TABLE 2

Example 5’1. (T 18.46, Iterates 390, 8 1.E 07)

Method CPU time c-l ,
BVP .08 24.28 4.86E-6
SVD 1.26 459.15 (23.25) 9.20E-5

For the SVD method we attained convergence in less than 100 Lanczos iterations.
Example 5.2. The next example we consider is the forced pendulum equation

j + a2 + sin y b cos t, .(0) y(0) 0,

where a 0.2 and b 2.4. This equation was considered in [SY]. For this equation, we
found that the optimal choice was to maintain one stable and one unstable mode throughout,
although the linear variational equation is not uniformly hyperbolic. There are changes in
stability, but there is not a monotone decrease in the number of unstable modes. Thus, we
adjoin boundary conditions to obtain a two-point boundary value problem such that in the
decoupled variables v, we have the boundary conditions

(0
when we integrate from =/50 0 to =/31 Time, where the values of Time are given in
Tables 4 and 5.

For this problem we have LDf 1.
In our computations using the SVD method we attained convergence in the smallest

eigenvalue of H(A)H(A)r to machine precision in less than 20 Lanczos iterations. For both
the BVP and SVD method we were not able to compute for longer orbits due to memory
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TABLE 3

8 Iterates
.E- 150,000
1.E-12 300,000
l.E-12 500,000

Example 5.2. BVP method
-1Time CPU time c

922 75 848,974
1165 137 ’857,602
1942 251 896,58’3

3.40E-05
3.44E-06
3.40E-06

TABLE 4

Example 5.2. SVD method

8 Iterates
I.E-11 150,000
1.E-08 150,000
1.E-06 150,000

Time CPU time c- e
922 472 808 1.62E-08
3677 469 802 1.61E-05
9229 634 799 1.60E-03

constraints, although less memory intensive implementations for both methods are possible
by storing intermediate values of the orbit and then recomputing portions of the sequence
An }0M- as needed.

Although our methods serve different purposes than those considered in [SY] we now
compare our results with the results obtained in [SY]. They obtain rigorous local error bounds
through the error term of a fixed order, fixed stepsize Taylor series method. As such they
obtain global error bounds. For the forced pendulum equation, Sauer and Yorke in [SY] were
able to prove the existence of a trajectory within 1.E -9, a computer-generated orbit obtained
using a seventh-order Taylor series method with a fixed step-size of At 3.E 3 to obtain
local errors bounded by .E 18 for 0 < _< 30, 000 on a machine with machine precision
of 1.E 28. Our computations are performed using a standard fixed order, variable stepsize
method, RKF45, in which we provide the local error tolerances and the integrator chooses
the stepsize. In this way we obtain local error estimates, but not rigorous bounds on the local
errors. For the BVP and the SVD methods presented in 4, our global error estimates are not
rigorous bounds due to the local error estimation. Our use of the Lanczos method to estimate
the smallest singular value of the matrix H(A) defined in (4.1) seems to provide a reliable
estimate for the norm of the pseudo inverse. For the forced pendulum equation, with the same
parameter values and initial condition reported on in [SY], we were able to obtain a global
error estimate of approximately .E 3 with a local error estimate of .E 6 for a trajectory
of length 0 _< _<, 10, 000 on a machine with machine precision approximately 1.E 16.

Example 5.3. The final example we consider is the space discretized Chafee-Infante
equation with Neumann boundary conditions (see [Ch]). The Chafee-Infante equation is
given by

vt --21)xx -Ji-- f(v),

vx(O) Vx(1) 0,

v(x, 0) given,

where f(v) v l)3. We consider the system of ODEs that is obtained after the above
equation is discretized in its spatial variable. In particular, we consider the finite difference
discretization

/-- [vi+-2vi+v_l]+f(vi),i--

U0 UI, UN+I 1)N,

vi(O) given,

where k /(N 1).
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TABLE 5

3 Iterates
.E-10 5,000
1.E-10 10,000
1.E-10 20,000

Example 5.3. BVP method

Time CPU time c’ e

6.34 451 57,698 1.15E--05
13.29 1490 259,811 5.20E’05
27.91 2220 492,733 9.86E-05

TABLE 6

Example 5.3. SVD method

3 Iterates Time CPU time c-1 ,
1.E’I0 5,000 6134 922 577 1.15E-07
1.E-08 5,000 15.31 3677 593 1.14E-05
1.E-06 5,000 36.51 9229 581 1.16E-03

The Chafee-Infante equation is a gradient system and its attracting set consists of the
equilibrium solutions and the connections between the equilibrium solutions (see [H]). It is
known (see [Mal ]) that the number of monotone pieces of the solution v, or lap number, is
nonincreasing as a function of time. It is also known (see [BF]) that the dimension of the
unstable subspace of an equilibrium solution is equal to the lap number of the equilibrium
solution. We found that for a sufficiently fine discretization in space and sufficiently close to
the attracting set, the number of unstable modes is nonincreasing along solution paths. It has
recently been shown in [AD] and [LS] that for various discretizations of semilinear parabolic
equations, the stable and unstable manifolds of the discretized problem converge to those of
the continuous problem (see also [HLR]).

We set N 30 and 10-1 in our experiments and use the values LDf 6. We use the
initial data vi(O) cos(3(i 1)zr/(N 1)) and monitor the eigenvalues of the matrix Rn to
determine when we have attained the maximum number of unstable modes (during the initial
transient there was an increase in the number of unstable modes). For all the experiments with
the BVP method and for the SVD method with 3 1.E 10, we only provide an error bound
for the portion of the trajectory in which the number of unstable modes is nonincreasing. For
the other examples in which the SVD method was used we include the initial transient phase.
For all of our computations the number of unstable modes decreased from three to one.

In our computations with the BVP method we used J 0 in (4.6(a), (4.6(b)). Somewhat
better results were obtained using a larger value of J. For the SVD method, we obtained con-
vergence to machine precision of the smallest eigenvalue of H(A)H(A)" within 20 Lanczos
iterations.

6. Conclusions. In this paper we have shown that for a wide class ofpiecewise hyperbolic
initial value ODEs, the global error in computing a discrete numerical approximation of a
trajectory may be obtained as a reasonable magnification of the local error provided that we
allow the true trajectory and the discrete approximation to have different initial conditions.
The type of piecewise hyperbolicity we consider occurs in the case of several hyperbolic fixed
points and certain space discretized parabolic partial differential equations.

From our numerical experiments it seems clear that although the SVD method was more
expensive than the BVP method, we were able to obtain global error estimates with the SVD
method for much smaller local error tolerances and longer time intervals. The SVD method
gave better results than the BVP method but was more expensive in terms ofboth memory and
time. It would be interesting to see if a more efficient Lanczos method could be developed
specifically for the types of problems obtained when performing global error analysis. The
cost of numerically integrating the linear variational equation may be decreased in the BVP
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case by employing the Riccati transformation as a decoupling transformation in the case where
there are very well-defined changes in the number of stable modes.

Our methods for providing global errors are not dependent on the particular integration
method, although, in this paper, we restricted our attention to explicit one-step methods. In
principle, any numerical integration scheme may be used, including implicit one-step methods
and linear multistep methods. The amount of modification necessary depends on the particular
implementation that one wishes to use. In order to use LSODE, for example, one would have
to update the Nordsieck array before each step.

An interesting case for which we were not able to obtain good results is the case near a
periodic orbit. This has been explored in [Be2], ILl ], and [E2]. In particular, for the case in
which Ai for all i, it is easy to see that the global error will grow linearly as a function of
the length M of the orbit. This is due to the absence of hyperbolicity in solutions of systems
of this type. Near a periodic orbit one does not expect to have hyperbolicity in the direction
of the flow. It would be interesting to see if our methods could be applied to periodic systems
to obtain global error estimates for those directions that are not in the direction of the flow.

Acknowledgments. We are grateful to Luca Dieci, Timo Eirola, Bob Russell, and the
referees for helpful remarks on an earlier version of this paper.
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NUMERICAL SOLUTION OF FIRST PASSAGE PROBLEMS IN RANDOM
VIBRATIONS*
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Abstract. The reliability of dynamic systems modeled by white-noise-excited, stochastic, ordinary differential
equations can be computed from deterministic backward Kolmogorov equations. This paper discusses and compares
some numerical solution methods for boundary value problems involving backward Kolmogorov equations. The
numerical examples concern single degree-of-freedom oscillators subjected to white noise and filtered white noise
excitation. The efficiency of various methods and the sensitivity of the solution to the choice of the numerical
parameters are particularly discussed.
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1. Introduction. A frequently applied design criterion for dynamic systems subjected
to uncertain input data is to require some response parameters to stay within a prescribed safe
region, for a time interval, with a sufficiently high probability. In structural engineering the
displacement of the system is often used as a critical response parameter. If the excitation
is a stochastic process the displacement will be likewise and failure may occur when the
displacement process exits the safe region. The time T to the first exit of the safe region is
commonly called the first passage time of the displacement process and constitutes a measure
of the lifetime of the structure. The reliability of the structure is then dependent upon the first
passage time statistics. Exact analytical expressions for the statistics of T are unfortunately not
available even for the simplest dynamic system of engineering interest. Hence, approximation
methods are required. The purpose of this paper is to present an improved numerical method
for accurately computing the distribution or the moments of T and to evaluate the behavior of
this method.

Methods for calculating first passage time statistics of the single degree-of-freedom linear
oscillator subjected to white noise excitation have been discussed by Crandall [8]. A particular
class of methods that can yield exact statistics for T is based on Markov process theory and
commonly called diffusion methods. A recent review of their application to first passage
problems has been given by Roberts 17]. One ofthe particularly attractive features ofdiffusion
methods is that mechanical nonlinearities and non-Gaussian excitation present, in principle,
no difficulties. Diffusion methods result in linear, second order, partial differential equations,
frequently in high dimensions, for the distribution or moments of T. The equations are usually
defined on infinite domains.

Two- and three-dimensional versions of the partial differential equations associated with
diffusion methods have been solved by various techniques. For example, Toland and Yang
[20] used a random walk model, Sun and Hsu [19] worked with a cell-method, Langley 15]
utilized a variational approach with Hermite polynomial expansions and Bergman, Spencer,
and their coworkers ], [2], [3], 18] employed a fairly general finite element solution method.
The present article follows the latter type of numerical approach. The method and its imple-
mentation are extended to an arbitrary number of space dimensions and parts of the solution
method are significantly improved with respect to computational efficiency and storage re-
quirements. The main object of this paper is however to report the behavior of different
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numerical strategies in some model problems. In particular, we demonstrate the influence
of various numerical parameters on the accuracy. Two of the numerical examples concern
filtered white noise excitation. To the author’s knowledge, these first passage problems have
not been solved previously in the literature by general diffusion methods.

2. Problem description. Suppose the stochastic dynamic system can be modeled by
a system of first-order, ordinary, stochastic differential equations where the only stochastic
excitation is of a white noise type:

d d

(1) --d--SXi(t) ai -t-

_
BijNj(t), 1 d.

j=l

Here X(t) (X1 (t) Xa(t)) T is the response vector of the system, ai and Bij are functions
of X1 X,. Moreover, Ni (t) is a white noise process defined as the generalized derivative
ofa normalized Wiener process [13] withE [Ni(t)] 0and E [Ni(t + r)Ni(t)] 3(r), where
3 is the Dirac delta function and E [.] is the expectation operator. All the Ni(t) processes are
assumed to be independent. One can show that X(t) governed by (1) is a vector Markov
process 13].

Let S2x be a safe region for X(t). Engineering applications are frequently concerned
with determining the probability that X(t) 6 x for some time interval [to, t]. For example, a
failure criterion may be formulated as X ’ x. The time T to first exit from x, conditional on
X(t0) y 6 x, is commonly called the first passage time of the process X(t). Of paaicular
interest is the reliability function R(t lY) Pr{T > IX(t0) y}, with y (y ya).
It can be shown that R is governed by the backward Kolmogorov equation [6], 13], 18]

ar+ Crs yeaxCa.
at = aYr aY

The coefficients Cr, are given as C = Bri Bsi. The functional form of a and B are
as defined in (1), but in equation (2), Xi must be replaced by yi in the expressions for ar and

C. The initial condition reads R(t0 Y) 1.
In many practical applications the matrix B, contains mostly zeros, and the boundary

conditions must then be prescribed with care to achieve a well-posed problem. Fichera [11
has studied the wellposedness of the present problem and the main results relevant for our

equation (2), when the eigenvalues of Cs are nonnegative, are as follows. Divide the boundary
x of x into three nonoverlapping pas, F, F, and F3 defined by

(3) F1 y 0x xiCijxj 0
i= j=

(4) F2 y e 0x ai Xi > 0
.= = Oyy

(5) F3 O(F r2).

Here Xi is the th component of the outward unit normal to f2x. The solution R can be
prescribed on 1-’1 U F2 while no conditions should be assigned on 1-’3. The restrictions on the
boundary conditions are a mathematical requirement for the problem to be well posed, but in
simpler cases a physical interpretation can be given; see 5.1 for an example.
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One can easily show that the moments Mk of T fulfill the set of recursive equations [6],
[131,[181

(6) kMk_l y ar-y + - Crs oy,.O------- y6f2x, k= 1,2,3

with

M,(y) =_ (t to)k- R(t y)dt.

to

The boundary conditions are the same as for the reliability function R. Equation (6) is
commonly referred to as the generalized Pontriagin-Vitt equation.

The applications of the above general theory to be exploited in this paper concern a single
degree-of-freedom dynamic system governed by the equation of motion

(7) 2 + r(x) + c(x, Yc) f(t),

where x(t) is the displacement of the system, r(x) represents restoring forces, c(x, c) models
damping forces, and f(t) is a prescribed, stochastic excitation process. Engineering appli-
cations of the stochastic differential equation (7) arise in, for example, reliability analysis of
structures subject to wind, current, wave, or earthquake loads. If f(t) cannot be adequately
modeled as a white noise process, auxiliary variables and equations are needed to filter white
noise to the desired excitation process to achieve a system on the form (1). Examples con-
cerning such auxiliary equations are given in 5.2.

No exact analytical solutions for R are known for dynamic systems ofengineering interest.
Although the backward Kolmogorov equation looks similar to transport equations in fluid
dynamics, for which efficient numerical schemes are available, the backward equation has
several features that make great demands to the numerical methods. For example, one must
deal with infinite domains and singularities. Franklin and Rodemich [12] managed to derive
an analytical solution for Ml (y), in case of a white noise excited free particle, which showed
that M (y) ’ H, where H is the relevant Hilbert space of functions with square integrable
zeroth and first-order derivatives. Therefore one cannot expect the solution of the boundary
value problems for R and Mk to lie in H Nevertheless, the finite element approximations in
use are confined to H (see [1 for a comment on this issue).

Equation (2), and particularly the stationary version (6), have been solved by a standard
Petrov-Galerkin finite element method by Bergman, Spencer, and their coworkers for a wide
range ofproblems where d 2 [3], [4], 10]. A white-noise-excited, hysteretic, single degree-
of-freedom system was formulated and solved as a d 3 first passage problem by Spencer
[18].

The solution method to be applied in this paper is also based on a Petrov-Galerkin finite
element formulation. However, we compare two different classes of weighting functions in
combination with a general mesh grading strategy. Furthermore, we investigate both implicit
and explicit time integration. The mathematical formulation of the numerical methods and
their computer implementation are valid for any value of d. To limit the content of the paper,
only numerical examples with d _< 3 are presented.

The main deficiency ofthe solution approach used by Bergman, Spencer, and their cowork-
ers is the long execution time and the large storage requirements associated with direct solution
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ofmatrix systems. To improve this part of the solution procedure, this article employs efficient
iterative methods. These methods increase the potential of finite element solution ofbackward
Kolmogorov equations in higher space dimensions significantly. Bergman, Spencer, and their
coworkers only considered white noise excitation of dynamic systems. In two numerical
examples, we present results for oscillators excited by filtered white noise.

In the presentation and discussion of numerical results, attention is paid to the regimes
of most interest in structural reliability. This includes, for example, only the portion of time
evolution curves of R, where R is close to unity. Many contributions to the literature on first
passage time statistics put emphasis on methods that show high accuracy as grows large.
However, such validation of methods is of engineering interest only if the large values are
associated with small failure probabilities.

3. Solution methods.

3.1. Spatial finite element discretization. An approximation to R (t Y) is sought on the
form

R(t ly) (y)qi(t).
i=1

Inserting this expression in the boundary value problem for R and applying the method of
weighted residuals with weighting functions Wi, n, yield n ordinary differential
equations for qi(t), 1 n. Terms with second-order derivatives are integrated by parts
to achieve a weak weighted residual or a Petrov-Galerkin formulation. On matrix form, the
resulting time-dependent equations can be written

(8) Mt Lq, q (ql(t) qn(t)) T,

where matrices M and L have the form:

(9)

(10)

f Hj.dyl dyd

Lij Wi ar Oyr
f2x

r=l
Crs Wi dyl. dyd

2,=1
d d

ORdF+ -Wi EECrsns
r=l s=l

and ns is the unit normal on the boundary 0f2x. The surface integral, arising from integration
by parts, vanishes in our numerical examples, since R will be prescribed or

E CnOR/Oyr O.

Finite elements have traditionally been constructed for d < 3 where the geometry of
the element is easily visualized. In this work, we have extended, in detail, the finite element
concept to an arbitrary number of spatial dimensions. Our implementation and the numerical
experiments presented in this paper utilize isoparametric multilinear elements. In d space
dimensions, the functions are defined through the tensor product of one-dimensional linear
shape functions. For d 2 the standard bilinear element is recovered, while for d 3
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one obtains the trilinear brick. Multiquadratic elements, defined as the tensor product of one-
dimensional quadratic elements, have been tested, but no additional efficiency or accuracy was
obtained. In fact, multiquadratic elements showed inferior behavior compared to multilinear
elements.

The solution of the backward Kolmogorov equation may contain very abrupt stationary
spatial variations [3], [18]. In such cases standard Galerkin methods may in such cases lead
to strongly oscillating numerical solutions and are generally not applicable. To stabilize the
discretization method, it is common to use upwinding techniques. In this paper Petrov-
Galerkin methods, where Wi : Hi, are applied. Two choices of the weighting functions Wi
are used. One choice corresponds to the streamline-upwind/Petrov-Galerkin (SUPG) method
introduced by Brooks and Hughes [5]. These Wi are piecewise multilinear discontinuous
functions on the form

d OH/

r= Y
where we have used the following choice of r [5]:

di.- ,’iaihi hiai:= ?’i=cothvi+--, vi=-,y’]ff=l a/2 l) C

with hi being the length of the element in the yi-direction. Later we refer to these functions
as the SUPG choice of Wi. All investigations of Petrov-Galerkin methods in this paper are
confined to cases where Cr are constant and C 0 for r =fi s. Such restrictions are
relevant for many applications. Modifications of the weighting functions in the nonconstant,
nondiagonal case is not considered herein and constitute a topic for further research.

The other choice of weighting functions coincides with those introduced by Heinrich et
al. [14]. The d-dimensional form of Wi follows from a tensor product generalization of the
one-dimensional forms. The latter have the following expressions on the interval [-1, ]"

where ff’i is the function associated with the local node at (-1)i, 1, 2, and 6 is
an optimization parameter that is chosen as in [1] and [18]; that is, it equals vi when the
one-dimensional form is applied for yi-direction. We will refer to this second choice of Wi as
quadratic weighting functions and use the abbreviation QUAD. Most of the development of
Petrov-Galerkin methods has concerned the linear convection-diffusion equation for which
the backward Kolmogorov equation is a special case. Experience from the literature during
the last decade indicates that SUPG is superior to QUAD. Whether this is also the case in the
present problem, where the singularities are much stronger than commonly encountered in
hydrodynamical applications, is investigated in 6.2.

In this work Petrov-Galerkin methods are combined with mesh refinements. The re-
finement procedure consists of first generating a uniform mesh and then transforming the th
coordinate of a node according to Yi g(i; ci,/-i ]./,/-t-), 1 d, where jL/,

is the coordinate value in the uniform mesh, yi is the corresponding coordinate value in the
refined mesh, and oti > 0 is a mesh grading parameter. If oti < 1, we obtain a dense mesh
around yi 0 while O/i > gives a mesh denser towards the end points. Note that the refine-
ments in the different spatial directions are independent. The particular form of the g-function
to be used is

1 2 (a + c) 1/,

(11) g(; c, a, c) =sign{2 (c + a)}(c a) + (c-q-a)
c a
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where x, [a, c]. Observe that (11) applies to the whole domain. A seemingly more
efficient approach would be to introduce local mesh refinements only in the vicinity of the
singularities but this would require sophisticated mesh generation techniques that are compli-
cated to implement for d > 3. Since the numerical method and the computer program were
developed to handle an arbitrary d, the described refinement procedure is easily implemented
and it is of interest to study its behavior.

Integrals are computed by numerical quadrature where we have experimented with the
trapezoidal rule in addition to standard two-point Gaussian quadrature. A possible advantage
with the trapezoidal rule is the increased number of zeros in the matrices M and L. The
standard two-point Gaussian quadrature results in up to 3a nonzeros per matrix row, while
the trapezoidal rule may lead to only 2d + 1 nonzeros per row, which is the same sparsity as
produced by standard finite difference methods applied to (2). In higher space dimensions
(d > 3) such increased sparsity implies significant computational savings both with respect
to storage and execution times.

The trapezoidal rule does not increase the sparsity when the original SUPG formulation
is applied. To obtain only 2d + 1 nonzeros per row we have modified the SUPG method.
The product of Wi and the convection term gives rise to a term which can be interpreted as
an anisotropic diffusion term with diffusion tensor proportional to aiaj. Our modification
consists in neglecting the off-diagonal terms in this diffusion tensor. In the implementation
one uses Wi H/in (9)-(11), but an additional term

fx
r=l

:a
19yr

is added to the Lij given in (11). The trapezoidal rule with the modified SUPG is later referred
to as the dSUPG procedure. Whether dSUPG gives sufficient accuracy is commented in 6.1.

The Pontriagin-Vitt equation is solved by the same finite element method as that employed
for(2). LetM -, .=/-/,. (y)). The spatial discretization yields a linear system ofalgebraic
equations for () () ))r:
(12) Lk) b’),

where L is given above and b) is a vector with the ith element equal to

jlj dy ...dya.

fx
j=l

3.2. Temporal finite difference discretization. The system ofordinary differential equa-
tions for q is solved by lower-order finite difference schemes. The well-known 0-method gives
a recursive set of matrix systems

(13) Qqe Sqe-, Q M- At(1 -0)L, S M + At(1 + 0)L,

where qe denotes q(t) at time level e and At is the current timestep. The 0-scheme is
andunconditionally stable when 0 > 1/2. The truncation error is of order At for 0 :

of order At2 when 0 i.
A second-order Runge-Kutta method has also been investigated. This scheme takes the

form

(14)

(15)

q, qe- + AtM-Lqe-,
-1 Lq*qe qe- + At(M-lLqe +M- ).
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M is lumped to make the method explicit. This scheme is only conditionally stable. The
stability criterion depends on the eigenvalues of M-1L. Proper values of At are however
determined experimentally in this paper.

Observe thatM and L are independent oftime. Hence the spatial integration and assembly
process are carried out only once, and M and L are stored separately.

3.3. Solution of matrix systems. When using the 0-method, or when solving the
Pontriagin-Vitt equations, it becomes necessary to solve large, sparse matrix systems; see
(12) or (13). In fact, the applicability of numerical solution of the backward Kolmogorov
equation is to a very large extent governed by the efficiency and the storage requirements of
the numerical procedure used for solving matrix systems. Previous contributions to numerical
solution of the backward Kolmogorov equation have exclusively employed direct elimina-
tion methods such as, e.g., banded Gaussian elimination. Although these may be appropriate
in smaller two-dimensional (2D) problems, one encounters extremely large bandwidths and
hence prohibitively long CPU times and storage demands in higher space dimensions. Even
inside the band the matrices are very sparse for d > 3, but direct methods replace these zeros
generally by nonzero fill-in entries. On the contrary, iterative methods may only operate on the
nonzeros in the matrices and hence memory or disk requirements can be significantly reduced.
A particularly attractive method for solution of matrix systems involving symmetric, positive
definite matrix systems is the conjugate gradient method. However, our coefficient matrices
L and Q are generally nonsymmetric. There have been numerous generalizations of the con-
jugate gradient method to cover nonsymmetric systems during the last 15 years. Numerical
simulations [16] indicate that the Orthomin(k) [9] method is a robust and efficient method.
In demanding problems, Orthominres(k) 16] has shown to be attractive. These two methods
are used for solving matrix systems in this paper. The parameter k is related to the amount
of storage required by the algorithms [9] and indirectly also to their stability and robustness.
Orthominres(k) is used in the restarted version [9] and abbreviated R-OMR(k). Orthomin(k)
is abbreviated OM(k).

Unfortunately, the convergence of iterative methods of the conjugate gradient family is
slow unless the matrix system is preconditioned. That is, instead of solving the original system
Qqe Sqe-1, one solves the equivalent, left preconditioned system U-1Qqe U-1Sqe-I If
U is a good approximation to Q (in some sense), the iterative methods will converge much faster
when applied to the preconditioned system. In this work we have employed incomplete LU
(ILU) factorization preconditioning, which is suitable for nonsymmetric matrix systems 16].
The preconditioning matrix U is then computed as a sparse LU decomposition of the original
coefficient matrix Q (or L). This task is accomplished by performing Gaussian elimination
on Q (or L) and neglecting all fill-in entries. The sparsity pattern of U coincides with that of
Q (or L).

The work required by solving matrix systems is here reported in terms of the number
of iterations required by R-OMR(k) and OM(k) in addition to the corresponding number of
work units. One work unit equals one addition plus one multiplication divided by the number
of unknowns (n). We remark that only the nonzero entries in the coefficient matrix need to
be stored. These nonzeros are stored in a sparse matrix storage scheme [16]. The solution
at the previous time level is used as start-vector in time dependent problems. When solving
equation (6) for M(y), M_ (Y) is used as a start-vector. The iteration is terminated when the
euclidian norm of the residual-vector in the original matrix system is less than e. A choice
of er 5 10-4 has shown to be sufficient in the examples presented herein.

The size of the matrix systems associated with finite element solution of backward Kol-
mogorov equations is very large when d >_ 3. In many problems the number of unknowns can
be reduced by exploiting symmetry. For example, ifC is constant and ar is an odd function
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of each of its spatial arguments, R or Mk will be symmetric about the origin, and only half of
the nodal values need to enter the system of equations. In this work we have taken advantage
of symmetry wherever it is possible.

4. Monte Carlo simulation. Verification of the quality of the numerical solution of the
first passage time boundary value problem is a nontrivial task. The solution may be sensitive
to the location of finite boundaries, the choice of weighting functions, and mesh refinements
unless the element size is sufficiently small. However, for d > 3 it is seldom possible to
work with a very fine mesh, and experience shows that useful and fairly reliable results can
be obtained on coarser grids if the numerical parameters are tuned properly. To determine a
proper choice of values for the numerical parameters one needs some indication of the correct
solution. To some extent this may be provided by direct Monte Carlo simulation (MCS).

Temporal realizations of white noise processes can be obtained as described in [7]. Inte-
grating the system (1) numerically, with x(t0) y x, and measuring the time to first exit of
x(t) from g2x, gives a realization of T. Taking the expectations of a large sample of such real-
izations leads to an estimate of M1 (y). Usually only one y value, e.g., y E [X], is sufficient
to judge the quality of the solution of the backward Kolmogorov equation. Similarly, MCS
may provide estimation of R(t y) for a prescribed and y. In this work infinite boundaries
are located at finite positions. Simulations with various choices of y, letting y approach the
infinite boundaries, give valuable guidance to the determination of the location of the finite
boundaries that are required by the solution scheme from 3.

5. Model problems.

5.1. White noise excitation. Consider a single degree-of-freedom oscillator excited by
a white noise load with constant spectral density So. Assuming the restoring force to be a
general function f of the displacement Z and the damping force to be linear, the governing
equation can be written

(16) + 2w0 + f(Z) v/2rrSoN2(t),

where is the damping ratio and w0 is the natural frequency. Introducing the Markov process
vector (X, X2)r, with X Z and X2 ’, the system can be expressed on the form
(1). The associated backward Kolmogorov equation has the coefficients a Y2, a2

-2’w0Y2 f(y), C22 7/’80, and C.s 0, r - 2, or s 2. Let o’x be the standard
deviation of Xi(t). The boundary conditions for a safe domain Ixl </rx, Ixzl < ff2, where
2 o3, using (3)-(5) becomes

(17)
(18)
(19)

R(t crx, y2) O,
R(t rxl, Y2) O,

R(tly, ::2) 0.

.<0,
y2>0,

It is also possible to prescribe R 0 at y2 0, but this has little effect on the solution,
except that some numerical noise on the boundary may be slightly amplified (see 1]). The
above partial boundary conditions can be given a physical interpretation. At yl =/3rx the
system will move out of the safe domain if the velocity is positive. Hence R 0 when Y2 > 0.
In the case where Y2 < 0, the system will move into the domain and no value of R can be
prescribed. The same reasoning can be applied to the conditions at x

For a linear oscillator we have f(x) ogx. This problem will be referred to as model
problem 1. Model problem 2 consists of a nonlinear oscillator with a "bang-bang" spring
that has f(x) co0sign(x). First passage time statistics related to this problem have been
considered by Toland and Yang [20] using a random walk method. Model problem 3 concerns
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a Duffing oscillator where the spring is expressed as f(x) o0(xl + ex). In later sections
specifications of the safe domain are given in terms of axe. For model problem cr2x
rrSo/(2w), while for model problem 2 ax rSo/(4cw).

5.2. Filtered white noise excitation. In model problems 4 and 5, we consider an oscil-
lator with the equation of motion

(20) 2 + 2w02 + w(Z + eZ3) 09.u(Q(t)),

where u is a deterministic function and Q(t) is a Gaussian process with mean/0, standard
deviation a2, and autocorrelation function E [Q(t)Q(t + r)] r exp (-e?lrl), that is, Q
has a low frequency dominated spectrum. The process Q(t) can be obtained by filtering white
noise according to the equation

(21) 0 -o(O- #Q) + ro 2-QN3(t).

It is evident that E [X] o.)-2’/Q.E [u(Q)] when e 0.
Introducing X Z, X2 X1, and X3 Q, the Markov vector X (X1, X2, X3)7" is

governed by a system of white noise excited stochastic differential equations of the form (1).
The coefficients in the backward Kolmogorov equation read

(22)

(23)

(24)
(25)
(26)

al Yl,

a2 rIQu(y3) 2w0Y2 -wZo(y + eye),
a3 -eQ(Y3 lZQ),

C33 o’SQ,
Cij=O, i5k3 or j:fi3.

Different choices of u give rise to different low frequency dominated load processes. To this
author’s knowledge the backward Kolmogorov equation associated with (22)-(26) has not
been solved elsewhere in the literature.

Model problem 4 employs a Gaussian excitation process with u(Q) Q. When e 0,
one can find exact closed form expressions for the first- and second-order moments by using,
e.g., the moment equations. The results are omitted here but the numerical value ofrx, which
is used in the specifications of x, will be given later. The linear oscillator with low frequency
Gaussian excitation results in a boundary value problem that is particularly challenging to
solve. The boundary value problems for R and Mk involve additional complexities compared
to, e.g., the d 3 problem investigated by Spencer 18]. Besides general numerical difficulties
due to singularities and the shape of the solution, it is necessary to deal properly with the
prescription of boundary conditions to ensure a well-posed problem. Defining the domain ,,
as IXll _</3rx,, Ix21 < 2, and Ix3l < 3, and using (3)-(5), one obtains

(27) R(tlrx, Y2, Y3) 0, 0 < Y2 < ’2, ly31 < 3,
(28) R(tl flO’x,, Y2, Y3) 0, --2 < YZ < 0, ly31 < 3,
(29) R(tlYl, 2, Y3) 0, lYll </3rXl, lY31 < 3,
(30) R(tlYl,--(2, Y3) 0, lYll _</crX,, lY31 < 3,
(31) R(t Yl, Y2, +C3) 0, lYll </3rx,, lY21 < C2.

a2 > 0,

a2 < 0,

The mathematical problem we want to solve corresponds to -’2, ’3 cxz, but finite values
must be used in the numerical computations.
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Model problem 5 is related to slow-drift oscillations of moored marine structures, where
the excitation is often oflow frequency and exponential nature. Transformation ofa normalized
(rQ 1,/zQ 0), normally distributed Q to an exponentially distributed u(Q), with unit
expectation and variance, can be carried out by u(Q) -ln(1 .(Q)), where * is the
normalized, univariate, cumulative, normal distribution function. The boundary conditions
become different in this problem compare_d to the model problem 4. The domain Q,, is
defined as Ix E [X]I </crx, Ix2l < C2, and C3 < x3 < C4. Note that E [X]
Mathematically, 2, ’4 oo, while ’3 --+ -oo. From (3)-(5) it follows that

(32) R(t oQ + ax, Y2, Y3) O,

(33) R(t OQ ax, Y2, Y3) O,

(34) R (t Y, C2, y3) 0,

(35) R (t y, -C2, y3) 0,

0 < Y2 < 2, 3 < Y3 < 4,
--2 < Y2 < 0, 3 < Y3 < 4,
lY-rlQI <flax,, C3 < y3 <C4,

lYl- rlQI < o’x 3 < Y3 < 4,
a2 >0,

a2<0.

As in_model problem 4 one can also prescribe boundary conditions for R on y3 C3 and
Y3 C4. It is clear that R 0 as Q cx so one may set

(36) R(tly, y2, 4) 0, lY 0QI </3crx, lY21 < 2.
As Q --+ -cx the excitation vanishes and hence has no effect on the reliability. The proper
condition at y3 C3 is then

(37) R(tly, y2, if3) 0, lY OQI < rx,, lY21 < 2.

In model problems 1-4 it is trivial to show that R (t lY) R (t Y) with a similar result
also for Mk(y). Hence it is possible to reduce the number of nodal values entering the matrix
systems by 50%. In the examples presented in the next section we have taken advantage of
this symmetry with respect to y 0.

II. Results. When solving first passage problems associated with oscillating systems,
we are concerned with applications to structural reliability. This implies that, for example,
0.9 < R(t ly) < 1 is the region of the solution of most interest. Moreover, the bounds on

X are fairly large, e.g.,/3 > 3. The results presented below are computed with o0 1 and

So 1/zr in model problems 1-3. In model problems 4 and 5 we have used e 0, OO 10,
O’Q G0 1, and//,a 0. In all problems to 0.

The grids consist ofrn ... rna multilinear elements ofregular, nondistorted hypercube
shape. Many of the results are presented in a compact tabular form. In the tables the column
text "upw." refers to the choice of upwind weighting functions.

ti.1. Integration with the trapezoidal rule. When solving partial differential equations
by the finite element method in higher space dimensions, nodal point integration using the
trapezoidal rule on multilinear elements give substantial savings in storage requirements,
but the accuracy may be questionable. The performance of the trapezoidal rule has been
investigated in the previously described model problems. It is unfortunately evident that
the trapezoidal rule is not suited in these problems. Table 1 displays a comparison between
some different integration rules and choices of weighting functions in model problem 2.
The convergence of nodal point integration is seen to be very slow compared to Gaussian
quadrature. Since upwind weighting functions are always required to obtain meaningful
solutions, the inferior behavior of the trapezoidal rule may be caused by the modified SUPG
weighting functions. As Table shows, both modification ofSUPG and nodal point integration
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contribute to decrease the accuracy. Since the trapezoidal rule with dSUPG weighting gives
rise to algebraic equations that are (almost) equivalent to the equations produced by a standard,
first-order, upwind finite difference scheme, we may draw the conclusion that the standard
finite difference methodology is generally not suitable for numerical solution of first passage
problems. Nevertheless, Franklin and Rodemich 12] solved a simple Pontriagin-Vitt equation
by a finite difference method with success. Their problem has also been run with the finite
element methods in the present work and nodal point integration with dSUPG in fact worked
better than Gauss quadrature with full SUPG for this particular equation.

TABLE
Nonlinear bang-bang oscillator (model problem 2) with 0.01,/ 1, 2 40, ctl 3.0, and o2 0.5,

exceptfor ml > 56, where or2 0.75. MCS estimated MI(0, 0) 170.

m m upw. integration rule M (0, 0)

28 56 QUAD Gauss quadrature 169

28 56 SUPG Gauss quadrature 166

28 56 dSUPG trapezoidal rule 65

28 56 SUPG trapezoidal rule 106

70 140 QUAD Gauss quadrature 170

70 140 SUPG Gauss quadrature 167

70 140 dSUPG trapezoidal rule 82

6.2. Sensitivity to numerical parameters. The backward Kolmogorov boundary value
problem gives rise to numerical difficulties associated with infinite domains and resolution
of singularities. To overcome the difficulties we may use upwind weighting functions, mesh
grading, smaller elements and a proper finite location of the boundaries. Some examples are
given below to show to what extent various numerical parameters influence the accuracy. One
ofour aims is also to recover possible problems with or shortcomings of finite element solution
of the backward Kolmogorov equation. Previous contributions to the literature have mostly
focused on the advantages of the finite element approach. To enable comprehensive future
discussions and comparisons of different methods for obtaining first passage time statistics, it
is important to have documentation on both advantages and possible limitations of the present
solution strategy.

The first example concerns model problem 1. Table 2 displays a comparison of different
choices of weighting functions for various grid resolutions. In this example SUPG is more
accurate than QUAD on the finest grid. On coarser grids both SUPG and QUAD can lead to
R > at 14 although SUPG was more likely to produce occasions of R > 1. If one
considers the complete R(t 10, 0) curve for 0 < < cx, as has been usual in the literature,
there are only very small differences between SUPG and QUAD. Generally QUAD was less
sensitive than SUPG to variations in C_, cti and n. In time-dependent problems a uniform grid
is shown to be successful [2], [3]. However, our type of mesh grading improves the results in
the present example and or1 2.0, a. 1/c1 seemed to be a good choice.

Tables 3-6 concern the nonlinear oscillator in model problem 2. In these examples, SUPG
was clearly inferior to QUAD with respect to accuracy, and the latter was also more robust
than the former. For example, SUPG showed little sensitivity to t2 and oti for/ 1, while
the sensitivity was very pronounced for/ 4. On coarse grids QUAD was significantly
superior to SUPG.
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TABLE 2
Model problem 1, 0.1, At 0.5, / 3, 2 90, crl 2.0, and t2 0.5. MCS estimated

ml m2 upw. R(1410, 0)

R(1410, 0) 0.988.

14 28 SUPG 1.044

14 28 QUAD 0.994

28 56 SUPG 0.993

28 56 QUAD 0.983

42 84 SUPG 0.988

42 84 QUAD 0.984

More elements were needed to maintain sufficient accuracy as the displacement bounds
/3 were increased. For smaller bounds, e.g.,/3 1, the problem is generally easy to solve
and there are minor differences between different numerical strategies. MCS also becomes
more expensive as/3 increases; the execution time is typically proportional to exp (/). For
/3 3, for example, the finite element approach for finding the complete M (y, Y2) was much
more efficient than MCS for calculating the single value M1 (0, 0).

A trial and error process utilizing plots of R or M,, in addition to experience and MCS,
seems to be the most effective way to determine the bounda_ry location C2. On~ coarse grids the
solution may show considerable sensitivity to changes in C2, especially if C2 is chosen larger
than strictly necessary. This sensitivity decreases rapidly as the grid is refined. However, many
problems in higher space dimensions must probably be run on a coarse grid. A proper tuning
of parameters related to boundary locations and mesh grading may lead to fairly accurate
solutions even on coarse grids. Experience with the present set of model problems reveals
that comparison of M or R with MCS for a single point, e.g., (y E [X]), may be sufficient
in the tuning process.

When solving the moment equation, the optimal mesh grading parameters were ct 1.5
and or2 0.75, with the exception of a few cases where Ctl 2 led to higher accuracy.
In time-dependent problems, a uniform grid seemed to be an efficient choice for model
problem 2.

TABLE 3
Model problem 2, 0.1,/ 1, 2 24, l 1.5, and or2 0.75. MCS estimated MI (0, 0) 26.6.

m m2 upw. MI (0, 0)

14 28 SUPG 24.7

14 28 QUAD 26.2

56 112 SUPG 26.2

56 112 QUAD 26.3

To demonstrate that no particular numerical strategy turned out to be "best" we show
results in Table 7 from model problem 3 where SUPG was significantly superior to QUAD.
SUPG was also less sensitive to variations in 2.

Model problem 4 turned out to make greater demands to the numerical solution schemes
than the other model problems. Since this particular problem has not been solved in the
literature before, it may be enlightening to show the typical shape of the reliability function.
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TABLE 4
Model problem 2, 0.1,/3 4, crl 1.5, and or2 0.75. MCS estimated MI (0, 0) 1660.

m m2 upw. t2 MI (0, O)

28 56 SUPG 24 940

28 56 QUAD 24 1360

28 56 SUPG 54 1170

28 56 QUAD 54 1360

56 112 SUPG 54 1210

56 112 QUAD 54 1490

TABLE 5
Model problem2, 0.01, fl 3, Otl 1.5, andot2 =0.75. MCS estimated MI(0, 0)= 1890.

m m2 upw. 2 Ml (0, 0)

28 56 SUPG 40 1730

28 56 QUAD 40 1830

28 56 SUPG 90 1860

28 56 QUAD 90 1890

56 112 SUPG 90 1810

56 112 QUAD 90 1890

TABLE 6
Model problen 2, 0.1, At 0.5,/3 3, al o2 1.0. MCS estimated R(1510, 0) 0.992.

ml m2 upw. 2 R(15 10, 0)

28 56 SUPG 16 0.991

28 56 QUAD 16 0.992

28 56 SUPG 36 0.994

28 56 QUAD 36 0.992

56 112 SUPG 36 0.992

56 112 QUAD 36 0.992

TABLE 7
Model problem 3, 0.1, e 2,/3 1, Ctl 1.5, and ot 0.75. MCS estimated M (0, O) 87.4.

m m2 upw. MI (0, 0)

28 56 SUPG 83.4

28 56 QUAD 65.1

56 112 SUPG 86.6

56 112 QUAD 76.7

Figures 1-3 display R as a function of a single space coordinate in three space directions
and at three different points of time. The other two coordinates are kept fixed at zero. The
parameters equaled 0.1, 2 360, 3 120, 3 3, ml 14, m2 20, m3 26,
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At 1.0, 0 1.0, ct 2, Ct2 0.667, and O3 0.5. Quadratic weighting functions were
used. The finite element solution value for R(25 10, 0, 0) equaled 0.944, while MCS (10 000
samples) gave 0.954.

SUPG was generally not competitive with QUAD in this problem. Numerical oscillations
caused difficulties, and the damping inherent in the 0-scheme when 0 1 was useful. How-
ever, in other problems, 0 may lead to inaccurate results; see [2]. A general feature of
model problem 4 is that the solution showed considerable sensitivity to numerical parameters
such as mi, oti, O, C2, and C3.

1.0

0.9

0.8

0.6

0.4

0.2

-40 -20 0 20 40

FIG. 1. R(t Yl, 0, 0) as a function of yl for 20 (solid line), 100 (dashed line), and 200 (O) in
model problem 4.

1.0

0.8

0.2

0.0

-200 0 200

FIG. 2. R(t 0, Y2, O) as a function of Y2 for 20 (solid line), 100 (dashed line), and 200 (O) in
model problem 4.

Model problem 5 is closely related to model problem 4, but is considerably easier to
solve by the present numerical method. As plots of R in this problem do not exist in the
literature, examples of the typical features of the function are presented in Figs. 4-6. It is seen
that one can work with a much coarser mesh in the y3-direction than in the other two space
directions. For the particular example in Figs. 4-6, the parameters were 0.1, t2 240,
3 -4, 4 10,/ 3, m 22, m2 36, m3 12, At 0.5, 0 0.75, ct 2,
O2 0.667, and or3 1.0. Quadratic weighting functions were used. MCS (10,000 samples)
for R(101 10, 0, 0) resulted in 0.97 l, while the finite element solution read 0.965 (recall that
E [X] r/Q 10).
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FIG. 3. R(t 10, 0, y3) as a function ofy3for 20 (solid line), 100 (dashed line), and 200 () in
model problem 4.
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FIG. 4. R(t Yl, O, O) as afunction of yl for (solid line), 5 (dashed line), and 10 () in model
problem 5.
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FIG. 5. R(t 110, y, 0) as afunction ofy2for (solid line), 5 (dashed line), and 10 () in model
problem 5.
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-4. -2 0 2 4- 6 8 10

FIG. 6. R(t 10, 0, Y3) as afunction ofy3 for (solid line), 5 (dashed line), and 10 (O) in model
problem 5.

The sensitivity of the solution to the choice of various numerical parameters was signifi-
cantly smaller than in model problem 4. Tables 8 and 9 show some results.

TABLE 8
Modelproblem 5, otherparameters are as given in the text. MCS estimated R(101 10, 0, 0) 0.971.

ml m2 m3 1 c2 R(10I 10, 0, 0)

16 24 12 0.961

16 24 12 3/2 2/3 0.967

16 24 12 2 1/3 0.938

24 36 18 0.934

24 36 18 3/2 2/3 0.963

24 36 18 2 1/3 0.972

TABLE 9
Model problem 5, otherparameters are as given in the text. MCS estimated R(101 10, 0, 0) 0.971.

ml m2 ms 2 upw. R(10I 10, 0, 0)

16 24 12 240 QUAD 0.918

16 24 12 240 SUPG 0.938

16 24 12 160 QUAD 0.887

16 24 12 160 SUPG 0.955

22 36 12 240 QUAD 0.965

24 36 18 240 QUAD 0.954

24 36 18 240 SUPG 0.972

The sensitivity of R to variations in the mesh grading parameters is displayed in Table 8.
The results corresponds to the SUPG method. Similar, but slightly less accurate results, were
obtained by QUAD. As in the previous model problems, QUAD showed less sensitivity (in
comparison with SUPG) to perturbations in the numerical parameters as n was increased.
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2Table 9 displays some additional results when a 2, 02 5’ and 03 1. In the
present problem, SUPG is slightly superior to QUAD. A proper resolution of the solution
in x2- and x3- direction in the interior parts of the domain requires a minimum number of
elements to be used. Therefore 2 and 3 needs to be smaller on a coarse mesh compared
to the optimal values on a finer mesh. If the mesh is too coarse, e.g., n 819 in the present
problem, significantly inaccurate results may occur and the solution is usually considerably
sensitive to variations in numerical parameters such as i and cti. For d > 3 it would be very
advantageous to have numerical methods that could produce qualitatively acceptable results
on coarse grids (m 10).

The value of At had little impact on the accuracy in model problem 5 as long as At < 1,
reflecting that the spatial approximation properties constitute the critical parts of the numerical
method.

6.3. Behavior of iterative equation solvers. Utilizing iterative methods for solving ma-
trix systems increases the potential of finite element discretization of backward Kolmogorov
equations significantly. This subsection reports the efficiency of the approach in more detail.

When solving the time-dependent backward Kolmogorov equation, the solution at the
previous time level can be used as start vector for the iterative methods. In such cases only a
few iterations, usually one-six, are necessary to obtain a converged solution when using pre-
conditioning. Roughly speaking, R-OMR(k) requires approximately half as many iterations
as OM(k), but is also twice as expensive per iteration. The number of iterations increases
only slightly with n and At. The work required by the equation solvers showed negligible
sensitivity to other numerical parameters. If preconditioning is not applied, the work per time
level increases significantly. As an example, consider model problem 2 with 0.01,/ 3,
m2 2rn 56, and QUAD. R-OMR(5) and OM(1) required about 2500-3000 work units for
solving the system of equations when no preconditioning was applied. With preconditioning
the number of work units was reduced to about 170.

In stationary problems associated with the solution for Mk(y), preconditioning is almost
always required to avoid divergence or extremely slow convergence of the iterative solvers.
Table 10 shows some selected results for the behavior of R-OMR(k) in model problem 2. It
is evident that the method is sensitive to the choice of the parameter k. The optimal value of
k is significantly larger in the present type of problems than in hydrodynamical convection-
diffusion problems. As/ is increased, k must also be increased to achieve stability and fast
convergence. With a sufficiently large k, the iterative method is robust and the work increases
very slightly with increasing n. It is seen that the work increases rapidly with/ and n when
k is small. OM(k) for small k turned out to be useless for/ > 3. In general, R-OMR(k) was
more efficient than OM(k) in the most demanding problems. The work associated with the
iterative solvers also depended on the boundary locations and on the mesh grading parameters
if k was not sufficiently large to ensure robustness. In cases where the numerical parameters
led to low accuracy in the solution, the iterative solver usually required a large number of
iterations. Thus if the convergence of the iterative solver is slow it may indicate that k is too
small or that the numerical parameters like mi, oti, i, etc., are not properly tuned.

6.4. Implicit versus explicit time integration. Since storage requirements and not CPU
time seem to be the main limitation for solving higher dimensional backward Kolmogorov
equations, it may be preferable to use explicit time integration schemes like the second-order
Runge-Kutta method. However, there are two main disadvantages with explicit schemes. The
first is that the finite element integration and assembly process is usually much more costly
than solving the matrix system, at least for the n-values relevant to the presently available
computer generation. The explicit method should therefore avoid the assembly process at each
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TABLE 10
Number of iterations for R-OMR(k) in model problem 2 (Pontriagin-Vitt equation). 0.1, t 1.5,

t2 0.75, 2 60 (/ 1), and 2 135 (/ 3).

n fl k it.

1653 35

6441 89

1653 9 9

6441 9 23

1653 3 589

6441 3 > 900

1653 3 9 19

6441 3 9 316

1653 3 15 24

6441 3 15 28

time level. This is easily accomplished by storing the matrices M, L, S, and Q and carrying
only matrix-vector products at each timestep. Nevertheless, such an approach requires about
the same storage as the implicit method. The second disadvantage of an explicit scheme is
that At is related to the size of the smallest element in the mesh due to stability requirements.
In the present formulation of first passage problems, small elements are needed in the vicinity
of singular points at the boundary to avoid unacceptable numerical instabilities in the spatial
discretization.

The explicit Runge-Kutta method has been tested on some of our model problems and
found less efficient than the implicit approach. Table 11 shows the performance of the explicit
method in the same problem as covered by the implicit scheme in Table 6. It is seen that
the accuracy of the Runge-Kutta method is slightly inferior to the results produced by the
implicit approach. At each time level, the explicit method requires two matrix-vector products.
Consideration of the typical work per timestep in the implicit method reveals that the explicit
strategy can be faster than the implicit strategy if the At required by the explicit method is
not less than 2 of the At that is suitable in an implicit scheme. A central question is what
happens when the mesh is refined. If m 56 and m2 112 are used in the problem in
Table 11, the explicit method is not stable, even with At 0.0005 and the implicit integration
strategy is extremely faster. The fact that temporal truncation errors can usually be ignored in
comparison with spatial truncation errors in the present type of problems makes it practical to

employ time steps that are considerably larger than what is dictated by stability requirements
of explicit schemes.

7. Conclusion and discussion. The paper has presented and evaluated general finite
element solution methods for computing first passage time statistics of oscillating systems.
Use of preconditioned conjugate gradient-like methods for solving matrix systems was an
important part of the method for obtaining efficiency. In the problems treated herein, the time
spent on solving matrix systems was usually much smaller than the time spent on the element
by element spatial integration process.

The numerical examples included novel model problems, the impact of various numeri-
cal parameters on the accuracy, comparisons of explicit versus implicit time integration and
verification by comparison with Monte Carlo simulations. The main conclusion is that the per-
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TABLE 11
Explicit second-order Runge-Kutta time integration. Model problem 2, 0.1, At 0.05, /3 3, al

t 1.0. MCS estimated R(1510, 0) 0.992.

ml m2 upw. -’2 R(1510,0)

28 56 SUPG 16 0.990

28 56 QUAD 16 0.989

28 56 SUPG 36 0.991

28 56 QUAD 36 0.990

formance of the finite element method is very dependent on the type of problem being solved.
In some problems, for example, model problems 1, 2, and 5, the method must be considered
as fairly robust and easily used. Other problems recover serious sensitivity to numerical pa-
rameters. When the interest concerns conditions corresponding to low failure probabilities,
the present numerical formulation is particularly attractive since only a few time steps (typ-
ically 10-40) are needed and the iterative solution of matrix systems is extremely efficient
in time-dependent problems. The general indication of our comparison between implicit and
explicit time integration reveals that pure explicit schemes are inferior to implicit methods
with respect to efficiency. It should be emphasized that explicit-implicit approaches may be
advantageous where implicit timestepping is used for the small elements around the singu-
lar points, while explicit timestepping is used for elements of larger size. The development
of numerical methods with better spatial approximation properties are especially warranted.
Such methods should ideally improve the damping of oscillations due to singularities at the
boundaries, guarantee that 0 < R < 1, and give qualitatively acceptable results on coarse
grids as this would be an important property when d > 3.

A central question is whether the proposed methods can compete with MCS. Of course,
the computational work associated with numerical solution of partial differential equations
increases exponentially with d, while the increase is only linear in d for MCS methods. As a
simple model one may consider T to be exponentially distributed. Then the standard deviation
of the estimator for E [T] used in MCS behaves as th-1/2e-/2/2, where rh is the number of
samples of T and/3 represents the width of the failure bounds in standard deviation units. In
the finite element method it will suffice to keep the number ofelements per unit length constant
as/ increases, and hence the work is roughly proportional to/3d. Thus for narrow bounds
MCS is effective, especially for larger d values. As the bounds increase the finite element
approach becomes superior. However, for large failure bounds serious numerical instabilities
may arise in the finite element method. In such cases simpler approximation formulas for the
first passage time statistics are usually accurate. Another important fact is that MCS yields
consistent values of the statistics, while the numerical solution of the backward Kolmogorov
equation may give probabilities that exceed unity. The general conclusion must then be that
if the finite element method is robust in the problem being solved, the bounds correspond to

/3 3 4, the finite element scheme is more efficient than MCS.
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1. Mathematical formulation. Euler’s equations in two dimensions for incompressible,
inviscid flow can be written as the set of equations

Dw
0,

Dt

u (u, v) (-Oy,

where w is the vorticity and is the stream function. The velocity u is then given by

R

where x (x, y), j (, 0), and G (x, j) log Ix- Jl. For a regular region f2 (a bounded
closed region whose boundary is a closed regular curve) with vorticity w inside and
o) 0 outside , the complex velocity is

,.,,.1 f z-1 0 ddow(z) u iv

(1)

4zrl f2,,--Odo’z-

where z x + y and 0 + 0. Integration by parts gives

1 f[log(z-O)d-+log(z-O)dO].(2) w(z)
4
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In a nutshell, contour dynamics [3], [4], [10] consists of solving the infinite-dimensional
system of ordinary differential equations

f Z(a, t) Z(a’, t)
Z,(a’, t)da’,zt (a, t) - z(a, t) z(a’, t)

o

where Z(o, t) [0, 1] -- O(t) is a parametrization of Og2(t).

2. The O(n) algorithm. The velocity field along 8f2 can be evaluated efficiently by
the fast multipole method [2], [6]-[9], subsequently denoted by FMM. Both (1) and (2)
are suitable for fast summation. We derive the necessary expressions for (1); (2) is treated
similarly. Suppose that Of is represented by N nodes zj, j 1 N, and denote the part
of 892 between zj and zj+ by yj. Then the velocity is

N’ f; - o ao =. w;(z).w(z)
z 0 =

Let mj (zj + Zj+l)/2. If Iz mjl > I0 mjl for all 0 6 yj, wj(z) becomes

(3)

f -m-(0-m)wj(z)
z mj (0 mj)

dO

oo (0 mj)n
(- -J (-- -J)) E (z mj)n+’4zr .=o

dO

E (O mj dO
n-O (z mj)n+

(0 j)(O mj)nao
n"-O (Z- mj)n+l"

For polynomial interpolation between the nodes, the integrals f(o- mj)ndO and

f(-O j)(O mj)ndO can be evaluated analytically without much cost. The far field expan-
sions (3) can be summed by the FMM. As for the local evaluation of the terms wj, let yj be
given by qj(a) zj + tja + njpj(a), where tj Zj+l zj, nj itj, and pj(a) is real-valued
and differentiable, a 6 [0, ], and pj(O) pj(1) 0. Then,

(4)

fej 2--OdO"w(z) z- o

1[4-- ((2 2j+l) log(z Zj+l) (2 2j)log(z zj))

-[tj+
tj

(z zj+) log(z Zj+l) (z zj) log(z zj)

(gj+l gj) + 2 fo qj(a)
da ]].(z (zj + tja))z qj(a)

In the case of linear interpolation (i.e., pj(a) 0), the last integral is simply zj+ zj, and
in the case of cubic interpolation, z qj(a) can be factored by Cardano’s formulas and the
integral can again be evaluated exactly.
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3. Numerical test and accuracy. We use the algorithm to simulate the evolution of two
circular patches of constant vorticity w 1 whose radii are r 0 and that are separated by

r. The interpolation is linear. When the integrals (3) are evaluated, a segment Fj should be
ideally contained in a leaf node of the (adaptive) FMM. In practice, we can simply take the
maximal distance 3 between two adjacent nodes zj and Zj+l small in comparison to the length
Ax of the smallest box in the FMM, and we consider Fj to be in a box if the midpoint of zj
and zj+ is in the box; we set 3 2-11 and Ax 2-9. Initially, each circle is parametrized
by 2000 points. We use a fourth-order Runge-Kutta method for the time integration with the
timestep At 0.1. After each timestep, the nodes are adjusted to resolve the curvature and to
keep 3 < 2-11, see [1], [3]. Figure shows the evolution for the times 0, 10, 20, 30, 40,
and 50. At the end there are over 30,000 points on each contour. The computation takes
about two weeks on a Sparc Station 2; on the average it takes about 10 minutes to evaluate
the velocity field along the contour. If we had evaluated the velocity directly, the computation
would have taken 150 times as long (this number has been estimated by calculating the velocity
field directly at selected times).

The accuracy of the algorithm is determined mainly by the contour dynamics method, i.e.,
the number of nodes used to resolve the contours, the kind of interpolation between the nodes,
and the timestep At; see, for example, [4]. The FMM does not introduce any new errors.
As a rule of thumb one needs approximately three terms in all the multipole expansions to
guarantee one digit of accuracy; in practice the FMM is often considerably more accurate; see
[6]. In our calculations we use 50 terms, which guarantee us twelve digits of accuracy. As for
our particular calculation, we mention that the area enclosed by the two contours, which is an
invariant, changes by less than one part in 106.

4. Generalizations. The algorithm can be applied to vorticity distributions of the form
60 0.)iIi, I being indicator functions; the cost is O(N), where N is the total number of
nodes on all the contours. The same algorithm can be used if the kernel in the above integrals
is not as simple and if the integrals cannot be evaluated analytically anymore; in the case of
2rr-periodic vorticity layers [1 ], (1) and (2) become

f[logsinZ-Od-O+logsinZ-Odo](2’) w(z)
4zr 2 2

To apply the FMM to (1 i) we use the Laurent series of cot z; the far field expansion correspond-
ing to (3) then has a negative as well as a positive part, and to get the formula corresponding to
(4) we integrate the Laurent series of cot z term by term and the integral can again be evaluated
to any desired precision.

Remark. If z is away from the region Q, the second term on the right-hand side of (2) (or
(2’)) vanishes; one can then drop that term and the evaluation of the velocity field for points
z 6 f2 is thus essentially cut in half (and so is the required storage space). The advantage of
(1) and (2) (or (1’) and (2’)) is that we have to pay no attention to the topology of the curves and
even in the case of nested contours with different vorticities we can use the scheme without
any complications.

Acknowledgements, The author would like to thank Thomas Buttke and Leslie Green-
gard for interesting conversations and one of the referees for pointing out [5].

and

f Z-Odo(1’) w(z) (2 ) cot

F
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REFERENCES

[1] G. R. BAKER AND M. J. SHELLEY, On the connection between thin vortex layers and vortex sheets, J. Fluid
Mech., 215 (1990), pp. 161-194.

[2] J. CARRIER, L. GREENGARD, AND V. ROKHLIN, A fast adaptive Inultipole algorithm for particle simulations,
SIAM J. Sci. Statist. Comput., 9 (1988), pp. 669-686.

[3] D. G. DRITSt3HEL, Contour surgery, J. Comput. Phys., 77 (1988), pp. 240-266.
[4] ,Contour dynamics and contour surgery, Comput. Phys. Rep., l0 (1989), pp. 77-146.
[5] ,Afast contour dynamics methodfor many-vortex calculations in two-dimensionalflows, Phys. Fluids

A, 5 (1993), pp. 173-186.



TIMELY COMMUNICATION O01

[6] L. E GREENGARD, The Rapid Evaluation ofPotential Fields in Particle Systems, MIT Press, Cambridge, MA,
1988.

[7] L. GREENGARD AND V. ROKHLIN, A fast algorithm for particle simulations, J. Comput. Phys., 73 (1987), pp.
325-348.

[8] J. K. SALMON AND M. S. WARREN, Skeletonsfrom the treecode closet, J. Comput. Phys., 1994, to appear.
[9] M. S. WARREN AND J. K. SALMON, Astrophysical N-body simulations using hierarchical tree data structures,

in Proc. Supercomputing, IEEE Computer Society Press, Los Alamitos, CA, 1992.
10] N. ZABOSKV, M. HUt3HES, AND K. ROBERTS, Contour dynamicsfor the Euler equations in two Dimensions, J.

Comput. Phys., 30 (1979), pp. 96-106.



SIAM J. ScI. COMPUT.
Vol. 15, No. 5, pp. 1003-1025. September 1994

() 1994 Society for Industrial and Applied Mathematics
001

SMOOTHING SPLINE SCORE ESTIMATION*
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Abstract. A new characterization and interpretation of the Cox [Ann. Instit. Statist. Math., 37 (1985), pp. 271-
288] smoothing spline score estimator is provided, which makes it possible to construct an efficient algorithm for
computing this score estimator. On choosing the smoothing parameter, the author proposes adaptive information
criteria that outperform conventional data-driven choice criteria based on the assumption of Gaussian innovation. A
small Monte-Carlo experiment is performed to investigate the finite sample properties of the smoothing spline score
estimator as compared to adaptive kernel and weighted kernel score estimators. It is demonstrated that the smoothing
spline score estimator is more robust to distributional variation and that all forms of the adaptive information criteria
for choosing the smoothing parameter outperform conventional data driven smoothing parameter choice methods
based on the Gaussian innovation assumption.

Key words, score, splines, robust model selection, banded matrices

AMS subject classifications, primary: 62G05; secondary: 62J05, 62P20, 65D07, 65D10, 65F50

1. Introduction. The score function of a probability density function j, defined as

aP0 -(log j)’ -(f/j), is essential to many aspects of nonparametric and robust
statistics [36], 18], [21]. For data exploration purposes, we can locate modes or antimodes,
as well as assess the tail behavior of the underlying density through examining the estimated
score function. Accurate estimate of the score function is crucial to the construction of the
asymptotically robust adaptive estimators of the linear model [3], [27], [32]. In an empirical
study of the law of demand, Hirdle, Hildenbrand, and Jerison [16] used an estimated score
function to construct a matrix that was closely related to the mean income effect matrix. The
log-density estimators as investigated in [38] and [31] can also be recovered from the score
estimator through integration.

Most existing score function estimators are constructed by computing the negative loga-
rithmic derivative of some ad hoc kernel based density estimators. Stone [40] proposed the
negative logarithmic derivative of a standard Gaussian kernel estimate as did Manski [27].
Using different window widths for the numerator and denominator of the score function, Cox
and Martin [8] suggested a bikernel score estimator that attains a faster convergence rate than
conventional single kernel estimators. Cs6rg6 and R6v6sz 10] discussed a nearest-neighbor
approach.

Using a totally different approach, Cox [7] proposed a direct method to estimate the score
function by minimizing a penalized mean squared error rule. Using a reproducing kernel
Hilbert space argument, he proved the existence of a unique solution to the objective function,
the consistency of the estimator, and its achievement of an optimal rate of convergence among
other score function estimators under some mild regularity conditions. The construction and
implementation of the estimator are, however, not explored in detail in Cox [7]. In 2 of this
paper, we show that this approach is closely related to nonparametric curve fitting by penalized
likelihood and the resulting estimator, given a natural choice of the smoothness penalty, is a
variant of the cubic smoothing spline that has a nice nonparametric regression interpretation.
This new characterization to the problem using nonparametric regression analogy is appealing
because the form of the estimator is computationally tractable. We provide, in 2, an efficient
algorithm for computing this score estimator taking advantage of the banded structure of the
relevant linear algebra.

*Received by the editors June 17, 1991; accepted for publication (in revised form) May 12, 1993.
fEconomics Department, University of Houston, Houston, Texas 77204-5882 (p +/-n@uh. edu).
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All score estimation methods share the problem ofhaving to chose a degree-of-smoothness
parameter, say )v, which determines the trade-off between data fidelity and the smoothness of
fit. In contrast to kernel-based methods, for which maximum likelihood methods of choos-
ing ,k break down completely, we suggest, in 3, various versions of adaptive information
choice criteria based on an estimated likelihood for choosing the smoothing parameter of the
smoothing spline score estimator.

There is always the question: "How well does an asymptotically optimal estimatorperform
in finite sample situations?" This question is studied through a small Monte-Carlo simulation
in 4. Our results show that the performance of a kernel-based score function estimator
depends very much on the type of kernel used. In practice, of course, we have little a priori
information on the unknown density function and hence little guidance on the type of kernel
to use. In this respect, we find the smoothing spline score estimator to be more robust to
distributional variation. Our simulations also show that all forms of adaptive information
criteria for choosing the smoothing parameter outperform conventional data driven smoothing
parameter choice methods based on the Gaussian innovation assumption.

2. The smoothing spline score estimator. Cox [7] observed that if j F, and P0
f/j, then under very mild regularity conditions,

f o dFo -f f(x)(x)dx f dFo

and consequently

(1) lr lifO)2 dFo f (1r2 2ap’)dFo + f dFo.

Since the second term on the right-hand side of (1) is independent of ap, minimizing the
integrated mean-squared error may focus exclusively on the first term. Of course we do not
observe F0, so Cox [7] considered the (penalized) empirical analogue,

(2) f (lp"2 25’)dG + X f (1]J’tt(X))2 dx.

Minimizing this expression yields a balance between "fidelity-to-data" represented by the
mean-squared error term and smoothness of . Obviously, the tradeoff between these two
objectives is controlled by the parameter .. Cox shows that as ,k --+ cxa, so smoothness
becomes the paramount objective; !/ converges to a linear function corresponding to the ap-
function of a Gaussian random variable with mean and standard deviation of the sample.
Before further exploring the solution to minimizing L[ap], it is helpful to review the closely
related problem of estimating a scalar, Gaussian, nonparametric regression problem with the
smoothing spline.

2.1. Nonparametric regression. Consider the model

Yi g(xi) "+" Ui, 1, 2 n,

where xi is a known sequence of scalars in [0, ], g is an unknown, but presumably smooth
response function, and ui is a sequence of independently and identically distributed (i.i.d.)
Gaussian random variables. An attractive approach to the nonparametric estimation of g is to
minimize

(3)
n

fL[g] n -1 ,(Yi g(xi))2 q- X (g"(X))2 dx
i=1
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over g in the Sobolev space G2[0, 1] {gl g, g’ absolutely continuous and g’ 6 L2 [0, 1]}.
See Reinsch [33], DeBoor 11 ], and Wahba [43] for further details and Kimeldorf and Wahba
[20] and Wahba [42] for an elegant Bayesian motivation for this approach.

We may rewrite L[g] slightly, employing the so-called Dirac delta function d;,(x)
d;0(x c), which assigns mass one to the point ot (see, e.g., Lighthill [25]), as

L[g] n -1 f (Yi g(x))23x,(X)dx + . f (g"(x))2 dx.
i=1

The Euler-Lagrange condition for this minimization problem is simply

(4) -n-1 (Yi g(x)),x,(X) + .g(4)(x) 0.
i=1

Since 3x, (x) 0 almost everywhere, we may conclude immediately that any solution
is piecewise cubic since g(4) vanishes almost everywhere. Integrating (4) from oo to xi+
yields

--n-1 (yj g(xj)) + Z g(3)(xi+ 0
j<i

and

--n-_, (yj g(xj)) + . g(3)(xi--) O,
j<i

and subtracting we have

g(3)(xi+) g(3)(xi_) (Yi g(xi))/nX.

We may fully characterize the solution as, taking the form,

(5) (X) ai + bi(x xi) "+ Ci(X Xi)2 "q- di(x Xi)3

for x [xi, Xi+l], 1 n- 1, with

(6) 3o(c) (xi+) 6o()(xi-) / 0 if k 0, 1, 2,

/ (yi g(xi))/n, ifk 3,

in which ,(k)(xi+) limb-,0 (k)(xi :t: h). Note that there are 4n such (linear) constraints
and 4(n 1) unknowns in (5) plus the 4 unknowns ao, bo, an, bn characterizing the estimate
outside the interval [x(1), X(n)]. (Clearly co do Cn dn 0. Since were they not,

the penalty could be reduced without disturbing the first term of the objective function.) Thus
(6) provides 4n equations in 4n unknowns.

Alternatively, one may use the first 3n equations in (6) to express the objective function
(3) in n-unknowns and solve explicitly. This is the approach adopted by Reinsch [33] and we
briefly sketch it here.

Suppose 0 _< XI < X2 < < Xn _< 1, and let hi Xi+l Xi. Then (6) with
k 0, 1, 2 implies, for 1 n 1,

ai+l ai bihi + cih2i + dih3i,
bi+l -bi 2cihi + 3dih2i,
Ci+l ci 3dihi.
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Substituting to eliminate the b’s and d’s yields

ai+l ai ai ai-1

hi hi Ci+l q- -ci(hi d- hi-l) q- ci-1

which can be written as

(7) Q’a Rc,

where
a (al, a,)"
C (C2 Cn-1)’;
R an (n 2)2 tridiagonal matrix with entries:
ri,i 2(hi d- hi+l)/3, ri,i+l ri+l,i hi+l/3; for/= 1 n- 3,
rn-2,n-2 2(hn-2 + hn-1)/3;
Q an n x (n 2) banded matrix:
qi,i 1 qi+l,i---(1 + 1 qi+2,i 1 for/--1 n-2.

It is easily seen (e.g., DeBoor 11 ]) that the penalty may be expressed as

(g’(x))
2 dx e’ Re,

so the original problem may be reformulated as minimizing

nL[g] (y- a)’(y- a) + nXc’Re
(y- a)’(y- a) + nZa’QR-1Q’a,

which has the solution

(8) (I -t- nXQR-1Q’)-ly.

2.2. Score estimator. Now using a similar approach, the objective function (2) of the
score function estimation problem may be rewritten as

n -1f (r2(X) 2ap’(x)),x,(X)dx+Z f (r’(X))2 dx.L[]=
,/

The new Euler-Lagrange condition is

n -1 ((X)x,(X) + x,t(x)) + X (4)(X) 0.
i=1

Again the solution is clearly piecewise cubic with the form

(X) ai + bi(x xi) + ci(x xi)2 + di(x xi)3

for x [xi, Xi+l], 1 n 1. Integrating as before we may compute the jump in the
third derivative as

1/f(3)(Xiq"-) lp(3)(Xi -) aP(Xi)/nX.

But the 3’(x) term introduces a new complication. Integrating once from- to z gives

n -1 (xj) + n-1 xg(Z) + X(3)(z) O,
j:xj j=l
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and integrating again from -cx to xi+ yields

K + n-li + ,lp(2)(xi-+-) 0,

K+n-(i 1) + .r(2)(xi -) 0,

so, analogous to (6), we have

(9) ()(xi+)- (k)(xi--
/

0 ifk 0,1,

ifk 2,n.
_,(x_.__2 if k 3.

The jump in the second derivative is the consequence of the 3’ term. We now have, using the
prior constraints for k 0, 1, 2 as before, a modified version of (7),

(10)

along with

Q’a Re + r/2nL,

(11) b Aa Cc + s/n),

(12) d Dc + t/6n),

where
b (bl bn)’;
d (dl dn-1)’"
A an n x n banded matrix:
ai,i -l/hi, ai,i+l l/hi for/-- n- 1,
an,n-- 1/hn-1, an,n-1 ---1/hn-1;
C an n x (n 2) banded matrix:

ci,i hi/3, Ci,i-1 2hi/3 for 2 n 2,
6’1,1 hi Cn-l,n-2 2hn-1/3, Cn,n-2 -hn-1/3;
D an (n 1) x (n 2) banded matrix:
di,i -1/3hi, di,i+l 1/3hi fori=l n-2;
r an (n 2)-vector independent of parameters"
rl (hi + h2)/3, ri (2hi + hi+l)/3 for/= 2 n- 2;
s an n-vector independent of parameters"
Sl -hl/6, si hi fori=2 n-l, Sn -hn-1/3;
t an (n 1)-vector independent of parameters"
tl 2/hi, ti 1 for/= 2 n 1.
The jump in the second derivative also necessitates a modification of the penalty, which now
becomes

(!rtt(X))2 dx c’Rc + r’c/n) + K,

where K will henceforth denote a generic constant independentofthe parameters (a’, b’, c’, d’)
Ofo

We may now write the objective function as

nL[] (a’a 21’b) + n;c’Rc + r’c + K
a’(I + nLQR-1Q’)a- 2a’(A CR-Q’)’I + K,
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where 1 is an n-vector of l’s. Minimizing with respect to a we have

(13) (I q- n,QR-1Q’)-I(A CR-1

and using (10)-(12) we can obtain the solution for b, c, and d.
At first glance the situation with the Cox score estimator seems quite different from that in

nonparametric regression. In nonparametric regression we directly observe Yi, which may be
regarded as g(xi) plus noise. The estimator constitutes a projection of observations vector
into a subspace of G2[0, 1 ]. We would like to answer the following question: "What quantity,
if any, plays the role of the observations y in the score estimation problem?"

Comparing (13) with our prior nonparametric regression expression (8), we see that the
term (A CR-1Q’)’I appears to "play the role" of the observations y in nonparametric
regression. We will refer to this vector as the pseudo-y or pseudo-observations of the sample
X (X

Figure is a plot of the pseudo-y against a grid of 50 equally spaced xi’s, which cor-
responds to the 50 equally spaced population quantiles of a uniform random variable. The
pseudo-y tracks closely the true function of the uniform random variable, which is the x-axis
with positive spike at the right boundary and negative spike at the left, except a few end points.
In Fig. 2, we generate the grid of x to be equally spaced population quantiles of a Cauchy,
and plot the pseudo-y against it; the pseudo-observations again trace the true function of a
random Cauchy closely except for the few end points. The pseudo-y is perturbed violently,
however, around the true p function if x is generated randomly. Figure 3 shows the situation
of the pseudo-y that corresponds to the random sample x, which is the equally spaced sample
quantiles, of a uniform density and we can see that the pseudo-y scatters wildly around the
true of the uniform. Hence, the pseudo-y is a useful piece of information if x reflects the
true underlying density. The points near the two tails of the plots that deviate from the true
function are caused by the larger finite sample approximation error of the pseudo-y to the true

in the tails. If we generate a finer grid of equally spaced population quantiles of a uniform
random variable by increasing the number of the quantiles, say to 100, the points of relatively
huge deviations will approach the two ends of the support of the uniform distribution. This
phenomenon is illustrated in Fig. 4. Discrepancies will, hence, only occur at the end points
of the support asymptotically.

The above phenomenon provides us with a heuristic explanation of how the smoothing
spline score estimator works and why it is consistent. We can write the estimation model
similar to the nonparametric regression case as

Yi tO(Xi) "- i,

where aP0 is the true function to be estimated, yi is the "observed" dependent variable derived
from the sample x, and ei is some "noise." The smoothing spline score estimator projects
the pseudo-y into the subspace of the Sobolev space, H2[a, b] {ap ap, ap’ absolutely
continuous and " 6 L2[a, b]}. Given the pseudo-observations, the smoothing spline
estimator fits a curve through the pseudo-y that minimizes the mean-squared error between the
pseudo-observations and the estimated ap while subjecting it to a certain degree-of-roughness
penalty. We know that the sample quantile is a strongly consistent estimator for the population
quantiles (see Serfling [36]) and, hence, the pseudo-y will approach the true score function

0 as the sample size approaches infinity. As a result, the optimal choice of . tends to zero
asymptotically.

2.3. Computationally efficient expressions. Cox [7] establishes properties of the
smoothing spline ap function estimator. His characterization does not, however, facilitate
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true
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0.0 0.2 0.4 0.6 0.8 1.0

quantiles

FIG. 1. Pseudo-y of50 equally spacedpopulation quantiles ofa uniform random variate.

true score
pseudo-y

-30 -20 -10 0 10 20 30

quantiles

FIG. 2. Pseudo-y of50 equally spacedpopulation quantiles ofa Cauchy random variate.

construction and implementation of the estimator. Our alternative characterization given in
2, however, allows us to implement an efficient computation of the smoothing spline p.

If we substitute (10) into (13), writing y (A CR-1Q’)’I, we get

(I + n,k Q’QR-) Q’h Q’y,

(14) . (R -t-nZQ’Q)-IQ’y- R-Ir/2n).

Similarly, the h can alternatively be expressed as"

(I + nZQ’R-Q’)h y,



1010 P.T. NG

true score
pseudo-y

0.0 0.2 0.4 0.6 0.8

quantiles

FIG. 3. Pseudo-y of50 random observationsfrom a uniform distribution.

h + n.Q’R-1 (R. + r/2n.) y,

y nJQ’. n;k Q’R-lr/2n..

Using (14) and simplifying yields

(I- O’(IxR + O,Q)-lQ,)y
(15)

H(/z)y,

where/z .
Notice that the banded structures of the linear systems to be solved in (14) and (15) are

preferable to (13). More efficient algorithms can be achieved through employing subroutines
written specifically for banded matrices. The PORT library 13] written at Bell Laboratories
and the International Mathematical and Statistical Libraries 19] both have collections of such
routines, which can be readily called by programs written in FORTRAN. With and . given
by (15) and (14), respectively, efficient computations of I and can be obtained using (11)
and (12), respectively (see Ng [30] for FORTRAN source).

Note that the H(/z) matrix in (15) resembles the "hat" matrix in the theory of linear
regression. The trace of the matrix, Tr(H(/z)), varies from 2 when/x 0 to n as/z oo.
Hence, Tr(H(/z)) can be interpreted loosely as the "effective dimensionality" of for the
particular choice of/z or .. Buja, Hastie, and Tibshirani [4] contains a thorough discussion
on the interpretation of the "hat" matrix in the smoothing spline context.. The role of this
"effecti#e dimensionality" will be explored in more detail in the next section when the choice
of the smoothing parameter is considered.

3. The choice ofthe smoothing parameter. Any kernel based estimator faces the prob-
lem of having to choose a bandwidth parameter; the smoothing spline has the penalty
parameter . to choose. Recalling from the previous section that the score estimation prob-
lem can be reduced to a nonparametric regression setting, it is natural to consider the various
data-driven choice criteria commonly used in nonparametric curve fitting.
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0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0,8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 4. Pseudo-y ofvarious sizes ofequally spaced population quantiles ofa uniform random variate.

Conventional model selection criteria for the linear regression model involve minimizing
various versions of

(16) -Lj + Cj(n),

where Lj is the log likelihood function for the jth model evaluated at the maximum likelihood
estimated parameters, and Cj(n) is a penalty term, usually a function of the sample size n
and the dimension kj of the jth model. Some commonly used penalty terms are Cj(n) kj
for the Akaike information criterion [1], Cj(n) kj/2 log n for the Schwarz Bayesian in-
formation criterion [35], Cj(n) kj loglogn for the Hannan and Quinn criterion [15],
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Cj(n) log(n + kj)/(n kj) for the Akaike finite prediction error (FPE) crite-
rion [1], Cj(n) log(n +2kj) for the Shibata criterion [37], and Cj(n) -n log(1 kj/n)
is the generalized cross-validation criterion first proposed by Craven and Wahba [9]. All these
variations of (16) are some form of estimate for the risk or prediction risk of the estimator.
Defining the sample mean-squared error of the classical linear regression model as

MSE n-1 _(Yi i):z

i=1

along with i.i.d. Gaussian errors assumption, (16) can be written as

(17)
n

log MSE + Cj (n).

A natural extension of model selection for linear regression to ,k selection for nonparametric
curve fitting is to substitute Tr(H(.)), the "effective dimensionality" determined by ,k, of the
response function, (xi), for kj into (17). A further extension to the choice of . for the ap
function estimation problem is to substitute pseudo-y for the dependent observations, for, and Tr(H(.)) for kj into (17).

We have experimented with the Mallow Cp, generalized cross-validation (GCV) and
various information criteria as well. None of them, however, performs satisfactorily. All
these criteria almost always lead to oversmoothing, i.e., picking too large a . (see Ng [29]).
As we notice from Fig. 3, the pseudo-y fluctuates wildly around the true , with extremely
low signal-to-noise ratio. This strongly suggests that the errors are generated from some
heavy-tailed distribution instead of the implicitly assumed Gaussian one. It is well known that
model selection criteria based on the assumption ofGaussian innovations perform badly under
moderate departures from the Gaussian condition in the innovation process (see Machado [26]).
Scrutinizing the expression (A-CR-1 Q’)’I for the pseudo-y, we notice that yi depends on the
hi’s in a subtle way, and hence yi and yi+l are obviously dependent through their neighboring
hi’s and so are ui and ui+. This violates yet another standard assumption on the ui’s in
conventional linear or nonparametric regression settings.

3.1. Adaptive information criteria. The evidence of extreme outliers and dependency
of ui’s in the p function estimation problem suggests some form of robust model selection
criterion should be adopted. Martin [28] and Ronchetti [34] both suggested a robust version of
the Akaike information criterion by using the least favorable distribution for the errors, under
which (16) becomes

P(gi) q- Cj(n),
i=1

kwhere p(E) e2/2 if I1 _< k and p(e) kll - if lel > k (i.e., Huber’s/9 [18], which
associates with a distribution that is Gaussian in the middle and Laplace in the tails). Machado
[26] also suggested a similar robustified version of the Schwarz information criterion, derived
from a Bayesian model selection framework, using any conventional p function that defines
an M-estimator.

Alternatively, since one can always recover the estimated density from the estimated ap by
exponentiating the negative integral of , it is possible, by using the estimated likelihood, to

implement an information criterion that will adapt to the underlying data generating process.
To recover . from , let

(x) f (x) dx -Ii(x) ICi for X [Xi, X/+l],log
J
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where

bi ci di (x xi)4Ii(x) ai(x -xi) nt- --(x -xi)2 q- -(x -xi)3 -b --are the integrals of , and ICi are the integrating constants in each interval [xi, xi+]. We
now have,

We have (n+l) integrating constants, including those of the two tail portions. There are n
continuity constraints on log j(x) at the n observed quantiles of Fn, which give

IC1 ICo,

ICi+l "-aihi +.’.at- h4i -Jr- ICi Y’’=I (ajhj-t-...-I- h) --t-. ICo,

dn-1 h4 n-1 ( h4ICn an-lhn-1 +... q- ---"’n-1 -- ICn-1 j=l ajhj -+-...-1- 4 "’j] + ICo.

Imposing f .(x) dx 1, we determine the integrating constant ICo from

1 f(x) dx

f__xl ( [ do )4 ])exp ao(X Xl) .4;-... + (X Xl -at- ICo dx +

+ exp ai(x Xi) "t-’’" "Jl" --’(X Xi)4
X
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(18) + ajhj+...+h +ICo dx +

+ exp an(X Xn) dr-’’’ + -+ ajhj +... + ---h + ICo dx.
j=l

Letting I0 be the first term, In be the last term of (18), and factoring out exp(-IC0) gives us

fxX ( )[1 Io- In] exp(IC0) exp --Il(X) dx +.."

(19) ( dJht) ; exp(-Ii(x))dx++ exp -__. ajhj+ +- I

xi+l

j= xi

dJ h exp(-/n (x)) ax.+ exp - ajhj+...+- -1

j=l -1

With ICo obtained from (19), the rest of the lCi can be calculated through recursion and we
have the estimated density as

(20) fzj(x) exp(-Ii(x) ICi) for x [xi, Xi+l] and 0 n

with x0 -cx and Xn+l o. The subscript of f in (20) merely reminds that the estimated
density is a function of . through the coefficients of . The adaptive information criterion to
be minimized takes the form

(21) Elogzj(xi) + C.j(n)-- ICi -l’- Cxj(n).
i=l i=1

Note that Czj (n) is a function of n as well as ), which determines the "effective dimension"
of the chosen jth model through the H(/z) matrix in (15).

In terms of calculating ICo from (19), there is unfortunately no closed form for the
expression fx,+ exp(-Ii(x)) dx so we must resort to numerical integration.

X

3.2. The Dirac delta disaster. When applying traditional maximum likelihood methods
to density estimation, the likelihood function can typically be made arbitrarily large as the
estimated density approaches the (Dirac) delta function with point mass at each observation.
This can be accomplished by letting the window width tend to zero when the density is esti-
mated by kernel methods. Therefore, when likelihood methods are used to pick the smoothing
parameter of a kernel based estimate, the likelihood function must be cross validated as

CV(h) n-1 1og --i(Xi),
i=1
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where f-i(xi) is the estimated density evaluated at xi using all data except xi. We might,
therefore, be tempted to think that the smoothing parameter ) of the smoothing spline score
estimator chosen by the adaptive information criteria using the estimated likelihood will also
tend to zero and produce an f tending to a sum of Dirac delta functions with point mass at
the observed quantiles. It turns out this is not true.

The inherent "smoothness" ofthe smoothing spline score estimator given by the condition
in (9) guarantees that the estimator is continuous with a continuous first derivative. Even for. 0, we will have a "rough" interpolating cubic spline that passes through every single point
of the pseudo-y but satisfies these continuity conditions. Thus we never encounter the Dirac
delta disaster.

Our experience with the adaptive information criteria using the Akaike, Schwarz, and
Shibata penalty shows that they all perform better than conventional information criteria using
Gaussian innovation assumption. Conventional data-driven information choice criteria lead
to choosing, most of the time, too large a .. This is equivalent to over-smoothing the score
estimate. Monte-Carlo results are reported in the next section.

4. Comparative performance of various score estimators. In this section, we try to
answer the question: "How well do various score function estimators perform in finite sample
situations?" The criterion we used in comparing performance is the integrated squared error
(ISE) of an estimate, , expressed as

(22) ISE(, aP0) ((x) aP0(x))Zj(x) dx.

The integral in (22) will be computed through numerical integration.
Since we are looking solely at continuous random variables having support on the whole

real line or the positive half line, we must pick the lower and upper bounds for the numerical
integration. It is obvious that estimates may have unbounded error in the tail where density
is low; we, therefore, pick the lower and upper bounds to be the first and last of the 10%-
trimmed ordered observations, respectively. The purpose of the trimming is to ensure that
the squared error function will be bounded from above within these limits so that numerical
integrations computed will be reliable. This also irons out some wrinkles in the ISE loss
function and ensures that the numerical optimization routine searching for its minimum will
converge properly to a global minimum.

4.1. Estimators studied. Three estimators for the p function are considered in our
Monte-Carlo simulations. The first is the adaptive kernel estimator based on the adaptive
kernel estimate of a density function introduced in Silverman [39]. No data-driven cross-
validation choice of window width is required. The second estimator considered is the fixed-
window kernel estimator with weight function suggested by Cox and Martin [8]. They show
it to have a faster convergence rate than conventional kernel estimate if the weight function
is chosen properly to localize the integrated squared error loss function. It is, however, more
expensive than the adaptive kernel estimator for we have to use cross-validation to pick both
window widths. (Details on the construction of the weighted kernel score estimator is given
in the Appendix.) Finally, the primary focus of the simulation is to evaluate the performance
of the smoothing spline score estimator.

4.2. Measurement of efficiency. Let .0 be the optimal smoothing parameter of the
smoothing spline estimator that minimizes (22) over the parameter space A C R+, let ’na be
the adaptive information criterion choice of . A using a specific penalty for Cx (n) in (21),
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with ind sch the . chosen using Schwarz’s penalty, ind aki the X chosen with Akaike’s
penalty, and ind shi the . chosen using Shibata’s penalty, then the relative efficiencies of
the various score estimators are measured by

reff(IND)
ISE(6spl(.o), o)
ISE(IND, 0)

where spt(.0) is the smoothing spline score estimator with the optimal smoothing param-
eter 0. IND is the indicator with IND spl(Lna) referring to the smoothing spline
score estimator, using Xna, IND ake referring to the adaptive kernel score estimator,
and IND wke referring to the weighted kernel score estimator. The relative efficiency
reff(Ospt(.na)) measures how well the adaptive information criterion using the ind penalty
performs in choosing the smoothing parameter for the smoothing spline estimator while
reff(rake) and reff(wke) measure how well the adaptive kernel estimator and the weighted
single kernel estimator perform relative to the smoothing spline estimator with the optimal
smoothing parameter .0. A value of reff(spt(Z.na)) 1 means that the adaptive informa-

tion criterion using ind penalty has picked the optimal 0 while either reff(ake) > 1.0 or
reff(twe) > 1.0 means that the adaptive kernel or the weighted kernel estimator performs
better than the smoothing spline estimator with the optimal for a particular realization of
random sample.

4.3. Monte-Carlo design. Each Monte-Carlo trial consisted of 100 replications. The
sample sizes were n 25, n 50, n 100, and n 250. The distributions were: (1)
the standard Gaussian, N(0,1); (2) Cauchy with location parameter 0 and scale parameter 1,
C(0,1); (3) lognormal with scale and shape parameters 1, L(0,1); (4) mixture of Gaussians,
0.5"N(-3,1)/0.5"N(3,1), NMIX(-3,1,3,1,.5); (5) beta with scale parameter and shape param-
eter 7, B(7,7); and (6) beta mixture in the form of.6*B(12,7)/.4"B(3,11), BMIX(12,7,3,11,.6).
The random number generator was the Marsaglia "Super-Duper" generator implemented in
the PORT3 library (Fox [13]).

4.4. Monte-Carlo results. The results of the Monte-Carlo simulation are reported in
Tables 1-4. Computations were conducted using FORTRAN algorithms written for the S
environment (Becker, Chambers, and Wilks [2]). The search for the optimal .0 in (22) was
performed by the numerical optimization routine MNF (Gay [14]) available in the PORT3
library 13]. Occasionally the ISE function would have multiple minima and the optimization
routine would then stop at a local minimum instead of the global minimum. This would
give rise to reff(spt(,knd) > 1.0 even though, in most cases, the ISE was a smooth
function with unique global minimum. It is also possible that in any single realization of
the 100 Monte-Carlo replications, the adaptive kernel estimator or the weighted single kernel
estimator can outperform the optimal cubic spline estimator and gives rise to reff(rake) > 1.0
or reff(wke) > 1.0. This, of course, does not imply they are superior to aPspt()o).A-----Thus we
will wish to look at some summary statistics of the 100 relative efficiencies for each estimator.

Since sample variability ofthe relative efficiencies are quite large in simulations involving
relatively small sample sizes, we decide to concentrate on robust summary statistics. The
medians along with the interquartile ranges (in parentheses) of the relative efficiencies of
various estimators are reported in Tables 1-4. For the sake of completeness, we also report
the sample means and sample standard deviations of various estimators.

A referee has suggested that leave-one-out estimators of both the ISE and truncated ISE be incorporated into the
simulation as alternative schemes of choosing the smoothing parameter X. However, these are extremely expensive
to implement. Nevertheless, we agree that with the rapidly changing computing capabilities they may soon be viable
alternatives and should be a valuable future research topic.
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TABLE
Relative efficiencies of various estimators; n 25. The numbers in each entryfor every estimator under

every distribution are: (i) median, (ii) (1st quartile, 3rd quartile), (iii) mean, and (iv) standard deviation.

Distributions

N(0,1)

C(0,1)

L(0,1)

B(7,7)

BMIX(12,7,
3,11,.6)

Estimators

ake

.24
(.14, .64)

.98
2.45
.48

(.27, .68
.64
.73
1.37

(1.07,1.70)
1.37
.55
.32

(.25, .38
.35
.14
.67

(.15,1.46)
1.44
2.17
.34

(.20, .44)
.51
.51

wke

.67
2.16

spl()ch)

(.99,1.00)

spl .*aki

(.98,1.00)

.52
(.33, .68

.64

.75
1.36

(1.09,1.79)
1.47
.64

.41
(.31, .71

.50

.31

.91
(.69, .96)

.81

.22

.55
(.24, .80

.55

.32

.82
(.56, .92)

.72

.27
.83

(.62,1.04)
.98
.67
.33

(.09, .79)
3.33
18.52
.60

(.33,1.03)
.94
.94

.89
(.70, .96)

.82

.18
1.00

(1.00,1.00)
.99
.01
.72

(.23, .94)
.62
.33

.87
(.66, .96)

.79

.22
1.00

(1.00, 1.00)
.95
.17
.89

(.55, .99)
.78
.26

.99
(.62,1.00)

.80

.37

.63
(.23, .84)

.57

.35

.69
(.11, .86)

.55

.37

.83
(.56, .94)

.72

.29
1.00

(.99,1.00)
.92
.22
.91

(.53, .99)
.89
.66

TABLE 2
Relative efficiencies of various estimators; n 50. The numbers in each entryfor every estimator under

every distribution are: (i) median, (ii) (lst quartile, 3rd quartile), (iii) mean, and (iv) standard deviation.

Estimators

.*Distributions ake wke spl()sch) spl aki spl shi

N(0,1)

c(o,1)

L(0,1)

NMIX(-3,1,
3,1,.5)

B(7,7)

BMIX(12,7,
3,11,.6)

.16
(.07, .39)

.45

.74

.36
(.22, .48)

.38

.21
1.17

(.60,1.64)
1.21
.67
.28

(.17, .32)
.26
.09
.47

(.16,1.23)
1.10
1.58
.30

(.20, .35)
.31
.17

.13
(.07, .31)

.23

.24

.47
(.28, .61)

.47

.23
1.06

(.63,2.1)
1.36
.96
.64

(.44, .90)
.75
.44
.24

(.09, .58)
.85
1.89
.64

(.43, .78)
.67
.40

1.00
(.99,1.00)

.99
0.00
.41

(.20, .63)
.44
.28
.73

(.39, .91)
.67
.29
.77

(.64, .97)
.77
.21
1.00

(1.00,1.O0)
.99
.05
.67

(.38, .87)
.64
.28

1.00
(1.00,1.00)

.98

.13

.62
(.26, .87)

.57

.33

.63
(.37, .87)

.62

.30

.84
(.62, .96)

.77

.25

(1.00,1.00)
.94
.20
.77

(.53, .92)
.71
.26

.99
(.99,1.00)

.94
.22
.56

(.17, .85)
.52
.34
.55

(.34, .82)
.54
.31
.85

(.61, .96)
.74
.30

(.99,1.00)
.93
.23
.82

(.54, .95)
.72
.27
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TABLE 3
Relative efficiencies ofvarious ap estimators; n 100. The numbers in each entryfor every estimator under

every distribution are: (i) median, (ii) (1st quartile, 3rd quartile), (iii) mean, and (iv) standard deviation.

Estimators

Distributions ake wke s .*pl(.sch) spl( aki) spl(k*shi)

N(0,1)

C(0,1)

L(O,1)

NMIX(-3,1,
3,1,.5)

B(7,7)

BMIX(12,7,
3,11,.6)

.14
(.04, .20)

.57
2.35
.29

(.19, .46)
.33
.21
1.08

(.68,1.54)
1.17
.55
.20

(.15, .26)
.21
.08
.32

(.11, .64)
.55
.78
.20

(.15, .28)
.23
.09

.41
1.90
.43

(.27, .58)
.47
.30
1.05

(.54,1.75)
1.24
.82
.81

(.49, .99)
.84
.41
.22

(.05, .44)
.34
.38

1.00
(.99,1.00)

.99
0.05
.34

(.17, .52)
.38
.25
.6O

(.39, .79)
.61
.26
.84

(.74, .94)
.82
.15
1.00

(.99,1.00)
.99
.03

1.00
..00,1.00)

.94

.21

.61
(.39, .86)

.62

.28

.58
(.37, .81)

.60

.25

.89
(.76, .97)

.82

.21
1.0o

(1.oo, 1.oo)
.93
.23

.62
(.43, .72)

.65

.33

.71
(.54, .88)

.72

.21

.87
(.67, .97)

.81

.20

(1.00,1.00)
.94
.21
.61

(.31, .90)
.60
.31
.59

(.33, .84)
.58
.28
.89

(.68, .96)
.78
.26
1.00

(1.00,1.00)
.92
.24
.84

(.64, .95)
.77
.23

TABLE 4
Relative efficiencies of various / estimators; n 250. The numbers in each entryfor every estimator under

every distribution are: (i) median, (ii) (1st quartile, 3rd quartile), (iii) mean, and (iv) standard deviation.

Estimators

spl(Xaki) spl(Xhi)Distributions ake wke spl(.ci)

N(0,1)

C(0,1)

L(0,1)

B(7,7)

BMIX(12,7,
3,11,.6)

.06
(.03, .15)

.13

.19

.23
(.17, .30)

.24

.12

.85
(.61,1.11)

.98

.54

.14
(.12, .16)

.14

.04

.35
(.13, .62)

.64

.91

.13
(.10, .16)

.14

.05

.10
(.01, .19)

.37
(.24, .51)

.40

.17

.96
(.56,1.41)

1.09
.63
.71

(.50, .95)
.77
.39

1.00
(1.00,1.00)

.25
(.19, .36)

.30

.19

.49
(.32, .62)

.51

.24

.77
(.68, .83)

.76

.13

1.00
(1.00,1.00)

.64
(.45, .85)

.65

.25

.66
(.45, .81)

.64

.22

.88
(.72, .97)

.79

.25
.19

(.06, .41)
.34
.43
.48

(.34, .63)
.56
.35

1.00
(1.00,1.00)

.98

.13

.74
(.53, .90)

.72

.20

1.00
(1.00,1.00)

.96

.19

.83
(.65, .95)

.78

.22

1.00
(1.00,1.00)

.91

.28

.69
(.48, .85)

.69

.24

.66
(.44, .85)

.65

.24

.89
(.72, .97)

.79

.25
1.00

(1.00, 1.00)
.96
.19
.82

(.64, .96)
.77
.23
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From Tables 1-4, we can see that the adaptive information choice criteria using either the
Akaike or Shibata penalty performs better than that using the Schwarz penalty except in the
case of extremely small sample size of 25. Since the Akaike penalty and the Shibata penalty
are asymptotically equivalent, we will, henceforth, use rspl(.ki) to represent the class of
smoothing spline score estimators in our relatively small sample simulations.

Let us first investigate the performances of various ap estimators for the sample size
n 100. From Table 3, we can see that the clear winner is the smoothing spline score
estimator st,t(Zki). For the normal distribution, the smoothing spline estimator is the best.
This is no surprise because the two tails ofthe spt(Zaki) are linear and the normal ap function is
also linear with slope equal to the reciprocal ofthe population standard deviation. In effect, the
Cox estimator shrinks toward the Gaussian ap(x) x function. Moreover, with ),i chosen
to be as large as possible, the cubic spline estimator, p()i) becomes a linear function

which minimizes the sum of squared distances between spl(Xi) and the "observations" the
pseudo-y.

The oor performance of ltake is due to the Cauchy kernel used, which always tends
to bend ltake back towards the horizontal axis. Figure 5 shows a typical result of the three
estimators. The adaptive information criterion using the Akaike penalty is 100% efficient in
picking the optimal smoothing parameter .0.

............
. sol

/S Wke

-3 -2 -1 0 2 3

FIG. 5. 0 and IVD ofone Gaussian random sample of50 observations.

For the Cauchy distribution, the smoothing spline estimator, rspl(ki) has the highest
efficiency of 61%. The weighted kernel estimator, aPwe, has the second highest efficiency
of 43%. The adaptive kernel estimator has the lowest efficiency of 29%. The corresponding
estimators from a particular realization of Cauchy random sample are plotted in Fig. 6.

What is astonishing is the lognormal case. The cubic spline estimator is the worst among
the three. Even with the correct Z, it still only has about 95% the efficiency of we and 93%
of ,,kj. As it is illustrated by Fig. 7, in order for the cubic spline estimator to pick up the
sharp curvature of 0 in the lower portion of the lognormal distribution, the estimate needs to
be quite rough and this will produce too rough a fit for the upper tail where observations are
scarce and the pseudo-observations are highly contaminated.

Under the normal mixture distribution, the finalist is spl(.ki). The adaptive kernel
estimator is incapable of picking up the sharp turns of the 0 as can be seen from Fig. 8.
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q

-3 -2 -1 0 2 3

FIG. 6. 0 and XVD ofone Cauchy random sample of50 observations.

0 3 4 5

FIG. 7. 0 and IND ofone lognormal random sample of50 observations.

Experimenting with smaller pilot window width for ake still does not help much. Again
the Cauchy kernel used for aPakj contributes to its bad performance because it always tends
to mimic the tails of a Cauchy P0. Note also that the adaptive information criterion is quite
successful in picking the optimal 0, close to 90% efficient, for this normal mixture distribution.
We notice from Fig. 8 that *lrspl(aki) is not quite able to pick up the sharp turn around the
region x E [- 1, 1 ]. This, however, occurs at a low density section of the bimodal distribution
and hence does not have a detrimental effect on ISE.

The obvious winnerforthe Beta distribution is also sp! (.ki) and the adaptive information
criterion does an excellent job in picking the optimal .0, too. It is obvious from Fig. 9 that

rwke is fooled into thinking the density is a Gaussian type while rake has the unpleasant
Cauchy tails again.

The clear choice for the Beta mixture is again rspl(.;ki) having 87% efficiency. rwke

has about 62% efficiency while ffaj is much lower at 20%. The various score estimators for
a particular realization are given in Fig. 10.
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-4 -2 0 2 4

FIG. 8. l/t0 and SVD ofone normal mixture random sample of50 observations.

0.2 0.3 0,4 0.5 0.6 0.7 0.8

FIG. 9. 0 and ssvo oone beta random sample of50 observations.

Scrutinizing Tables 1, 2, and 4 reveals similar results. It is obvious from our Monte-Carlo
simulations that good performance of either kernel estimator depends very much on using the
correct kernel that reflects the underlying true distribution in addition to choosing the correct
window width. This agrees with the view that kernel estimators are simply ad hoc estimators,
which place mass around each observation. The right choice of kernel becomes even more
important for observations in the tail where density is low since few observations will appear in
the tail to help smooth things out. This sensitivity to correct kernel choice is further amplified
in ap function estimation where higher derivatives of the density are involved. The human eye
may not be able to distinguish between the probability density functions of a normal tail and
a Cauchy tail but the difference between the slopes of the tails of a normal ap and a Cauchy p
is too obvious to be overlooked.

Our results suggest that an estimator like sp that finds its theoretical justification from
an explicit statistical decision criterion, in this case minimizing the integrated squared error,
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0.0 0.2 0.4 0.6 0.8 1.0

FIG. 10. 0 and /VD ofone beta mixture random sample of50 observations.

is somewhat more robust than some of the more ad hoc estimators, like the kernel estimator,
to distribution variations. Thus when the underlying distribution of the error is unknown,
which is the situation in most practical applications, an estimator that evolves as a solution to
some well-defined objective functions, for example the penalized likelihood or the integrated
squared error, may be a better nonparametric estimation technique.

5, Conclusions. In the spirit of nonparametric regression curve fitting, we have derived
a "pseudo observation" interpretation for the smoothing spline score estimator of Cox [7] and
illustrated an efficient way to compute this score estimator.

Various conventional data-driven smoothing parameter choice criteria based on the as-
sumption of Gaussian innovation are extended to choosing the smoothing parameter of the
smoothing spline score estimator but none of them yield a satisfactory result in the experiment
carried out in 4. The adaptive information criteria introduced in 3 provide very encouraging
results, especially when the Akaike penalty is used. Even though the number of replication
is relatively small, our simulations in 4 seem to suggest that the smoothing spline score esti-
mator using adaptive information criterion to choose the smoothing parameter performs much
better than conventional kernel-based score estimators in finite sample situations for most
distributions except the lognormal density even though they are all consistent asymptotically.

From the Monte-Carlo simulation results in 4, we have also learned that the accuracy of
any version of the kernel score function estimators depends very much on the type of kernel
being used. In practice, we have no a priori information on the unknown density function and
hence have little guidance on deciding the type of kernel to use. In this sense, the smoothing
spline score estimator is more robust to distributional variation.

Some versions of robustified smoothing splines as studied in Cox [6], Eubank [12],
Koenker and Ng [24], and Utreras [41 may be better able to deal with the highly contaminated
pseudo observations and improve the quality of the smoothing spline score estimator. This
will be a topic for future research.

Appendix. Constructions of various score estimators.

A.I. Adaptive kernel estimator (Silverman [39]). Let

pit"-bl g(v) (l,.i(X Xi)
i.-1
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be the estimates of the density and its various derivatives, where ri (hi)-1 is the local
bandwidth with local bandwidth factor )i determined by, )i ((Xi)/g)- in which is
a pilot estimate of the density based on some fixed and scale dependent bandwidth, say h, a
is the sensitivity parameter that controls the responsiveness of the local bandwidth to the pilot
density, and log(g) ’-’in=l Pi log (Xi). The adaptive kernel estimate of the function is

Thegiven by, (x) -(f’(x))/(’(x)). The ot used in the Monte-Carlo simulation is .
kernel K(.) adopted is the Cauchy kernel, K(x) (zr(1 + x2))-. The Cauchy kernel
allows better estimates of the score functions in the tail segments of thick-tailed distributions.
For the initial window width, h, we follow the rule, h x min(s, s2)/n /5, where sl and

(interquartile range) of the sample respectively, withs2 are the standard deviations and
c 1.2.

Readers are referred to Ng [29] for the rationale behind the choices of Pi, or, h, K(.),
and x.

A.2. The weighted kernel estimator (Cox and Martin [8]). Cox and Martin [8] suggested
a broader class of kernel estimator of that takes the following form:

(x) (x)
(x)

where

(x) h.fflKo(h.l(x Xi))
n

i=1

(x) _1 h -2 K1 (h -1 (x Xi)),
n i=1

and K1 -H. The kernels K0 and H1 are both symmetric about 0 and satisfying some very
mild regularity conditions.

On selecting the bandwidths for and , they suggest minimizing one of the following
weighted cross-validation scores.

CV E(w(Xi) log ?_i(Xi))/ w(Xi) + log (t)w(t) dt,
i=1 i=1

n i=l

CV3 --f 2(t)l/)(t)dt 2_ [,,_i(Xi w(Xi l- -i(Xi) wt (Xi)],
J n

i=1

where

x x(u) )w(x) wo
x() x()

In this simulation we use a logistic kernel with fixed window width chosen to be the largest
of the window widths picked by CV1, CV2, and CV3. The weight function takes the form,

0

wo(q) (3 2q)q2

if x < x(.05) or x > x(.95),

if x(.05) < x < x(.1) or x(.9) < x < x(.95),

if x(.1) < x < x(.9)
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with

x x(.05)

x x(.9)
x(.95 x(.9)

if x(.05) < x < x(.),

if x(.9) < x < x(.95).

See Cox and Martin [8] and Ng [30] for the rationale behind these choices of kernel, too,

and cross validation scores.

A.3. The smoothing spline estimator. The smoothing spline estimator for used in
the simulation is the fspl()ki) introduced in 2.2 that uses the adaptive information criterion
of 3.1 to pick the smoothing parameter .
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Abstract. In this paper the recently proposed algebraic multilevel iteration method for iterative solution ofelliptic
boundary value problems with anisotropy and discontinuous coefficients is studied. Based on a special approximation
ofthe blocks corresponding to the new nodes at every discretization level, an optimal order preconditioner with respect
to the arithmetic cost independent of both the discontinuity and the anisotropy of the coefficients is constructed. The
advantages of the proposed algorithms are illustrated by numerical tests.
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Introduction. The recently proposed algebraic multilevel iteration (AMLI) methods
(Axelsson and Vassilevski [4], [5], Vassilevski [16], see also [13], [2], [15]) are some of
the most efficient techniques for the numerical solution of second order elliptic boundary
value problems. An important feature of these methods is that they converge with an optimal
rate independently of the regularity of the elliptic problem. It was proved in Axelsson and
Vassilevski [4] and [5] (see also Vassilevski [16]) that the AMLI methods are optimal with
respect to both convergence rate and arithmetic operations per iteration for problems with
discontinuous coefficients. In the present paper we consider a more complicated case when
the problem can be also anisotropic. There are some recent papers (Axelsson ], Axelsson and
Eijkhout [2], Donato and Chan [7], and Hackbusch 12]) dealing with anisotropic problems,
but the algorithms presented there depend in general on the ratio of the anisotropy. The
behavior ofthe related constants (denoted commonly by ,) in the strengthened CBS (Cauchy-
Bunyakowski-Schwarz) inequality was numerically studied in Vassilevski and Etova 17] for
a wide range of piecewise polynomial finite element spaces.

In this paper we present an optimal order multilevel iterative method for second order
elliptic boundary value problems with strong anisotropy and discontinuous coefficients. The
proposed reconditioner is a special case of the AMLI methods from [5] with approximate

()blocks All. The AMLI method is based on polynomial inner iterations (inner between the
levels of discretization) and it is a straightforward multilevel algebraic generalization of the
two-by-two block factorization methods used in Bank and Dupont [6] and Axelsson and
Gustafsson [3]. The blocks AI of the matrix at discretization level k correspond to the
new nodes added at refinement level k. The purpose of this paper is to construct spectrally
equivalent approximations of A<0 that are also insensitive with respect to possible anisotropy
of the coefficients of the bilinear form. The construction we consider is based on special
ordering of the unknowns (related to the block A) in the direction of strong anisotropy.
Based on such an ordering we break the connections in the corresponding finite element mesh
and the approximation is then defined by assembling the element matrices using only the
remaining connections in the mesh. This gives rise to a block structure of the thus constructed
approximation ,<k

--1 to AI that is then easy to factor. Strategies of ordering unknowns in
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direction of strong anisotropy have been explored in Duff and Meurant [8] and Eijkhout [9] in
regard to their influence on the convergence rate of incomplete factorization preconditioners.
Our approach is based on local, i.e., element-by-element construction (the elements are from
the finite element triangulation of the domain at level k- 1) and, more importantly, our
construction allows us to derive estimates for the spectral equivalence relations between 11
and Rq’) and this we view as the main contribution of the present paper. We also show,"11
by numerical experiments, that in practice one can also use the well-known (block-)ILU
approximations of the blocks a*) in combination with the adaptive hybrid multilevel iteration
method from Vassilevski 16]. However, this can only be seen as one more demonstration of
the robustness of the (block-)ILU type preconditioners.

The formulation of the considered problem is given in 1. In 2 the main results about
the AMLI methods from Axelsson and Vassilevski [4], [5] are reviewed and in 3 the optimal
bounds for the relative condition numbers of the multilevel preconditioner with the proposed
approximate blocks -11R) ofA with respect to the corresponding stiffness matrix are proved.
These results are shown under the assumption that the coefficients of the second order el-
liptic operator (of divergence type) are constants on the triangles from the initial (coarsest)
triangulation. Various numerical tests illustrating the main theoretical results obtained in the
present paper are given in 4. At the end some additional numerical results are presented when
approximations based on block-ILU factorization ofA are used, showing the robustness of
the ILU-like approximations in the multilevel methods as well.

1. The problem. Consider the elliptic equation

(1.)
-(a(x, y)Ux)x (b(x, y)Uy)y f(x, y),

U =0 onl-’D,

auxnl + buyn2 0 on 1-’N,

for (x, y)

where the domain is partitioned using triangles T defined on an intentionally coarse
mesh COl; n (nl, n2) is the outward unit vector normal to the boundary 1-’N. (.)x, (.)y
denote partial derivatives.

We assume that a (x, y) and b(x, y) are constants in each element T/ T. The coefficients

ai al and bi bit, may be discontinuous across the elements.
The corresponding Galerkin variational formulation of (1.1) follows.

Givenf L2(f2) findafunctionu H0(92)= {v Hi(f2) v =00n Fz}, satisfying

(1.2) a(u, v) (f, v) for all v 6 Ho (2),

where

a(u, v) fn (aUxVx + buyvy) dx dy.

For the approximate solution of (1.2), the standard finite element method is used. Let V C

H01 () denote the set of piecewise linear basis functions corresponding to the triangulation
"Tll. The standard computational procedure leads to the linear system of equations

(1.3) A()u(1) f(),

where A() is the corresponding stiffness matrix.
Now in order to obtain a sufficiently accurate solution of problem (1.2) a uniform refine-

ment procedure is used to construct a sequence of meshes CO C CO2 C C COe corresponding
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to the triangulations C T c C Te. Associated with the triangulations {T are the finite
element spaces VI C 1/’2 C C Ve and the corresponding finite element stiffness matrices
computed using standard nodal basis test functions; i.e., we have A(1), A (2) A0.

The solution ofthe system ofequations corresponding to the finest triangulation Te (which
is the problem we want to solve, since it best approximates the solution of the differential
problem)

(1.4) Au f,

,4 ,4 <e), u ue), and f f<e), is computed by the preconditioned conjugate gradient (PCG)
method. If M is a preconditioning matrix, the convergence properties of the PCG method are
given by the estimate

(1.5) r(i)r A-lr(i) < ( 2q )2 r()rA-lr(0)

\1 +q2i

where

Cond M- Aq c ().

Here r(i) f ,4x(i) is the ith residual. Estimate (1.5) shows that the number of iterations
needed to reduce the ,4-1-norm of the initial residual by a factor e is O (1/2 log ;).The main
goal of this paper is to construct a matrix M such that the action of M-1 on any given vector
v can be computed in an amount of arithmetic operations proportional to the number of the
unknowns. We also require that the condition number x is bounded uniformly with respect to
the number of degrees of freedom and to the material coefficients as well, i.e., that remains

a bbounded when -+ 0 or when S -- 0. Our construction also allows certain discontinuity of
the coefficients.

2. Algebraic multilevel preconditioning methods. First we consider a two-level pre-
conditioning algorithm for solving the system

(2.1) A(k+l)u(k+l) f(k+l).

To define the preconditioning matrix C(k+l), we partition the nodes Af(k+l) of +1 into two
subsets" A/"<k+l) \Af<t) andAf). Corresponding to this partitioning, ,4<+1) takes the following
two-by-two block structure

(2.2) A(k+l)

A+I)

4(k+l) )12

A(k+l)
"’22

where the first pivot block Akl+1) corresponds to the nodes of ./V"(k+l) .hf(k) and the second

diagonal block (’+1) corresponds to the nodes ofA/"(’) Following the construction proposed in"’2;2

Bank and Dupont [6] and Axelsson and Gustafsson [3], we define the two-level preconditioner
by the relation

(2.3) o)(,A() 0

Akl+l)-I A(k+l) )12

I

The following theorem is well known (Bank and Dupont [6], Axelsson and Gustafsson [3]).
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THEOREM 2.1. The matrices A(k+l) and C(k+l) are spectrally equivalent and thefollowing
spectral equivalence relations hold

(2.4) (1 ?’2) T c(k+l) < T A(t,+l) < rC(k+) for all ,
where y is the constant in the strengthened CBS inequality (e.g., [6], [3], and [10]).

We now define the algebraic multilevel preconditioner M Me for the system (1.4)
(see Axelsson and Vassilevski [4], [5]) by the following recurrence:

fork 1, 2 - 1,

(2.5)

where

Akl+1)-’ A(k+l) )I

()- [I_ p (M(k)-A())] A()-.

Here p(t) is a polynomial of degree/ such that p(O) 1 and 0 _< p(t) < in (0, 1]. We
use

-}- T/ (!
p(t)= l+r(l+)

where c 6 (0, 1) is properly chosen and T is the Chebyshev polynomial of degree/.
The basic result of the theory of the algebraic multilevel preconditioning methods (cf.

Axelsson and Vassilevski [4], [5]) is given in the next theorem.
THEOREM 2.2. There exists an ot 6 (0, 1) if > (1 y2)-/2 (the degree ofthe scaled

and shifted Chebyshev polynomial) such that the preconditioning matrix M and the stiffness
matrix A are spectrally equivalent; i.e., the relative condition number x (M-1 A) is bounded
by a constant independent ofthe number ofthe unknowns N. More precisely, we have

(2.6) x(M-A) <

It follows directly from the structure of the preconditioning matrix M and from the last
theorem that if ?,2 < and/ 2 or 3, in the case of uniform refinement by subdividing
every triangle into four congruent ones, then the resulting algebraic multilevel method has an
optimal arithmetic cost of O(N log 1/4) operations where e > 0 is the desired accuracy in the

conjugate gradient method. However, the constant in O(N log ) depends on the condition

number of the blocks {A+I)}. The realization of the PCG method with the above defined

preconditioner M needs solutions of systems with the blocks A+) k at11
every iteration. These matrices are symmetric and positive definite with condition number
(A+)) bounded independently of Nk, the number of nodes at level k. However, (Ak+l)a
tends to infinity with the ratio of anisotropy (b(x)/a(x) 0 or a(x)/b(x) ---, 0). To over-
come the difficulties arising in problems with strong anisotropy we use a modified multilevel

(k+)preconditioned algorithm approximating the blocks A1 (see Axelsson and Vassilevski [5]).
Let nk+) be a properly chosen symmetric and positive definite approximation to A+) that11
satisfies

(U(k+l)-A(k+l))--Ib const > c "-’11 11
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for some positive constant b independent of the level number k.
The main result from [5] says that for/ > (1 ,.)-1/2 the relative condition number c

ofthe corresponding multilevel preconditioning matrix M (with approximate blocks t---11
Rk+l) })

with respect to A is bounded uniformly by , where for/ 2,

4/z-
t= , /z= 1-y2,

+ 2b + (4/x- + (1 + 2b)2)
and for/ 3, c (0, 1) is the smallest positive root of the cubic equation

bt3 + (6b + 9 -/z)t2 + (9b + 6 6/z)t + 9/z 0, /Z-- 1--y2

Such an ot exists if/z > .
Remark 2.1. The theory of the strengthened CBS inequality (e.g., Bank and Dupont

[6], Maitre and Musy 14], see also Eijkhout and Vassilevski [10]) says that the constant ,
can be estimated by a local analysis with respect to the elements from the initial (coarsest)
triangulation. Applying this approach one can obtain the following estimates uniformly with
respect to the ratio of anisotropy:

?,2<3 uniformly with respect to the shape of the triangles of the initial triangulation Tl’,
if the initial triangulation Tll consists of right triangles with legs parallel to the

coordinate axes.
In 3 we propose a multilevel preconditioner with approximate blocks that is of optimal

order independent of the anisotropy of the problem.

3. Optimal order approximations of A (k+l) It is well known, e.g. Bank and Dupont11

[6], Axelsson and Gustafsson [3] that the block A]+1) in the multilevel decomposition of the

stiffness matrix A (k+l) is positive definite and the condition number g(Al+1)) of "*llA(k+l) is

independent ofthe size ofthe problem at the (k+ )th discretization level. However, g(A+1))
ab 0 and with 3 0. In this section we consider an optimal ordertends to infinity with

a
method with respect to both the number of discretization levels and the anisotropy based on a
specific approximate block factorization of ,(k+l)

11

In what follows we assume that the initial triangulation T1 consists of right isosceles
triangles with legs parallel to the coordinate axes. Recall that we have also assumed that the
coefficients a(x, y) and b(x, y) are piecewise constants with respect to the elements of the
initial triangulation T1. For notational convenience from now on we omit the superscripts
whenever appropriate, i.e., we write A 11 Akl+ 1), etc.

In order to define the approximation to AI we partition the nodes of A/"(k+l) \.A/"(k) into
two groups, marked, respectively, by "V]" and "" (see Fig. 1; the nodes from.A/"(’) are marked
by ""). The first new group of nodes consists of those belonging to either of the following
two subsets:

the centers of parallelograms Qy consisting of two neighboring coarse-grid triangles
(i.e., triangles from T), which have a common cathetus oriented along the y-axis if
b > in Qy (see Fig. l(a));a

the centers of parallelograms Qx consisting of two neighboring coarse-grid triangles
(i.e., triangles from T), which now have a common cathetus oriented along the x-axis

b < in Qx (see Fig. l(b)).if S

The second group contains the remaining nodes from A/"k+l) \ A/").
With respect to this partitioning of the nodes of A/"+1) \ Nk), A 11 admits the following
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(a) Qy - > in Oy. (b) Qx - > in Qx.

FIG. 1. Block partitioning ofthe nodes in N"(k+l) \ N"().

two-by-two block-factored form

(3.1) All
Fr E Fr S 0 I

where S E FrD-1F. Noting that D is a diagonal matrix it follows then that the Schur
complement S can be assembled from the corresponding macroelement Schur complements
SQ (see Fig. 1) (corresponding to the macroelement stiffness matrices All.Q) obtained when
the center nodes of every parallelogram Q are eliminated. This procedure is sometimes called
"static condensation."

Let Q} be a partitioning of f2 consisting of parallelograms Qx (when a > b in Qx) and
Qy (when b > a in Qy) with vertices fromN"(k). This partitioning is determined by the initial
triangulation T1. (Note that we have assumed that a and b are piecewise constants with respect
to the elements from T.) Then we can symbolically write

(3.2) S ( S0,
{0}

where "" stands for assembling with respect to the partitioning {Q} of
We consider the following approximate factorization of A 11,

(3.3) Bll
Fr E 0 I

i.e., the symmetric block Gauss-Seidel preconditioner of All. Here the Schur complement
S is simply replaced (approximated) by the block-matrix E. We recall again that in our
particular case of refinement the block D is scalar diagonal. The solution of systems with the
block-matrix E will be discussed in a moment.

We now study the spectral equivalence relations between A 11 and Bll, which is equivalent
to studying the spectral equivalence relations between the blocks E and S.

THEOREM 3.1. The relative condition number of the approximate blocks Bll defined by
(3.3) with respect to All can be estimated asfollows:

(3.4) (BIAll) _< 2.

Proof Following the definition of the approximation Bll we have that a local analysis
with respect to the parallelograms Q of the relative condition number c (BqlAll) can be
applied, i.e.,

(3.5) .74(Bi]1A 11) < max (B-1
ll; QA ll; Q) max.n’(E)lS2).

O Q
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bLet us consider the case when Q Qy; namely, assume that S > in Qy (see Fig. (a)).
Denote by {(ai, bi), 1, 2} the values of the material constants related to the triangles
TI, T2 from , where 0 1 I,.) 2.

The matrices SQ and EQ can be explicitly computed; namely, we have

SQ=2

al d-- bl a/R -ala2/R -bl 0

-ala2/R a2 / b2 a/R 0 -b2
-bl 0 a + b 0

0 -b2 0 a2 -t- b2

where R al + a2 -k- bl -I- b2 and

EQ=2

a / bl
0

-bl
0

0

a2 + b2
0

-bl

-bl
0

a + bl
0

0

0

a2 -+- b2

Since SQ EQ- FDIFQ we have

(3.6) yrEQy >_ yr SQy.
Consider now the matrix pQ SQ - EQ,

a + hi 2a/R -2ala2/R -bl 0

-2ala2/R a2 d- b2 2a/R 0 -b2
-bl 0 al -k- bl 0

0 -b2 0 a2 + bE

The matrix Q has nonpositive off-diagonal entries. Moreover, since ai < bi, 1, 2, it
follows that O is diagonally dominant; namely,

al -k- bl 2aE1/R 2ala2/R bl al [(bl al) d- (b2 a2)]/R >_ 0,

a2 -k- b2 2aZz/R 2ala2/R b2 a2 [(b al) q-- (bE a2)]/R > O.

This implies that Q is positive definite, hence

(3.7) yrSQy > .yTEQy for all y 6 4.

The case Q Qy is considered precisely in the same way as above.
Combining (3.6) and (3.7) we obtain (3.4) which completes the proof.
Remark 3.1. If e < 1 is a constant in the considered parallelogram Q, then the

following more precise estimate than (3.7) holds:

( e )yV ]4.(3.8) yr SQy > 1
2 + EQy for ally6

We now consider three examples to explain the structure of the block-matrix E in the
factorization (3.3) of BI. The model domain is f2 (0, 1) x (0, 1). The connections
between the nodes related to BI are marked by a double line.
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Example 1. The anisotropy is y-oriented, i.e., b > a in whole
Example 2. b >_ a in (x, y) x+y> 1}andb<ain{(x,y)" x+y<l}.
Example 3. b >_ a in {(x, y)" y > 1/2} and b < a in {(x, y)" y < 1/2
In Examples 1 and 2 (after a suitable ordering), E admits a block-diagonal form with

(scalar) tridiagonal blocks (see Fig. 2(a), (b)). In Fig. 2(c), Example 3, E has a more com-
plicated structure, but one can see that solving systems with E is again based on tridiagonal
solvers. Indeed, one can factor E in the subdomain (x, y), 1 > y > starting from the top
(i.e., y 1) towards the line of change of anisotropy {y }. This does not create any fill-in
outside the line {y 1/2 }. Then the reduced matrix admits a block-diagonal form with (scalar)
tridiagonal blocks similarly to Example but now in the subdomain (x, y) 0 < y < }.

Remark 3.2. The demonstrated strategy of ordering the nodes related to the block matrix
E can be summarized as "preserving the links between the mesh nodes along the dominated
anisotropy." This strategy leads in a more general case to a sparse structure of E such that
solving systems with E requires: solving a number of tridiagonal systems; solving one band
system with a bandwidth of order equal at most to that of A(1), i.e., of order O(N1). We recall
that N1 is the size of the problem on the ini.tial coarsest mesh and problems of such relatively
small size can be solved directly by LU factorization.

The above considerations show that solving systems with the matrices BI require a
number of arithmetic operations proportional to the dimension of ,4 1. This fact and the main
result from Axelsson and Vassilevski [5] reviewed in 2 imply the following theorem.

THEOREM 3.2. The relative condition number x (M-1,4) corresponding to the modified
multilevel method with approximate blocks tn(c+l) k 2 1 defined by (3.3) ist"ll
bounded by a constant independent ofboth N and the problem coefficients if the polynomial
degree {2, 3}. The resulting PCG method has a total arithmetic cost proportional to
N log , where is the desired accuracy and N is the problem size, i.e., the method is of
optimal order.

4. Numerical tests. We consider the test problem defined by (1.1) in 2 (0, 1) x (0, 1)
with Dirichlet boundary conditions on the boundaries {x 0} and {y 0} and Neumann
boundary conditions on the rest ofQ. The problem is discretized by the finite element method
with piecewise linear functions on isosceles right triangulations ’T, k 0, 1, 2 , for
e 3, 4 7. The meshsize at level k was h 2-.

The first group of numerical tests illustrate the behavior of the relative condition number
of the approximation n to the blocks"11 11

The block-matrix .. was defined by the rule corresponding to the case of y-oriented
anisotropy (see Example 1, Fig. 2(a)).

The first set ofexperiments corresponded to constant coefficients a and b, shown in Tables
1-2. The values of a and b are denoted by (a, b).

TABLE
t Cond(Bll)- A)); smooth coefficients.

Levels a= l,b= a= l,b= lO a= l,b=lO0
3 1.460 1.040 1.0016
4 1.489 1.047 1.0033
5 1.496 1.049 1.0044
6 1.498 i.049 1.0048
7 1.499 1.049 1.0049

In the next set of experiments, we split the domain f2 into four subdomains 2, 22, f23,
and "4 obtained from using the separator lines {x g and {y 1/2 (see Fig. 3). We denote
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_l) infL(a) Example 1. (d >

Ii Ii

__
b(b) Example 2 (- > in C {x + y >_ 1}) and (- < in C {x + y < 1}).

b(c) Example 3. (d > in f2 f3 {y > 1/2 }) and ( < in f2 fq {y < 1/2 }).

FIG. 2. Substructuring of2 related to the connections in BI I.
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in Tables 3-5 by ai ala, and bi bl,, 1, 2, 3, 4. In this case we have, in addition to
the discontinuity of the coefficients (Tables 3 and 4), mixed anisotropy shown in Table 5. In
the latter case the coefficients a and b were kept constants in the subdomain f22 t.J ’4 equal to
1, and in the rest of f2 their values (a, b) were varied.

TABLE 2
(k)- ));x t.;onatz, A smooth coefficients.

Levels
3
4
5

7

a 1, b a= 10, b= a 100, b= a= 1000, b
5.030 17.56 25.011.460

1.489
1.496

5.731
5.915

34.43 86.21
142.85

1.498 5.966 47.80 183.60
1.499 5.984 49.46 279.32

TABLE 3
x Cond ’,’-’11

tn(k)- A]));- discontinuous coefficients: a2 a4 b2 b4 1.

Levels
3
4
5
6
7

=a3 a =a3 al --a3 al ---43
b3 b -b3 10 bl b3 100 bl b3 1000

1.460 1.341 1.330 1.329
1.489 1.444 1.441 1.440
1.496 1.479 1.479 1.479
1.498 1.493 1.493 1.493
1.499 1.497 1.497 1.497

TABLE 4
r Cond (R(k)- A])); discontinuous coefficients: a2 a4 b2 b411

Levels
3
4
5
6
7

al =a3
b =b3=l

1.460
1.489

al a3 10
bl =b3=l

5.226
5.640

al a3 100
bl -b3

42.92
46.20

al a3 1000
bl =b3

414.78

1.496 5.812 42.20
1.498 5.890 46.59 219.87
1.499 5.955 48.79 260.64

220.28
105.68

TABLE 5
/(k)-1 A(I)) mixed anisotropy: 42 a4 b2 b4 1.x Cond (-’11

Levels
3
4

6
7

a =l,b =1 a--1, b =10 a =l,b =100 a =l, bl=1000
a3 1, b3 a3 10, b3 a3 100, b3 a3 1000, b3

1.460 5.232 42.49 414.78
1.489 5.641 46.48 54.32
1.496 5.852 48.70 348.36
1.498 5.940 49.69 366.75
i-.499 5.971 _.50127_ 1__ _4_5_2"36_

In Tables 1-5 we show the values of the condition numbers Cond(B)-’ A)).
The numerical results are in full agreement with the theoretical estimates. One can see

that the studied multilevel algorithm is optimal ifa _< b (which corresponds to the construction
of the approximation n(k) tested), independent of the size of the jump of the coefficients. If
a > b, the approximation n(k) loses its optimal order and the corresponding relative condition
numbers increased strongly with .
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These results show that following the so-called strategy of "preserving the links along the
dominated anisotropy" is of principal importance for the proposed multilevel algorithm.

Finally we show the algebraic multilevel preconditioner from Axelsson and Vassilevski
[5] in the modified version of Vassilevski 16] based on a block-incomplete LU approximation
of k) Note that if we use line ordering of the nodes from A/"k) \ A/"-1 (in y-direction, for

example), the block A admits a block-tridiagonal form with (scalar) tridiagonal blocks on

its main diagonal. The block-ILU approximation to we used was based on 5-diagonal
approximations to the inverses of the approximate Schur complements required throughout
the process of block-ILU factorization. In this case we tested the case of constant coefficients
in f2 with values of a and b shown in Table 6. We also tested discontinuous coefficients with
mixed anisotropy. The values of ai al, and bi bl,, 1, 2, 3, 4 are shown in Table
7 (see Fig. 3 for the partitioning of fl, f2 t_j/4=l 2i).

FIG. 3. Splitting ofthe domain f2 (0, 1) x (0, 1).

TABLE 6
tC Cond (M’)- ACk)) ’llRCk)-- ILU; smooth coefficients.

a=l
Levels b

3 2.149
4 2.272
5 2.339
6 2.370
7 2.387

a a 1000
b 1000 b
2.241 2.242
2.330 3.328
2.360 2.349
2.366 2.346
2.362 2.362

TABLE 7
tc Cond (m(k)-I A (k))" "-’lll(/)-ILU; discontinuous coefficients.

Levels b
3 2.149
4 2.272
5 2.339
6 2.370
7 2.387

a=l
103, 1, 103,

1, 2, 3, 4
103, 1, 103,
b=l

2.234 2.228 2.235
2.293 2.294 2.300
2.348 2.340 2.348
2.345 2.345 2.348
2.358 2.356 2.360

The obtained numerical results show (see Tables 6-7) an optimal relative condition number
of M)-A) in this case independent of the size of the jumps of the coefficients and for large

a b This last test confirms the known robustness of the ILU-like approximationsvalues of 3 and S.
(see, e.g., Eijkhout and Vassilevski 11 ]) for solving more general elliptic problems including
discontinuous and anisotropic coefficients now in the multilevel methods as well.
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A LAGRANGIAN RANDOM CHOICE APPROACH FOR SUPERSONIC REAL
GAS FLOWS*

CHING-YUEN LOH AND MENG-SING LIOU

Abstract. This paper presents a random choice version of the Lagrangian approach for supersonic real gas flows,
reported previously by Loh and Liou [J. Comput. Phsy., 104 (1993), pp. 150-161 ]. The exact real gas Riemann solution
and the random choice method (RCM) are briefly reviewed and the derivation ofthe Lagrangian geometrical quantities,
which represent the deformation of fluid particles in the motion, are described in detail. Extensive calculations were
made to test the accuracy against the exact solution and the robustness of the Lagrangian RCM approach for real
gas supersonic flows, including complex wave interactions of different types. The real gas effect is also presented
by comparison with the perfect gas solution. The inherent parallelism in the Lagrangian approach lends a natural
application in the massively parallel computation.

Key words. Lagrangian description, random choice method, real gas, Riemann problem, supersonic steady flow
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1. Introduction. Enormous progress has been made in the past decades in computational
fluid dynamics in terms of discretization and solution techniques. The decade of 1980s has
witnessed exhaustive exploration of upwind, monotone schemes, notably the exact Riemann
solver by Gudonov and various approximate Riemann solvers or upwind flux splittings [2]-
[5]. In addition to the above deterministic approaches, Glimm [6] proposed the random choice
method (RCM) for constructive proofofexistence of solutions to nonlinear hyperbolic systems
of conservation laws. Later Chorin [7] developed the RCM as a practical computational
method for finding such solutions, especially to the one-dimensional (I-D) Euler equations
of gas dynamics. Further improvements and applications of the method have been made by
Colella [8], Sod [9], and Concus and Proskurowski [10]. In essence, the solution is advanced
in time by a sequence of operations that includes the solution of Riemann problems and a
sampling procedure. Recently, the idea of random choice has been extended and used in a
broad way, such as in the vortex method 11 and front tracking method 12].

For one-dimensional flow the random choice method has infinite resolution with randomly
off-position and is very easy to apply. For two-dimensional (2-D) steady supersonic flow,
Marshall and Plohr 13] treated one of the space variables as a time-like variable and applied
the random choice method in a way similar to that for one-dimensional unsteady flow. Oliver
and Grtinig 14] also have reported a successful application of the random choice method to
2-D shock focusing and diffraction when the shock Mach number is low. All these works
using the random choice method are based on the Eulerian method of description of fluid flow.
However, its very desirable properties--no diffusive errors from spatial averagingwdo not
seem to persist for flows in genuinely two space dimensions. Collela [8] suggested possible
ways of dealing with this problem. Just as it is done in the deterministic approaches for
multidimensional flows, allowing some approximations and reduction in accuracy, may still
lead to satisfactory results. It seems too early to judge the ultimate fate of the RCM in solving
the multidimensional flows for there is very limited finding reported in the literature, let alone
in the Lagrangian framework.

Using their earlier new Lagrangian conservation formulation 16], Loh and Hui 15] re-
cently have applied the random choice method for solving the 2-D Euler equations of ideal
gas. This is made possible by the introduction of the Lagrangian time r, which effectively

*Received by the editors March 3, 1993; accepted for publication July 1, 1993.
tlnternal Fluid Mechanics Division, MS 5-11, NASA Lewis Research Center, Cleveland, Ohio 44135

(fsml@yinyan. lerc. nasa. gov).
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reduces a 2-D steady supersonic/hypersonic flow problem to that of an 1-D unsteady flow.
Compared to the Eulerian RCM methods such as [13], the Lagrangian method has the ad-
vantage of producing a smooth body surface (rather than a randomly fluctuated staircase like
one), and it is an easier procedure to choose sample states. In the new Lagrangian approach,
a computational cell is literally a fluid particle and the grid is automatically generated along
streamlines as part of the solution.

With the renewed interest in high-speed flight, the real gas and nonequilibrium effects
must be taken into account in the analysis of flow. Although there is no conceptual difficulty
in the extension, however, some generalization must be made. In a recent paper 17], Loh and
Liou have developed a deterministic Lagrangian approach for computing 2-D supersonic real
gas flows. Encouraged by the above successful explorations, the purpose of this paper is to
apply Glimm’s random choice method to compute 2-D steady inviscid supersonic/hypersonic
real gas flows formulated by the new Lagrangian description. In the Lagrangian random choice
approach, the real gas Riemann solver, which Loh and Liou described in 17], is still a basic
building block and the exact solution of the Riemann problem, instead of the approximate
solution, is sought for in our study. Apart from the above real gas Riemann solution, the
solution to the Lagrangian geometrical quantities play an important role and is required in the
RCM approach. This solution procedure will be given in detail in this paper.

To avoid repetition, we briefly present in 2 the Lagrangian form of conservative laws,
the equation of state (EOS) used for the equilibrium air and the exact Riemann solution of
the Lagrangian formulation for real gases. In 3, the solution to the Lagrangian geometrical
quantities are described in detail and the application of random choice method is outlined.
Finally, several test problems are given in 4, followed by our concluding remarks in 5.

2. The Lagrangian conservation form and the Riemann solver for real gas.

2.1. The Lagrangian conservation forms. Based on the Lagrangian formulation ofHui
and Van Roessel 18], Loh and Hui 16] used the stream function and the "Lagrangian time" r
as the independent variables (Fig. 1) to compute 2-D steady supersonic flows. The Lagrangian
time z is interpreted as the physical time assigned for each fluid particle (computational cell).
The conservation form (r- conservation form) based on the transformation of this set of
variables is given as follows:

OE OF
+ o

with

el K
0
0

e2 H
E e3 Ku + pV F -pv

e4 Kv- pU pu
e5 U -u
e6 V -v

As usual, u, v, p, and p are, respectively, Cartesian velocity components, V (u, v)
sure, and density of the fluid; and

T=(U’V)r=(OxO’ O

pres-
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are the geometrical quantities representing the deformation of fluid particle as it moves down-
stream. The quantity

(2) K=19 U V =’(uV-vU)

is the mass flux, and H is the specific total enthalpy,

(u2 + v2) + h(p, p)(3) H--

where h is the enthalpy. The first four equations in (1) represent the physical conservation
laws of mass, energy, and momentum, respectively; they are equivalent to the Euler equations
of gas dynamics. The last two equations arise from the compatibility condition between the
r-derivatives and the -derivatives, representing the deformation of a fluid particle.

Cell j

distance (,) lines

str.eam
lnes
physical plane

(a)
Xn

(b)

computational plane

(c)

FIG. 1. (a) Computational plane and (b) mesh; (c) wave structure in a typical cell j.

At first glance, (1) seems to imply that more equations in the present Lagrangian formu-
lation, six rather than four used in the Eulerian formulation, need to be integrated, and the
computational effort is increased. Close examination of (1) immediately eliminates the need to
integrate the first two equations for they remain constant along each =constant line. Hence
the present Lagrangian formulation also solves four partial differential equations (pdes) and
requires the solution of geometrical compability (conservation) instead. The effort of solv-
ing for this Lagrangian coordinates is simple. While we do not have a direct comparison of
computational efficiency between the Lagrangian and Eulerian formulations, we expect they
are comparable. On the other hand, the former approach delivers higher accuracy, as clearly
shown in 16], and saves grid generation prior to the calculation as required by the latter.

In this r conservation form, each fluid particle marches forward with the same time step
Ar according to its own velocity. A drawback is that across a strong contact discontinuity
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(slip line) where flow velocity may be discontinuous, two adjacent fluid particles initially in
physical contact may eventually be separated from each other, rendering it difficult to apply a
local Riemann solver. A simple remedy is to keep these two particles marching at the same
pace by changing time step size on one side. More generally, we can let all the fluid particles
march the same distance AR instead of the same time step along their own streamlines. This
idea leads to another new Lagrangian conservation form--the conservation form based on the
Lagrangian distance R. Hui and Zhao give all the details in their recent paper 19]. We present
here only a sketch of the necessary steps.

First, we define the Lagrangian distance as the distance along a streamline

(4) R qdr,

where the flow speed

q (u2 + 1)2) 1/2.

The other independent variable, the stream function, remains the same as before,

Let

0R=
and since

O cO

a useful relation can be easily derived

(5)
0or Oq
0R q O

Now, we can make coordinate transformation from (R, 1) to (r, ) and the Jacobian J is

The inverse of J is

0(r, ) Oz’/OR OIORJl-’--O(R ,)= (Or/O’,e, O’/O’;’I)= ( Iq
-otlq

0

Moreover, we define a new geometrical variable vector T in place of T,

V
T1 (U1, VI) r T-

q

Similar to the compability equations in (1), it can be shown that

(6)
0T1 oV
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We note that the mass flux (2) remains unchanged during the coordinate transformation:

K=p U V =P U V
After some manipulation and then dropping the subscript "1," we achieve a complete set of
the new Lagrangian conservation form based on the .-variable

(7)
oE oF

+ 0,

with

e K 0
e2 H 0

E= e3 Ku + pV F= -pv/q
e4 Kv pU pu/q
e5 U -u/q
e6 V -v/q

Hereafter in this paper we consider only the .-formulation.
For steady flow at supersonic speed, (1) or (7) holds for any gas. For real gases, the

equation of state (EOS) is more complicated, but any pair of independent thermodynamic
variables are sufficient to describe the state. In our formulation, we choose

h h(p, ,o) e(p, p) + P.
P

The internal energy e is a prescribed function ofp and p. The one we use throughout the present
paper is an EOS developed by Tannehill [20], which is based on table look-up ploynomial
interpolation, with a reported maximum error of 4%. This EOS is known to yield nonsmooth-
ness in the fitted functions; it is still chosen simply because it is widely referenced. The
investigation of its range of validity is beyond the scope of this paper.

2.2. The Riemann solver for real gas. We turn now to consider the Riemann solver,
which forms the basic building block in RCM. The solution procedure for the real gas Riemann
problem is substantially different from the one for perfect gas, although in principle they are
similar; the details have been given in [17]. For completeness, we briefly outline this procedure.

The Riemann problem for two-dimensional steady supersonic real gas flow is the initial
value problem with the constant data

Qr, >-j,(8) Q QB, < j

as initial condition at .=0 for the flow state Q (p, p, u, v) r and with the EOS

(9) e e(p, ,o),

where the subscripts T and B denote top and bottom states, which are counterparts to the
left and right states in one-dimensional unsteady flow. The EOS (9) is prescribed as a given
function.

It should be emphasized that since a Riemann problem is a physical one and only the
flow variables u, v, p, p are required in the RCM solution, the numerical problem is solved
in terms of u, v, p, p rather than in terms of the conservative variables el e6.
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The solution of the Riemann problem is self-similar in the variable ,k/ and in
general consists of three types of elementary waves: the oblique shock, the slip line, and the
expansion fan (Fig. (b)); through any state Q0, with p as a parameter, there are two families
of state connecting to Q0, namely, the compression states (p > p0) and the expansion states
(p < P0). As in perfect gas, these two families join smoothly at Qo and can be regarded as a
single family. This makes it possible to apply Newton’s iterative procedure in the solution of
the Riemann problem. We now briefly illustrate the details of the solution.

(i) In the p 0 plane (Fig. 2), two curves pass through the states Q0 Qr and Q0 Q
and they are defined as

(10a)

M2-
Oo+ dp,

0 T(P)
pq2

Oo + tan-1 [ (p Po)tanx]P + Po tan2 X

P< Po,

P>P0;

and

(10b)

P /M2 1
<0o- dp, P po

O B(p)
pq2

Oo --tan_l[(P- Po)tanx|- P> Po.
P + Po tan2 Xl

In the compression state, an implicit relation between p and p, namely, the Rankine-Hugoniot
relation, exists

Po e(p, p) e(po, Po)
(11) =l-2po

P P+Po
This determines p as a function of p. The shock angle X is evaluated through

-1(12) X sin
(p po)Po/q

In the expansion state, with initial condition p P0 and by Runge-Kutta integration, p is
evaluated through an ordinary differential equation (ode) as a function of p"

dp 1 ep
(13)

dp a2 p/p2 ep

where

q2=2 (H-e(p, p) P) M2-
q2 2(H- e(p, p) p/p)ep

p a2 p/pZ_e;

These curves T, are sketched in Fig. 2.
(ii) The modified Newton procedure, which is a hybrid of bisection and Newton’s iter-

ation method, as decribed in 17], is then employed to find the intersect (p*, 0") of the two
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Solution
of the
boundar/
Riemann
problem

Subsonic branches (not used)

:db(P) Solution of //, the Riemann ,

" problem 7 J Qt

FIG. 2. Solution ofreal gas Riemann problem.

curves. The bisection procedure in the method is required to overcome any possible trouble
in the Newton procedure caused by the inflection points in the table look-up interpolated EOS
function. The object function to be driven to zero in this iterative procedure is

(14) f(p) v(P) (p)

and the intersect of the tangent lines passing through Qr and Q (Fig. 2) is used as an initial
guess to the solution. In practice we use numerical derivative to replace the analytical ones.
Usually it takes two to four iterations to converge to a tolerance less than 10-6.

(iii) With the slip line values (p*, 0") obtained, we calculate p on either side across the slip
line, using the appropriate equation ((11) for the compression state and (13) for the expansion
state) and then calculate q using (3), namely,

q2 2[H- h(p, p)].

Velocity components are easily obtained by

(15) u=qcos0* and v=qsin0*.

At the solid boundary, the flow inclination condition is imposed and one of the curves, say,
0 (p) degenerates to a a straight line 0 0* const., i.e., parallel to the p axis (Fig.
2). In 16], this particular problem is termed "boundary Riemann problem." The solution of
a boundary Riemann problem is similar to the above procedure with the exception of using a
different object function

f(p) r(p) O*

or

f(p) (p) 0".
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3. Solution to the Lagrangian geometrical quantities T--(U, V)r and application of
the random choice method.

3.1. Solution to the Lagrangian geometrical quantities. Associated with the Riemann
solution, the geometrical quantities U and V are to be solved as part of the solution prior to
the application of the RCM. Indeed, the Riemann solution combined with the geometrical
quantities U and V may be considered as a complete Lagrangian Riemann solution. In this
section, we first detail the computation of T (U, V)r and then proceed to the application
of the RCM. Here, only the formulations for the "upright" case, i.e., the case with the slipline
at the bottom, are presented; formulations for the "upside down" case follow in a similar way.

The basis for evaluating T (U, V)r is the compatibility equations in (7)"

0T 0v
q

As in the Riemann solution procedure, we consider the solution for the elementary waves
separately.

Across an oblique shock.
We use subscript "0" to denote the given uniform flow state upstream of the shock and

"s" the flow state downstream of the shock. Thus Q0 (po, p0, u0, vo) r, To (U, V) r,
Oo tan-l(vo/uo), fl tan-l(v/u), o tan-(Vo/Uo), and To (U + Vg) 1/2. The
shock angle X is obtained from (12). Let the streamline intersect the initial . line at A and
then the oblique shock at B. From the triangle OAB (Fig. 3), for any point (,ks, ) immediately
downstream of the shock, we have . To sin(/3o X 0o)
(16) Cs - sin X

By applying the divergence theorem to the quadrilateral OABC (Fig. 3), where BC is another
) line, we have

(17) Ts T + ’s (vq0 VS).qs
In summary, the complete Riemann solution in the compression state is

(Q0, To), < ,
(18) (Q, T) (Q, T), >

where Q0, Qs are, respectively, the flow states upstream and downstream of the shock from
the local Riemann solver.

Across an expansion fan.
In this case, we need the relations between the self-similarity variable ./, b and

eventually pressure p. The local polar coordinate (r, b) is adopted in the analysis; see Figs. 4
and 5.

Here we use subscript "0" to denote quantities upstream of or at the forward Mach line
location and the subscript "1" to denote quantities downstream of or at the rearward Mach line
location. In the uniform flow region (Region I in Fig. 5) upstream of the forward Mach line,
< ’0, obviously,

T To,
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FIG. 3. Computing U, V in a compression state.

FIG. 4. Showing cb # + 0 0o.

FIG. 5. Computing U, V in an expansion state.
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where, from the triangle OAB in Fig. 5,

,.0
(19) o ToMo sin(/3o #o 0o).o

In the expansion fan region (Region II in Fig. 5), 0 < < 1, the Euler equations in
polar coordinates can be reduced to the following ode system:

(20)

dvt) Vt dpvr + - + =0,
d4,

dvr
1)t,

dvt ) 1 dp
vt vr+- +pdcb

e=e(p,p),

=0,

H const.,

and

where vr and vt are, respectively, the radial and transversal velocities, as illustrated in Fig. 4.
From the first, third, and sixth equations of (20),

dp 2 d,o
d$

vt dck’

dp a2(21) vt
2

d
Ur

2 q2 a2.

The polar angle is

4, +O-Oo,

where 0 is the flow inclination, 00 the initial flow inclination, and # the local Mach angle.
After a small algebraic manipulation, we obtain the following equations:

(M2 1)1/2
dO dp,

pq2

and

(22)

d/z d sin_ __1 1
dM,

M M(M2- 1) 1/2

(M2 1)
d$ dlz + dO --dp dM

pq2 M(M2 1)1/2

[ (M2-1)l/2 + (M2-1)-l/2pq2 + a(M2-a’(p)]1)1/2
dp= S(p)dp.
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To find the relation between 4, " and p, we start with

(23)
dr d$ d.
=r =d-=

Vr vt q

Since vt -a and Vr (q2 a2)1/2, we obtain

dr _vrdq (M2 1) 1/2dqb,
r 1)

M2-1.

r AoMR(qb) with R(b) exp\-p

where Ao To sin(3o 0o) (Uo2 + VOW) 1/2 sin(3o 0o) and remains constant along a
streamline. From (23),

dl.
qr
d4 -Mrdq,

(24)

By virtue of (22), we have

(25)

and in particular,

(26)

M2z o Ao ()a.- o Ao MZR(dp(p))S(p)dp,

o --/1o MZR((p))S(p)dp,

P/

(27) ’1/2 o Ao gzR(dp(p))S(p)dp,
ap0

where p is the pressure downstream of the rearward Mach line, obtained from the Riemann
solver, and pl/2 1/2(po + p) is the pressure in the middle of the fan.

With the above preliminaries, we first apply the divergence theorem to the streamtube
area AA+B+EC+C_B_A_A, which is bounded by a pair of streamlines e (A_ B_C_)
and + e (A+B+EC+) and two . lines .0 (A_AA+) and Z (C_CC+). Then consider T as
the limit when e approaches zero"

1 f+ [ dZ- VdZ]T limd_ Td To + lim
++ec+ q __c_

l[f (28) To + lim
+ec+ q _c_

since

Vd" L Vd’"
+B+ q _B_ q
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The limiting integrals on the right-hand side of (28) are evaluated by the l’H6pital rule:

lim - +ec+ q _c_ - .o qo
,(4,)

Ao VM .dq- r’()V(q),
a a

where q’() can be found by differentiating (24) with respect to (with ,k held unchanged)

’() a
rq

We finally achieve an expression for T in the expansion region II:

V
(29) T To + oV Ao --VR(4))S(p)dp.

q0 q a

In particular, in Region III,

(30) oVo f/ MT To + l--Vl AO --VR(4))S(p)dp.
qo ql a

In the expansion fan, T can be approximated and simplified by a mean value when applied to
the RCM:

(31) T1/2 To + 0v (1/2 vl/--2
qo ql/2

pl/2

Ao MVR()S(p)ap,
po a

where the subscript "1/2" represents the values corresponding to p 1/2(p0 + pl) in the
middle of the fan.

In summary, the complete Riemann solution in the expansion state is

(32)
(Qo, To), < 0,

(Q, T) (Q1/2, T1/2), (0 -- -- 1,(Q1, T1), > 1,

where Qo, Q1 are, respectively, the flow states upstream of the forward Mach line and down-
stream of the rearward Mach line from the Riemann solver, and Ql/2 corresponds to p Pl/2
representing approximately the flow variables in the expansion fan.

3.2. Application of the RCM. To solve the initial boundary value problem of the hy-
perbolic system (7), the computational domain (Fig. l) is divided by streamlines 0 o <

1 < 2 < < N, into N cells of size hj j j_l, j 1, 2 N. Initially at . .0,
the flow variables Q (p, p, u, v) r and the geometrical variables T (U, V)r are given
along the initial ) line. The solution is to be evaluated for every cell j 1, 2 N, at. X1, )2

For . -n the flow variables Q and T are assumed given and constant within each cell
j, denoted as Qj, Tj. A sequence of Riemann problems at all cell interfaces with initial data

Q+, >_Q= Qj, <j j=l,2 N-l,

are solved to determine the interaction between flows in adjacent cells and subsequently the
solution regions in a cell (Fig. 1).

We denote the known flow states at ,k, in cell j as (Q, T)T, j 1, 2 N and restrict
the marching step A,n ,n+l ,n to be small enough so that the waves resulting from the
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interactions at both boundaries of cell j do not intersect with each other within the cell j,
j 1, 2 N. Under this Courant-Friedrichs-Lewy (CFL) condition the flow inside the
cell j at .n+l is composed of the lower side (compression or expansion) of the Riemann
solution due to the interaction of cell j and cell j + and the upper side (compression or
expansion) of the Riemann solution due to the interation of cell j and cell j 1, the two
sides being separated in between by the original flow (Q, T)T. There are several possible
combinations. To be specific, we discuss a typical situation depicted in Fig. (c) where the
flow in cell j at )n+l is composed of a compression side J+A below the slip line j+l/2 and
an expansion side J_DC above the slip line esj_l/2, and the original flow (Q, T) in AC.

For this typical case, we first determine the values of the similarity variable at A, B, C,
D, namely, ,4, 8, c, CO as follows. Here, B coincides with A. We use (Q, T)" as the
"0" state.

For CA and 8:
Solve the Riemann problem between cells j and j + 1 to get (p*, 0"), as explained in

the above section. We then find the shock angle X, and Cs from (16), and let

(33) ’A 8 ’s.

For c:
We let ’c correspond to the forward Mach line,

(34) c 0.

For CD:
Solve the Riemann problem between cells j and j to get (p*, 0") and then calculate

from (26). Let

(35) CO 1.

In the case that the upper flow is composed of an expansion side instead of a compression one,

CA 8 and they are defined in a similar way as in (34) and (35).
In the random choice method, as suggested by many researchers [8], [12], the Van der

Corput pseudorandom number generator [21] is the best choice, since it produces the least
variance in the sense of 11 and loo norm. Throughout the present paper, we use a (2,1) Van der
Corput pseudorandom number generator. A uniformly distributed pseudorandom number tc

(0 < tc < 1) is then generated to produce the sample point in the cell j:

(36) ] j. xhj, (0 < tc < 1).

Only one random number is required at a marching step for all the cells j, j 1, 2 N.
(see Fig. l(c)). We now determine the flow state at this sample point (.n+l, ) and use it to
represent the flow state of the Cell j. Let kn A),.n:

If

(37) 0 < x <

the point (Zn+l, j*) falls in J+A (or J+B), see Fig. l(c), and the flow state is given by the
second equation of (18).

If

<x<l(38)
hj hjc
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the point (.n+l, ;) lies in BC (or AC) and the flow state remains unchanged and identical to

the free stream state (Q, T)r.
If

(39) < tc <
hj(c hjCD

the point (.n+l, ;) falls in the expansion fan CD and the flow state is given by the second
equation of (32).

If

(40) 1-,<tc < 1,
hjD

the point (.n+, j*) falls in DJ_ and the flow state is given by the third equation of (32).
We note that a unique feature of the Lagrangian formulation is that the cell boundaries

are always slip lines. This ensures that there exist at most five regions of different states in a
cell (this occurs when both top and bottom waves are composed of the expansion side of their
corresponding Riemann solutions) and that the flows on opposite sides of the cell boundary
can be handled separately. The corresponding situation in the Eulerian formulation is more
complicated.

The marching computation at the new . line Z ,kn+ completes with the evaluation of
the new cell locations (x+ y]+), j 1, 2 N. This is done by simple integration along
the streamlines:

(4)

Thus, the procedure of marching by one step is completed. % march further forward,
one goes back to the ve beginning and repeats the procedure.

4. Test problems. % show the accuracy and robustness, the new Lagrangian random
choice method is tested in several examples. These examples include features of the basic
elementary waves, namely, the oblique shocks (+), the slip lines (0), and the Prandtl-Meyer
expansions (-). The numerical results are compared with the available exact solutions. In some
examples, we present the real gas solution as well as the perfect gas solution for comparison.
Throughout the examples, the standard metric system is used. However, for convenience, the
unit for pressure is atmospheric pressure (atm), the unit for temperature is K, and a unit for
velocity is equivalent to 318.3 sec.

We first consider a pure initial value problem, namely a Riemann problem. The top and
bottom states are shown in Fig. 6. In this example, we intend to validate that the real gas code
works well for a perfect gas EOS. Here we use 40 uniform cells with hj 0.01 and the EOS
is simply the one for perfect gas, i.e., e 1/(y 1) p/p; y 1.4. From Fig. 6 it is seen
that the numerical results agree well with the perfect gas exact solution (solid lines) and the
slip line and shock are resolved shaly except that their positions are slightly off in a random
way.

We then turn to consider initial-boundary value problems. The second example is the
Prandtl-Meyer flow with a turning angle of 15 at the body surface. The free stream state is
p 1, p and M 6. In this problem 100 uniform cells are used. Figure 7 illustrates
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.8

.4

.2

A’----- exact perfect gas solution

shock
p=.25
p_---.50 I/ slipline

P=-.Oxpansion fan
a=.0
M--._2.4, ’,

.2 .4 .6 .8 1.

4.0 "--exact perfect gas solution

3.5-

2.0 .’

0 .2 .4 .6 .8 1.

FIG. 6. Numerical results with the real gas RCMfor a perfect gas Riemann problem: (a) pressure, (b) Mach
number along a typical X line AA.

the numerical result by the real gas random choice code developed in the present paper. For
comparison the perfect gas exact solution is also included. This problem is another low
temperature case and the numerical result agrees very well with the exact solution.

exact solution (a)
I. real gas RCM A

.i

exact solution (b)
I. real gas RCM A

.6
P/poo

FIG. 7. Computedflow variablesfor a perfect gas P-Mflow: (a) pressure and (b) density along a typical ) line.

In the next example, we still consider a Prandtl-Meyer expansion. However, the temper-
ature is much higher so that the real gas effect is significant. We intend to show the numerical
results with real gas effect. In this case the turning angle of the body surface is 20 and the
free stream data reads

poo=2, poo=0.25, uoo=15, vo=0.

Here 44 uniform cells are employed with h 0.01. With the same free stream data, numerical
computations using real gas EOS are performed. The results are illustrated in Fig. 8. For
comparison both real gas and perfect gas exact solutions are also included. It is observed, with
exactly the same initial data, that there are differences due to the real gas effect in the pressure
and densities.
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1.0

P/P

0.5

exoct soluUon (reol gos) (a)
RC solution (real gas)
exact soluUon (perfect. gas)

A

p=2 p---.25

A’ " /

03. 0,4. 0,6 0,8 1,0

P/Pool

0.5

0.0 0.0 --- ,,,’

0.0 0.0 0.2

exact ouuon (re, gas) (b)
a RC solution (real gas)
exact solution (perfect gas)

A

0.4 0.6 0.8 1.0

distance along AA’ distance along

FIG. 8. Computedflow variablesfor a real gas P-Mflow problem with comparison to perfect gas solution:
(a) pressure and (b) density along a typical . line.

In the fourth example, we investigate oblique shocks and their interaction. First, two
shocks are generated on both the upper and lower wall at the inlet of a converging channel.
Then the shocks collide with each other and produce two new shocks and a slip line between
them. The upper and the lower wall wedge angles are 10 and 20, respectively. The flow
variables of the oncoming free stream are

p=2, p=l, u= 15, v=0.

The same initial data is used for real gas computation and perfect gas computation. In both
computations, 80 uniform cells with hj 0.005 are employed. Figures 9(a), (b), and (c)
illustrate the pressure, density, and temperature along a typical ;k line after the shock collision
in the real gas case (M 9.13), along with the exact solutions (solid lines). The numerical
results agree well with the exact ones, the shocks and the slip line are seen to be resolved
sharply, except that their precise positions, even though slightly off, cannot be predicted
deterministically. Figures 9(d), (e), and (f) are the pressure, density, and temperature contours
for the real gas flow. For comparison, the density contours for perfect gas flow with the same
initial and boundary conditions are presented in Figure 9(g). It is observed that real gas shock
collision takes place slightly later than its perfect gas counterpart.

In our last example, we intend to demonstrate the robustness of the Lagrangian RCM
in handling complicated wave interactions. The problem simulates an engine inlet with the
upper boundary Yr and the lower boundary y defined as

0.2- 0.25x2 x < 0.3
YT 0.1775, x > 0.3,

0.5x2, x < 0.3,
Y 0.045, x > 0.3.

The flow variables of the free stream are

p=2, ,o=1, u=8, v=O.



1054 CHING-YUEN LOH AND MENG-SING LIOU

120.0

100.0

20.0

0,0
0,0

A’

Random Choice

0.2 0.4. 0.6 0.8 1,0

distance along a lambdo line

3<100.0

2500.0

2000.0

1GO0.O

18.0

10.0

5,0

0.0

ib)"

0,0

|-

Random Choice

0.2 0.4. 0.6 0.8 1.0

distance along o lambda line

Random Choice

1000.0
0,0 0,2 0.4 0.6 0.8 1.0

dlstonce along lombdo fine

P=2p-----I 104.00

0.100

o.ooo 20
0.000 0.100 0,200 0.300 0.400 0.500 0.600 0.700

0,I00

0.000 20
0.o00 0.1oo 0.200 0.300 o.400 0.500 0.600 0.700

0,100

0.000 20:
0,000 0.100 0.200 0.300 0.400 0.5430 0.600 0,700

0.200

0.100

0.000
20

0.000 0.100 0.200 0,300 0.400 0.500 0.600 0,700

FIG. 9. Computed resultsforflow past a converging channel: (a)-(c)flow variables along a typical ) line: (a)
pressure, (b) density, and (c) temperature; (d)-(f) contours: (d) isobars, (e) isopycnics (density contours), and (f)
isotherms. For comparison (g) shows the computed isopycnics for perfect gas with identical initial and boundary
conditions.
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We use 80 uniform cells with h 0.0025 in the computation. In all the contours of Fig.
10, 100 uniform relative levels are employed. Figures 10(a) and (b) illustrate the isobars
and isomachs, respectively. Due to the concave walls in the front, continuous compression
waves are first generated and then converge into two floating shocks. These shocks collide
with each other and produce two new shocks with a slipline in between. Soon, the two new
shocks interact with the Prandtl-Meyer expansion fans issuing from the sudden turn at the
walls and are bent slightly. Meanwhile, the two expansion fans, refracted across the shocks,
run into and interact with each other. The isobars in Fig. 10(a) clearly show their interaction.
At the point where the two floating shocks collide, apart from the new shocks, a slipline
(contact discontinuity) is generated and propogates in the flow field. Then, it impinges with
the reflected shock from the upper wall and is deflected. The slipline is weak and is barely
identifiable from the random fluctuations in the Mach number distributions at Stations A and
B (Figs. 10(d) and (f)). However, it is clearly displayed in the isomachs of Fig. 10(b). The two
reflected shocks then collide with each other and generate another pair of shocks and a new
slipline with vanishing strength and propagate further downstream. Our computation is now
terminated at this stage since the method has amply demonstrated its capability of handling
complicated interactions between various waves.

In Figs. 10(c) and (d) we show the pressure and Mach number distributions along a typical. line right after the collision of the two floating shocks. The uniform area around the walls
and the expansion fan areas, the shocks are clearly displayed. In Figs. 10(e) and (f) we display,
respectively, the pressure and Mach number distributions along another typical . line at Sta-
tion B.

Figures 10(g) and (h) illustrate pressure distributions along the walls. The gentle com-
pressions, sudden expansions and shocks are crisply captured.

Before concluding this section, we reiterate that the Lagrangian RCM is valid and robust
for flows that are supersonic everywhere. Subject to the solvability of the Riemann problems,
the method fails when even a small portion of the flow field falls in the transsonic/subsonic

regime.

5. Concluding remarks. In this paper, we have shown the potential of a Lagrangian
random choice method for solving 2-D steady supersonic real gas flows. A key issue is the
evaluation of the Lagrangian geometrical quantities T (U, F) r. The calculations demon-
strated the accuracy ofthe Lagrangian approach; as in all the random choice methods, the shock
position is randomly dispaced, typically by one cell in our results. On the other hand, there is
no numerical structure inside the shock, unlike the results from the deterministic approach in
which several intermediate points are normally inserted. As compared to the Eulerian RCM
(such as 13]), the present method has the advantages in that in each computational cell there
are at most five states to choose and that it produces a smooth body surface streamline, rather
than a randomly fluctuating one. In other words, the present study suggests that the RCM is
more suitable to the solution of the Lagrangian formulation than the Eulerian one. Moreover,
since a computational cell is literally a fluid particle in the Lagrangian approach, it requires
exchanges of information (fluxes) only with its immediate neighboring particles. This inherent
parallelism lends the Lagrangian method naturally to massively parallel computation. Recent
results demonstrated significant gain in efficiency for the deterministic Lagrangian approach
on the Connection Machine computer (CM-2) [22]. The Lagrangian RCM approach adds
another attraction to the parallel computation since no special boundary treatment is needed
as in the deterministic approach [23].
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Stat!on A slip line Stat}on B (b)
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p lO.O
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pressure at Station B.
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FIG. 10. Computed resultsfor real gasflow past a channel: (a) isobars; (b) isomachs; (c) pressure; (d) Mach
number distributions at a tytpical line.--Station A; (e) pressure.



LAGRANGIAN RANDOM CHOICE APPROACH 1057

8.0

6.0

M 4.0

2.0

0.0
0,04

20.0

18.0

IO.O

5.0

o,o
o.o

Mach No. at Station B

,Lagrangian ICM

slip line

0.09 Y O,14

pressure along lower wall

Lagrangian RCM
(g)

hoc]
expva,sion

I__

0.2 0.4 X 0,6 0,8

20.0

16,0

pressure along upper wall
l’ "i

Lagrangian RCM
(h)

1.0

FIG. 10 (Continued). Computed results for real gas flow past a channel: (f) Mach number distribution at

another typical line--Station B; (g) and (h) pressure distributions along lower and upper walls.
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REMARK ON ALGORITHMS TO FIND ROOTS OF POLYNOMIALS*
S. GOEDECKER

Abstract. The problem of finding the roots of a polynomial is equivalent to finding the eigenvalues of an upper
Hessenberg matrix, which can be done with the QR algorithm. It is shown that the QR algorithm has considerable
advantages over other standard algorithms to find the roots of a polynomial.
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1. The QR algorithm to find roots of polynomials. It has already been realized in the
literature that the problem of finding the roots of the polynomial

(1) zn-1anZn -t- an-1 + + ao 0

is equivalent to finding the eigenvalues of the upper Hessenberg matrix

an- an-2 an-3 an-4 a__.Q_O
--an --an --an --an --an

0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0

If . is a root of the polynomial (1), , is an eigenvalue of A and the associated left eigenvector
v is given by

n--1
.n--2
,n--3

Z0

Plugging in the above eigenvector in the eigenvalue equation

immediately gives (1). This equivalence has been used in to find the roots by a procedure
related to the well-known inverse iteration.

Instead of using inverse iteration, the eigenvalues of an upper Hessenberg matrix can of
course also be found by the QR algorithm [2].
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land. Current address: Theory Center, Cornell University, Ithaca, New York 14853-3801 (goedeck@
titan, tc. cornell, edu).
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2. Test criteria. We compared the QR algorithm, as it is implemented in the Eispack
library, with standard root finders of the Numerical Algorithms Group (NAG) and Interna-
tional Mathematics and Statistical Libraries (IMSL) under the following criteria of reliability,
accuracy, and speed for both vector and nonvector machines.

Reliability. We tested whether the program can find all the roots without overflow. This
is of course not only a characteristic of the algorithm but depends also on the range of floating
point numbers that can be represented on the computer. Overflows are a serious problem on
VAX computers, where the largest double precision number is of the order of 1038.

Accuracy. The exact roots were not known for most of the test polynomials. To assess
the accuracy of the numerical solution we therefore calculated the value of the polynomial
at the values of the numerically found roots. In the interval [-1,1] the derivative of the
polynomial is bound by -i lail. Since this bound is reasonably small in the cases we
considered, the value of the polynomial at a numerical root gives an indication of the precision
of the numerical root. The situation is however quite different outside the interval [- 1,1 ]. The
derivative can grow exponentially with the degree of the polynomial and the above procedure
cannot be used to estimate the accuracy of the roots. Only one class of test polynomials,
namely random polynomials, had several roots outside the interval and we did not check their
accuracy. The HQR routine we used did not query the machine constants to optimize accuracy.
Implementations of the HQR algorithm, which do this, gave however only a precision which
was better by a factor of 2 in the cases we checked.

Speed. The speed was measured by introducing CPU timer calls into the test program.
In the case of the NAG and IMSL libraries we made calls to the libraries that were installed
on these machines. In the case of the Eispack routine, the Fortran routine was included in
the program. Thus exactly the same code was run on all machines. On most machines,
implementations of the Eispack routines that are optimized for the architecture are available.
Their use would somewhat reduce the timings of the HQR algorithm.

The (double precision) programs we used were the IMSL rootfinder ZPORC [3], which
is based on the Jenkins-Traub method [1], [4]; the NAG rootfinder C02AGF [5], which is
based on Laguerre method [6]; and the subroutine HQR from the Eispack library [7], which
is an implementation of the QR algorithm. The IMSL rootfinder is limited to polynomials of
degree less than 100. The test were performed on an IBM RS/6000-550, a Cray2, and a VAX
4000-300. Several classes of polynomials with different properties were tested.

3. Test polynomials.

3.1. Fibocacci polynomials. The name Fibocacci polynomials is not standard terminol-
ogy, but it is Useful to have a name to refer to this class of polynomials. Their coefficients are

a0 al an-1 1, an -1. The Fibocacci polynomials have n (mostly complex)
roots of modulus less than one and one root/,max with modulus greater than one and that has
the asymptotic value ,max 2 2-. This distribution of the roots makes them extremely
useful for test purposes. The accuracy of the roots in the interval [- 1,1 can be assessed by the
method discussed above. The values of the Fibocacci polynomial for arguments of modulus
less than one can be calculated with nearly machine precision by recursion. In the case of
the Fibocacci polynomials, it is however also possible to check the accuracy of the largest
root. Since the largest root max is well separated from the other roots, it can be calculated
with nearly machine precision through the Bernoulli recursion formula. The detailed result
are shown in Tables and 2. We separately report the error for the largest root and the largest
absolute value max(Ip(.i I) that the polynomials take on when evaluated at all the other numer-
ical roots. If an entry in the table reads "fail," overflow occurred. "False" means that the errors
were so large that they could not be assigned to different roots. For low-order polynomials
the HQR method is faster than both the NAG and IMSL library. For high-order polynomials
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the NAG library is fastest,the HQR retains the second place, and the IMSL library is slowest
on the RS/6000 workstations. On the vector computer Cray2, the HQR is always the fastest.
For high-order polynomials only the HQR algorithm gives accurate results.

TABLE
Fibocacci polynomials on IBM RS/6000-550.

n

Time in msec NAG 3.2 7.5 11 15.9

Time in msec IMSL 2.4 12.8 25.3 88.3

Time in msec EISPACK .40 2.2 4.2 8.9

max(Ip(Li)l) NAG 5 10-16 3 10-14 2 10-14 8 "1"0-1
max(Ip(Li)l) IMSL 3 10-16 6 10-15 3 10-13 10-13

max(Ip(.)l) EISPACK 2 10-15 7 10-15 10-14 6 10-14

Error in kmax NAG 10-17 4 10-16 4 10-16 4 10-16

Error in Lmax IMSL 10-17 2 10-i6 2 10-16 2 10-14

Error in .max EISPACK 10-15 9 10-16 2 10-16 7 10-16

26.5 54.5

377 1160

22.5 72.5

" 10’_i4 1..i.0_l.
7 10-12 5 10-6

2 10-13 2 10-12

4 10-16 7 10-16

120

3860

410

false

8 10-2

3 10-12

false

7 10-16 10-17 7 10-15

2 10-15 4 10-16 10-15

fail

fail

1180

fail

fail

10TM

fail

fail

6 10-15

n

Time in msec NAG
Time in msec IMSL

Time in msec EISPACK

TABLE 2
Fibocacci polynomials on Cray2.

115 I10 115 20 30 40 150 l 10’
4.7 12 18 25 42 60 fail fail

4.3 24 70 98 320 520 940 4560

.63 2.5 5.0 8.9 18 36 48 220

3.2. Random polynomials. Random polynomials have roots inside and outside the in-
terval [-1,1]. We systematically only checked the accuracy of the roots in this interval.
Whenever the root with the largest modulus was well separated we checked it against the
Bernoulli recursion. The results were completely analogous to the results we obtained for the
Fibocacci polynomials. For low-order polynomials both methods give highly accurate results,
but the HQR algorithm is faster. For high-order polynomials the HQR algorithm is some-
what slower on serial machines but always gives high precision results, whereas the precision
rapidly degrades with the other methods.

3.3. Legendre polynomials. Legendre polynomials have n real roots in the interval
[-1, 1]. The values of the polynomial in this interval can be calculated with nearly ma-
chine precision by the well-known stable recursion relations. The coefficients of the Legendre
polynomials can be calculated with machine precision only for polynomials up to degree 24
(double precision). The results are shown in Table 3. Again the HQR algorithm is the winner
because of its speed and precision.

3.4. The polynomials x" 1. This polynomial is particularly difficult for the HQR
method since it requires the application of the exceptional shift to the .resulting matrix. In this
case all roots have modulus 1 and they can be calculated analytically. Therefore the error in
the root itself is listed in Table 4. The NAG library is very fast for this example, but again
the HQR algorithm gives the best precision for high-order polynomials and is therefore the
winner.

3.5. Multiple roots: Powers of the Fibocacci polynomials. Multiple roots are a nu-
merically more difficult than single roots. Since the slope at the root is zero, the root can be
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TABLE 3
Legendre polynomials on IBM RS/6000-550.

n

Time in msec NAG 3.0 13.0

Time in msec IMSL 1.3 12.6

Time in msec EISPACK 0.2 1.5

max(!p(Xi) l) NAG 10-15 10-14

max(Ip(.i)l) IMSL 7 10-15 2 10TM

...max(Ip(2.i)I).EISPACK 7 i0-15’ 10-13

22.2 35.0 1 44.3 78.0 148

23.4 35.2 49.1 330 997

3.4 6.5 10.1 101 336

3 10-12 ’3 10-1 3 10-9

8 10--12 9’ 10TM 6 10-9

2’10TM 3 10-1’0 3’1’0-9

TABLE 4
X on IBM RS/6000-550.

n

Time in msec NAG 0.8 1.8

Time in msec IMSL 5.0 13

Time in msec EISPACK 0.8 2.6

max(err(Xi)) NAG 3 10-16 3 10-15

max(err(i)) IMSL 2 10-16 8 10-15

max(err(ki)) EISPACK 5 10-16 10-15

4.9 23 48

40 504’ 3710

9.8 65 320

10-14 10-14 7 10-1

7 10-14 2 10-8 6 10-1

7 10-15 10-15 2 10-13

located with much less precision. We generated polynomials that had only double or quadru-
ple roots by taking the Fibocacci polynomials to the second or fourth power. The results are
shown in Tables 5 and 6. Both the NAG and IMSL rootfinder showed a rather unpredictable
behavior. The precision did not uniformly decay for higher degree polynomials, but showed
some unexpected outliers. None of the methods gives acceptable results for polynomials of
degree higher than 50.

TABLE 5
Double roots on IBM RS/6000-550.

n

Time in msec NAG 1.0

Time in msec IMSL 1.1

Time in msec EISPACK 0.2

max(lp(.i I) .NAG 5 10-15

max(IP(Zi I) IMSL 2 10-14

max(Ip(,kil) EISPACK 3 10-15

2.7 7.0 12 18 32

6.0 45 140 270 680

2.0 8.0 18 33 77

8 10-14 10-5. 3 10-8 2 10-5 .4

7,10-14 7 10-12 7 10-9 6 10-8 .5
2 l0-14 5 l0TM 2 10-10 3 10-6 5 l0’-3

4. Test results. Let us summarize the results.
Reliability. For polynomials of high degree overflow occurs frequently in the root

finders (especially on VAX), whereas the QR algorithm never gave overflow.
Accuracy. For low-order polynomials, all the subroutines gave highly accurate results.

For all high-order polynomials without multiple roots, the rootfinders rapidly lost accuracy,
whereas the QR algorithm gave still accurate results. In the case of multiple roots the QR
algorithm also gave best overall performance.

Speed. The fact, that the QR algorithm has a complexity of n3 compared to nz for the
rootfinders lets one expect that it will be slower for polynomials of high degree. In practice,
however, one is usually interested in polynomials oflow degree and for these the QR algorithm
is faster than the other algorithms. In spite of its higher complexity, the QR algorithm was
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TABLE 6
Quadruple roots on IBM RS/6000-550.

Time in msec NAG 2.6 5.8 12 17 27

Time in msec IMSL 100 78 160 325 780
Time in msec EISPACK 1.9 8.1 18 31 78

max(Ip(,kil) NAG 2 10-ll 4 10-8 2 10-7 3 10-4 10

max(Ip(il) IMSL 2 10-7 10-14 3 10-8 7 10-9 20

max(Ip(.il) EISPACK 2 10-14 2 10-12 4 10-8 0-6 2 10-1

not significantly slower than the rootfinders on the IBM RS/6000. On a vector machine like a
Cray2, a crossover of the required time due to the cubically increasing number of operations in
the QR algorithm cannot be seen since the increase of the length of the vectorized inner loops
results in an higher speed. On a vector machine the QR algorithm is therefore significantly
faster for any reasonable value of n. The IMSL routine is under all circumstances by far the
slowest.

5. Conclusions. It is surprising to realize that the standard libraries for such an old
and presumably rather easy problem, namely the determination of polynomial roots, are not
optimal both from the point of accuracy and efficiency. A different approach based on the QR
algorithm is preferred. The use ofthe QR algorithm can be recommended without restriction
for polynomials of any degree. For low-order polynomials it is faster than rootfinders and
for high-order polynomials it gives the correct result without overflow and in most cases with
higher precision. If roots of high multiplicity exist, the HQR method as well as any other
method have to be used with caution.

Acknowledgement. I thank Dr. K. Maschke for the careful reading of the manuscript.

Note added in proof. The Lapack library, which replaces the Eispack library, is typically
two times faster for matrix eigenvalue problems on a workstation. Unfortunately, the Lapack
library was not yet available when the tests were done.
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THE SCHWARZ ALTERNATING METHOD FOR SINGULARITY PROBLEMS*
ZI-CAI LI

Abstract. A discrete technique of the Schwarz alternating procedure is presented to combine the Ritz-Galerkin
and finite element methods. This technique is suited for solving singularity problems in parallel and requires a little
more computation for a large overlap of subdomains. The convergence rate of the iterative procedure, which depends
upon overlap of subdomains, has also been studied. Additionally, a balance strategy has been proposed to couple the
iteration number with the element size used in the finite element method. For a sample of singularity problems, the
total CPU time using the technique in this paper proves to be much less than that by the nonconforming combination.

Keywords. Schwarz alternating method, singularity problem, parallel computation, combined method, matching
technique, elliptic equation, convergence rate, overlap of subdomain
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1. Introduction. Domain decomposition methods have become very attractive due to
parallel performance. Of a number of reports [2], [3], [5], [7], [12]-[16] on this subject, only a
few, such as 1 ], [21 ], are concerned with solution singularity. In this paper, we will study the
parallel algorithms for singularity problems by considering a typical problem of singularities
[9],[11]:

(1.1a) -Au+u=O inS*,

(1.1b) u=l ony--0,

(1.1c) u=l onx=OO<y< 1,

where A (02/OX2) -- (02/0y2), and S* is the upper semiplane, but excludes the crack section

(1.1d) x=0N0<y< 1.

Since there exist two kinds of singularities of the problem (1.1), a crack singular point (0, 1)
and infinity, the existing domain decomposition methods should be modified for applications
to solve (1.1). We have developed some variation and innovation of the substructing iterative
methods [2], [3], [5], [7] and the Schwarz alternating procedure [12], [16]. In this paper,
we will describe a numerical technique combining the Ritz-Galerkin method and the finite
element method to complement the Schwarz alternating procedure.

In the nonconforming combination, the Ritz-Galerkin method and the finite element
method are used in the subdomains with and without solution singularity, respectively. In
the Schwarz alternating procedure, the subdomains used must be overlapped with each other,
and these two methods can be carried out independently and alternatively. In fact, Miller
[15] presented numerical analogs using the Ritz-Galerkin and finite difference methods to the
Schwarz alternating procedure and provided error bounds of solutions. Recently, Chan, Hou,
and Lions [6] reported some convergence results related for L-, T-, and C-shaped domains in
the domain decomposition methods. This paper, however, attempts to study the following:

(1) How to evaluate convergence rates of the procedure for the typical problem (1.1),
whose subdomains are not rectangles as in [6], but may be circles or sectors.

*Received by the editors November 23, 1992; accepted for publication (in revised form) July 21, 1993. This
work was supported in part by research grants received from the Natural Sciences and Engineering Research Council
of Canada, the Fond pour la Formation de chercheurs et l’Aide a la Recherche of Quebec by the Ministere de
l’Enseignement superieur et de la Science (Action Structurante), and the National Science Council of Republic of
China.

tDepartment of Applied Mathematics, National Sun Yat-Sen University, Kaohsiung, Taiwan 80424, Republic of
China (zcli@ibm2 4 .math. nsysu, edu. tw).
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(2) How to choose the iteration number in the Schwarz alternating procedure.
We shall first describe, in the next section, a discrete algorithm of the iterative procedures

and then provide, in 3 and 4, analysis and numerical experiments. From these we can find
convergence rates of iteration and derive a strategy to match the iteration number with the
boundary length of finite elements used.

2. A discrete technique. Based on the symmetry of the geometry of (1.1) we can solve
the following problem only on half the region: S{ (x, y), x > 0 and y > 0}

(2.1a) -Au+u=0 inS,

(2.1b) u=l ony=0,

(2.1c) u=l onx=0N0<y< 1,

Ou
(2.1d) n=0 onx=0fqy> 1.

Ox

For the separation of singularities, we split the solution domain S into three subdomains $1, $2,
and $3, where Sl is the region {(r, 0), r < rl, 0 < 0 < r} including the crack singular point,
S2{(p, 4), p > pl, 0 < 4 < r/2} with infinity, and $3 a bounded subdomain with the interior
and exterior boundaries (see Fig. 1):

(2.2a) /in [(r, 0), r rin, 0 < 0 < 7r],

(2.2b) Lout [(p, ), P Pout, 0 < q < ],
where the polar coordinates (r, 0) and (p, q) have the origins (0, 1) and (0, 0), respectively.
The partition of Fig. 1 has overlaps:

(2.3) Sif)Sj#, i,j 1,2,3.

Y

2

2/3

o 4/3 2 x o 2 x
(b)

FIG. 1. Partitions ofthe infinite domain S into Sl, $2, and $3 (a) Partition I; (b) otherpartitions.

Since the solution in $3 is smooth, such that

(2.4) u E H2($3),
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where H2($3) is the Sobolev space [4], the finite element method with piecewise linear ap-
proximation can be employed to obtain an optimal convergence rate of approximate solutions.
Assume that the true solution on/in and Lout is known; we may solve the Dirichlet-Neumann
problem in $3 by the finite element method [4].

On the other hand, the true solution in $1 and $2 can be expanded as in [9], 11

(2.5a) u cosh(r sin 0) + E an ln+l/2 (r) sin n + 0
n=0

r _< Min(1, Pout 1),

(2.5b) u e-psin4’ -+- E cng2n+l (p) sin((2n + 1)b),
n=0

p >_ +rin,

where I (r) and Kn (p) are the Bessel and Hankel functions for a purely imaginary argument
defined by

(2.6a)
o 1 ()2k+/z&(r) r’(k + 1)r(k + z + 1)k=O

(2.6b) e-pcosho-nodO.Kn (P - oo

Hence, the following expansions with finite terms are chosen:

(2.7a)
L

UI uI(an) cosh(r sin0) + Ean
n=0

In+l/2(r)
sin n + 0

In+l/2(1) -(2.7b)
LL

UlI UlI(Cn) e-pSin$ + E cn
n=0

K2n+l(P)
sin((2n + 1)q),

K2n+l (1)

where In+l and K2n+l(1) in the denominators are used as factors. Approximate values
of the coefficients an and Cn can be obtained from the Ritz-Galerkin method.

Define the norms on the arcs lr{(r, 0), r const and 0 _< 0 _< zr)} and Lp{(p, p), p
const and 0 < 4 < such that

(2.8a) lulI, u2dl u2(r, O)rdO
1/2

(2.8b) lUllI,p u2dl u2(p, dp)pdd?

To use the Ritz-Galerkin and finite element methods, we need the approximate solutions ffi
and I1, which can be found by choosing the coefficients an and Cn such that

(2.9a) [7I(n) UhlI,rl Minlur(an) uhlI,r,,
all aa

(2.9b) iII(n) UhllZ,o, Min lUlI(Cn) uhlzI,pl,
all Cn



SCHWARZ ALTERNATING METHOD FOR SINGULARITY PROBLEMS 1067

where uh is the finite element approximation obtained.
We summarize below the numerical technique of the Schwarz alternating procedure by

the following four steps.
Step 1. Let the initial approximation be

(2.10) ff0) 1 on /in and UlI’-’(O) 1 on lout (i.e., ti) 1 in SI t_J $2).

Step 2. The finite element approximation U2k+l) E V (k), k 0, 1, 2 is obtained in
odd iterations by

(2.11a) i(ffZk+l)) Min I(uh)
u V(k)

with the energy

where 3h is the union of triangular elements of $3 (see Fig. 2) and V(k) denotes the linear finite
element space of the functions satisfying

(2.12a) u2k+1) tT{/zk)

(2.12b) uZk+l) tglI"(2k)

(2.12c) U2k+l)

(2.12d) U2k+l)

OU(h2k+l)
(2.12e) 0

0x

on/in,

on Lout,

on y 0q0 < x < Pout,

onx OfO < y _< tin,

on x 0 f3 + tin _< y < Pout.

FIG. 2. Triangulation of $3 intofinite elements.

Step 3. The solutions/(/2k+2) and Uli"z’(2k+2) k 0, 1,..., as in (2.7) are obtained in even
iterations from the Ritz-Galerkin method:

(2.13a) Ibm(/2k+2) /(h2k+l)l/,rl Min [UI l2k+l)[I,r,,
all an

(2.13b) ItTk+2) --tT2k+l)lli,p, Min lutI 7zk+’)ll,,pl.
all Cn
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Step 4. Retum to Step 2 until the satisfactory solutions 2k+l),/2k+2), and uII-’(2k+2) have
been found.

Step 3, which is, indeed, of the least squares approach, can be easily used for different
subdomains S1 and $2, and this technique requires only a little more computation even for a
large overlap of subdomains (cf. [6], [12], [14], [18]).

Wigley’s method [19], [20] may be interpreted as a variation of the Schwarz alternating
procedure. For instance, when the discrete approximation with an analytic solution on the
entire solution domain is sought, the expansion coefficients fin and Yn can be evaluated directly
from

/0(2.14a) tin --2 In+l/2(1) [uh(r,O) cosh(rsin0)]sin n + - OdO,
7r In+l/z(r)

(2.14b) Yn
4 Kzn+l(1) frr/2 [Uh(/9, qb) e-psin4’] sin(2n + 1)pd4.
:rr K2n+l(/9) do

Equations (2.14) are a little simpler than (2.13) in Step 3; but the latter, from the least squares
sense, yields smaller errors of numerical solutions.

It is worthwhile to point out that Steps 1-4 can also be applied to problems without
singularities. Analytical expansions of u may replace the singular expansions (2.7). Since
the Ritz-Galerkin method using particular solutions (or expansions) requires much less CPU
time (see 4), the techniques in this paper can also be used for solving in parallel the problems
with nonuniform smoothness of solutions.

3. Convergence rates ofthe iterative procedure. It is well known from Lions 12]-[14]
that the Schwarz alternating procedure is convergent in both the maximal norm [ul,s and the
energy norm

(3.1/ E= .= xx
provided that there are some uniform overlaps:

+ -y + dS,

(3.2) S1 n s , s2 n s ,
which can be guaranteed by

(3.3) rl > ?’in, /91 < Pout.

Combining (3.3) and (2.5) yields the bounds of radii:

(3.4a)

(3.4b)

tin < rl _< Min(1,/gout 1),

+/"in "< /91 < /gout.

In this section, we focus on the convergence rates of the iterative procedure as Steps 1-4, first
to derive a prior rate and then to conduct an empirical rate.

Define the norms

(3.5a) lul..p {lu12 + lul2 }1/2II,p

(3.5b) lul lUli2n "J-" lUl2out/1/2
(3.5c) ]Ulin --lUll,rin. lUlout--]ulri,po.t.
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The convergence of lulo,s and (3.1) implies the convergence of lull, since

(3.6) lul Cluloo,s and luls _< CE,

where C is a bounded constant independent of k.
The L-norm, which is equivalent to (3.5), is defined by

2 1/2(3.7a) [V]r, [[V]n,r + [1)]out,p]
where r and p are constant, and

(3.7b) [v]in,r v(r, O) dO [V]ou,, v2(,o, 40

In fact, [V]in,r iS an L-norm of the function u(r, O) on [0, r]. Also denote

2 1/2(3.7c) [vla [Vlrin,Pout ([Vln -- [V]out)

1/2

where

(3.7d) IV]in [1)]in, rin, IV]out IV]out, Pout.

The limits are

(3.8a) i aI(n) lim 52)((2)),
k---o

(3.8b) II II(n) lim "lI"(2k)(2k)),
k--+oo

as k --+ o, where ui(an) and uIt(Cn) are given in (2.7). Let the errors

(3.9) (2k) / /2k) /I in $1,
::(2k)/ uti tt inS2,

we have

(3.10a)
7/"

L 2 ]1/2[7(2k)lin, -- E((n2k) n)2 In+l/2(r)
n=0 InL1/2(1)

(3.lOb)
LL 2 ]1/2K2n+ (P)[(2k)]ut’p "- n=0 K2n+l (1)

Suppose that there exist the positive constants al < and c2 < 1 such that (see Miller [15])

(3.11a) [t2k) /I]in --< al[/’2k) /I]in,r,,

(3.11b) ~(2k) ~(2k)
UII 5//]out < Otl[UlI 5II]out,p,,

(3.12) [/(2k+2) 5]r,,p, <_ t2[/(2k+l) /]B,

where 5 tit or 5ii. It follows from (2.12a), (2.12b) that

(3.13) (2k 2)[(2k)]B (12)[ ]B (lO/2)k[(0)]B 0 as k 00.
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Note that the estimates (3.11) and (3.12) result from the solution errors in Steps 2 and 3. We
shall prove a prior estimate for a in the following theorem.

THEOREM 1. Let (3.4) hold. There exist the bounds:

(3.14a) [tT2k)-/,I]in <--
k,rl(rin)

1/2

[/2k) -/I]in,r,,

(3.14b) ~(2k) e-(pout_pl ~(2k)
UlI /II]out --< [UlI ffII]out,pl"

Proof. Since the series terms in (2.6a) and the integrand in (2.6b) are positive, we have

(3.15a)

(3.15b) e-pl cosho-no X e-(put-pl)cshdt < e-(put-p) Kn(p).K,,(Pout)
oo

Then from (3.10)
(3.16a)

[tT2/0 tTIlin < Z(a(n2/0 an)2rl- n=0 In+l(1) <-- (rin
l/2

[2k) /I]in,rl,
rl /

(3.16b)

[ LL K22n+1(/91)]
1/2

lUll"~(2k)_/ll]out < e-2(p’-o)-zr (a2k) ,)2
4 n=O

< e_(pout_p ~(2k)
[UlI --II]out,pl

This completes the proof of Theorem 1.
Define the ratio

(3.17) R lim [(2k)]B/[g(2k+2)]B,

which is the reciprocal of the contraction factor 012 in (3.13). The convergence rate is given
by Hageman and Young [8]:

(3.18) convergence rate log R.

The iterative procedure converges when R > 1. The larger the R, the faster the convergence
of Steps 1-4. Hence we may choose R to measure convergence of the Schwarz alternative
procedure.

For partitioning I shown in Fig. (a), we choose

(3.19a) tin g, /gout 2,

(3.19b) rl 1 /91
4.

Note that in Partition I, there exists also an overlap between S1 and $2. Then a prior estimate
R* of R for Partition I follows from Theorem and the property a2 < 1
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R* < Min

in practice, using the following sequential errors is more convenient since the solution
limits (3.8) are often unknown:

(3.21a) A(2) I [IAZ) IZin "1- Ak) lout]2 1/2,

where

(3.21b) ~(2k) .,-;(2k) ,,-:(2k-2)
Eli rii Uli

Denote Ms and Ns the numbers of finite elements along the radius and radian directions,
respectively, then Ms 3, Ns 9 as in Fig. 2. We have carried out the computation through
Steps 1-4 for Partition I, computed the errors IA(2g)la and 1(2g)l, etc. listed in Table 1, and
depicted the error curves in Figs. 3. Note that Fig. 3(a) exhibits a constant ratio:

(3.22) k IA’(2k)IB/IA(2k+2)I 2.8.

From (3.17) and the bounds

iAg(2)l a(3.23) Ig(2k)l -< /,-1(/_ 1)

in [17, p. 194], we may simply regard

(3.24) R / 2.8.

The empirical value of R 2.8 is much better than R* 1.73 in (3.20). We are interested
in the relation of R with the overlap of subdomains. In fact, Theorem already provides for
such a function relation. Furthermore, we will also carry out a trial computation to discover
the practical convergence rate.

Now, let us fix the radii as given in (3.19a), and then change rl and 91 according to the
following two choices:

Choice I. Change S1 and $2 by

(3.25a) rl tin + i, /91 --/gout- /i,

where the radii

(3.25b) 2111 and z,,,,
is chosen for computation.

Choice II. We match S1 and $2 according to a balance of partition I, e.g.,

rl)
1/2

(3.26a) e2.m/e2/3

by means of the prior estimate in Theorem 1. Then the radius

4 1
in ( rr_n)(3.25b) P- 3 2
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0.01

o.001

6 9 10 11 k

FIG. 3(a). The straight lines ofthe sequential errors IAt(2/O hn, IAg’(2k) Iout, and lag’(2k) IB versus k.

,1, ,,I,

2 6 9 10

FIG. 3(b). The curves ofthe true errors le(2k)hn, le(2k)lout and le(2xr)lB versus k.
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TABLE
Sequential and true errors in the Schwarz alternating procedurefor Partition as in Fig. (a).

Sequential errors

2 0.180
3 0.0369
4 0.0205
5 0.00564
6 0.00248
7 7.86 x 10-4

8 3.11 x 10-4

9 1.05 x 10-4

10 3.97 x 10-5

11 1.39 x 10-5

12 5.13 x 10-6

13 1.83 x 10-6

14 6.66 x 10-7

15 2.39 x 10-7

16 8.66 x 10-8

17 3.12 x 10-8

18 1.13 x 10-8

19 4.06 10-9

20 1.47 10-9

~(2k)

0.142
0.0835
0.0212
0.00982
0.00300
0.00122
4.06 10-4

1.55 10-4

5.38 x 10-5

1.99 x 10-5

7.07 x 10-6

2.58 x 10-6

9.25 x 10-7

3.36 x 10-7

1.21 x 10-7

4.37 x 10-8

1.57 x 10-8

5.69 x 10-9

2.05 x 10-9

0.229
0.0912
0.0295
0.0113
0.00389
0.00145
5.11 10-4

1.87 x 10-4

6.69 x 10-5

2.43 x 10-5

8.73 x 10-6

3.16 x 10-6

1.14 l0-6

4.12 x 10-7

1.49 x 10-7

5.37 x l0-8

1.94 x 10-8

6.99 x 10-9

2.52 x 10-9

True errors

[e(2k)[i [e(2k) lout le(2k)ls
0.249 0.263 0.362
0.0695 O. 125 O. 143
0.0327 0.0411 0.0526
0.0122 0.0200 0.0234
0.00658 0.0102 0.0122
0.00415 0.00726 0.00836
0.0339 0.00607 0.00696
0.00310 0.00568 0.00647
0.00300 0.00553 0.00629
0.00296 0.00547 0.00622
0.00295 0.00545 0.00620
0.00294 0.00545 0.00620

where the following ratios are chosen for computation:

rl(3.26c) 3, 2.5, 2, 1.5, 1.1, and 1.05.
tin

Based on Choices I and II, we have listed the calculated results in Table 2, and drawn
curves in Figs. 4 and 5. Partition I* with the same $3 given in [10] can be viewed as a variation
of Partition I by choosing/’in instead, i.e.,

(3.27) tin , Pout 2, rl 1, /91

The empirical value of R 2.04, smaller than (3.24), implies a preference for Partition I.
In Fig. 4 the straight lines of IA(2)I, in the logarithmic coordinate, versus k indicate

an invariance of R. Hence an asymptotic relation for Choice I can be easily found from Fig.
5(a):

(3.28) { 1.18e1"3/, ,3 >_. "’1R
eTM, fl < 5"

The order O(eL3t) or O(eTM) in (3.28)is better than O(e) fromTheorem 1. The exponential
behavior of (3.28) can be interpreted by the fact that the errors from $2 play a dominant role
(see Fig. 3(a), (b)).

For Choice II, we can see from Fig. 5(b)

(3.29)
0.8(rl/rin) q-0.4, rl/rin > 2,

R=
rl /rin, rl / rin < 2.

The linear function of R with respect to rl/rin is also better than the square-root behavior
in (3.14a). It is interesting to note that R in (3.29) just equals/’1/rin when rl/rin is small
(_< 2)!
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0.01

0.(.10(}1

,I, I,,

t tO k

Fro. 4. The straight lines ofthe sequential errors IA(2k)IB versus kfor different ft.

_L
1112 116 1/3 112 213 /

FIG. 5. (a). The piecewise straight line ofln R versus for Choice I. (b). The piecewise straight line ofR versus
rl /tin for Choice II.
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Patterns

k

10

11

18

19

20

R

TABLE 2(a)
The sequential errors IA(2tc)IB, the true errors le(2k)ls and Rfor different 3 in Choice I.

Partition II

rl -, Pl -32
Partition III Partition IV Partition V

rl , Pl 12

Af(2k) B

0.259

0.00404

0.00177

7.71 10-3

3.37 10-3

1.47 10-4

4,45 10-6

1.94 10-7

8.49 10-8

2.28

le(2k)lB
0.464

0.208

0.0117

0.0100

0.00931

0.00899

0.00884

0.00874

0.00874

0.00874

A(2k)

0.286

0.0134

0.00737

0.00406

0.00223

0.00123

1.88 10-5

1.03 10-5

5.69 10-5

1.81

le(2k)lB
0.627

0.344

0.0318

0.0247

0.0208

0.0187

0.0175

0.0162

0.0162

0.0162

IAg(2k)IB le(2k)lB
0.876

0.242 0.637

0.0456 0.155

0.0331 0.122

0.0241 0.0986

0.0176 0.0814

0.0128 0.0689

0.00141 0.0400

0.00103 0.0391

0.000752 0.0384

1.37

Af(2k) B

0.156

0.0653

0.0553

0.0468

0.0397

0.0337

0.0109

0.00928

0.00790

1.17

le(2k) IB
1.04

0.883

0.415

0.360

0.313

0.274

0.240

0.112

0.103

0.0954

rin , Pout 2

Partition I*

1, Pl -32
Ag(2k) B

0.294

0.00798

0.00386

0.00190

9.23 10-4

4.52 10-4

3.00 10-6

1.47 10-6

7.15 10-7

le(2k) IB
0.565

0.281

0.0128

0.00902

0.00722

0.00636

0.00595

0.00557

0.00556

0.00556

rin 1/2, Pout

rl/rin
rl

Pl

R

3

1.0
4

2.80

TABLE 2(b)
The values ofRfor different rl / rin in Choice II.

2.5 2 1.5 1.25 1.1 1.05
II 0.351" 30

1.424494 1.536066 1.679907 1.771068 1.834944 1’.858244
2.41 2.01 1.52 1.26 1.11 1.06

In order to discover whether the value of R depends upon Ms o, we increase Ms
as well as L, LL correspondingly. It can be found from Table 3 that R does not decrease as

Ms cx (even R increases a little bit)!

TABLE 3
The sequential errors IAg(2tc)IB, and R versus different Ms by Steps 1-4for Partition I.

k

Ms Ns L LL
2 6 4 2

3 9 5 3

4 12 5 3

6 18 6 4

8 24 6 4

12 36 7 5

8

IA2k) IB
4.42 x 10-4

4.37 x 10-4

4.21 x 10-4

4.12 x 10-4

4.05 x 10-4

4.03 x 10-4

R
2.86

2.90

2.91

2.93
2.93

2.94

14

IAg2t01n R
9.84 x 10-6 2.78

9.81 x 10-6 2.78

9.15 x 10-6 2.80

8.80 x 10-6 2.81

8.52 x 10-6 2.81

8.46 x 10-6 2.82

20

IAg<2tC)la R
2.52 x 10-9 2.77

2.52 x 10-9 2.77

2.23 x 10-9 2.79

2.20 x 10-9 2.80

2.05 x 10-9 2.80

2.03 x 10-9 2.80

4. Error estimates of solutions in Step 2 and matching strategy between iteration
number and element size. The following true errors are important in error estimates:

(4.1) ~(2k) 2 ]1/2le(2k)lB It2k) Ulli2n + lUlI ulIIout
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where uI and UlI are given in (2.7) with the true coefficients an and cn given in [11]. This
reminds us of two other errors: f(2k in (3.9) and Af(2k in (3.21).

From the heuristic Fig. 3(b), for saving CPU time the iteration number k should not be
too large, but just large enough to balance the errors from the iterative procedure and from the
Ritz-Galerkin-finite element method (FEM) methods. In this section, we shall derive error
bounds of the obtained solutions in $3 and then provide a useful matching formula.

Define a continuous solution u* in $3 that satisfies (2.1) and

(4.2a) u* zTt on/in,

(4.2b) u* II on Lout,

where/I and II are given in (3.8). Also denote the norm

(4.3) IIvlI1/2,B (llvll 2 2 1/2
1/2,1in "- Ilvlll/2, Z.out)

where p 1/2,1in is the Sobolev half-norm, then we have the following lemma.
LEMMA 2. Let

(4.4) u E H2($3),

then there exists a bounded constant C independent ofrin, Pout, L, LL, and h such that

(4.5) I--L+3/2 (ot)
2LL+3

Ilu* ulll/2,a _< C tin + + h3/2]
Proof Let z in $3 satisfy (2.1) and

(4.6a) a ui on/in,

(4.6b) ff uu on Lout,

where UI and UlI are given in (2.7) with the true coefficients an and Cn. By means of the
triangular inequality, we have

(4.7) Ilu* Ulll/2,B Ilu* zlll/2,w + IIz Ulll/2,w.

It is easy to obtain from (4.3), (2.5), and (2.7)

2 1/2

K2/+l (Pout)
[[-ullt/2,a _< C I=L+12 a(l + 1)2 //1/2-i + I=LL+12"" c(2l + 1)2

K221+1(1
(4.8)
From (4.4) and [9], [10],

(4.9) at 0(), ct 0(),

(4.10a) II+l/2(rin)/II+l/2(1) <_ Cr[n+112,
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(4.10b) K21+l(Oout)/K21+l(1)<C(1)
2l+1

Pout

Therefore, combining (4.8)-(4.10) yields
(4.11)

{ ..2,+1 (Pot)4’+211/2 { (Put)L+3/21
Ila- UII1/2,B C tin -k < C tin

/=L+I I=LL+I

2LL+3

On the other hand, the expansions tT and ll in (3.8) are computed from the finite element
approximation of on/in and Lout. Then

(4.12) Ilu* 11/2, _< Ch3/2,

where h is the maximal boundary length of quasi-uniform elements. The desired result (4.5)
is obtained from (4.7), (4.11), and (4.12).

THEOREM 3. Let (4.4) hold, and suppose that there exists a constant R(> 1) independent
ofh, k, L, and LL such that

(4.13) Ag(2k/2)l <

where h is the maximal length of quasi-uniform elements used in $3. Then the errors of
solutionsfrom Step 2, thefinite element method, have the bounds:

(4.14) Ilffk+) ull, C h +
Rk

+ qn. +

where C is also a bounded constant independent ofqn, Pout, h, k, L, and L L, and the Sobolev
norm

(4.15) Ilwll,s +
Oy]

+ 02 dS

Proof. By means of the triangular inequality again we obtain

(4.16) Ilffh2+) ull,s^ <_ 11Tgz+) uh* ,Ŝ 4-Ilu, u*lla,^S 4-Ilu* ull,&.
The second term in (4.16) is bounded from the finite element theory [4]

^ < Chlu*12,.(4.17) Ilu, u*lll,s
We can see from Lemma 2

(4.18) ]]u* UI]I,] __< Cllu* uIII/2,B <_ C tin + d- h3/2

\ Pout J

ffZk+l) and u, are the finite element approximations from different values of solutionsSince
on/in and Lout, we can provide the bounds of the term based on the extension theory for the
finite element method in [3], [7]:

, /(t.Zk+l) C l(2k+l) ,
unll,#,_ < Cl] u*hlll/2,B < -- UhIB

(4.19) CC
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The last step of (4.19) follows from (4.13) and (3.23). Consequently, combining (4.16)-(4.19)
leads to (4.14). [3

In order to grant the optimal convergence rate

(4.20) 1172+) ull,] O(h),

the following relations have to be fulfilled based on Theorem 3:

(4.21) R--- 0(h3/2),

L+3/2(4.22a) tin 0 (h),

(4.22b) ( ) 2LL+3 O(h).
Pout

From (4.22) an optimal matching balancing h and Ls(= L + 1), LLs(= LL + 1) has
been obtained in [9], [10]. Below, an optimal strategy for balancing k and h can be found
from (4.21).

COROLLARY 4. Let all the conditions in Theorem 3 hold, and a pair (ko, ho) be an optimal
balance obtained through trial computation. Then anypair (kl, hi) ofkl (> ko) and hi (< ho)
satisfying

(4.23) kl ko -4- ln(ho/ hl)/ ln R

is also an optimal balance. In particular, when

(4.24a) hi/h0 , R 2.8,

then

(4.24b) kl ko + 1.

Equations (4.24) are significant since only one more iteration is needed for optimal balance
while the boundary length of elements used in $3 decreases to its half!

From Ms 0() and the trial computation given in Table 1 and Fig. 3(b), the pair

(4.25a) k 8, Ms 3

can be regarded as optimally in balance for Partition I. Since R(- 2.8) does not decrease as
h 0 (see Table 3), from Corollary 4 we can predict some new optimal pairs in balance such
as:

(4.25b) k 9, Ms 6,

(4.25c) k 10, Ms 12.

Based on (4.25), the computed results are given in Table 4, where the norm

lie lib [lie 2 2 2 1/2
,s + IIll,s + I111,]
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with e =/(h2k+l) U. The curves in Fig. 6(a), (b) drawn from Table 4 exhibit the following
asymptotic relations:

(4.26a) Ilelln O(h),

(4.26b) Ilell0,s O(h2),
(4.26c) IIll,s 0(h5/3),
(4.26d) I1 O(h2)

Equation (4.26) perfectly verifies the analysis of the optimal balance, as well as Theorem 3
and Corollary 4. It is remarkable that only ten iterations in Steps 1-4 are required to match
the finest triangulation in $3 with Ms 12.

TABLE 4
Error norms versus different Ms by Steps 1-4for Partition I.

6 4

9

4 12 9

6 18 6 4 9

24 6 4 10

12 36 10

Max

5.93 10-2
Ilell0,s

4.22 10-2
lelin

7.75 10-30.226

3.24 10-2 1.91 10-2 0.154 3.10 10-3

2.14 10-2 1.09 10-2 1.19 10-2 1.94 10-3

1.17 10-2 4.98 10-3 8.05 10-2 8.40 10-4

7.22 10-3 2.76 10-3 6.10 10-2 3.38 10-4

4.16 10-21.31 10-33.71 10-3 2.45 10-4

lelout
1.37 10-2 1.57 10-2

5.68 10-3 6.47 10-3

3.08 10-3 3.58 10-3

1.37 10-3 1.61 10-3

6.88 10-4 7.67 10-4

3.59 10-4 4.34 10-4

ell

0o!

O.(Jl

O(h2)
4 6 12

0.01

0.001

_L
2 6 12 M

ta) (b)

FIG. 6. The error curves versus Ms" (a) Ileh, IIll0,s, and IIllo,s; (b) Ihn, Ilout, and

In Tables 5 and 6, error norms and the coefficients from different methods are close to each
other. "integ. tech." denotes the algorithm of Steps 1, 2, 4, and (2.14), and "nonconf. comb."
the nonconforming combination [9], [10]. The trapezoid rule is employed to approximate the
integrals in Step 3 and (2.14).
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TABLE 5
Error norms obtainedfrom different methods Ms 12, Ns 36, L 7, LL 5, and k 10for Partition I.

Methods Max
3’71 x 10-3

Ilello, s
1.31 x 10-3 4.16 x 10-2 4.34 x 10-4 6.04 x 10-5Steps ,1-4

Integ. tech. 3.73 10-3 1.33 10-3 4.16 10-2 4.35 10-4 6.06 x 10-5

Nonconf. comb. 3.06 10-3 1.09 10-3 4.15 x 10-2

TABLE 6 (a)
The coefficients obtainedfrom different methods with Ms 12, Ns 36, L 7, LL 5, and k 10

for Partition I.

Methods an

Steps 1-4

Integ. tech.

Nonconf. comb.

True coeff.

-1.133658

-1.1337735

-1.1340029

-1.1343218

-0.2032187

-0.2032034

-0.2060732

-0.2035664

a2

0.1804700

0.1803313

0.1731232

0.1802645

0.0499725

0.0498226

0.0432767

0.0498517

0.0128508

0.0143730

0.0304488

0.0144863

a5

0.0080610

0.0071777

0.0650627

0.0073170

0.0044849

0.0038693

0.1009656

0.0040211

TABLE 6 (b)
The coefficients obtainedfrom different methods with Ms 12, Ns 36, L 7, LL 5, and k 10

for Partition I.

Methods cn co Cl c2 c3 c4

Steps 1-4 0.2781283 -0.0905171 0.0450525 -0.0278164 0.0166794

Integ. tech. 0.2780580 -0.0906010 0.0449813 -0.0293295 0.0176094

Nonconf. comb. 0.2773019 -0.0929922 0.0422839 -0.0335831 0.0024471

True coeff. 0.2769005 -0.0906655 0.0456200 -0.0282828 0.0196416

Comparing Steps 1-4 with the nonconforming combination, we find that both the error
norms IIllh and IIll0,s are optimal, but the norm IIlloo,s has a lower order O(h5/3) than
O(h2-) obtained in [9], [10], where 3(> 0) is arbitrarily small.

Finally, let us compare the CPU time of Steps 1-4 with that of the nonconforming combi-
nation obtained in [9], 10]. Suppose that the Gaussian elimination method is used for solving
the algebraic equations obtained. When we order the variables at element nodes along the
radius direction, the band width oflower off-diagonals ofthe stiffmatrix in Step 2 is Ms. Since
we need the Lr decomposition once, and repeatedly use the forward-backward procedure, the
number of arithmetic operations is [17]

1
-Ms(Ms + 3)NsM + k(2NsM(Ms + 1)),

where M Ms and NsM is the total number of interior nodes of finite elements.
In Step 3, we need approximately

k[Ns(Ls + Lss) + L3s/3 + LLs/3
operations (when using (2.14), only kNs(Ls + Lss) operations are required). Therefore, the
total number of arithmetic operations in Steps 1-4 is approximately

(4.27) 1/2Ms(Ms + 3)NsM + k[2NsM(Ms + 1) + Ns(Ls + Lss) + L3s/3 + LL3s/3I.
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On the other hand, the order of variables at nodes in the nonconforming combination
should be arranged along the radian direction because the continuity constraints of admissible
functions are enforced along/in and Lout between $3 and S1, $2. Hence the bandwidth of the
associate matrix is Ns + 1, and the number of arithmetic operations is approximately

(4.28) 1/2(NsM + Ls + LLs)(Ns + 1)(Ns -I- 4) + 2(Ns + 2)(NsM + Ls + Lss)

by the Gaussian elimination method.
When the optimal matchings (4.21) and (4.22) are used, then

(4.29a) k O(I lnhl),

(4.29b) Ls O(I lnhl), LLs O(I lnhl).

The main parts of (4.27) and (4.28) are reduced to

(4.30) coM, coN
1NsM. By noting the fact that Ns 3Ms, we have the followingash 0, wherec0=

proposition.
PROPOSITION 5. Let all conditions in Theorem 3 and the optimal matching (4.21) and

(4.22) hold. Suppose that the Gaussian elimination method is usedfor solving the algebraic
equations obtainedfrom thefinite element method (as shown in Fig. 2), the CPU time ofSteps
1-4 in this paper is about ofthat in the nonconforming combination [9], [10] as h --+ O.

Proposition 5 displays an advantage of the technique in this paper over [9], [10]. In
Step 2, the finite element method in the subdomain $3 without singularity can be split into
parallel from [2], [3], [5], [7]. Also we may use $3 as a union of rectangles given in Fig. 7 so
that the fast Fourier transformation can be applied in Step 2 to significantly save CPU time.
It should be noted that the interior comer points A, B, and C in Fig. 7 are not really singular
points for the true solution of (2.1). Hence, the traditional domain decomposition methods
[2], [3], [5], [7], [12]-[14] can be employed as usual.

C

$3 $2

A

o 2 x

FIG. 7. A partition of $3 consisting ofrectangles.
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TWO-GRID ITERATION METHODS FOR LINEAR INTEGRAL EQUATIONS OF
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Abstract. The numerical solution of integral equations of the second kind on surfaces in ]3 often leads to large
linear systems that must be solved by iteration. An especially important class of such equations is boundary integral
equation (BIE) reformulations of elliptic partial differential equations; and, in this paper BIEs of the second kind are
considered for Laplace’s equation. The numerical methods used are based on piecewise polynomial isoparametric
interpolation over the surface and the surface is also approximated by such interpolation. Two-grid iteration methods
are considered for (1) integral equations with a smooth kernel function, (2) BIEs over smooth surfaces, and (3) BIEs
over piecewise smooth surfaces. In the last case, standard two-grid iteration does not perform well, and a modified
two-grid iteration method is proposed and examined empirically.

Key words, boundary integral equations, iteration methods
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1. Introduction. The numerical solution of boundary integral equations that are refor-
mulations of partial differential equations in/I3 often leads to the solution of very large
systems of linear equations. At present, these linear systems are usually solved by iteration
and, traditionally, a geometric series (also called a Neumann series) has been the basis of the
iteration scheme. Here we consider two-grid methods for the solution of integral equations
of the second kind. Two-grid methods usually converge faster than the geometric series and,
in practical terms, they are usually comparable in speed to multigrid methods, while being
simpler to program.

As ourtest case for solving a BIE, we consider the exteriorNeumann problem for Laplace’s
equation:

Au(A) O, A De,

(1.1) u(P)
f(p), P S,

l)e

u(A)--- O(IAI-1), IVU(A)I O(IA1-2) aslPI--+

The region De I3\/3, with D an open, bounded, and simply connected region, and S is the
boundary of D. The unit normal at P S, directed into D, is denoted by v,. Using Green’s
third identity,

(1.2) 4rru(A) f(Q)
IA QI dSQ- u(Q)vQ IA- QI dSQ, ADe.

To find u on S, we solve the integral equation

(1.3) fs 0 [ 1 ] dSQ+[2zr-f2(P)lu(P)2zru(P) + u(Q)v IP- QI

f(Q)
IP- QI dSQ’

P e S.
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Here, f2 (P) denotes the inner solid angle of S at P e S. We assume

0 < f2(P) < 4rr,

which avoids surfaces with cusps.
Symbolically, we write (1.3) as

(1.4) (2rr + E)u f.

Under suitable additional assumptions on S, the operator/C maps C(S) into C(S) and is
bounded; see [36]. It can also be shown for such surfaces that (1.4) is uniquely solvable for
all f C(S), with (2rr +/C)- a bounded operator; throughout this paper, we assume this
is the case. In addition, if S has a parametrization that is differentiable with derivatives that
are HiSlder continuous with exponent ,, some , > 0, then/C is a compact operator; see [26],
[18].

The integral equation (1.3) can be solved in a number of ways. If S is a "smooth surface,"
then in [4], [5], [8], a Galerkin method was presented with approximants based on spherical
harmonics. For such problems, this is quite efficient and we recommend that it be considered
seriously. Here we consider collocation methods based on triangulating S and approximating
u by piecewise qualratic isoparametric interpolation over the triangulation. Such methods
were considered previously in [6], [7], [9], and 14]. In [27], Galerkin methods for BIEs of the
first kind were considered in a similar context. In the engineering literature such collocation
methods have been popular, but usually with only piecewise constant or piecewise linear
approximations.

In 2, we review some results on our collocation method that will be needed in later sec-
tions. In 3, we give a two-grid iteration method for a general integral equation
(2zr +/C)u f, with/C compact and approximated by a numerical integration operator
]Cn, n _> 1. For BIEs this is too expensive a method, and in 4 we present a variant that fol-
lows ideas of Hackbusch, [19], [20, Chap. 16]. Convergence results are given for S smooth,
and numerical examples are given. In 5, we extend the iteration method to S, a piecewise
smooth surface, discussing the difficulties inherent in this case. The major difficulty traces
back to the lack of compactness for/C when S is only piecewise smooth; this requires a mod-
ified iteration method. This is analyzed for planar BIEs in Atkinson and Graham 13]; some
of these ideas are generalized here to handle BIEs for S a piecewise smooth surface.

2. Preliminaries. We consider the integral equation

(2.1) .u(P) fs K(P, Q)u(Q)dS9_ g(P), P S

with the integral operator/C a compact operator from C(S) into C(S). It is assumed that the
parameter . is nonzero and is not an eigenvalue of/C; thus (. -/C)-1 exists as a bounded
operator from C(S) onto C(S).

Assume that S can be decomposed as

(2.2) S S1 I,.j... (.j Sj

with each Si the image of a polygonal region R in the plane Iz"

1-1
(2.3) F" R--S i= 1 J.

onto

We assume that F,. 6 C6(R). In addition, the subsurfaces S are to intersect along only com-
mon boundary points. We triangulate each S by first triangulating R. Then this triangulation
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is mapped onto Si using F/. Let {zi,k < k < Ni} be a triangulation of Ri and define
Ai,k Fi(Ai,k), 1 < k < Ni, < < J. Collect together the triangulations of each Si, and
refer to them collectively as

r’N-- {A AN}.

We assume a number of properties for this triangulation of S. When two sections Si and Sj
have a section r’ of their boundary curves in common, then the triangulations Ai, and ALl
must also agree along this common curve F. In addition, if S is only a piecewise smooth
surface, then (1) the union of the edges of all A Tv must contain the union of the edges
of S, and (2) the set of all vertices of the A Tv must contain all vertices of the original
surface S.

For convenience in defining integration and interpolation over the triangulation, we in-
troduce a standard parametrization of each triangle At "TN. Define the unit simplex:

cr {(s, t) l0 < s,t,s +t < 1}.

1-1For Ai,k C Si, define rn i,k r__ Ai,k by
onto

^(i) ^(i)(2.4) mi,k(s, t) Fi(uOi,) + trio,2 + SVk,3), (S, t) O"

with u s and {3i) i) ^0,,, -vk,, vk,3} the vertices of z,k. When refe.rring to the triangulation

At 6 TN, we use m cr ---> A and the vertices of zt, At are denoted by {3t,1,131,2,131,3 and
{vt,, vt,2, vt,3 }, respectively. It is also necessary to introduce some other node points in At.

Let q q6 in r be defined by

q (0, 0), q2 (0, 1), q3 (1, 0),

q4 (0, .5), q5 (.5, .5), q6 (.5, 0).

For mt r At, let vt,j mt(qj), j 6. The nodes 1)1,4, l)l,5, 1)1,6 are called
the "midpoints" of the sides of At, although they are usually not true midpoints and are
used to define quadratic isoparametric interpolation over At. Collectively, the nodes of the
triangulation TN are also referred to by

N {1)1 I)Nv}.

For a surface S that encloses a simple closed region,

(2.5) Nv 2(N + 1).

Quadratic interpolation. Given f 6 C(AI), for any 1 < < N, define a quadratic
interpolant of f(mt(s, t)) by

6

(2.6) f(mt(s, t)) f(vt,i)ei(s, t), (s, t) cr
i=1

with el e6 the quadratic basis polynomials for which

e(q) .
For f 6 C(S), denote the piecewise quadratic isoparametric interpolation of f, defined by
(2.6), by PNf
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The operator P/v is a bounded projection on C(S), and its properties were discussed
in [6]. In particular,

5
(2.7) 117:’vll

and for f C3 (Si),.i 1 J,

(2.8) IIf- PNflloo O(h3),

where

h Max diameter (A).
l<l<N

In dealing with integrals over S, we write

(2.9)

N

k=l

Ny g(mk(s, t))lDsmk x Dtmlds dt
k=l

with Dsmk =- (Omk(s, t)/Os) and similarly for Dtmk. From (2.4), we must have parametriza-
tions of each Si that are.explicitly differentiable. To avoid this requirement, we introduce an
approximating surface S to approximate S, and the surface is used to calculate approxima-
tions to the surface differentials in (2.9).

For each Ak 6 TN, define an interpolating mapping n]k by

(2.10)
6 6

rhk(s, t) mk(qi)ei(s, t) E vk,iei(S, t).
i=l i=l

By the interpolation error results, and by using the assumed differentiability of ml,

(2.11) Max Max Imp(s, t) rhk(s, t)[ O(h3).
l<k<N (s,t)ea

Denote z rhk(a), and , t3z. The surface S will often be replaced by in our
calculations.

The above discussion has been only for the case of piecewise quadratic interpolation.
Polynomial interpolation of other degrees can be used; for example, piecewise linear interpo-
lation of the surface S is very common, along with piecewise constant interpolation for the
definition of the collocation method. We have used quadratic interpolation since it illustrates
a higher order case than is ordinarily used in practice and has convergence results that are of a
higher order than would ordinarily be expected. The results in 14] and 15] can be generalized
to handle other degrees of interpolation.

Numerical integration and the NystrOm method. To evaluate the surface integrals overS,
we use formulas for numerical integration over a:

g(s, t)ds dt , S wjg(sj, tj).
j=l
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As an important illustrative case, consider the formula based on integrating the quadratic
polynomial that interpolates g at {q q6 };

(2.12) f
6

g(s, t)ds dt , - g(qj).

This formula has degree of precision two.
When (2.12) is applied to a general triangulation of S, we obtain a composite formula

(2.13) I(G) =_ G(Q) dSQ , 1N(G) E wiG(vi).
i=1

In this case, we have applied (2.12) with g(s, t) G(mk(s, t))lDsmk x Dtmkl for each
Ak TN. Actually, this formula involves only the midpoints of the sides of the triangulation,
and this means that only -32 N of the weights in (2.13) are nonzero, a savings of about 25% in
function evaluations. For the error, we can show that

(2.14) I(G)- 1N(G) O(h3).

This result can be improved when the refinement process for the triangulation is defined in
a special way. For a general triangle z zi, C Ri, we refine it by connecting the midpoints
of its sides. Doing this with all elements of the triangulation means that N increases by a
factor of four with each refinement of the triangulation. Also, we consider replacing S by
to obtain the integration formula

(2.15)

.-.(N) With the refinement process we have described, it has been shown by ChienwithYoi=_wg
14] that for G sufficiently differentiable on each section Sj of S, the quadrature error satisfies

(2.16) I(G) 7N(G) O(h4).

We apply (2.15) to the solution of the integral equation (2.1) in the case that the kernel
function K(P, Q) is sufficiently differentiable. Nystr6m’s method is used with the numerical
integration operator

(2.17) 1CNu(P)

_
ff)iK(P, vi)u(vi), P . S, u . C(S).

i=1

In (2.1),/C is replaced by/CN, and we solve the approximating equation (. ],N)UN g.
This amounts to solving the linear system

(2.18) ZuN(vi) _, CojK(vi, vj)uN(vj) g(vi), N.
j=l
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The solution is extended to other points by using the Nystr6m interpolation formula

(2.19) 11 ]us(P) - g(P) + E ojK(P, Uj)UN(1)j)
j=l

A complete theory of Nystr6m’s method is given in [3, Part II, Chap. 3] and we omit it
here. Using this theory, and using the results of Chien [14], we obtain

(2.20) Ilu uvlloo O(h41.

For a further development and numerical illustrations, see 14] and 15].
Collocation methods. The collocation method for solving (2.1) is given by

(2.21) (Z PN1C)uN PNg.

We write

6

(2.22) ut(P) uc(vk,j)ej(s, t), P mk(s, t) Ak
j=l

for 1 _< k < N. The values UN(I)k,j) are obtained by solving the system
(2.23/

N 6

’UN(I)i) EE UN(Uk,j) f K(vi, fftk(S, t))j(s, t)lDrhk x Otk)(S, t)ldcr g(vi),
k=l j=l

i=1 Nv.

Note that we are using the approximate surface , so that we should replace/C in (2.21) with
an integral operator/N based on integration over . Thus we would write

(2.24) (x $’uKZu)uu psg.

For S a smooth surface, we assume that the kernel function K(P, Q) has a smooth extension
to points Q in a nearby neighborhood of S; and for S piecewise smooth, we assume that
K(P, Q) has a smooth extension to points Q in a neighborhood of each section Si of the
original surface. This assumption can be justified rigorously, but we omit it here. For larger
values of N, the calculation of the coefficients in (2.23) is often the most time-consuming part
of the collocation method.

For a solvability theory for collocation methods, see [3], and for the method at hand, see
[6] and [7]. In [14], it is shown that

(2.25) Max [U(U) UN(V)[ O(h4)

provided that u is sufficiently smooth. In contrast, the standard theory for collocation methods
states that

(2.26) Ilu UNIIoo O(llu Pulloo),

which from (2.8) is only O(h3). Thus the node points v 6 ))v are points of superconvergence
of the solution UN.

The integrals in (2.23) are often quite time consuming to evaluate numerically, and hence
the Nystr6m method of (2.18)-(2.19) is often preferable if the kernel function K(P, Q) is
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sufficiently smooth. For cases in which K(P, Q) is singular, as with our intended applications
to boundary integral equations, the numerical evaluation of the integrals in (2.23) is discussed
at length in [9] and [11 ], and empirical investigations of orders of convergence are given there.
Those numerical methods will be used in the applications of 4 and 5.

Numerical example. Consider solving (1.1) with the true solution being

(2.27) u(x, y, z) -e cos r Ix2 -- y2 -I- z2] 1/2

Let S be the ellipsoidal surface

with (a, b, c) (2, 2.5, 3). We use the above collocation method (2.24) to solve the b.oundary
integral equation (1.3). For the normal derivative in (1.3), the approximate surface S is used
to calculate an approximation to the unit normal"

(Dsth x Dtrh)(s, t)
(2.29) vQ Q Q mk(s, t) Q E Ak.

I(Drh, Dtthk)(S, t)l

Tables and 2 contain numerical results on the error and its empirical rate of convergence to
zero. For the column headings, let

Error Ev =-- Max lu(v)- uv(v)l,

Order= p=_log[ EN/4 ]EN
At most node points, the order of convergence appears more clearly to be O(h4); thus it is
likely that the values of Order in the tables are approaching four. The theory for this is not yet
complete; so far, we have been able to predict an order of only two. (When the true surface S
is used, rather than the approximate surface S, it is shown in 11 that the maximum error at
the node points is O(h4 log(h)).)

TABLE
Solution of (1.3) using (2.23).

N No Error Order
8 18 1.740E-2

32 66 2.849E-3 2.61
128 258 2.524E-4 3.50
512 1026 2.004E-5 3.65

TABLE 2
Solution of (1.3) using (2.23).

N No Error Order
20 42 3.741E-3
80 120 7.009E-4 2.42

320 480 6.757E-5 3.37

3. The two-grid method for Nystriim’s method. We consider the iterative solution of
the linear system associated with (. -/Ct)ut g, with/Ct defined as in (2.17). The linear
system to be solved is
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(3.1)

j=l

i--1 M,

where the superscript is included to show explicitly the dependence of the weights and nodes
on M. If the order My is relatively large, say My > 1000, then on most computers this system
must be solved iteratively. Let N be less that M, generally much less, and assume that the
linear system associated with (. -/CN)UN g can be solved directly. We use the explicit
knowledge of (X -/CN)-1 to iteratively solve (3.1).

The following two-grid iteration is discussed in detail in [3, Part 2, Chap. 4], and we
merely summarize some of those results for the present case. For the operator equation, the
iteration is as follows. We assume that an initial guess u is given.

I1 r(t) g- (;k-
I2 pq) Mr(l),
13 dq) (3 KN)-1 pq),

1
14 u+l)= u + [rq)+d(/)].

These relations can be specialized to the linear system (3.1) and the analogous linear system
for parameter N; the NystrSm interpolation formula (2.19) furnishes the means of connecting
the systems of order Mv and Nv.

It can be shown that the iterates satisfy the error equation

(3.2) UM U(/M+1)

It can be shown that {/CMIM > is a collectively compact and pointwise convergent family
of operators on C(S); consequently,

(3.3) Limit Sup II(Km EN)IMll O.
N--->o M>N

This shows that

(3.4) ( KN)-1 (]M ]N)]M < 1

for all sufficiently large N, uniformly for M > N. More can be said about this two-grid
method, but we refer the reader to [2] or [3].

Numerical example. Consider the integral equation

fs(3.5) .u(P)- u(Q)v(lP- QI)2dSQ g(P), P e S

with S the ellipsoidal surface (2.34) and (a, b, c) (1.0, .75, .5). The right-hand function
g(P) is chosen so that the true solution is u(x, y, z) ez. In Table 3, we give iteration
convergence rates for various values of N, M, and X. This rate is defined by

(3.6) Ratio Limit
oo Ilu-1)- u-2)ll

which we compute empirically. In all cases, such a limit existed computationally. The
numerical results illustrate that the value of Ratio should approach a constant as M ---> o,
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TABLE 3
Convergence ratesfor two-grid iteration with system (3.1) for (3.5).

N M Ratio
30 8 32 .0119

8 128 .0138
8 512 .0140

32 128 .0018
32 512 .0020

20 80 .0039
20 320 .0043
80 320 .00037

10 8 32 .5006
8 128 .5817
8 512 .5889

32 128 .1616
32 512 .1760

which can be proven from (3.2). Also note that the values of Ratio decrease substantially
when N is increased.

The norm on C(S) of the integral operator/C of (3.5) used in this example is IIK:II 3rr.
The variation in convergence rates between ,k 30 and ,k 10 shows the effect of choosing. closer to the spectrum of K:. As . approaches the spectrum of/C, the size of I1( K:)-increases in size and thus the linear multiplying factor in the iteration error equation (3.2) also
increases in size.

4. Two-grid iteration for the collocation method. We modify the two-grid iteration of
3, in line with ideas in 19] and [20]. In the two-grid iteration 11-14 of 3, we moved between
coarse grid functions and fine grid functions by means of a Nystr6m interpolation, as in (2.19).
Here we use a scheme of prolongation and restriction operators.

The linear systems associated with

(4.1) (;- M]M)UM 79Mg

and

(4.2) (--’7)N]_,N)UN 79Ng

have orders Mo and No, respectively, and are associated with triangulations ’TM A(kM) and

TN {A(N)}, respectively. We need a way to move between functions defined on the grids

VM {l)k(M) and VN-- {Vk(N)

Define a restriction operator

by

(4.3)

In this, ,OM is regarded as a function on the grid "I,)M, and "JMNPM is regarded as a function on
the grid "IN.
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Define a prolongation operator

:NM ]Nv _..> Mv

as follows. Let ion . N,, be a function on the coarse grid VN, which we wish to extend to a
function on VM. Let vk(,jM). )M. Then Vk(, A(kM’, and this triangular element is contained

in a unique element AN) for some 1, 1 < < N. There is

1-1AN)m N) or.--,
onto

(M) mN)(, .) for some (, ’) a. DefineBecause A(kM) C AN), the point vk,j

(4.4)
6

(7"NMPN) k,j J PN U,, ) i(, )"
i--I

When refining a triangulation, it is best to calculate and save the needed values of (, ’) while
doing the refinement.

Write the coarse grid linear system (2.23), associated with (4.2), as

(4.5) (I- KN)IZN gN, IZN ]N,,,

and write the corresponding fine grid linear system associated with (4.1) as

(4.6) (XI- KM)tZM gM, M ]M,,.

The two-grid iteration for solving the fine grid system is as follows.
J1 r(0 gM- (XI- KM)U(tM),
J2 p(t) T,MNKMr(t),
J3 d(0 PNM(XI- KN)-lp(0,
J4 bt(/M+1)= /Z(/M -- 2 [r(/)+ d(l)]

An equivalent form can be given that reminds one of multigrid iteration.
?I1 z - gM +
2 o ga {I- Ka),
J3 /*(/M+I) /(M/) -I’-’PNM(XI- KN)-ITq.MN(1).
Step 1 is called the "smoothing step" and step J3 is called the "correction step." The

replacement of NystrSm interpolation, as in (2.19), with the quadratic interpolation of (4.4)
yields a less expensive way to move from a coarse grid function to a fine grid function following
ideas in [19].

For the iteration error, it is straightforward to derive

(4.7) /ZM--/Z(/M+1)= CN,M[IZM-- I(]
(4.8) [I PNM(A.I KN)-IT2MN(.I KM)] KM.

To have convergence of the iteration, one must show that

(4.9) IICN,MII < 1.
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We consider here only the type of integral operators arising in boundary integral equations as
in (1.3).

If S is a smooth surface, then the integral operator/C of (1.3) is compact on C(S) into
C(S); the same is true of other integral operators of potential theory with a weakly singular
kernel. From this, we can use the tools associated with the theory of collectively compact
operators to show that

(4.10) Limit Sup IICN,MII O.
N--+x M>N

The proof is given in the Appendix of this paper.
Numerical example. Consider the BIE (1.3) with the known true solution (2.27), and

use the same ellipsoidal surface S of (2.28). We consider the iterative solution of the linear
systems for this earlier example. To save time in carrying out the study of the iteration method,
we did not evaluate the collocation integrals

K(vi, thk(S, t)l(Dsrhk Dtlhk)(S, t)ldtrt))j(s, x

of (2.23) as accurately as had been done in obtaining the values in Tables and 2. For this
section, the above integrals were divided into two classes. For vi Ak, a change of variables
was performed to eliminate the singularity and then a low-order product Gaussian quadrature
formula was used. For vi A,, the integration was performed using formula T2:5-1 of Stroud
[35, p. 314]. This is a seven-point formula with degree of precision five. Empirically, we
have found that there is very little difference in the performance of the iteration methods for
the system obtained with the quadrature just described and with the linear system (2.23) using
very accurate evaluation of all collocation integrals. For a further discussion of the evaluation
of the collocation integrals, see [7], [9], 11 ], [34], and 17].

Table 4 contains the empirical iteration rates of (3.6). Note again that the rate of conver-
gence improves as the coarse mesh parameter N is increased. This agrees with (4.10). For
one case (indicated by f), the empirical limit in (2.41) did not occur, and we used a geometric
average of the final few ratios to obtain the value given in the table. We also see in the table
that for fixed N, the convergence ratios appear to be approximately constant as M increases.

TABLE 4
Iteration ratesfor solving BIE (1.3) on an ellipsoid.

(a, b, c) N No M My Ratio
(2,2.5,3) 8 18 32 66 .17

8 18 128 258 .14
8 18 512 1026 .14

32 66 128 258 .089
32 66 512 1026 .072

(1,2,3)

20 42 80 162 .11
20 42 320 642 .089
80 162 320 642 .062

8 18 32 66 .31
8 18 128 258 .25
8 18 512 1026 .27

32 66 128 258 .19
32 66 512 1026 .18

Further discussion. In [21] and [31] methods are given for the rapid (approximate)
evaluation of the matrix-vector product KNp, p Nv. The cost of straightforward evaluation
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is approximately 2N2 arithmetic operations. The cost in [21] is O(N, log4 Nv) arithmetic
operations; the method in [31 is similar in cost. Since the evaluation of Kvp is a major part
of the cost, and since the preceding authors also give a less expensive way to evaluate the
matrix KN, their methods can also be used with the present two-grid method to further reduce
its cost. Alternatively, we can consider the use of vector/parallel processors in evaluating
KNp, which will also reduce the cost of the iteration. Regardless of how KNp is evaluated,
the discussion of the two-grid iteration presented here remains valid as it is independent of the
method of evaluating Kv/9. For the case that S is a smooth surface, the two-grid iteration of
this section seems to be an easy-to-use method with good convergence.

5. Iteration for BIEs on piecewise smooth surfaces. When the surface S is only piece-
wise smooth, the double-layer integral operator K of (1.3) is not compact on C(S), although
it is still bounded. Consequently, the standard theory of collectively compact operator ap-
proximations ([ ]) does not apply in this case, and a convergence theory must be developed in
some other way. For the limited convergence theory of collocation methods that is available
for (1.3) when S is only piecewise smooth, see [36], [37], [23], [6], [7], [9], and [11 ].

The given theories depend on dividing the surface into two subsets, one subset of points
"close" to edges and comers of S and the other subset the remaining part of S. The integral
equation (1.4) is written as

(5.1) 2zr +
/’/2 K21 K22 /42 g2

In this, all functions u 6 C(S) are decomposed as

(5.2) Ul b/IS,, U2 b/Is2

and for the function space, we use 2’ C(SI) C($2). Following this decomposition, the
integral operators ]ij are defined in a natural way from/C, using the decomposition of S, and

E. C(S) C(Si).

For the solvability theory for (1.3) and the convergence theory for numerical methods for
solving (1.3), the invertibility of 2zr +/C11 and its numerical approximants is established first.
After doing this, the remaining part of the problem can be attacked using standard tools based
on compactness, since 1Cij is compact for (i, j) -7/: (1, 1). This approach has been used for
planar BIEs on regions with a piecewise smooth boundary curve and is still the main way of
approaching analogous equations in three dimensions. This approach to the problem is due
originally to Radon [30] for planar problems, and it was extended to three-dimensional BIEs
and their numerical solution by Wendland [36].

For the collocation method proposed in (2.24) in 2, we assume that the surface S satisfies
the same properties as those assumed in [36]. With these properties, we obtain convergence
of the numerical method (2.26) if

5
(5.3) :12zr- f2(P)l <

.5

at all points P 6 S [6], [7]. The assumption (5.3) seems to be an artificial one based on the
method of analysis being used. Empirically, (5.3) appears to be unnecessary.

In addition to the problems of the invertibility of 2zr +/C, there is also the problem of
dealing with the behaviour of the solution u(P) for points P near to edges and corners of S.
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It is known from the planar theory that the function u(P) usually has algebraic singularities
that must be considered in the numerical solution of the equation. For a development of ideas
in this direction for (1.3), see [16] and [29].

The two-grid iteration method. Because K is not compact, the condition (4.10) is not true
and there is no reason to believe that the convergence requirement (4.9) is true. We have also
studied the analogous iteration for planar BIEs in 13], and when the method converged, the
rate of convergence did not depend on the size of N. We have investigated empirically the
two-grid iteration Jl-J4 and we give some of the results of that study here.

Let S be the elliptical paraboloid

(5.4a) (x)2 ()2+ =z, O<z<c
a

together with the "cap" of points (x, y, z) satisfying

(5.4b, ()2 ()2+ <c, z=c.

We again solved (1.3) and the true solution was chosen to be

)2 y2 1/2u(x, y, z) [(x + + Z2]

Results for the two-grid iteration method are given in Table 5.
The first observation is that the two-grid iteration still works, provided that N is sufficiently

large. Second, the rate of convergence does not improve as N increases (provided that N is
large enough to have Ratio < 1), contrary to the case with a smooth surface.

TABLE 5
Two-grid iterationfor (1.3) on a paraboloid.

(a, b, c) N M Ratio
(.5, .5, 1) 8 32 .615

8 128 .592
8 512 .586

32 128 .594
32 512 .586

(1, 1, 1) 8 32 .668
8 128 .658
8 512 .652

(2, 2, 1) 8 32 .761
8 128 .758
8 512 .754

32 128 .757
32 512 .754

(2.5, 2.5, 1) 8 32 89.326
32 128 .790
32 512 .862

For the paraboloid surface of (5.4) with a b, the interior solid angle on the edge of S
atz=cis

(5.5) f2a 2 tan-1 (-).
Using Table 5 results and this formula, we find that for the convergence ratio ra =-- Ratio, most
of the values of ra satisfy

(5.6) ra -" 1- .157Qa.
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This makes some sense since

1- .157f2a "0:= a "2zr,

and that would correspond to a smooth surface. With a smooth surface, the earlier result (4.10)
implies that the value of Ratio converges to zero as N oo.

A modified two-grid iteration. The split (5.1) is required for not only a convergence
analysis of the numerical solution of (2r + K)u g, but also seems to be necessary when
iteratively solving the linear system (2n + Kt)ttM gt. This has been noted previously
in [32], [33], [23], and [13]. We use this split to obtain a modified linear system for which
two-grid iteration performs better.

Based on the split (5.1), we make an analogous splitting ofthe domain of the grid function
/zt. Then (2zr + Kt)/xt gt is rewritten as

(5.7)

We assume that K has been so constructed that 2rr + K is nonsingular. Then (5.7) is
rewritten as

(5.8)
2rrI 2n[2n + Kg Xt /z 2n[2n -I" Kl]-lg/

2,22n" + Ku, /z

Denote this linear system by

(5.9) (2zr + Lu)/zu Y, M > 1.

We solve this by using two-grid iteration, using a lower order system

(2zr + LN)tZN YN

as our coarse grid system.
How is the partition of the domain Vt of the grid function ttt to be made? The usual

definition is to choose a small e > 0 and to then define

Vt {vii the distance from vi to an edge or vertex of S is < },

Then for tt 6 IRMy, define

(5.11)

This type of scheme is used in both [32] and [13] for planar BIE problems and leads to efficient
1,1iteration methods. The value of e should be small enough to have the order of 2rr + KM

1,1called DM, be small enough to directly solve linear systems with 2r + KM as the coefficient
matrix. The order DM 0(6M) and, as M increases, DM increases at the same rate as for
the original system. For planar BIE problems, DM is generally sufficiently small.

For three-dimensional systems, DM increases much more rapidly and the associated linear
system can easily become too large to be handled directly. To avoid having a system with a
large order, we have experimented using 0. Thus vi Pt if and only if vi is a vertex of
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the original surface S or is on an edge of S. This ensures that Dt O(q/--). It still grows
with M, but generally remains manageable. When e > 0, we can prove convergence of the
iteration method in some cases, but we have no proof for the case e 0, although it does
give significantly improved results over the two-grid method for. the original linear system
(2zr + Kt)/zt gt.

Example. We repeat the solution of the linear systems used in obtaining Table 5. The
new results are given in Table 6. In every case in the table, the iteration ratios

(5.12) RI IIz
I1#-1) #-2)

behaved in a somewhat unusual manner, oscillating in a small interval without converging to
a limit. In Table 6, we give the "limiting mean" R of those oscillating values. In Fig. 1, we
show these iteration ratios Rt for the case

(5.13) (a, b, c) (2.5, 2.5, 1), N 8

TABLE 6
Modified two-grid iterationfor (1.3) on a paraboloid.

(a,b,c) N Nv M My DM NI
(2,2,1) 8 18 32 66 16 .25 14

8 18 128 258 32 .41 22
8 18 512 1026 64 .50 28

(2.5,2.5,1) 8 18 32 66 16 .31 16
8 18 128 258 32 .46 25
8 18 512 1026 64 .55 32

32 66 128 258 32 .32 16
32 66 512 1026 64 .47 25

(3,3,1) 8 18 32 66 16 .43 18
8 18 128 258 32 .53 28
8 18 512 1026 64 .60 36

32 66 128 258 32 .42 18
32 66 512 1026 64 .56 28

(4,4,1) 8 18 32 66 16 3.45
32 66 128 258 32 .74 41
32 66 512 1026 64 .90 102

with three values of M. The iteration was carried out until the estimated iteration error was
less than 10-12. We also give the number of iterates NI needed to satisfy the test

IIz] #-1)11 < 10-8

when beginning with/x 0.
Example. Solve problem (1.1) on a solid simplex with vertices

(0, 0, 0), (a, 0, 0), (0, b, 0), (0, 0, c).

The true solution was chosen to be

1
u(x, y, z)

(a b, c)l"I(x,y,x)-

The values of/ are given in Table 7 for various values of (a, b, c), N, and M. The simplexes
with (a, b, c) (1, 1, 1) and (3, 3, 3) gave essentially the same results on the rate of conver-
gence of the iteration method. In contrast with the case with S as a paraboloid, the iteration
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FIG. 1. vs. Rt" Iteration ratiosfor circular paraboloid.

ratios RI often converged to a limiting value. This was especially true when M/N > 4, but not
always. Figure 2 contains graphs ofthe logarithms ofthe iteration corrections II/z -/zt-1)
as increases. The parameters for S in this figure are

(a, b, c) (1,1, 3), N=4, M=16,64,256.

From Fig. 2 and analogous figures for other values of the problem parameters, it is clear that
the iteration is converging linearly, with the rate becoming worse as M increases.

TABLE 7
Modified two-grid iterationfor (1.3) on a simplex.

(a,b,c) N Nv M My DM k NI
(3,3,3) 4 10 16 34 22 .29 18

4 10 64 130 46 .34 20
4 10 256 514 94 .55 31

(1,1,1) 4 10 16 34 22 .29 19
4 10 64 130 46 .35 21
4 10 256 514 94 .55 33
16 34 64 130 46 .28 17
16 34 256 514 94 .43 25

(1,1,2) 4 10 16 34 22 .34 20
4 10 64 130 46 .55 33
4 10 256 514 94 .69 51
16 34 64 130 46 .35 20
16 34 256 514 94 .54 31

(1,1,3) 4 10 16 34 22 .42 24
4 10 64 130 46 .62 42
4 10 256 514 94 .74 65
16 34 64 130 46 .42 24
16 34 256 514 94 .62 35

6. Conclusions. Computations were carried out for a number of piecewise smooth sur-
faces with various choices of boundary data. From this, it is clear that the modified two-grid
method based on (5.9) converges linearly. As N increases, the rate of linear convergence
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as measured by/) decreases, thus giving an improved rate of convergence for the iteration
method. But as M increases for fixed N, the ratios R increase in size and the convergence is
worse. The iteration based on (5.9) is clearly superior to the use of the unmodified two-grid
iteration, as illustrated by comparing Tables 5 and 6.

It appears that R is a function of M/N, rather than a function of N and M separately.
For constant M/N, the empirical rate of linear convergence R is also approximately constant.
Thus we need to make N larger to maintain a good rate of convergence for larger values of M;
of course, this means there is an additional cost in solving the coarse mesh equation. Since
we also are solving systems of size DM, it will not mean much of an additional cost to have N
be approximately the same size as DM. By doing so, the rate of convergence will not degrade
as rapidly when M increases.

If we had used > 0 in the definition (5.10), then we could have proved that the ratios
would behave in the same manner as for the two-grid method on a smooth surface. But in
that case, the size of DM increases much more rapidly, as it is proportional to M rather than
to qt-. Whether it is better to use 0 or > 0 depends on the particular problem being
solved and the computer on which it is being solved. Generally it seems better to let 0
as long as the iteration is converging, and to turn to > 0 only if convergence is not being
attained.

14[
12 M=256

10

8

6

4

2

0

0 20 40 60 80 100 120

FIG. 2. vs. lgl0 [l’lM--lJ’M(l)(1--1) I1 . Iteration correctionsfor simplex.

Appendix. We give a proof of the result (4.10):

(A. 1) Limit Sup CN,M 0.
N--+o M>N

The proof is divided into two cases" (1) the exact surface S is used in all integrations and
(2) the approximate surface S is used. We begin by introducing some additional notation.

Define 7M" C(S) --+ Imy by

(A.2) (Mg)(vM)) g(vM)), My, g C(S),

where elements ofmv are regarded as finctions on the grid Fro. Define 79Mo Imy -+ C(S)
by

6

(A.3) (7)gop)(mk(s, t)) _, p(Ok, )ei(S, t), (S, t) 6 a,
i=1

k= M, p6M".
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With these, we have the following identities:

(A.4) Ta,.M’PM I,
(A.5) "PMooT"VoM "PM,
(A.6) Ku

We also need the following relations between the coarse and fine grid operators:

(A.7) TMNTooM TcxN

(A.8) )MoSNM PNo.
The first of these relations is obvious; and the second depends on the uniqueness of quadratic
interpolation and the fact that TM is a refinement of TN.

To analyze the iteration Jl-J4 of 4, we transform it into an equivalent problem on the
space C(S), thereby eliminating the use of the different spaces Mv and Nv. Introduce

y(l) (1)
IMtM

Recall the collocation equation

(A.9) (I 79M])UM 79Mg

and its matrix equivalent

(A.10) (I- KM)IZM gM.

The solutions of the two preceding equations satisfy

(A.11) IZM ]oMUM

Using the above in the definitions of Jl-J4 of 4, we obtain

79Moor(1) PMogM )Mo . ’oM]’)Mo)IZ IM
79Mg- XV(l) + 79M]V(l) (X PM])(UM V(I)),

KMr(l) rcME(,- )M])(UM- y(l)),

d(l) NM(- KN)-lMNME(- PME)(UM- y(l))

NM(X- KN)-IN(X- PM)(UM- V(I)),

.(t) v(t) 1
V(l+1) v(l) + Mr(l) + --X IMU + ( M)(UM V(1))

+ PMPNM(Z KN)-lNE(Z PME)(UM V(1)).

Using (A.8), it holds that
(A.12)

ug v(+ I (X P) -P(X g)-(X P) (u v().

The following is a well-known identity. If (I BA)- exists, then (I AB)- exists
and

(I- AB)- I + A(I- BA)-lB.
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Apply this to convert ( KN)-1 to an equivalent form. With some straightforward manipu-
lation and use of the earlier identities, we obtain

(A.13)
gNoo (J KN)-I,oN No(X ,ooNENoo)-lT,ooN

Using this result in (A.12) and some straightforward manipulation,

(A.14)
UM- V(/+1) CN,M(UM- 1)(l)),

Since/(7 is compact on C(S), it is well known that

Limit II/C PN/C o.

Thus (. ’ONK)-I is uniformly bounded in N and

This proves that

Limit Sup IITME PNlCll O.
N--+ cxa M>N

(A.15) Limit Sup IItN, MII 0,
N--oo M>N

which shows that the iterates v () converge to UM as --+ cxa, provided that N is chosen
sufficiently large. As M --+ oo, C,N,M approaches

(. NK)-1 (I N)K.

This, too, is less than one for N chosen sufficiently large; and thus the convergence in (A.14)
will exhibit a "mesh-independence principle."

To complete the result, these results must be related to the matrix-vector equation (A. 1).
Write the error equation (A. 14) as

(A.16) e(/+1) N,Me(l)

and the error equation (4.7) as

(A.17) 6 (/+1) CN,M6. (l).

The errors are connected by the relation

(A.18) 7"q..Me(l) e. (l) 1>0.

Since UM E Range(7)M), we also have

(A.19) i)ooM6(l) 7PooMT,oMe(l) --79Me(l) --e(t),

Using these results with (A. 16)

6(/+1) TooMe(l+1) "7"oMCN,Me(l)

]ooMN,M’)ooM5 (l), > O.

l>0.
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Consider the case 0 and note that e(o) can be chosen arbitrarily. Then we see that the
action of CN,M and oMCN,M79oM is the same on all E () 6 IRMy and thus

(A.20) CN,M T2.cx)MN,MPM,cx.

To show (A. 1), use

(A.21)
5

IICN, MII IIToMCN,MToMII
_

-IICN,MII.

The approximate surface case. When the surface S is replaced by , then the matrix
elements in (A.10) over S are replaced by the corresponding integrals over . Let N,M
denote the matrix in (A.17) when using (actually using _= N when defining Ks and
using SM when defining KM). The result (A. 1) is shown by a perturbation argument using

(A.22) IICN,M N,MI] O(hN).

The matrix norm used in (A.21) is the row-norm induced by IIo on NMy.
We compare the integrals

(A.23) (M)h (S, t)ldaK(v}, m(M)(s, t))ej(s, t)l(Dsm(M) x Dimk

based on the exact surface S, with

(A.24) K(vM), rfi(kM)(s, t))es(s, t)l(Dsrh(kM) DtIM))(x,

which are based on the approximate surface ; we consider the corresponding integrals for
the coarse mesh parameter N. The kernel function is, of course, the double layer function

K(P, Q) vQ IP- QI

The measurement of the error in (A.24) and its effect on the row norm of KM and KN
is based on a slight modification of a derivation given in the thesis of Chien 14]. Using this
thesis, it can be shown that

(A.25) IIKM- KMII O(hM), IIKN- /NII-- O(hN).

Chien 14, 3.6] looked at the approximation of the solid angle on the surface of S at the nodes
of VM. As this is a very involved derivation, based on asymptotic expansions of the error in
powers of h, we omit it here. Using (A.25), the assertion (A.22) follows easily and also the
assertion (A. 1).
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FOURIER AND LAPLACE TRANSFORMS*
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Abstract. The fast Fourier transform (FFT) is often used to compute numerical approximations to continuous
Fourier and Laplace transforms. However, a straightforward application of the FFT to these problems often requires
a large FFT to be performed, even though most of the input data to this FFT may be zero and only a small fraction
of the output data may be of interest. In this note, the "fractional Fourier transform," previously developed by the
authors, is applied to this problem with a substantial savings in computation.

Key words, fast Fourier transform, fractional Fourier transform, numerical integration

AMS subject classifications. 65T20, 65T10, 65Y20

1. Introduction. The continuous Fourier transform (CFT) ofa function f(t) (which may
have real or complex values) and its inverse will be defined here as

()

(2)

F[f](x) f(t)e-itxat,

f(t)edt,f-[f](x)

where is the imaginary unit. The discrete Fourier transform (DFT) and the inverse DFT of
an n-long sequence z (which may have real or complex values) will be defined here as

n-1

(3) Dk(z) E zje-2rijk/m’
j=0

n-1

(4) Dl(z) 1 E zje2rrijk/m
rn

j=0

Straightforward evaluation of the DFT using these formulas is expensive, even when the
exponential factors are precomputed. This cost can be greatly reduced by employing one of
the variants of the fast Fourier transform (FFT) algorithm [1 ], [2], [5], [6].

The methods developed in this paper are equally applicable to the numerical evaluation
of continuous Laplace transforms, and the approach is the same as for Fourier transforms. For
brevity, this exposition will focus on evaluating continuous Fourier transforms.

2. A conventional scheme for evaluating CFTs with FFTs. There are of course a
number of advanced techniques for the approximate numerical evaluation of definite integrals
[4]. Unfortunately, most of these techniques deal with evaluating only one integral, rather
than a large number of integrals, each with a different integrand. Evaluating the CFT falls in
this latter category, since one usually requires the values of this integral for a large range of x.

The FFT can be effectively applied to this problem as follows. Let us assume that f(t) is
zero outside the interval (-a/2, a/2). Let fl a/rn be the interval in for the rn input values
of f(t), which are assumed centered at zero, where rn is even. To be specific, the abscissas
for the input data are tj (j m/2)fl, 0 < j < m. The abscissas for the output data set will

*Received by the editors November 9, 1992; accepted for publication (in revised form) July 30, 1993.
Numerical Aerodynamic Simulation (NAS) Systems Division at National Aeronautic and Space Administration,

Moffett Field, California 94035-1000 dbai 1ey@nas, nasa. gov)
SNational Center for Atmospheric Research, Boulder, Colorado 80307 (pauls@near. ucar. edu).
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be defined as xk 2zr(k m/2)/a 2zr(k- m/2)/(m), 0 < k < m. This definition ofxk
will be explained later. Then we can write

(5) F(xk) f(t)e-itxkdt

fa/2(6) f(t)e-itXkdt
J _a/2
m-1

(7) E f(tJ)e-itjxk
j=0

m-1

(8) E f(tj)e-2rri(j-m/2)(k-m/2)/m
j=0

m-1

(9) ei(l-m/2) E f(tj)eriJe-2rijk/m
j=0

(10) (-1)kD[{(-1)Jf(tj)}], 0 < k < m.

The DFT indicated in (10) can of course be rapidly evaluated using an FFT.
It is now clear why x was defined as abovemthis is necessary for the expression (9) to

be in the form of a DFT. In other words, the interval (i.e., resolution) of the output results of
this procedure is fixed at the value 2r/(m/) as soon as one specifies the number m of input
values and their interval/.

Let us assume that comparable intervals are required in and x to obtain accurate results.
Then one must have/ 2r/(m), or in other words m 2r//2. From this observation it is
clear that if one wishes to obtain accurate, high-resolution results using this procedure, then it
may be necessary to set m very large, perhaps much larger than the actual size of the nonzero
input data set. Another way of saying this is that the input data f(tj) may need to be padded
on both sides with many zeros to obtain the desired resolution in the output data.

A specific example will illustrate these issues. Let us consider the problem of numerically
computing the Fourier transform of the Gaussian probability density function

1 _t2/2(11) f(t) e
It is well known that the Fourier transform of f(t) is

(12) F(x) e-x1/2.

Note that outside the interval [-10, 10], we have f(t) < 7.7 x 10-23 and F(x) < 1.9 x 10-22.
Suppose now that one wishes to compute the Fourier transform using the above FFT

scheme with a resolution of /256 in both and x. One can do this provided that one sets
tn 65,536, since in that case/ 2zr/(m/). However, both the input and output data then
span the interval [-m/2, m/2], or approximately [-320.8,320.8].

In short, as a consequence of the fundamentally inflexible nature of the FFT when applied
to this problem, it turns out that a large fraction of the input data to the FFT used to evaluate
(10) are considerably smaller than the machine "epsilon" of most computers, even when using
double precision arithmetic. Also, only a small fraction (the central values) of the output of
this FFT are of interest. Thus we seek a more flexible scheme for problems of this sort, one
that can produce the central section of the results, using only the central nonzero input data,
with a savings of computation.
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3. The Fractional Fourier Transform (FRFT). We will employ here a generalization of
the DFT that has been termed the FRFT [3]. It is defined on the m-long complex sequence x
as

m-1

(13) Gk(x, ) xje-2rijka.
j=O

The parameter a is not restricted to rational numbers and in fact may be any complex number.
Note that the ordinary DFT and its inverse are special cases of the FRFT.

A fortunate fact is that the FRFT admits computation by means of a fast algorithm, one
with complexity comparable to the FFT. In fact, it employs the FFT in a crucial step. This
algorithm can be stated as follows. Define the 2m-long sequences y and z as

(14) yj xje
-ij= 0 < j < m

(15) yj---O, m < j <2m,

(16) z] eri], 0 _< j < m,

(17) zj ezri(j-2m):a, m < j < 2m.

It is then shown in [3] that

(18) Gk(x, ) e-ikaDl[{Dj(y)Dj(z)}], 0 < k < m.

The remaining m results of the final inverse DFT are discarded. Element-wise complex
multiplication is implied in the expression Dj(y)Dj(z). These three DFTs can of course be
efficiently computed using 2m-point FFTs.

To compute a different m-long segment Gk+s(x, ), 0 < k < m, it is necessary to slightly
modify the above procedure. In this case z is as follows:

(19) zj eri(j+s)t,
(20) z erri(j+s-2m)za

Then we have

O<j<m,

m<j<2m.

(21) Gk+s e-ri(k+s)aDl[{Dj(y)Dj(z)}], 0 <_ k < m.

Note that the exponential factors in (14)-(21) can be precomputed. Furthermore, the DFT
of the z sequence can also be precomputed. Thus the cost of an m-point FRFT is only about
four times the cost of an m-point FFT.

4. Computing CFTs with FRFTs. One of the applications of FRFTs mentioned in [3]
is computing DFTs of sparse sequences, i.e., sequences that are mostly zero. It is particularly
effective when only a small portion of the input data values are nonzero, and only a small
portion of the output values are required. Thus, the FRFT is very well suited for the problem
at hand.

As before, we will assume that f(t) is zero outside the interval (-a/2, a/2), and that
a/m is the interval of the m input values of f(t), which will be assumed centered at

zero; i.e., tj (j m/2)/, 0 < j < m. We will now define }, to be the interval desired for
the output data, so that they are given by xk (k m/2)V, 0 < k < m. Set =/?’/(2zr).
Then we can write

(22) F(xk) f(t)e-itXdt
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fa/2(23) f(t)e-itxdt
d -a/2
m-1

(24) " E f(tj)e-itxi
j=O

m-1

(25) fl f(tj)e-i(j-m/2)(k-m/2)flr’
j=o

m-1

(26) iezri(k-m/2)m8 E f(t’)eZrijm*y e-2zrijkd
j=O

(27) eri(k-m/2)mS Gi[{f(tj)errijmS}, ],

We now have an economical means of computing the central m results of this transform.
Additional m-long segments of results can be obtained by applying the more general form of
the FRFT given at the end of the previous section.

5. Implementation example. Collecting the results we have obtained so far, we have

(28) F(xk) f(t)e-itxdt

(29) fieri(k-m/2)m Gk[{f(tj)erijm }, 3]

(30) fler"[(k-m/2)m-k2a]Ol[{Dj(y)Dj(z)}], 0 < k < m,

where the 2m-long sequences y and z are given by

(31) yj f(tj)eri(jmS-j2), 0 < j < m,

(32) yj O, m <_ j < 2m,

(33) zj erifl 0 < j < m

(34) zj eri(j-2m)2d m < j < 2m

Let us now reconsider the problem of numerically computing the Fourier transform of
the Gaussian probability density function

e_t2/2.(35) f(t)

Recall that the Fourier transform of f(t) is

(36) F(x) e-x/2.

Also recall that outside the interval [-10, 10], we have f(t) < 7.7 x 10-23 and F(x) <
1.9 x 10-22.

To compute the Fourier transform using the conventional FFT scheme with a resolution
of ---/256 in both and x, we have/3 ?, ---/256 and m 2r/(fl?,) 65,536. An
implementation of this scheme requires 3.95 seconds on a SGI Personal Iris. Compared with
exact values of the transform computed from the formula above, the root-mean-square (RMS)
error of the central 2048 results is 1.14 x 10-16.

Note however that only the central 2048 result values, which span the approximate interval
[-10.02, 10.02], are required--outside this interval both the input and output function values



A FAST METHOD FOR CONTINUOUS FOURIER TRANSFORMS 1109

can be assumed to be zero with high accuracy. Applying the FRFT scheme with rn 2048
yields these same results in 0.40 seconds on the Iris, fully ten times faster. The RMS error
of the FRFT results is 2.96 x 10-16. Both of these error figures are virtually at the limit of
machine precision.

As an aside, while it is expected from the results of this paper that the FRFT results
should be within machine precision of the FFT results, it is remarkable that both are also
within machine precision of the actual values resulting from the analytic formula (36). This is
in spite of the fact that the interval used in the step function approximation to the integral has
the modestly small value/3 - 0.01. This surprising phenomenon evidently derives from the
fact that step function approximations to integrals converge to the exact results very rapidly
provided that the function f(t) has rapidly decreasing Fourier coefficients [4]. This condition
is met by theGaussian probability density function.

It should also be mentioned that in this specific example, one may accurately recover
the original data by performing an inverse transform with the FRFT. This can be done by
employing formulas (30)-(34) with replaced by -3. This operation works because the
results of the forward transform, like the original data, can be assumed to be precisely zero
outside the interval [-10.02, 10.02]. For other functions f(t) this condition may not hold,
and as a result this inversion operation would not be expected to accurately reconstruct the
original data.

6. More advanced quadrature schemes. The techniques described above were formu-
lated on the basis of a simple step-function approximation to the integral. These techniques
can also be applied to a Simpson’s rule approximation, as follows. Let cj 4 for odd j and
cj 2 for nonzero even j. Then we have

(37) F(xl) f(t)e-itxkdt

fa/2(38) f(t)e-itXkdt
d -a/2
m-1

(39) , _, cjf(tj)e-tjx
j=0

m-1

(40) =/3 E cjf(tj)e-(J-m/2)(k-m/2)#r
j=o

m-1
t’[t orrijm$o-2rriJk8(41) erri(k-m/2)md E Cjjtj,,

j=O

(42) erri(k-m/2)maGk[{cjf(tj)errijm}, ], 0 <_ k < m.

One difficulty with using Simpson’s rule to evaluate Fourier integrals is that the accuracy
of the quadrature depends on the size of the product f(t)e-itx. In particular, the accuracy
may deteriorate for large values of x, due to the oscillatory nature of the integrand. For this
reason some scientists prefer using Filon’s method [4, p. 151] to evaluate Fourier integrals.
Filon’s method has the advantage that the accuracy depends only on the smoothness of f(t).
Again, an FRFT-based scheme can be profitably applied here, since Filon’s method employs
equispaced intervals. The approach is entirely similar to the above, and details will not be
given here.

In general, the FRFT-based technique described above can be profitably applied to the
numerical evaluation of any integral transform where (1) both the input function values f(tj)
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and the output transform values F(xk) are equally spaced, (2) a large fraction (more than 75%)
of f(tj) are either zero or within machine tolerance of zero relative to max If(tj)l, and (3)
only a limited range of F(xk) is required.
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SPLINE INTERPOLATION AND SMOOTHING ON HYPERSPHERES*

H. J. TAIJERONf, A. G. GIBSONt, AND C. CHANDLER

Abstract. The authors generalize Wahba’s theory [SIAM J. Sci. Statist. Comput., 2 (1981), pp. 5-16] on spline
interpolation and smoothing on the surface of the two-dimensional unit sphere to arbitrary dimensional hyperspheres.
As a consequence, practical solutions to minimum norm interpolation and smoothing problems on hyperspheres are
provided in terms of certain hyperspherical splines. In addition, Wahba’s results for powers of the Laplace-Beltrami
operator are extended to more general operators, and Wahba’s Hilbert space of constant functions is expanded to
allow more than just constant functions. Extensive curve fitting calculations are made for some two- and higher-
dimensional test problems using hyperspherical harmonics and hyperspherical splines. It is found that hyperspherical
splines yield better fits than hyperspherical harmonics for test functions that possess no symmetry and are not infinitely
differentiable. Tests have been run using several continuous functions; satisfactory absolute errors can be obtained
using only 20-50 splines. The speed of convergence of the spline approximations did not vary much with the
smoothness or symmetry properties of the functions being fit.

Key words, splines on hyperspheres, hyperspherical harmonics, interpolation, smoothing
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1. Introduction. The primary goal of this work is to develop a theory of splines on
hyperspheres that provides practical solutions to interpolation and smoothing problems on the
surface of hyperspheres. Our results represent a generalization of the theory of Wahba for
splines on the unit circle [12] and splines on the two-dimensional sphere in three-dimensional
space [13]. In [13] Wahba was motivated by an interest in the interpolation and smoothing
of certain geophysical data taken at various points on the earth. Our higher-dimensional
generalizations were motivated by problems in the theory of nonrelativistic multichannel
quantum scattering [5]. When there are, for example, three bodies in the final state ofa quantum
reaction, their relative motion at a fixed energy is represented by points on a five-dimensional
hypersphere in a six-dimensional space. Functions that could be used for interpolating and
smoothing data could also be used as a basis in which to expand the scattering amplitudes of
the theory. Such basis sets could be formed from hyperspherical harmonics [3], 10] or, more
interestingly, from hyperspherical spline functions.

We have generalized Wahba’s results in three basic ways. First, we have extended her
theory to higher dimensions, valid on any unit hypersphere g2t,+2 of dimension p -I- in
(p + 2)-dimensional space for p 0, 1, 2 Second, we have generalized Wahba’s results
for powers of the Laplace-Beltrami operator to more general operators A. Third, we have
modified Wahba’s decomposition 7-/m ("3) 1}7-/in (f23), where is the one-dimensional
space of constant functions on f23, and 7-/lm (f23) is a reproducing kernel Hilbert space. Freeden
[6] has previously suggested enlarging on f23. In our theory the space is enlarged to
become a finite- dimensional reproducing kernel Hilbert space 7-/m that may include more than
just constant functions. This permits a more flexible combination ofhyperspherical harmonics
and hyperspherical splines in an interpolation or smoothing scheme.

The numerical tests of our theory were concentrated on the interpolatory fitting of func-
tions defined on f2,+2 with p 1, 2, or 4. For p 1 we found, numerically, that fits using

*Received by the editors April 15, 1992; accepted for publication (in revised form) August 2, 1993. This research
was supported in part by National Science Foundation grants PHY-9104459 and INT-880898.
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only spherical harmonics were considerably better for symmetric infinitely differentiable func-
tions than those with hyperspherical splines. The fits with splines, on the other hand, were
better for functions that had little or no symmetry or were not infinitely differentiable. In
higher dimensions splines continued to fit our test functions reasonably well, and often these
fits were superior to those with hyperspherical harmonics, even for infinitely differentiable
functions. We also found that, in general, the addition of a few hyperspherical harmonics to
the space gave improved approximations only for the smooth functions which could be
approximated better by hyperspherical harmonics.

Our tests using several continuous positive functions on p+2 with p 1, 2, or 4 showed
that we could obtain satisfactory absolute errors by using only 20--50 data points. The speed
ofconvergence did not vary much with the smoothness or symmetry properties of the function
being fit. However, this was not the case with hyperspherical harmonics. These functions
were sensitive to the smoothness and symmetry properties ofthe function being approximated.

Another feature of hyperspherical splines is that the corresponding interpolatory scheme
is robust. The location of the data points (knots) may be essentially random, and the unique
solution of the interpolation problem will always pass through all of the data points. On
the other hand, a random selection of data points may lead to ill-conditioned systems of
equations for a fitting scheme that is based on hyperspherical harmonics. In addition, we were
successful in finding an algorithm for selecting hyperspherical splines by iteratively choosing
one additional data point where it is most needed, but we were unsuccessful in finding an
automatic optimum way of improving fits with hyperspherical harmonics.

Section 2 is devoted to generalizing Wahba’s theory of solving minimum-norm inter-
polation and smoothing problems to higher-dimensional hyperspheres. Reproducing kernel
Hilbert space methods are used to find the solutions to these problems by invoking two general
lemmas of Kimeldorf and Wahba [9]. The reproducing kernels defined by infinite sums in 2
appear to be summable only for the p 0 circle case. Consequently, for p > 0 we modify
these kernels to obtain closed-form expressions by using a different, but equivalent, norm in
the Hilbert space. This modification is analogous to the one done in [13, 3]. The modified
reproducing kernels have proved to take considerably less time to calculate than the original
kernels.

In 3 we present a summary of our numerical methods and results. We compare hyper-
spherical spline approximations with hyperspherical harmonic approximations on the surface
of the unit hyperspheres in three-, four-, and six-dimensional space. In our comparisons we
use three types of functions. The first is infinitely differentiable and symmetric, and the second
function is infinitely differentiable but not symmetric. The third is continuous, has a point at
which it is not differentiable, and has no symmetry.

Most of the results of this paper are contained in the 1989 Ph.D. dissertation of Taijeron
[11].

2. Theory of splines on hyperspheres.

2.1. The reproducing kernel Hilbert space 7-/, (f2,+2). Let p be a nonnegative integer,
and let f2t,+ denote the (p + 1)-dimensional unit hypersphere in (p + 2)-dimensional space.
Let Lp+ denote the Laplace-Beltrami operator in (p+2) dimensions [3], with L2 the special
case defined by L =_ d2/d2, 0 < p < 2rr. Let h(, p) _= (2 + p)( + p- 1) !/( !p!), fore
and p not both zero, and h (0, 0) . 1. For p > 0, let Se.m (), "p+2, 0, 1, 2 tn

1, 2 h (, p), denote the h (, p) normalized real hyperspherical harmonics of order in
(p+ 2) dimensions [3]. For p 0, let S01() - (2zr) -1/2, and let Se() =- zr -1/2 cos p, and
Se2() -= zr -1/2 sin, for 1, 2 where p is the polar angle of the unit vector f22
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(circle). Then, for any integer p > 0,

(1) Lp+2Sem e(e ..[- p)Sem,

and the eigenvalue ke e(e + p) of-Lp+2 is of multiplicity h(e, p). {Sem forms a complete
set of orthonormal functions on f2p+2, and any real-valued function u /22(p+).) has an

h 2 o h(e p) 2unique expansion u() Y-=o
Xh(e’P) Sen(C), wt [[u[[ -’e=o -,m’l [Uem[ < o.

Let OOp+2 =-- 2zr(l+p/2)/F(1 with 1" the Gamma function, denote the total surface

area of f2p+2. For p > 0, let C/2 denote the Gegenbauer polynomial of degree e and order

Ct/2(1) by (1) (e + p- )!/[e!(p- 1)!]. Let . r/denotep. The value of is given C/2
the scalar (dot) product in IRp+2 of the unit vectors and 0, and let 0 denote the angle between
and 0. The following identity then holds for all g 0, 1, 2

hoe,p) { c/( )lC/(1) for p > 0O)p+2 m Sem()Sem(O)=(2)
h(e, p) cos eO, for p 0

For p > 0, (2) is the well-known Addition Theorem (cf. [3, 11.4]). For p 0, it is a
trigonometric identity.

a oFor a given sequence }e=0, we define the vector space (the domain of A)

(3) "/A(p+2) U 2("2p+2) laelZlueml z <
e=0 m=l

and the operator A ’A(p+2) -- /2("2p+2) by

(4)
o h(e,p)

Au() E E aeuemSem()
e=0 rn=l

To solve the interpolation and smoothing problems of the next section, we will apply the
general lemmas for curve fitting problems given in Lemmas 3.1 and 5.1 of [9]. We will need
to express 7-/A (p+2) as a direct sum of two subspaces, where each subspace incorporates the
(p + 2)-dimensional spherical harmonics in its construction. We will also need to display
reproducing kernels for 7-/A (2p+2) and its subspaces, that is, we must show that these spaces
are reproducing kernel Hilbert spaces (RKHS).

"th(e’P) and let Pe be the orthogonal projection operatorLet ’/A,(’p+2) Span{Semm=
that maps 7-/A(f2p+2) onto the eigenspace 7-[A,e(f2p+2) of A with eigenvalue ae. Let NI
{0, 1, 2, 3 }, and let Nl0 {e 6 N A(Peu) 0, for every u 6 7-(A(f2p+2)}, where 110 is
assumed to be a finite set. Then,

(5) -/A (’2p+2) HA ("2p+2) 7"/ ("]p+2)

where

(6) ’l(’p+2) ]"/A,,(’]p+2) ’(’p+2) ]-A,’(’p+2)

are, respectively, the null space of A and its orthogonal complement.
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Let u uo + u, and v vo + v, with uo, vo 7"0A(’p+2), and u, Vl 7"lA("p+2).
"h(g"P)(uo)em(l)O)gm, (Ul, 1)1) - ffp+2[AUl][Avl]df2p+2Then (uo, vo) Yeerg z...,m=l

-h(e,p) [2Yeg z..,m=l [ae (Ul)em(Vl)em and (u, v)A (Uo, vo)] + (Ul, Vl)] are inner prod-
ucts in 7-/ (tip+2), (2p+2), and A (tips.), respectively. It is straightforward to show that
7-/(g2p+2), l(g2p+2), and 7-/(f2p+2) are Hilbert spaces with respective norms Iluoll
((U0, U0)0A) 1/2, Ilulll =- ((Ul, Ul)) 1/2, and IlullA ((u, U)A) 1/2.

To show that -/ (’p+2), [("p+2), and 7-/(f2p+9.) are RKHS, we need to find repro-
ducing kernels for these spaces. Before we do this, we make two assumptions.

ASSUMPTION A. Let p lI befixed, and assume that 7-[ ("p+2) is afinite-dimensional
Hilbert space, i.e., N is a finite set. For future reference, let 1 {, 2 ’k}, and
hi =-- h(i, p).

-h(e,p) 2 [2 Cx,foru 7-/(f2p+2),ASSUMPTION B. Assume notonly that Y-]=o z.-,m= [ae[ [Uem <
but also assume that Yeg [ae[-2h(e, P) < 0 In other words, assume that ae increases at

least asfast as e(p+E+)/2, for some > O, as e --+ 0.

For , 0 2p+2, we define Ko(, 0), K1 (, 0), and K(, 0), respectively, as follows:

(7)
k h(e,p)

i=1 m=l

(8)

and

(9)

h(e,p)

KI(’, 0) E lael-2Sem(()Sem(rl)’
N m=l

K(, 0) -= Ko(, r/) + K1 (, r/).

LEMMA 2.1. Let Assumptions A and B be true. Then Ko, K1, and K are reproducing
kernelsfor 7-(OA(f2p+2), 7-] (p+2), and 7-tA (2p+2), respectively, and 7-t (fp+2), 7-t] (fp+Z),
and 7-/A (2p+2) are RKHS.

Proof For each 6 f2p+2, Ko(, 0) 6 7-/,(f2p+2) as a function of 0, and for each
U0 ’,l ("p+2),

(10)
c h(e,p)

(K0(,’),U0)0A Seim()(uo)eim UO().
i=1 m=l

Hence, Ko is a reproducing kernel, and 7-/ (’p+2) is an RKHS. For K(, 0) as a function of
r/, we have

(11)
h(e,p)

tNg m’-I

1 . lael_2h( P),
O)p+2

where the last equality follows from (2). Thus, K1 (’, 0) 7"lA (p+2) as a function of r/by
Assumption B, and for each u ](f2p+2),

(12)
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Therefore, K1 is a reproducing kernel and 7-/a (f2t,+2) is an RKHS. That K is a reproducing
kernel and -IA (’p+2) is an RKHS then follow from (9), (10), and (12). [3

2.2. The interpolation and smoothing problems. In this subsection we will construct
hyperspherical spline functions that solve the following interpolation and smoothing problems.

PROBLEM A (An interpolation problem). Find a u 7-/A (f2p+2) to minimize

(13) (llull)2=f IAuIZdK2P+2’
p+2

subject to the constraints

(14) u(i)=zi, i=1,2 n,

where A is the operator given in (4), i 6 "p+2, and zi 1, for 1, 2 n, with
denoting the set of real numbers.

PROBLEM B (A smoothing problem). Find a u -/A (2p+2) to minimize

(15) _1 ’-[u(i) zi]z 4- ;L(llull)2
n

i--1

where > O, i "p+2, and zi I, for 1, 2 n.

2.3. The general theory. Our most general result will need the following assumption.
ASSUMPTION C. Assume that ’1, ’2 n are n distinct data points (knots) on f2p+2

chosen so that (i) {K0(j, )1)}=1 spans 7-(OA (g2p+2), and (ii) {K1 (’j, 0)}=1 is a linearly

independent set in ’IA (’p+2), where n >_ mo, with mo =- /=1 h(ei, p).
THEOREM 2.2. Let . > O, let Assumptions A and B be satisfied, and let {1, ’2 n}

satisfy Assumption C. Let [aij] denote the matrix with elements aij, and let denote the
transpose ofa matrix or vector Let Kn,x be the symmetric n x n matrix defined by

(16) Kn,x =- [K1 (’i, ’j)] 4- nXI,

where I is the identity matrix. Let So be the n x mo matrix defined by

(17) So [Se,m((j)]’,

fori 1,2 k,m 1,2 ,hi, andj 1,2 n > too. Define

(18) (z1, z2 Zn)t,

(19) ’(r/)
_

(Sll(0) Se,h,(’/), Se21(’/) Se2h2(’/) Skl(/’/) Sex.hk(’I))t,

and

(20) (0) -= (K1 (’I, 0), K1 (2, 0)," K1 (’n, r/))’,

where zj I. Let UA,n,X be defined by

(21) UA,,,x(O) =-- c(O) + (0) ,
where the n-dimensional vector and the mo-dimensional vector d are defined by

(22) " K-1
n,X I SoX) d =- Y
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with X the mo x n matrix

-I -I -I(23) X =_ (SKn,xSo) SoK.,
Then UA,n,O() is the solution for Problem A, and UA,n,Z(O) for ;k > 0 is the solution for
Problem B. Furthermore, (22)for 6 and are equivalent to thefollowing system ofequations:

(24) Kn, + So= and S= 6.

Proof Assumption C(ii) implies that the n x n matrix [K1 (j, i)] is positive definite and
invertible (cf. [2, p. 13]). It follows that Kn,x is also an invertible n x n matrix for all ,k >_ 0.
We also note that for Z > 0, the n x n matrix I is positive definite. Assumption C(i) and
(7) imply that the range of So is 7-/ (f2p+2), and, therefore, the rank of the matrix So is m0.
Let P0 and P1 be the orthogonal projections of ]-A(’2p+2) onto ’-/0A("2p+2) and -/(’2p+2),
respectively. For j 1, 2 n > m0, we then have that PoK(j, O) Ko(j, O) and
PI K(j, O) K (j, rl).

For . > 0, we now apply [9, Lem. 5.1] by, respectively, identifying K (i, "), Y, , Kn,x,
$6, and I with g’i, , , M, U, and S in [9]. The result is that the solution Ua,n,Z (uzx in

[9]) of Problem B is given by (21) with and d defined by (22) and (23). For ,k 0, [9, Lem.
3.1 similarly implies that u,.,0 is the solution for Problem A.

If and defined by (22) and (23) are substituted into (24), then these equations are
easily seen to be satisfied. Conversely, let and d be defined by (24). The first equation in
(24) gives

(25) " K-( S0)

Substitution of(25) into the second equation in (24) yields a X, and this equation combined
with (25) gives (22). [3

In practice, (24) provides a numerically more efficient algorithm for computing and d
than do (22) and (23), and in all of our computations we have used (24). We now consider the
possibility of removing Assumptions A-C from Theorem 2.2. Toward this end we present the
following lemma and theorem.

LEMMA 2.3. Assume that Assumptions A and B are true. In addition, suppose there is a

positive constant c and a positive integer r such that lae < cre, for each O, 1, where
ze =- e(e + p). Then {K(j, /’/)}=1 is a linearly independent set in 7-[A(p+2) for all distinct

Proof Consider the function q defined on Ip+2 by

(26)
exp(-IlZ/[1-IlZ]), for I1 < /()

O, for I1>1 /
and let ui(o) =- p([r/- i]/e), for 1, 2,..., n, and some e in the interval (0, e0], with

e0 minij Ii Cj I/2, i, j 1, 2 n. Then ui is an infinitely differentiable function in

2(f2p+2) that vanishes outside a ball of radius e with center at i and satisfies ui(j) 8ij,
where ij denotes the Kronecker delta. Furthermore, Aui 6i/2(2p+2) since

(27)
h(e,p)

)2 12 2(llAuillc lae I(ui)eml
e=0 m=l

-< c211(-Lp+2)r ui11232
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where the last inequality holds because ui is infinitely differentiable. It follows that ui 6

7-/A (f2p+2). Taking the 7-/A (f2p+2) inner product of ’=1 jK(j, 0) 0 with ui gives

(28) 0 E olj(X(j, .), Ui) A oljUi(j ol

j=l j=l

This proves the lemma. 0
THEOREM 2.4. Let p N be fixed, and suppose that lael c[e(e + p)]/2 for some

constants c and v satisfying c > O, and v > (p + 1)/2, andfor all O, 1, 2 Then
Assumptions A and B are satisfied, and Assumption C is satisfied whenever the knots Cj, j
1, 2 n, are distinct.

Proof Since 1 {0}, 7-/ (p+2) is the one-dimensional space of constant functions.
Also, m0 1, and Ko(j, 0) 1, for all j 1, 2, n. Assumptions A and C(i) are obvi-
ously satisfied. Assumption B is satisfied since v > (p + 1)/2 implies e0 lael-2h(e, P) <

o. Lemma 2.3 is satisfied since lael c.e/2 < cLre for any integer r > v/2.
Now suppose that =1 otj K1 (j, 0) 0. Then

(29) otjK(j, O) otjKo(j, O) + otjKl(j, O) an,
j=l j=l j=l

where a, E’=I Oj. Using (28) ofLemma 2.3, the 7-/A (p+2) inner product of (29) with the
vector u defined in Lemma 2.3 gives

(30) i an(1, Ui)A,

for all 1, 2 n. Summing this equation over yields

(31) [1--(1,Ui)A]ani=l --0.

Now consider the integrals (1, ui)A f uidp+2. Let 0 denote the angle between r/and i.
Then, df2p+2 sinp OdOdp+l (cf. [3, p. 233]), and sin(0/2) 10 il/2. Consequently,

fo
2 arcsin(e/2) {-sin2(O/2)}(32) (1, ui)A Ogp+ sinp 0 exp

(e/2)2 sin2(0/2

for all 1, 2 n. Here we defined 1, and o 1, when p 0. It follows that

(33)
n

i=1

< 2noop+l arcsin
2

which can be made less than by choosing e sufficiently small. For such a choice of e the
coefficient of an in (31) is nonzero, with the implication that an 0. However, then the
right-hand side of (29) is zero, and oti 0, 1, 2 n, follows from Lemma 2.3. This
proves Assumption C(ii) and the theorem.

Remark 1. For the case p 0 and ae , v > 1, the solution UA,n,X (0), with > 0,
given by Theorems 2.2 and 2.4 coincides with that previously obtained for Problem B by
Wahba [12, (2.2)].

Remark 2. In [13] Wahba considers the case p and ae [e(e + v >_ 2. Since
this ae satisfies Theorem 2.4, we see that 13, Thm 1 is a special case of our Theorems 2.2
and 2.4.
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Remark 3. In general, the linear independence of the set {K(j, r/)}=1 does not imply
Assumption C(i). Since Assumption C(i) is true if and only if the rank of the matrix So is
m0, it follows from a simple modification of the proof of Lemma 6 of [10] that there exist
knots 1, 2 Cn on f2p+2 for which Assumption C(i) is satisfied. Clearly, the set of knots
Cj, j 1, 2 n, must be sufficiently large and carefully chosen so that the rank of the
matrix So is m0. In particular, if m0 > 1, then Cj should not be chosen exactly on the poles or
equators of the spheres.

Remark 4. In this paper we have taken 7-/, (f2p+2) to be a real Hilbert space so that we
may invoke the lemmas in [9]. Applications to quantum mechanics would require a complex
Hilbert space version ofthe theory, and we believe that the modifications necessary to establish
a complex Hilbert space version are straightforward.

Unfortunately for computational purposes, the reproducing kernel K1 (, 0) defined in (8)
is in the form of an infinite series. The only case that we know this series to be summable is
when p 0 and ae v, with v a positive integer. In this case (2) and (8) give

1 2cos0
(34) K1 (0) . KI (, 0) - ’=1 2v

where 0 is the angle between " and 0, and this infinite series sums to the periodic extension of

(_ 1)v-1 (2zr)2-1
(35) K (0) B2v(O/2zr) 0 < 0 < 2rr

(2v)!

where B2 are Bernoulli polynomials of degree 2v (cf. [7], 12] and [8, (9.622)]). The solution
UA,n,X(O) given by (21) is then the well-known periodic interpolating (. 0)or smoothing
(. > 0) polynomial spline of degree 2v 1 and continuity class C2-2[0, 2zr]. The vanishing
of the coefficient of 02 is a consequence of the second equation in (24). For example, when
v 1, (35) is

(t9 )2
(36) K1 (0)

4r 12
0 _< 0 < 2r,

with K1 (0 4- 2kr) _-- K (0), for k 1, 2 and u,,n,0() are the continuous piecewise
linear interpolating polynomials. In other words, u,,n,0() is the solution of the child’s game
of connecting n dots by straight lines on a piece of paper and enforcing periodicity at the
ends. In the general case, Theorem 2.2 gives the corresponding solution to either Problem A
or Problem B for data defined on the surface of a hypersphere of arbitrary dimension, but with
the proviso that the minimum continuity of the spline solution must satisfy v > (p + 1)/2.

For p > 0, it appears that no closed-form expression for the series in (8) exists that
is convenient for computations. In the next subsection we will define modified reproducing
kernels R (’, 0) in a manner analogous to that of [13]. These new kernels will have closed
form expressions, with the consequence that numerical computations are much faster.

2.4. The modified theory. In generalizing Wahba’s modified spline theory to higher
dimensions, we consider only the case p e N with p > 0, and

(37) a [( + p)]/,

for all 0, 1, 2 where v is an integer or half integer satisfying v > (p / 1)/2.
Theorem 2.4 holds in this case. The RKHS 7-/(f2p.+2) is 7-/(f2p+2) }. When v is an

--,h(e, p)integerthe RKHS 7-/ (f2p+2) is equal to {u 7-(,(f2p+2) u() =1 z-.,m=l (U)mSem(),
with u, u(1, u(2 u(v-l absolutely continuous}, where u(k denotes a kth-order partial
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derivative. By (8) and (2), the reproducing kernel K1(, r/) with respect to the norm I1" I1
becomes

(38) K1 (’, 0)
1 K- 2g+p cP/2) (. 0).

pr.Op+2 te(e + p)]

To construct the analogue of Wahba’s modified splines in higher dimensions, we define
for Ul 6 7-/(f2p+2),

(39)

where

]1/2o h(e.,p)

12 12IlUll[ E E Ig
e=l m=l

(40) ge =- e + - (e + 1)(e + 2)... ( + 2v 1)

with 2v any integer satisfying 2v > p + 1. It is not difficult to show 11 that the new norm

I1" II is topologically equivalent to I1" I1 in the sense that there exist positive real numbers
a and b, a < b, such that

(41) allulll Ilull]e bllulllA
A reproducing kernel for 7-/ (f2p+2) with respect to the norm I1" I1 is

(42)
o h(e,p)

RI(, ) Igel-2Sem()Sem(rl)
e=l m=l

2 o Cp/I(" O)
pWp+2 (e + 1)(e + 2)... (e + 2v 1)

where the last equality is a consequence of (2). It follows that 7-/ (f2p+2) is a RKHS with
respect to the norm II II .

We note that R1 is a function of only z 0. To express R1 (, 0) in a closed form that
is convenient for computations, we apply the following two equations"

l f01 1
(43) (1 -h)rhedh

r! 2)... (e + r + 1)

for r 0, 1, 2 and

(44)

_
heCPe/2(z (1 2hz + h2)-p/2 1,

e=l

for Ihl < 1. Equation (43) is just the repeated application of [8, (2.151)], and (44) is taken
from [1, Table 22.9.3]. Applying (43) and (44) to (42), R1 ((, 0) can be expressed as

(45) Rl(,O)=2[q(2v--2, p,.O)_ 1 ]pWp+2 (2v 2)! (2v 1)!

where

(46) q (r, p, z) - f01 (1 h)"(1 2hz + h2)-p/2dh.
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TABLE
Values ofthe integrals q (r, p, z) for selected values oft and p.

q(1, 1, z)
q(2, 1, z)

-S+L+I
[-L(3z-1)+3S(z-1)+4 3z]/2
[(15z -27z + 14)- S(z 1)(15z- 7) + 3L(z 1)(5Z + 1)]/6
[(-105z + 240z 161z + 32) 3t(z 1)(35z lOz 13) + 5S(z 1)2(21 + 1)1/24

q(3, 1, z)

q(4, 1, z)

q(2, 2, z) -2Tz N +
q(3, 2, z)

q (4, 2, z)

2T(z 1)(2z 4- 1) + N(2z- 1) 4- (5 4z)/2
-4T(z- 1)(2z 1) -4N(z- 1)z 4- (12z 21z -b 10j/3

q(5, 2, z) 4T(z 1)2(4z + 2z 1) + 2N(z 1)(4z 2z 1) [(4z 1)(24z 48z + 23)]/12
q(4, 4,’z) "-2N 4- [-2T(2z 4- 2z 1) 4- 2z]/(z 4- 1)

q(5, 4, z) 2N(3z 2) 4- [2T(z 1)(6z 4- 8z 4- 1) 4- (-12z 4- 5z 4- 9)]/[2(z 4- 1)]

q(6, 4, z) [(48z3"48z2-35z4-37) 12T(z 1)(8z3 ’4- 6z 6z 3)]/[3(z 4- 1)]
-4N(z- 1)(4z- 1)

qi7, , z) [(-480z4 + 744Z + 176z -645 + 211)+ 48T(z- )2(20z3 + 24z 3z- 6)]/[12(z + li’]
+2N(z- 1)(20z 16z- 1)

In Table we display the values of the integrals q (r, p, z) for specific values of r and p.
The letters S, N, L, and T represent the following functions of z:

(47) S /2- 2z,

(48) N (1 z) log(2 2z),

(49) L=(1-z) log
/1-z /l),

(5O) arctan
4i+

/l+z

The closed-form expressions in Table 1 were generated by a MACSYMA symbolic manipu-
lation program. We note that the formulas for p 1 are the same as those in 13].

We summarize the results of this subsection in the following theorem.
THEOREM 2.5. Let ae be defined by (37), and let (j . ’p4-2, j 1, 2 n, be distinct.

Then, the solution UB,n,O(O) to Problem A with (llull)2 replaced by (llull)2, and the solution

UB,n,x(rl), ) > O, to Problem B with (llull)2 replaced by (llull)2, is given by

(51) un,,,x(0) ?’(0)" t3 + }’ (0)" d,

where . > O, and and are determined by the system ofequations

(52) Rn,x. nt- So , S-- 6,

with So, , and defined by (17)-(19), respectively, and R.,z and Y defined, respectively, by
(16) and (20) with K1 replaced by R1, and Rl(, 0) defined by (45) and (46).

In the next section we will use Theorems 2.2 and 2.5 to fit functions defined on "p+2, for
p 1, 2, and 4.
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3. Numerical computations.

3.1. Methods used for computations. In most of our computations we have chosen the
ae in (3) and (4) to be of the form of (37). However, in a few computations (cf. Tables 9 and
10) we have also used the form

(53) ae [e(e + p)(e 1)(e 2)... (e Ls)]v/2

with Ls > 1, where Ls, is the highest-order hyperspherical harmonic used in the computation.
Then N {0, 1 L }. In this case the hypotheses of Lemma 2.3 are satisfied, but the
hypotheses ofTheorem 2.4 are not satisfied. We have tried various values of v and have found
in most cases that the best results are obtained with v + (p + 1)/2.

Our tests showed that K1 (, 0) could be approximated to at least ten significant digits
of.accuracy by truncating the infinite sum defining K1 (, 0) (cf. (38) or (2) and (8)) to 40-
50 terms. The method used to compute the coefficients in the truncation of K (’, r/) uses
the recurrence relations arising in the telescoping orthogonal expansions for the Gegenbauer
polynomials (cf. [4], [11]). The computation of the modified reproducing kernel R (;,
was easily done once q (r, p, z) given by (46) was computed. Selected values of q (r, p, z) for
p 1, 2, and 4 appear in Table 1.

The basic problem is to approximate a given function u(o) defined on p+2 using hyper-
Lsspherical harmonics and/or hyperspherical splines. Using m0 =- e=0 h (e, p) hyperspherical

harmonics and n > m0 hyperspherical splines (i.e., n data points), the problem is to find
coefficients den and cj such that

Ls h(e,p)

(54) u(o)
e=O m=l j=l

where W(j, ) denotes either K (j, ) or RI(’j, ), and Cj for j 1, 2 n are distinct
knots on f2t,+. The approximation

_
in (54) may be in the sense of either Problem A or

Problem B. By Theorem 2.2 or 2.5 the solution is obtained by solving the system of equations

(55) Wn,x + S0
where So =-- [Sem(j)]’, (z1, z2 Zn)’ with z/ ]R, and Wn,x =-- [W(j, i)]+n)I, with. 0 for Problem A, and . > 0 for Problem B. The linear algebraic systems in (55) were
solved using LINPACK subroutines.

For comparison purposes, we have also considered the problem of approximating u(o)
using only m0 hyperspherical harmonics, that is, with cj O, j 1, 2 n, in (54). In this
case we chose n > m0 collocation points 0i, 1, 2 n, on f2t,+2 in such a way that the
rank of the n m0 matrix So [Sem(rli)]’ was m0. The system of equations S0 , where

is the vector with components u(rli), was then solved using LINPACK subroutines.
The maximum and average absolute errors were evaluated over a grid obtained by divid-

ing q into n equal subintervals, and each of the angles 0i, 1, 2 p, into no equal
subintervals, and then counting all coinciding points only once. For p 1 we used n 21
and no 27. Forp 2weusedn no 19, and forp 4weusedn 8and
no 7. Our tests showed that increasing the number of grid points did not significantly affect
the results.

When Ls 0, the most successful procedure that we have found in the selection of knots
on f2p+2 is to first solve (55) using the set of knots suggested by Abramowitz and Stegun ([ 1,
p. 894]). In particular, the initial set of knots used for p are either (4-1, 0, 0), (0, 4-1, 0),
(0, O, 4-1)} or !(4-1, O, 0), (0, 4-1, 0), (0, O,-I-1), (4-l/i-/, 4-/i/2, 0), (-i-/ry/2, O, -i-/-i/2),
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(0, q-1CT, 4-V/2)}. Analogous initial sets of knots were used for p > 1. After fitting is
done using these knots (A & S knots), a search over the grid points is made for the maximum
absolute error and its coordinates on p+2. A new knot is then added at the place where
the maximum absolute error occurs, and the procedure is repeated until a reasonable result is
obtained. Our numerical experience showed that shifting the initial knots or changing their
number did not significantly affect the eventual results.

The procedure of first using the A & S knots and then adding the knot where the maximum
absolute error occurs repeatedly until a reasonable result is obtained did not do so well when
Ls > 0. The matrix So quickly became ill-conditioned using this method. Much better results
were obtained by shifting the initial A & S knots as indicated in Remark 3.

3.2. Examples used for computations. In testing the hyperspherical spline approxima-
tions and comparing them with hyperspherical harmonics, we have used functions of three
basic types. For f2p+2, p 1, 2, 4, the first two functions F1 and F2 were defined,
respectively, by

5

(56) F1 (’) F2(’)
2 + cos(( al) j=l

2 + .aj

where aj f2p+2, j 1, 2, 3, 4, 5, are arbitrarily chosen distinct fixed vectors 11 ]. The third

function G was defined for (0, b) 6 g2p+2 by

2
(57) G(o ) =_

2 + p-1 E/P=I Oi ._ sin(/2) VIP=I sin 0

All three functions are positive. In particular, the ranges are 0.333 < F1 () _< 1, 1.666 <
F2() < 5, and 0.272 < G (0, b) < 1, for p 1, 2, 4. Functions F1 and F2 have continuous
partial derivatives of all orders. The function F1 depends only on the angle 0 between and
al, and is, therefore, symmetric under rotations about the axis defined by al. The function F2
does not have this symmetry. The function G is continuous but has discontinuous directional
derivatives at the poles. It does not have any symmetry. When p 1, we have taken the con-
stant vectors aj (Oj, j) to be al (0.3333r, 0.1667zr), a2 (0.1234zr, 0.9876zr), a3
(0.9999zr, 0.0054zr), a4 (0.5134zr, 0.4988zr), and a5 (0.7500zr, 1.7890zr), where 0 and

b are the usual polar angles.

3.3. Summary of results. We have compared the maximum absolute errors and the
average absolute errors when solving Problem A using the original hyperspherical splines K1
versus the modified splines R for p 1, 2, 4. As a general rule, we have found that the errors
using the R1 splines vary from one to three times those obtained using the K1 splines. One
of the poorest showings for the modified splines was for the function F1 with p 1, and this
case is shown in Table 2. For the function G with p 1, the R1 splines performed almost as
well as the K1 splines. Our computations using the K1 splines took approximately 30 times
as much computing time as those using the R1 splines, and, with the exception of Tables 9 and
10, we have used the R splines for the remainder of the calculations reported in this paper.

In Tables 3-5 we compare the Problem A errors obtained using N m0 spherical
harmonics versus N n modified hyperspherical splines for the functions F1,/, and G,
respectively. We note that the spherical harmonics did exceptionally well for function F1,
which is rotationally symmetric about the line a. This is not surprising because this problem
is equivalent to fitting with respect to the variable z _= (, al) using Legendre polynomials.
To a lesser extent, spherical harmonics seem also to be sensitive to the smoothness of the
function being fit, and indeed the fit for the function F2 is better than that for the function G.
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On the other hand, the spline fits do not seem to be affected so much by the smoothness or
symmetry properties of the functions being fit. Using 50 R1 splines yields approximations
for each function that have a maximum (average) absolute error within 0.02 (0.01). For the
functions F1 and F2 the maximum (average) absolute errors are within 1.2% (0.5%) of the
minimum values of the corresponding functions, and for G the maximum (average) absolute
error is within 6.4% (3.4%) of the minimum value of G.

TABLE 2
A comparison of maximum absolute errors and average absolute errors when fitting function FI using n KI

splines versus using n R splines with v 2.0for p 1.

n

20
30
40
5O

gl Splines RI Splines
Max"’ abs. err. Ave. abs. err. Max. abs. err. Ave. abs. err.

0.0162 0.0065 0.0192 0.0083
0.0064 0.0021 0.0103 0.0039
0.0030 0.0012 0.0071 0.0027
0.0023 0.0008 0.0043 0.0018
0.0016 0.0006 0.0032 0.0013

TABLE 3
A comparison ofmaximum absolute errors and average absolute errorsfor spherical harmonicfits versus R

splinefits with v 2.0 usingfunction Flfor p 1. (N mo number ofspherical harmonics or N n number
ofhyperspherical splines.

N
10
20
30
5O

Maximum absolute error
Sph. ,harm. Rl Spiines
0.0022 0.0192
0.0013 0.0103

0.4403E-04 0.0071
0.6239E-05 0.0032

Average absolute error
,Sphr, harm. R Splines
0.0006 0.0083
0.0002 0.0039

0.1056E-04 0.0027
0.6034E-06 0.0013

TABLE 4
A comparison ofmaximum absolute errors and average absolute errorsfor spherical harmonicfits versus R1

splinefits with v 2.0 usingfunction F2 for p 1.

N
10
20
30
50

Maximum absolute error
Sph. harm. R Splines
0.1906 0.1450
0.1554 0.0636
0.0422 0.0398
0.0048 0.0193

Average absolute error
Sph.,,harm. Rl,Splines
0.0525 0.0488
0.0356 0.0255
0.0099 0.0165
0.0005 0.0081

Tables 6 and 7 give the corresponding comparison for the function F2 in four-dimensional
(p 2) and six-dimensional (p 4) space, respectively. We note that the hyperspherical
splines are now out performing the spherical harmonics even for the infinitely differentiable
function F2, and the higher the dimension of the space the more the advantage. As expected,
however, the absolute errors increase as the value of p increases. In Table 8 we see that
hyperspherical splines are yielding reasonable results for the more difficult function G when
p=4.

Finally, we have numerically tested the possibility of combining hyperspherical har-
monics with hyperspherical splines. In particular, we have used the ae defined in (53)
for L and 2, and p 1 and 2. Tables 9 and 10 show our p 1 ProblemA
computations for the functions F2 and G, respectively. In these computations we used n
of Wahba’s original K splines plus the appropriate Se.m spherical harmonics corresponding
to Ls 0, 1, 2. These computations using K1 splines were very time consuming and not as
stable as our previous R1 spline computations. However, we see that the addition of the three

1, and to a lesser extent the five 2, spherical harmonics appears to be beneficial for
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TABLE 5
A comparison ofmaximum absolute errors and average absolute errorsfor spherical harmonicfits versus

splinefits with v 1.5 usingfunction Gfor p 1.

Maximum absolute error
N Sph. harm.
15 0.3306
22 0.2686
30 0.3953
51 0.3460

Rl Splines
0.0609
0.0401
0.0307
0.0173

TABLE 6

Average absolute, error
Sph. harm. RI. Splines
0.0763 0.0285
0.0652 0.0180
0.0856 0.0132
0.0472 0.0091

A comparison ofmaximum absolute errors and average absolute errorsfor hyperspherical harmonicfits versus
RI hyperspherical splinefits with v 2.5 usingfunction F2 for p 2.

N
12
22
30
40
50
58

Maximum absolute error
Sph. harm. R Splines
0.4581 0.1145
0.2821 0.0471
0.4632 0.0375
0.0462 0.0273
0.0546 0.0176
0.0381 0.0155

TABLE 7

Average absolute error
Sph. harm. Ri Splines
0.1359
0.0476
0.1022
0.0092
0.0107
0.0070

0.0310
0.0158
0.0126
0.0089
0.0070
0.0054

A comparison ofmaximum absolute errors and average absolute errorsfor hyperspherical harmonicfits versus
R hyperspherical splinefits with v 3.5 usingfunction F2 for p 4.

N
15
20
30
40
5O
60

Maximum absolute error
Sph. harm. R Splines
0.5810 0.1528
0.5327 0.1008
0.4637 0.0636
0.2779 0.0503
0.2681 0.0413
0.2315 0.0372

TABLE 8

Average absolute error
Sph. harm.
0.1521
0.1178
0.0813
0.0663
0.0463
0.0416

R1 Splines
0.0458
0.0350
0.0269
0.0225
0.0176
0.0152

Computed values ofmaximum absolute errors and average absolute errors whenfittingfunction G using n R
hyperspherical splines with v 3.5for p 4.

Max. abs. error
n Rl Splines
100 0.1034
110 0.0971

TABLE 9

Ave. abs. error
RI Splines
0.0334
0.0320

A comparison ofmaximum absolute errors and average absolute errors using ( O) spherical harnonicplus
n KI splines versus 4 ( O, 1) spherical harmonics plus n K1 splines versus 9 (e 0, 1, 2) spherical harmonics
plus n K splines usingfunction F2 with v 2.0for p 1.

n
18
20
22
24
26

Maximum absolute errors
1S + nKl 4S + nK 9S + nKl
0.0348 0.0126 0.0495
0.0300 0.0059 0.0230
0.0279 0.0055 0.0085
0.0226 0.0044 0.0063
0.0213 0.0036 0.0059

Average absolute errors
"IS + nKl 4S + nK 9S + nK
0.0105 0.0023 0.0132
0.0094 0.0016 0.0054
0.0080 0.0015 0.0022
0.0069 0.0011 0.0017
0.0066 0.0007 0.0014

TABLE 10
A comparison ofmaximum absolute errors and average absolute errors using ( O) spherical harmonicplus

n KI splines versus 4 ( 0, 1) spherical harmonics plus n Kl splines versus 9 spherical harmonics ( 0, 1, 2)
plus n KI splines usingfunction G with v 2.0for p 1.

0 0.0903
20 0.0328
30 0.0312
40 0:0179

Maximum absolute errors
IS+ nK 4S + nK 9S + nK

0.4648
0.2346
0.0957
0.0698

0.3358
0.1255
0.2112

Average absolute errors
1S + nK 4S + nK1 9S + nKl
0.0248
0.0120
0.0101
0.0063

0.1348
0.0565
0.0256
0.0115

0.0663
0.0351
0.0476
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function F2 but not for function G. In general, we found that if hyperspherical harmonics fit
a function reasonably well, then the addition of hyperspherical harmonics to our hyperspher-
ical spline fits showed an improvement. But functions like G, which lack smoothness and
symmetry, seem to be better fit using only hyperspherical spline functions.

Acknowledgments. The authors thank the referees and G. Wahba for several valuable
suggestions which have helped us to improve the manuscript. The authors have also bene-
fited from discussions about this work with Gy. Bencze, B. S. Bertram, G. H. Berthold, E
Doleschall, B. Fisk, S. E Huestis, Z. C. Kuruolu, G. W. Pletsch, I. H. Sloan, S. L. Steinberg,
D. Sulsky, T. G. Trucano, M. Trummer, and A. J. Waters.

REFERENCES

M. ABRAMOWITZ AND I. STEGUN, Handbook ofMathematical Functions with Formulas, Graphs, and Mathe-
matical Tables, Applied Mathematical Series, Vol. 55, National Bureau of Standards, Gaithersburg, MD,
1964.

[2] N. ARONSZAJN, Theory ofreproducing kernels, Amer. Math. Soc. Transl. Set. 2, 68 (1950), pp. 337-404.
[3] BATEMAN MANUSCRIPT PROJECT, Higher Transcendental Functions, Vol. 2, A. Erd61yi, ed., McGraw-Hill, New

York, 1953.
[4] P. BECKMANN, Orthogonal Polynomialsfor Engineers and Physicists, The Golem Press, Boulder, CO, 1975.
[5] C. CHANDLER AND A. G. GIBSON, N-body quantum scattering theory in two Hilbert spaces. V. Computation

strategy, J. Math. Phys., 30 (1989), pp. 1533-1544.
[6] W. FREEDEN, Spherical spline interpolation-basic theory and computational aspects, J. Comput. Appl. Math.,

3 (1984), pp. 367-375.
[7] M. GOLOMa, Approximation by periodic spline interpolants on uniform meshes, J. Approx. Theory, (1968),

pp. 26-65.
[8] I.S. GRADSHTEYN AND I. M. RYZHIK, Table ofIntegrals, Series, and Products, Academic Press, San Diego, CA,

1980.
[9] G. KIMELDORF AND G. WAHBA, Some results on Tchebycheffian splinefunctions, J. Math. Anal. Appl., 33 1971),

pp. 82-95.
10] C. MOLLER, Spherical Harmonics, Lecture Notes in Math., Vol. 17, Springer-Verlag, New York, 1966, pp. 1-20.
[11] H.J. TAIJERON, Splines on Hyperspheres, Ph.D. Dissertation, Dept. Mathematics and Statistics, University of

New Mexico, 1989.
[12] G. WAHBA, Smoothing noisy data by splinefunctions, Numer. Math., 24 (1975), pp. 383-393.
[13] Spline interpolation and smoothing on the sphere, SIAM J. Sci. Statist. Comput., 2 (1981), pp. 5-16;

3 (1982), pp. 385-386.



SIAM J. ScI. COMPUT.
Vol. 15, No. 5, pp. 1126-1133, September 1994

() 1994 Society for Industrial and Applied Mathematics

MONOTONIC SMOOTHING SPLINES FITTED BY CROSS VALIDATION*
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Abstract. A practical method for calculating monotonic cubic smoothing splines is given. Linear sufficient
conditions for monotonicity are employed, and the spline coefficients are obtained using quadratic programming.
The method enables efficient cross-validation estimates of the smoothing parameter to be made and confidence
intervals to be calculated for the resulting spline. The results are easy to extend to histogram data.

Key words, smoothing spline, spline, monotonic, cross validation

AMS subject classifications. 65D07, 65D10

1. Introduction. There are a number of practical spline based methods for monotonic
interpolation [1], [3], [5], [6], [9], [10], [12]-[14], [17], [18], [22], [30], but monotonic
smoothing splines have received less attention. Unconstrained smoothing splines are useful
tools for data analysis principally because of the cross-validation methods pioneered in [4] for
choosing the amount of smoothing appropriate for any dataset and the further work in [27] on
estimating confidence intervals associated with the resulting spline even when the variance of
the original data is unknown. Similar results are not available for monotonic smoothing splines
[24]. A cross-validation method for linearly constrained thin-plate splines has been developed
in [25], but monotonicity or confidence intervals were not considered. Subsequent work [20],
[15] on monotonically constrained cubic smoothing splines requires the level of smoothing
to be chosen by eye, whilst [7] is concerned with efficient algorithms for more restrictive
constraints involving convexity and does not address the choice of smoothing parameter.
Confidence intervals are not considered in 15] or [7]. Ramsay [20] plots confidence intervals
on one figure, bu(does not discuss their calculation or properties.

The practical methods for calculating monotonic smoothing splines proposed in [15]
and [20] involve constraints on the parameters of B-splines, which yield sufficient (but not
necessary) conditions for monotonicity. In this note I instead use the piecewise polynomial
representation of a spline and some sufficient conditions for monotonicity first used in 14]
for monotonic interpolation with piecewise cubics. This yields a quadratic programming
problem with linear constraints, and by considering some properties of the active set method
for positive-definite quadratic programming given in 11 it is possible to extend the cross-
validation and confidence interval methods of [4] and [27] to monotonic cubic smoothing
splines. A demonstration of the technique applied to artificial data is given at the end of this
article.

2. The method. The set of n "knots" {(xi, ai)} such that xi < xi+l for 1 < < n
can be interpolated by a curve s(x) defined by

S(X) Si(X) aifoi(X) -Jr ai+l)li -t-- ci’oi(X) + Ci+l’li(X) for X < X < Xi+l,

where the basis functions 4 and , are defined in Table 1; ci s"(xi), ai s(xi), and si(x) is
a section of cubic polynomial. The ci’s can be obtained from the ai’s by requiring continuity
of s(x), s’(x), and s"(x) at each xi, and setting Cl Cn 0, this yields the matrix system

Dc Ha,

where D and H are defined in Table 1, a= (a l, a2 an)r and c (c2, c3 cn-1)r. The
interpolant calculated in this manner is a cubic spline.

*Received by the editors August 14, 1991" accepted for publication (in revised form) August 2, 1993.
tNatural Environment Research Council (NERC) Centre for Population Biology, Imperial College, Silwood

Park, Ascot, Berkshire SL5 7PY, United Kingdom (snw@ +/- c. ac. uk).
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TABLE
Definitionsfor a cubic spline hj Xj+l xj.

Definitions of H and D. All elements are 0 except the following.

Hj,j 1/hj nj,j+l ---(1/hj + l/hi+l) Hi,j+2 1/hj+l
Dj,j (hj + hj+l)/3 < j < n 2

Dj,,i+l hy+l/6 O,]+l,j hi+l/6 < j < n 3

Definitions of P and U. All elements are 0 except the following.

Pj,j=2 <j<n

Pj,j-1 hj/(hj + hj+) Pj,j+ Pj,j-I Uj,j-i -3Pj,j-1/hj-
Uy,,]+l 3P/,j+l/hj U,i,] -(Uj,]+I + Uj,j-I) 2 < j < n

P1,2 UI,1 =-3/hi UI,2 =-UI,I
Pn,n- Un,n-1 -3/ hn_l Un,n -Un,n-I

(])oj(X) (Xj+I X)/ hj
lj (x xj)/ hj

Basis functions for a cubic spline.
Yoj(x) {b0j(x) dPoj(x)}h}/6
’lj(X) {lj(X) $lj(x)lh]/6

If y is a vector of observations, which we wish to approximate with the spline s(x), then we
seek a the vector of the values of the spline at the knots such that

xn "(1) [s"(x)]2dx + -IlW(a- y)ll 2
n

is minimised. . is the "smoothing parameter," W is a diagonal matrix of observation weights,
and I1" is the standard Euclidian norm. The resulting curve is a cubic smoothing spline.
Extensive discussion of spline theory is given in [2], [8], [23], [28], and at a more introductory
level in 16]. It is easy to show that (1) is equivalent to minimising

(2) a’rGza + cxa,
x. TWTw and Gx 2[HTD H+ n

L-WTW].Gx is clearly nonnegative definite.where cxT -2 j,

The minimisation of (2) will not, in general, give rise to an s(x), which is monotonic,
but conditions for monotonicity of a cubic over an interval [xi, Xi+I] are well known and
can be expressed in terms of/ and 3 where/ s’(xi+l)/Ai, s’(xi)/Ai, and Ai
(ai+l ai)/(Xi+l xi). The necessary and sufficient conditions for monotonicity are that
8 and/5 should lie within the region of Fig. 1, defined by the union of A, B, and C. These
nonlinear constraints are used in several shape-preserving interpolation schemes, notably [30],
[9], and ]. Minimisation of (2) subject to these constraints requires quadratic programming
with nonlinear constraints. This is not an attractive proposition (see 11, Chap. 6]) and instead I
propose to follow 14] in using the linear sufficient conditions for monotonicity 0 _</5 <_ 3 and
0 _< 3 _< 3; that is/ and 3 lie within region A of Fig. 1. If b (s’(xl), s’(x2) S’(X.))T

then, for a cubic spline, b can be written as a linear transformation of a: b Ba, where
B p-1u and P and U are defined in Table 1. Writing Bi for the th row of B, it is now
possible to write the sufficient conditions for monotonicity over [xi, xi+] in terms of a:

3(ai+l --ai)/hi -Bia > 0, 3(ai+l --ai)/hi --Bi+la >_ 0,

Bia_>0, Bi+la>_0 and ai+-ai >_0
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FIG. 1. The monotonicity regionfor a section ofa cubic spline. A is the subregion usedfor this work. and
are defined in 2.

for s (x) nondecreasing and

Bia- 3(ai+l -ai)/hi > O, Bi+la- 3(ai+l -ai)/hi >_ O,

Bia < 0, Bi+la < 0, and ai -ai+l > 0

for s(x) nonincreasing, where hi Xi+l xi. Clearly, the sufficient conditions for mono-
tonicity of s(x) over [xl, Xn] can be written as

(3) Ca > [0],

where [0] is a vector of zeros. Additional absolute constraints on any ai are trivial to add to
this constraint set. It is fairly easy to show that these constraints are equivalent to those used
in [15] (which are apparently similar to those used in [20]). Note also that any straight line
sloping up or down, as appropriate, will satisfy the monotonicity constraints.

Minimisation of (2) subject to (3) is a positive definite quadratic programming problem,
which will be solved using the algorithm given in 11 ]. To extend cross-validation methods
from unconstrainted to constrained cubic splines some features of this algorithm must be
considered.

The method starts with a feasible vector a, which violates none ofthe inequality constraints
in (3) but which may be constrained to satisfy ofthe constraints as equality constraints. These
exact constraints are termed an "Active set" and can be expressed CAa > [0]. The algorithm

is straightforward.
The x n matrix CA is factorized CAQ [0, T], where T is a x matrix such that

T/,j 0 if + j < n, 0 is an appropriate matrix of zeros, and Q is an n x n orthogonal matrix
constructed from the product of the identity matrix and a series of Householder matrices
applied to the right. The first n columns of Q define a matrix Z, the columns of which
form a basis for the null space of CA, the space in which any movement is possible whilst still
satisfying the active set as equality constraints. The remaining columns of Q form the basis
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’2 of the space orthogonal to Z: this is the "range space" of the active set. Given Z a search
direction p can be found that is guaranteed not to violate the active constraints. The search
direction p comes from the solution ofZCGxZpz -ZTg, where p Zpz and g Gxa+ex.
The vector a* a + p is the position of the minimum of the quadratic problem within the null
space of CA, but if a step from a to a* would violate one or more of the inactive constraints,
then a shorter step must be taken to the constraint nearest a and that constraint must be included
in an updated active set matrix C.. The algorithm then proceeds from the beginning with the
new CA and a. If the solution has reached a constrained minimum a*, then it is necessary to
find out whether all the active constraints are currently required. This is achieved by evaluating
the Lagrange multipliers associated with each active constraint. If no constraints need to be
deleted from C., then the problem has been solved. Extensive computational details are given
in [11 ]. What matters here are the spaces defined by and Z, which will be used in the
method of choosing Z.

Assume a data model Yi f(xi) -i-ei, where f(x) is the underlying but unknown smooth
function and the ei’s are error terms such that E(8i) 0, E(sigi) W]-20"2, and E(F,isi) 0
if j. Let sx (x) be the monotonic smoothing spline fitted to y by solving (2) subject to (3).
The spline sa(x) is intended to be an approximation of f(x). A reasonable measure of the
success of this approximation is provided by

(4) R(.) w2i [f(xi) sx(xi)12/n IIW(f- a*)llZ/n,
i=1

where Wi,i wi and Wi,j 0 if : j. The term L should be chosen to minimize the expected
value of R(.). In the unconstrained case it has been suggested that . should be chosen so that
Ila* YllZ/n a2, [21], but in [26] it is shown that this leads to oversmoothing and a practical
estimator of R(.) is derived. Reference [26] uses the fact that unconstrained smoothing with
spline functions can be summarised by a linear equation of the form a Ay, where A is called
the "influence matrix." In general, such an equation cannot be constructed for the constrained
spline function, since the constraints also enter the solution. However, it is possible to estimate. by minimisation of an estimator of R(.) for any particular active set CA. As mentioned
above the null space of CA, Z has a complementary "range" space /and an initial estimate
a of the solution a* of the spline fitting problem can therefore be written a I’).a + Za.
The solution a* is therefore a* Ka +/y, where K (I Z(ZTGzZ)-lZTGx)2 and, 2Z(ZVGxZ)-IzTwTw. The attractive feature of this representation is that a is

uniquely determined by the constraints in the active set, unlike a. It is now easy to show that
for a given Ca, minimisation of the E{R(.)} can be achieved by minimisation of

(5) /() IIW(a* y)ll2/n + 2cr2Tr([t)/n
(cf. [4, Eqn. (1.8)]). So one way of finding the value of . is to search for the turning point
of (5), which is consistent with the active set implied by such a turning point. This method is
adopted in the work reported below.

In the unconstrained case, [4] shows that the value of ) minimising the expected value
of (4) can be estimated without prior knowledge of a using the process of generalized cross
validation. If s[kl(x) is the spline function calculated using every point in the data vector y
except Yk, then

V()) uk(stxkl(x) yk)2/n
k=l

is taken as a measure of the badness of . (uk is a weight compensating for uneven mesh, etc.).
So is chosen by minimisation of V (.). Once again the presence of the constraints in the
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solution of the monotonic spline problem precludes direct use of the results in [4], but by using
intermediate results from the paper it is easy to show that for a given active set minimisation
of:

(6) I(.) nllW(a* y)l[2/[Tr(l-/)]2

is equivalent to minimisation of V0) with respect to .. Equation (6) can be used in the same
way as (5) to obtain an estimate of .. has the same role in choosing the smoothing parameter
for the monotonic spline that A has for unconstrained spline smoothing. Minimisation of (6)
should be compared with the method for constrained multivariate thin-plate splines given in
[25].

can be used to extend the results on confidence intervals for unconstrained spline
smoothing given in [27] to the constrained case. For the spline fitted by cross validation,
an estimate of a2 ao IIW(a* y)ll/Tr(I- .i.), can be obtained. Ninety-five percent

"confidence intervals," Pv 2aov/Tr([WTW]-’)/n or pR 2av/Tr(,[wrw]-’)/n, can
also be calculated depending on whether or not cr is known a priori. Finally note that all the
results given above can easily be applied to area approximating splines as used in [29],.for
example.

3. Some examples. The three monotonic relationships, f(x), shown in Fig. 2 were
"sampled" at 45 equally spaced points with three levels of additive Guassian noise: standard
deviation 0.05, 0.1, and 0.2. The noise was generated using methods given in [19]. Fifty
replicate sets of data were generated for each relationship at each noise level. Three splines
sV (x), s(x), and st(x), with smoothing parameters Zv, .R, and .t, were fitted to each set

of data by minimisation of 17(.),/(), and Ila* fll2/n, respectively. The spline s (x) is
closest to the function from which the data was sampled and enables the efficacy of sxv (x) and

sff (x) to be examined. For the spline fitted by cross validation, rv was calculated and 95%
"confidence intervals," were produced for both sv (x) and s(x). In all cases W was set to the
identity matrix.

Several test statistics were calculated for each replicate as follows.
(i) XE is the proportion extra mean square deviation from f (x) ofsv (x) and sz (x) in

comparison to the mean square deviation ofs (x) from f (x)" this is intended to see how well
the spline recaptures the true underlying function, in comparison with the best achievable.

(ii) RM measures the closeness of the estimated smoothing parameter to the one that
would have led to the most accurate reconstruction of the underlying function. RM is the ratio
of log(.v) or log(.) to log(kt).

-Vll (x)-t-pv/,(iii) CIC, the percentage of f (x) within the region the region defined by .
tests the effectiveness of the confidence intervals.

Means and standard deviations for these quantities are given in Table 2 for each treatment.
Table 2 also records the mean number of constraints active at the solution K and the mean
estimated value of or, cry. Figure 2 shows three randomly selected examples from the set of
simulations.

The estimates of r, cry, are excellent, although the confidence intervals obtained from
them are slightly too narrow when calculated from the minimisation of (6) and are slightly too
wide when calculated by minimisation of (5). The deterioration in the ability of the splines

szv (x) and sff (x) to recapture the underlying relationship f(x) as the level of noise increases
is unsurprising. If cr is large enough, then minimisation of (5) or (6) is bound to produce a
straight line whatever the form of f(x). This tendency for the method to produce a smoother
relationship as the noise level becomes very large also explains the systematic tendency to
underestimate . and, therefore, k relative to s (x).
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FIG. 2. The dotted lines show thefunctions fi(x) used to test the splinefitting algorithms, as detailed in 3. The
numbers in the corner ofeach graph are thefunction numbers ofTable 2. The continuous lines show 95% confidence
regions for a spline fitted to the data shown by cross validation, tr =0.2, 0.1, and 0.05 for graphs 1, 2, and 3,
respectively.

TABLe. 2
A summary ofthe results of 3. Thefigures are means over 50 replicates of the statistics. Figures in brackets,

O, are standard deviations. Thefigures in square brackets, [], are the mean numbers ofconstraints activefor stx. The
notation 4- is used to prefix the standard error ofthe mean. Thefunction, f, numbers refer to Fig. 2. Columns are

for splinesfitted by minimisation of(5) and for splinesfitted by minimisation of(6).

Stat

XE’
RM
CIC
K

XE
RM
CIC
K

XE
RM
CIC
K
ov

Noise level tr

0.05 0.1 0.2

0.09(.10) 0.10(.11)
0.97(.09) 0.97(.09)
92(7) 98(2)
8 8 [9]
0.047 4- 0.001

0.08(0.09)
0.95(0.08)
92(7)
6
0.047 -t- 0.001

0.09(.12)
0.93(.10)
91(6)
8
0.049 4- 0.004

0.09(.09)
0.94(.07)
98(2)
5 [8]

0.10(.12)
0.92(.10)
99(1)
8 [11]

0’11(.14) 0.12(.16)
0.94(.09) 0.94(.09)
94(8) 98(3)
8 8 [ll]
0.097 4- 0.002

0.15(.15) 0.12(.13)
0.92(. 1) 0.92(. O)
92(8) 97(2)
6 6 [81
0.101 4- 0.001

0.12(.15) 0.12(.13/
0.92(.12) 0.92(.12)
91(8) 98(3)
7 7 [10]
0.100 4- 0.001

0.15(.15) 0.15(.14)
0.86(.11) 0.86(.12)
90(11) 94(6)
8 8 [12]
0.0197 4- 0.003

0.31(.42) 0.29(.35)
0.76(.61) 0.76(.61)
82(18) 93(7)
4 4 [8]
0.201 4- 0.003

0.18(.25)
0.74(.48)
77(22)
5
0.200 4- 0.004

0.15(.21)
0.83(.33)
89(13)
5 [9]
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4. Discussion. Unconstrained smoothing splines are useful because reliable methods
exist for choosing the smoothing parameter . The approach described in the previous sections
of this note extends this power to monotonic smoothing splines.

One possible criticism of the method presented here (or of the other published methods)
is that monotonicity is imposed by unnecessarily restrictive sufficient conditions. There are
two replies to this. First, Fig. shows that the linear conditions cover a large proportion of
the necessary parameter space for monotonicity, but this is a weak argument on its own. More
persuasive is a point first made in [2, p. 248]: the smoothing spline as presented here has far
more knots than are actually required to represent the noisy data to which it is fitted. Put another
way, the curve sx (x) is potentially far more flexible than it needs to be. This implies that it is

unlikely that there is any significant advantage gained by using the full nonlinear monotonicity
constraints, which will simply allow sx (x) slightly more flexibility. This argument becomes
increasingly dubious as errors in the data become very small (not a problem with which the
author has much experience). Similarly, it is less convincing as the number of knots in a least
squares spline decreases relative to the number of datapoints.

Two further practical problems are associated with monotonic smoothing splines. First,
the method described here will be slow if applied to large datasets. For noisy data this could
be overcome using splines with fewer knots than there are datapoints" least-squares splines.
The remaining drawback is the tedious computer programming required to implement the
methods, especially given that standard quadratic programming packages do not give easy
access to the matrices Z and D_ This difficulty can be overcome by writing to the author for
a "C" computer program implementing the method described in this note.

Acknowledgement. Thanks to Hans Metz for several helpful discussions.
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UNIFORM REFINEMENT OF A TETRAHEDRON*
MARIA ELIZABETH G. ONG

Abstract. A uniform refinement strategy for a tetrahedron is presented. Most finite element theories are based
on the assumption that the tetrahedral elements in the refinement do not degenerate. In this paper, the author presents
a refinement strategy that is nondegenerate and uniform for the model tetrahedra considered and quasi uniform
for arbitrary tetrahedra. It can be used to construct nested, multilevel triangulations. At level j of refinement, an
arbitrary nondegenerate tetrahedron in the initial triangulation is partitioned into 23j tetrahedra of equal volume.
This refinement strategy can be implemented easily by partitioning block elements instead of the more complicated
tetrahedral elements. This feature makes the use of tetrahedral elements attractive in a computer code.

Key words, finite element, nondegenerate, tetrahedron, triangulation, quasi uniform, uniform refinement

AMS subject classifications. 65N30, 65N50

1. Introduction. The finite element method is often used to obtain discretizations of
second order elliptic problems. It is based on an underlying triangulation of the domain,
which is typically refined to achieve higher accuracy in the discrete solution. When the
domain is three dimensional, the elements are often taken to be tetrahedra. In such cases, it is
imperative that the refinement of tetrahedral elements result in nondegenerate tetrahedra. In
this paper, we describe a quasi-uniform and nondegenerate refinement strategy for an arbitrary
tetrahedron.

We make use of the cube as a device to simplify the task of refining tetrahedra. We first
describe a uniform refinement strategy for the model tetrahedra that triangulates the cube,
and then we extend this refinement strategy to arbitrary tetrahedra. This leads to a multilevel
refinement strategy that yields nested, quasi-uniform and nondegenerate tetrahedra.

Several studies have been done on the triangulation of an n-cube in a general context
[3], [4], [8], [15]. (The spatial dimension is n.) These do not, however, cover the successive
refinement of those elements that triangulate the cube. Moreover, if a cube is partitioned into
small cubes such that the small cubes are contained in the larger cubes, it is not guaranteed
that the elements that triangulate the small cubes are contained in the elements that triangulate
the larger cubes. This inclusion property, or nesting, of the elements is important in many
multilevel methods; e.g., multigrid methods [6], [10].

One approach to refining arbitrary tetrahedra is presented in 13], 16]. However, it fails
to find an appropriate triangulation of a cube that would enable its use as a powerful tool
in simplifying the task of refining arbitrary tetrahedra. This paper provides a practical and
illustrative guide to refinement of tetrahedra.

We first describe a uniform refinement strategy for a model tetrahedron, which is one of
the two types of tetrahedra that triangulate the cube. (These two types are reflections of each
other; hence, it is sufficient to study the triangulation of one of them.) This tetrahedron is
refined into eight small tetrahedra, each of which is similar to the model tetrahedron or its
reflection. This similarity to the model tetrahedron ensures nondegeneracy in the refinement.
We say the refinement is nondegenerate if

hr
(1.1) rr= <r YT, k=0,1,2
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where is the triangulation at level k of refinement, h - is the diameter of tetrahedron T, PT
is the diameter of the largest sphere inscribed in T, trr is the measure of nondegeneracy of T,
and cr is a positive constant. (The initial level of refinement is k 0.) When nondegeneracy
is satisfied, we have a regularfamily oftriangulations according to the definition given in [2].
A single tetrahedron is said to be nondegenerate if trr - OO. We assume that any tetrahedron
that we refine is initially nondegenerate.

The resulting eight small tetrahedra also have equal volumes. Moreover, their diameters
are equal. Hence, the refinement is uniform. That is,

(1.2) hr IT1, T2 Ck, k=0,1,2
hr

where h r and h r are the diameters of any two tetrahedra T and T2, respectively, in the trian-
gulation . The refinement becomes quasi uniform when applied to an arbitrary tetrahedron.
That is,

(1.3) hr <_co V T1, Tz 7/’k, k=0,1,2
hr

where c0 is a positive constant.
The refinement strategy to be described also generates nested tetrahedra such that the

triangulation Yk+ is obtained by partitioning some or all tetrahedra T 6 T for k 0, 1,

In 2, we describe the uniform refinement strategy for the model tetrahedron. In 3, we
use the uniform refinement procedure for the model tetrahedron to show that:

(1) Any tetrahedron T can be refined at level j into 23j tetrahedra that are equivolume
and nested.

(2) For any tetrahedron T, there exists a refinement that is nondegenerate and quasi
uniform.

The advantages, usefulness, and limitations of this refinement strategy are discussed in 4.
2. Refinement o1’ the model tetrahedron. We make use of the cube as a device in the

refinement strategy for the model tetrahedron. Consider a cube with length H and with
(20 + 1)3 8 nodes in the initial refinement, called level 0 refinement and denoted by To.

Divide the cube into six tetrahedra, as shown in Fig. 1.1 The tetrahedra in Fig. are oftwo
types: T1 and Ta. Note that Ta is simply a reflection of T1. Thus, it suffices to demonstrate the
refinement strategy for only one of these two tetrahedra. The tetrahedron T is the tetrahedron
that we will refine.

The cube has volume V H3. The volume of a tetrahedron is given by:

1
(2.4) x (area of base) height.

3

Since the six tetrahedra in the cube are either identical to or reflections of each other; each has
volume - V.We now describe the procedure to refine the model tetrahedron T uniformly. If we
position vertex 0 of the cube in Fig. 1 at the origin, (x, y, z) (0, 0, 0), then the model
tetrahedron T has vertices 0=(0,0,0), 1=(1,0,0), 2=(0,1,0), and 5=(1,0,1) as shown in Fig. 2.
In Figs. 2-4, we denote by aij the midpoint of the edge that connects vertices and j, and we

1This particular triangulation of the cube is referred to as Kuhn’s triangulation [14], falls under one type of
triangulation discussed in [7], and appears in [9]. The tetrahedra are called quadrirectangular tetrahedra in [3]. Other
triangulations of the cube that are amenable to the refinement strategy are discussed in 4.
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FIG. 1. Six tetrahedra oftwo types, Tl and T2, in a cube.

T 5

%

0 a
01

a15

FIG. 2. Connect midpoints ofthe model tetrahedron Tl.

denote by T,.(k) the small tetrahedron at level k of refinement that is similar to Ti, 1, 2.
This implies that T/and Ti(k) have the same angles between faces and if T has diameter h T,,

then T,.(k) has diameter h T,/2k with uniform refinement.
The first step is to connect the midpoints ofthe edges ofthe tetrahedron as shown in Fig. 2.

This gives four tetrahedra--tl, t2, t3, and ta--formed by chopping off the four corners of the
tetrahedron T1, and an octahedron p in the middle section of T1. See Fig. 3. In three different
orientations, the octahedron p can be viewed as two skewed pyramids patched together on a
common base.
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0 a01

P ’25 t4=T1(1) al

a’a15
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FIG. 3. Four tetrahedra tl, t2, t3, t4, and octahedron p.

t5 =Tl(l.’la2.5 -n t6v a05a
a02 a2

a15

a0a12

t7 =T2(1) 5
a01 ao,.. ?(!)

_
FIG. 4. Four tetrahedra ts, t6, t7, t8 obtainedfrom octahedron p when nodes a05 and a12 are connected toform

a diagonal.
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The choice of a diagonal that connects two of the four base nodes determines the four
other tetrahedramts, t6, tT, and t8---obtained from the octahedron p. There are three possible
diagonals and hence three possible sets of four tetrahedra that can be generated from the
octahedron p. The three diagonals are formed by connecting the following pairs of nodes:
a05 and al2 (shown in Fig. 4), a.5 and aol, and a02 and als. Regardless of which diagonal is
chosen, we are able to refine the tetrahedron T1 into eight small tetrahedra. The choice of a
particular diagonal will be determined when we refer back to the cube.

The eight tetrahedra for any choice of diagonal have the same volume. We show this for
the case where the diagonal is formed by connecting nodes a05 and a12 as shown in Fig. 4.

V H3 NoteThe model tetrahedron T1 has diameter h aq ,CH and volume Vr -g -g
that the four small tetrahedra tl, t2, t3, t4 shown in Fig. 3 are similar to the model tetrahedron
T1. Moreover, the tetrahedra t5 and t6 from the octahedron p in Fig. 4 are similar to T1 and the
tetrahedra t7 and t8 are similar to T2. The only difference is that these eight small tetrahedra
have diameters ---, half that of either T1 or T2. Hence, each of these eight small tetrahedra

H)3
has volume (- g VTI.

Observe that the four tetrahedra obtained from the octahedron p by connecting any two
base nodes come in pairs. Each pair consists ofeither two identical tetrahedra or two tetrahedra
that are reflections of each other. With this observation and using (2.4), it can be shown easily
that each of the four tetrahedra in p obtained by connecting nodes a25 and a01 or nodes ao2 and
a15 has volume equal to g Vrt. Hence all the eight tetrahedra making up the model tetrahedron
T1, regardless of the diagonal chosen, have the same volume.

We extend this refinement procedure to an arbitrary tetrahedron. We note that any non-
degenerate tetrahedron T can be mapped to the model tetrahedron T1; that is, for any nonde-
generate tetrahedron T, there exists a unique invertible affine mapping [1 ], [2], 13]

(2.5) F1 :x 3 I-+ F1 (X) BlX nt" hi,

where B1 is an invertible 3 x3 matrix and bl is a vector in 3 such that

(2.6) F(/’) i.

Here,/" and are the four vertices of T1 and corresponding vertices of T, respectively. Since
midpoints are preserved by the affine mapping, it follows that

(2.7) F(rh) m,

where rh and m are the midpoints of T1 and T, respectively. By property (2.7) of the affine
mapping, midpoints of the model tetrahedron T1 will map to midpoints of any nondegenerate
tetrahedron T. Moreover, we have the following differential volume relations:

(2.8) dx dy dz det(B1)l dx dy

where det(B1) is the determinant of the affine mapping matrix B and is constant by the
property of the affine mapping. Hence, any tetrahedron can be refined into eight tetrahedra
ofequal volume by connecting the midpoints of its edges.

Recall that we have three choices of diagonals when refining any tetrahedron in the cube.
We will choose a particular diagonal so that we maintain the tetrahedral structure in the
refinement. In other words, if we refine the cube uniformly into eight small cubes, each of the
small cubes will have a tetrahedral structure identical to that of the big cube shown in Fig. 1.
We illustrate this in Fig. 5. Such a restriction forces the small tetrahedra to be similar to one
of the two parent model tetrahedra T1 and T2. The diagonal chosen and the refinement of the
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FIG. 5. Tetrahedral structure preserved in small cubes.

model tetrahedron T1 are shown in Figs. 2-4. Notice the inclusion of the small tetrahedra in
their parent tetrahedron. Thus, the nesting condition is satisfied.

This procedure is repeated at each level of refinement. A tetrahedron is refined into
23j tetrahedra after j levels of uniform refinement. By the uniform refinement strategy, any
tetrahedron can be refined at level j into 23j tetrahedra that are nestedandhave equal volumes.
Notice that after one level of refinement, the cube has (21 + 1)3 27 nodes. In general, we
have (2J + 1)3 N nodes after j levels of uniform refinement.

To measure nondegeneracy of the model tetrahedra T1 and T2, we use Zhang’s formula
[13] to compute the diameter pr of the largest sphere inscribed in a tetrahedron T. This is
given by

(2.9) pr 6,
Sr

where Vr is the volume and Sr is the surface area of tetrahedron T. The surface area Sv is
the sum of the area of the triangles that make up the faces of tetrahedron T. The volume of

H3 and it can be calculated easily that the surface area of either tetrahedroneither T1 or T2 is g
is (1 + qc)Hz. Hence,

H
(2.10) Pr Prl

Since the diameter ofeither T1 or T2 is /H, then (1.1) and (2.10) give the following measures
of nondegeneracy of the model tetrahedra T1 and T2:

hrl (1 + v/) 4.18(2.11) crr ar
Prl

It follows that the six tetrahedra, of types T and T2, in the initial triangulation of the cube are
nondegenerate.

The uniformity ofthe model tetrahedra T and T2 follows from the fact that T and T2 are
reflections of each other, and therefore have the same diameter. Hence,

(2.12) hT 1, _< _< 2, < _< 2.

Thus, the six tetrahedra in the initial triangulation of the cube are uniform.
Since the small tetrahedra into which T and T2 are refined are similar to these parent

tetrahedra, the measures of nondegeneracy and uniformity remain the same for all k; that is,

(2.13) cr.) errs, 1, 2,
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and

(2.14) hrk _-hr --1, <i<2, 1 <1<2.
hrk h

(Recall that after k levels of refinement, k 1, 2 we denote by Ti(k) the small tetrahedra
similar to T/, 1, 2.) Because of the properties given in (2.13) and (2.14), it follows that
the uniform refinement strategy for the model tetrahedra in the cube is nondegenerate and
uniform.

In the next section we show that when the uniform refinement strategy is applied to any
nondegenerate tetrahedron, the resulting tetrahedra in the refinement are nondegenerate and
quasi uniform.

3. Extensions to arbitrary tetrahedra. In the previous section, we described a uniform
and nondegenerate refinement of the model tetrahedra T and T2. We have shown that with
uniform refinement, any tetrahedron can be refined at level j into 23j tetrahedra that are
equivolume and nested. We now show thatfor any nondegenerate tetrahedron T, there exists
a refinement that is nondegenerate and quasi uniform.

We denote by Fi the affine mapping that maps the model tetrahedron Ti, 1, 2, to an
arbitrary nondegenerate tetrahedron T:

(3.15) T Fi(Ti) :x Ti -> Fi(x) Bix + bi T.

We proceed to prove the following theorem, which shows nondegeneracy of the refinement of
T into 23k small tetrahedra at level k, where T is the image of any of the model tetrahedra T,.,

1, 2. This theorem is similar to Theorem 2.2.8 in Zhang’s thesis [13].
THEOREM 3.1. For any nondegenerate tetrahedron T with

at<co,

T(k)" 23kwhere rT is given by (1.1) there exists a refinement of T into 23k small tetrahedra s,e }e=l
for levels k 1, 2 such that

ar < coerce, e 23k for all k.

Proof We prove the case where T is the image of the model tetrahedron T1 shown in Fig.
2, where we have the following affine mapping from (3.15):

(3.16) T FI(T1) :x T1 - Fl(X) BlX +hi T.

(The case where T is the image of the model tetrahedron T2 is proved similarly.) We use the
relations found in Theorem 3.1.3 in Ciarlet [2], namely,

hr hr(3.17) IIgll _< , liB,-ill _< ,
Pr, PT

where I1" denotes the Euclidean norm.
T(k)’23k T.(k) -23kLet T and T be refined into 23k tetrahedra ,e/e=l and :,e }e=, respectively, at level

k. In the case where the small tetrahedron T(t0 is similar to Ti 1 or 2, we have:s,l

hhk 2k,l:s,l

(3.18)
pr

2The subscript s is used to denote small.
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If T(k) is the image of T(k) which is similar to T we haves, l:s,e’

(3.19)

hT(k) IIBlllh
s,e < l:s,e

pTe) --IIB?lll-lpr()
l:s,e

hr hr
PT PT p

TTO’T

Since aT at2, we obtain the desired result.
In the following theorem, we show thatfor any nondegenerate tetrahedron T, there exists

a quasi-uniform refinement of T into 23 tetrahedra at level kfor k 1, 2
THEOREM 3.2. For any nondegenerate tetrahedron T with

7T < C0

there exists a refinement ofT into 23 small tetrahedra T() 23
,e }e=l for levels k 1, 2 such

that

e0ar, m, n 23 for all k.

Prooy Let T be the image of the model tetrahedron T, where the affine mapping is
given in (3.16) and the relations in (3.17) hold. (The case where T is the image of T2 is
proved similarly.) Let T be refined into 23 tetrahedra s,g }e=l and let T be refined into 23k

--(k)_-2tetrahedra ]:s,e }e= at level k. Let T(k),m and T(k)s," be the image of T(k):,m and T):s,n, respectively,
where m n 23k} Let w(k) and w(k) be similar to the model tetrahedral:s,m l:s,n

respectively, where 2, so that w(k) (k)
:,m and Using (2.14), (3.17),

and (3.18), we have for all k

IIB IIh+ IIBllh+
l:s,n

<

Coar m, n 1 23k.
COROLLARY 3.1. At the initial refinement , let the polygonal domain be partitioned

inw blocks, each containing six tetrahedra, where each block is the image of the cube con-

taining six tetrahedra ofo model pes T and T2 shown in Fig. 1. If
fiT Co Y T

then there exists a refinement wherein each T is refined into 23k tetrahedra Ts, l(k) }=12 at

level k l, 2 such that

ar- coa, 23k,
s,l

coar, m, n 2(3.20)

for all T and all levels k. Here, T() T , which is not refined.s,

Proof This follows from Theorems 3.1 and 3.2.
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4. Applications and limitations. We have described a uniform refinement strategy for
any nondegenerate tetrahedron T that results in a triangulation that is nested and generates, at
level k, 23k tetrahedra that are equivolume. The refinement strategy, which employs the model
cube containing six tetrahedra of two types--T1 and T2--is quasi uniform and nondegenerate.
(Though refinement of the six tetrahedra in the cube generates small tetrahedra similar to the
initial six tetrahedra, this is not true of the refinement of arbitrary tetrahedra.) This strategy
applied to the two model tetrahedra happens to satisfy Zhang’s rule of choosing the shortest
interior edge 13], that is, the diagonal with the shortest length, even though the rule is not
invoked in choosing the diagonal. Recall that the strategy chooses the diagonal so that the
tetrahedral structure in the cubes is preserved. This strategy applied to an arbitrary tetrahedron
also satisfies Zhang’s rule of labeled edge subdivision 13], where the diagonal connects the
midpoints of the labeled edge (arbitrarily chosen at the initial refinement and determined
by the rule thereafter) and the edge opposite it. This implies that the uniform refinement
strategy applied to an arbitrary tetrahedron will generate at most six types oftetrahedra during
successive refinement. This holds true for any initial labeling of the arbitrary tetrahedron and,
therefore, for any affine mapping from the model tetrahedron to the arbitrary tetrahedron.

The refinement strategy is easy to implement and can be automated. A polygonal domain
f2 can be partitioned into blocks, each block partitioned into eight blocks at each level of
refinement. When partitioning the block, the midpoints of the six tetrahedra in the block that
are images ofthe six model tetrahedra in the cube must be used. At the final level ofrefinement,
say level j, six tetrahedra will be fitted into each of the 8J blocks in the same manner as six
model tetrahedra were fitted into the model cube. This achieves the same triangulation as
when each of the initial blocks in the domain f2 are fitted with six tetrahedra and the tetrahedra
refined according to the uniform refinement strategy. This can be seen easily by assembling
the refined model tetrahedra into a cube.

The refinement strategy has applications to finite element methods in general. A typical
concern in using tetrahedral elements is the generation of degenerate tetrahedra in the refine-
ment, which leads to poorly conditioned systems of equations [5], [12]. The nondegeneracy
of the refinement strategy avoids this problem.

The refinement yields a nested triangulation that can be used for multigrid and other
nested multilevel methods [6], [10]. The optimal operation count of O(N), where N is the
number of unknowns, is likewise obtained. This is shown easily by summing over all levels
the number ofunknowns or nodes in the cube, which is the same number ofnodes in the blocks
making up the domain f. That is,

J
(2k + 1)3= O(N)
k=0

since (2j + 1)3 N.
There are some limitations to this refinement strategy. First, the nondegeneracy and quasi-

uniform bounds obtained using the model tetrahedra in the cube are not optimal. A refinement

using the model tetrahedra in 13] produces smaller bounds. However, the tetrahedra in 13]
cannot be used to triangulate a cube, a tool that greatly simplifies the refinement of tetrahedra.

Second, the coefficient matrix associated with the tetrahedral refinement is not relatively
sparse. There can be as many as 15 nonzeros in each row of the matrix as opposed to 7
nonzeros in the usual 7-point discretization of a second order differential operator in three
dimensions. Figure 6 shows the connectivity of 14 nodes to a center node in a cube partitioned
into six tetrahedra of types T and T2 and refined according to the uniform refinement strategy.

An interesting question is how many ways can we triangulate a cube into tetrahedra and
which of these triangulations is amenable to the uniform refinement strategy. The refinement



UNIFORM REFINEMENT OF A TETRAHEDRON 1143

FIG. 6. Connectivity ofa center node.

strategy applied to a cube generates tetrahedra that are nested, equivolume, similar to the
model tetrahedra, and conforming so that the tetrahedral elements match at block interfaces.
Moreover, small cubes into which a parent cube is partitioned have th6 same tetrahedral
structure as the parent cube.

A theorem in [7] states that there exist exactly ten essentially different vertex-true trian-
gulations of a cube into tetrahedra. A vertex-true triangulation requires that each vertex of
a tetrahedron in the cube is a vertex of the cube. These triangulations are classified into six
cases depending on the number km of tetrahedra with rn 0, 1, 2, 3 external faces on the
cube. The triangulation of the cube presented here is the case with k0 0, kl 0, k2 6,
and k3 0 since there are six tetrahedra (of types T1 and T2) with two faces on the cube.
Another triangulation of the cube that is amenable to the refinement strategy is the case with
k0 0, kl 2, k2 2, and k3 2 as shown in Fig. 7. This triangulation has two tetrahedra
with one face on the cube, two tetrahedra (types T and T2) with two faces on the cube, and
two tetrahedra with three faces on the cube. Another realization of this case is shown in Fig. 8
and appears in [14] and is basically a different choice of diagonal. This case is studied in
detail in [11 ]. In all three cases represented by Figs. 1, 7, and 8, a key thing to note is that
the diagonals on parallel faces of the cube align. This guarantees that the tetrahedra match at
block interfaces. Again, uniform refinement strategies that have the properties of the uniform
refinement strategy discussed in the previous sections can be defined for the cases represented
in Fig. 7 and 8. These strategies will be nondegenerate and quasi uniform. The tetrahedra
generated from the refinement will be equivolume and nested. The small cubes generated from
the refinement will have the same tetrahedral structure as the parent cube. This refinement
strategy can also be automated by working with the cubes.

FIG. 7. Triangulation ofa cube, k0 0, kl 2, k2 2, k3 2.
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FIG. 8. Triangulation ofa cube, ko O, kl 2, k2 2, k3 2.
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THE LAGUERRE ITERATION IN SOLVING THE SYMMETRIC TRIDIAGONAL
EIGENPROBLEM, REVISITED *

T. Y. Lit AND ZHONGGANG ZENG*

Abstract. This paper presents an algorithm for the eigenvalue problem of symmetric tridiagonal matrices. The
algorithm employs the determinant evaluation, split-and-merge strategy, and the Laguerre iteration. The method
directly evaluates eigenvalues and uses inverse iteration as an option when eigenvectors are needed. This algorithm
combines the advantages ofexisting algorithms such as QR, bisection/multisection, and Cuppen’s divide-and-conquer
method. It is fully parallel and competitive in speed with the most efficient QR algorithm in serial mode. On the
other hand, the algorithm is as accurate as any standard algorithm for the symmetric tridiagonal eigenproblem and
enjoys the flexibility in evaluating partial spectrum.

Key words, eigenvalue, Laguerre’s iteration, symmetric tridiagonal matrix

AMS subject classification. 65F15

1. Introduction. For a symmetric tridiagonal matrix T with nonzero subdiagonal entries,
the eigenvalues of T or the zeros of its characteristic polynomial

(1) f(1) det[T lI]

are all real and simple. Therefore, the globally convergent Laguerre iteration

(2) L+(x) x +
f(x) ]

4- (n 1) (n 1) ()\-f’(x)/2f(x)
with cubic convergence rate for solving a polynomial equation with real and simple zeros
seems perfectly suitable for finding eigenvalues of T. This method was mentioned many
years ago in several places (e.g., see Wilkinson [28, pp. 443-445]). There is also literature
about the Laguerre iteration for nonsymmetric eigenvalue problems [23], [27]. However, a
serious investigation of the practicality of the method, such as efficiency and accuracy, and
an attempt to efficiently implement the algorithm have not yet been done for the symmetric
tridiagonal eigenproblem. The purpose of this paper is to revisit this method with an intensive
examination of the theory and practicality and make an effort to fully implement the algorithm
efficiently. The proposed algorithm evaluates eigenvalues of a symmetric tridiagonal matrix
without computing its eigenvectors. In case eigenvectors are also needed, the inverse iteration
can be applied 14].

First, to use the Laguerre iteration (2) for finding zeros of the polynomial f in (1), one
needs to evaluate f, f’, and f". Those values can be efficiently evaluated by certain three-term
recurrence relations (see 2). It is well known that those three-term recurrences may suffer
from a severe underflow-overflow problem. In 2, we propose an alternative scheme, which
can virtually avoid underflow-overflow problems. The accuracy of our scheme will also be
analyzed.

To find some or all of the eigenvalues of T by the Laguerre iteration, a set of proper
starting points is essential. For this purpose, our split-merge process proposed in 3, similar

*Received by the editors October 14, 1992; accepted for publication (in revised form) August 10, 1993. This
research was supported in part by the National Science Foundation under grant CCR-9024840.
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to Cuppen’s divide-and-conquer strategy [4], [7], 11 ], [25], provides a close matrix T of T,
whose eigenvalues constitute an excellent set of starting points. These starting points can le.ad
to desired eigenvalues of T with about 2-3 steps of the Laguerre iteration in general.

The Laguerre iteration converges only linearly when it is used to approximate zeros
with multiplicity r > 1. Although all the eigenvalues of T are simple, some of them may be
indistinguishable numerically. In the actual computation, the Laguerre iteration also converges
linearly in this case as if those eigenvalues, say, r of them, were a multiple eigenvalue with
multiplicity r. Slow convergence also occurs when a group of r eigenvalues are relatively
close to each other compared to the distance from the starting point of the iteration. In all
those situations, the modified Laguerre iteration

n
Lr(X) x +

( n_r I ( 2 (f"(x))]_f’(x)’ 4- (n 1) nf(x) ,] 7 f(x) ] k f(x)

can be used to speed up the process and maintain the cubic convergence rate. The behavior of
the modified Laguerre iteration will be studied in 2.2. The estimation of the number r, which
plays an important role in practice, can be obtained from the information of the closeness of
the eigenvalues of the matrix T in our split-merge process, and an algorithm is given in Fig. 3.

Homotopy continuation methods have recently been developed for algebraic eigenvalue
problems, and very encouraging results have been obtained for both the symmetric and non-
symmetric cases [12], [16], [17], [19]-[21], [29]. While our algorithm does not employ the
homotopy continuation method directly, the design of our algorithm is critically based on the
consideration of the structure of the eigenvalue curves of the homotopy

h(t, .) det[(1 t)f; + tT )I].

The symmetric tridiagonal eigenvalue problem has been intensively studied, and hence
forms an excellent testing ground for newly developed algorithms. There are quite a few
reliable algorithms for this problem with various features, such as QR (or QL) [8], D&C
(Cuppen’s divide-and-conquer) [4], [7], and B/M (bisection/multisection) [13], [22]. A de-
tailed comparison of these algorithms can be found in [5]. In summary, the QR algorithm is
believed to be the most efficient algorithm on serial machines for matrices of moderate sizes.
D&C is an excellent parallel algorithm. B/M, which is also parallelizable, leads in accuracy
and possesses the flexibility in the evaluation of partial spectrum. When only eigenvalues are
needed, both QR and B/M are able to evaluate eigenvalues without computing eigenvectors.
The promise of our algorithm is that it contains most of the advantages of these algorithms:

(i) the same parallel structure as D&C but less memory contention;
(ii) the same accuracy as B/M;
(iii) the same flexibility as B/M in evaluating partial spectrum;
(iv) the same advantage as QR and B/M in separating the evaluation of eigenvalues and

eigenvectors.
In 5, comprehensive numerical results comparing our algorithm with these methods on

a substantial variety of types of matrices are presented. It appears that, with our stopping
criterion, our algorithm achieves the best accuracy in evaluating eigenvalues. The speed
is competitive with the QR algorithm in serial mode and leads B/M as well as D&C by a
considerable margin. When only a small fraction of the total number of eigenvalues are in
demand, our algorithm can take full advantage of this situation by reducing the execution time
to a similar fraction.

Modern scientific computing is marked by the advent of vector and parallel computers and
by the search for algorithms that are to a large extent parallel in nature. An important advantage
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of our algorithm is its natural parallelism, in the sense that each eigenvalue is computed totally
independently of the others. Besides, our algorithm has a great capacity for vectorization.
These considerations will be discussed in 6 and an intensive experiment will be reported in
a separate article [26].

The code of our algorithm is available electronically from Zhonggang Zeng.

2. The Laguerre iteration.

2.1. Evaluation ofthe determinant and its accuracy. Let T be a symmetric tridiagonal
matrix of the form

(’ 01 fll )
fll if2 f12 0

(3) T [i--1, O/i, /i]

0 n--2 O/n--1

k fin-1 O/n

Without loss of generality, we may assume T is unreduced; that is,/i 0, 1 n 1.
For unreduced T, the characteristic

(4) f(X) _= det(T XI)

is a polynomial with only real and simple zeros ([28, p. 300]). Let

be the zeros of f. Set X0 - and Xn+l +x. For x (X0, .n+l), the Laguerre iterates
L+(x) and L_(x) are defined as follows:

n
(5) L+(x) x +

(-- f’(x)) + (n 1) I(n 1) (--f’(x)’2f(x)f(x), n \(f"(x))]
The following result is known ([28, pp. 443-445]).

PROPOSITION 2.1. For x 6 (Xm, Xm+), m O, n, thefollowing results hold:
1. Zm < L_(x) < x < L+(x) < )m+l.
2. There are constants c+ and c_ such that

IL+(x) Xm+I[ < C+IX Xm+ll3 ifx is close to ,m+l,

then

IL_(x) -ml < c-Ix Xm[3 ifx is close to .m.
From this proposition, if we let

k

kx L+(x) =-- L+(L+(...L+(x)...)) and

.k

x Lk_(x) =_ L_(L_(... L_(x)...)),

.m <---" X(-2) < X(1) < X < X(+1) < X(_t_2)’’’ ---- .m+l.
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The two sequences x and x converge monotonically to .m and .m+l, respectively, in
asymptotically cubic rate. That is, they eventually enter certain neighborhoods of their corre-
sponding limits and then exhibit a cubic convergence rate.

To use Laguerre’s iteration (5) for finding zeros of f(k) in (4), it is necessary to evaluate
f, f’, and f" efficiently with satisfactory accuracy. It is well known that the characteristic
polynomial f(X) det(T kI) of T [fli-l, oti, ]i] and its derivatives with respect to X
can be evaluated by three-term recurrences ([28, p. 423]):

(6)
po =1, p=ol--X,

Pi (Oli X)Pi-1 f12i-lPi-2, i-- 2,3 n;

(7) P0=0, pl.=-l,
__2 ptPi (Oti ’)P;-1 Pi-1 i-1 i-2’ i=2,3 n;

(8)
o,

p;, (, )
,, 2 p,,,0i-1 2Pi-1 i-1 i-2, i=2,3 n;

and

f’(x) P’n"fO,.) P,,, f’O,.) Pn,

However, these recurrences may suffer from a severe underflow-overflow problem and require
constant testing and scaling. We thus propose the following alternative scheme, which scales

Pi by oi-1. Let

Pi
i , 1,2 n.

Pi-1

Dividing both sides of (6) by ,oi-1 yields

1 --01 --,
(9) fl/2_

2,3 n.

We then scale P’i and p’ by Pi by letting

Piand i , ---0, n.

Divide (7) and (8) by Pi and consider the obvious relation

j=l

We obtain the following scaled recurrences

(10)
i=2,3 n;
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(11)
2,3 n;

and

if(k) f"(k), Gof(Z) f(,k)

These are what one really needs in (5). Because of its self scaling, this process can avoid
underflow-overflow problems except in extraordinarily unusual cases. However, the algorithm
may break down if i 0 for some < < n. To prevent this, the following guardian is
designed:

if 0 (i.e., O/1 ), set 1 fl12e2;
if i 0, > 1, set i (2i_le2)/i-;

where e is the machine precision. In case of i 0 (i > 1), the above remedy amounts to a
small relative perturbation of fli-l. More precisely, we simply replace fli-1 by/i--1 (1 e2/2).
For ;k o/l, a perturbation fl1282 is introduced upon

A determinant evaluation algorithm DETEVL (see Fig. 1) is formulated accordingly to
the recurrences (9), (10), and (11). When i, 1 n are known, the Sturm sequence is
available ([24, p. 47]). Thus, as a by-product, DETEVL also evaluates the number ofeigenvalues
of T that are less than i. This number is denoted by

Algorithm DETEVL:

input T [/i-1, O/i, /i],
f’(.) f"(.)

output f(X) On, f(1) ’n (where f(.) det(T-
and tc (1) neg_count

(:the number of eigenvalues of T less than
begin DETEVL

if ! :0 then :122

/’0 0, /’/1 1 0 0, 1 0, neg_count 0

i l <0 then neg_count =1
or i=2:n

if i--0 then i
i f i < 0 then neg_count neg_count +1

0i (o/i- l)0i-1 + 1- 0i-2

(o- z)_l + 20-

end for
end DETEVL

FIG. 1. Algorithm DETEVL.
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To analyze the accuracy of this algorithm, we first assume the usual model of arithmetic:

(12) fl(x o y) (x o y) (1 + e),

where o is one of the operations +, -, x, and/; fl(,) is the floating point result of ,; and
lel < e is the machine precision. Then, from (9),

f/() (ot X)(1 + el) with lel < e

and, for 2 n,

fl(i) fl (Ol --)-
fl(i_l)

((ti--)(l+ei)--((i-1)(l+ei3)))f/(i-1)
(1 q- el4) (1 + el2),

where [elm < e for 2 n and rn 1, 2, 3, 4. So,

1 +ell

and, for 2 n,

(1 + eil)(1 + ei2)
(c Z)

(l+ei3)(l+ei4)?- (l+e)(l+ei_L)(l+ei_L2)

+ei-l,1)( +ei-l,2)

Let

fl(l)
g’l and g’i

1 +ell
fl(i)

(1 + eil)(1 q- ei2)’
2 n.

Then

(13)
ffi Oli

[fli-l(l+ei-1)]2 i=2,3 n,

where

(14)
(1 + ei3)(1 + el4) ]1/21 + el-1 (1 + ei)(1 + ei_,)(1 + ei-,)

With (9) in mind, the relations in (13) provide the recurrence for evaluating the determinant
of the matrix

ill(1 + el)
1 (1 + el)

f12(1 + 82)

On_

n-l(1 + en-1)
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Ofl 1

11
"Oo

0 /181

"’" "l-
1181 0 "’.

[n-1 Oln [n- En-1

2.1

(T+E)-2.I

with

illS1

fin- 18n-
,,- e,,- 0

It follows from (14) that

(15) 2.5e + O(e2) _< ei _< 2.5e + O(e2)

for 1 n. If 2. or l, namely, the breakdown occurs at the beginning, then an additional
backward error/3e2 is added to the (1, 1) entry of E. A breakdown at the ith step makes a
further O(e2) perturbation on/i-.

Now, since I-Ii g’i det[(T -!- E) 2. I], so,

ffi(1 + eil)(1 + ei2)(1 + eis) det[(T + E)- 2.1](1 + ,),
i=1

where

n

+ , H(1 -F-eil)(1 -4-ei2)(1 -4-ei5)
i=l

with el2 el5 0 and leisI < e, 2 n. It can be seen easily that

-(3n 2)e + 0(82) _< ’ _< (3n 2)e + 0(82).

By the Weyl inequality ([3, p. 34] or Lemma 6.1 in 6.1), if < 2 < < )n are zeros of
f(2.) --= (1 + ?,)det[(T + E)- 2.], then

Ii- .il IIEII2 2.5e [.ax(l/jl-t-Ij+ll)]-!O(/32) i=1,2 n,

where 2.i’s are eigenvalues of T. Because the exact value ofi is generally not obtainable, the
actual accuracy of the algorithm at 2.i, with O(e2) omitted, can be

(16)
5

mjax(ljl-t-Ij+l) -t-Ifl(i) 2.il < Ii 2.il -t- Ifl(i) il < T
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The error analysis above, combined with the perturbation theory of Demmel and Ka-
han ([6, Thm. 2, p. 875]), leads to an important extension of our algorithm in the eval-
uation of singular values of bidiagonal matrices. Based on this algorithm and a hybrid
strategy, the singular values of bidiagonal matrices can be evaluated within a tiny relative
error 18].

Remark 2.2. Wilkinson [28, p. 303] analyzed the three-term recurrence (6) and proved
that Pn (.) where (,k) is the exact characteristic polynomial of S + S with

such that Iceil < 3.01e(Ioeil + Il) and Iil < 1.51elflil. Apparently, the modified recurrence
(9) can have an improved error bound (15). The same argument can also be applied to the
bisection method and a similar error analysis can be found in 15].

2.2. Pathologically close eigenvalues and the modified Laguerre iteration. The La-
guerre iteration converges only linearly to multiple zeros of a polynomial (see [28, p. 445]).
Although an unreduced symmetric tridiagonal matrix can have only simple eigenvalues, some
of them may be too close to be distinguishable numerically (e.g., Wilkinson matrices WI [28,
pp. 308-309]). In this situation, the Laguerre iteration converges with an apparently linear
rate in actual computing as if the cluster of r eigenvalues were a multiple eigenvalue with
multiplicity r.

For integer 0 < r _< n, the modified Laguerre iterates Lr+ and Lr- defined by

(17) Lr+(X)

produce two sequences

f--) -t- - (n- 1)( f’(x)’2-f] \[f"(x)f<x) )

k

’) ,’ (x) r+ (I.,,.+ (. I,,.+ (X)...))Xr+ --r+

k

(k) Lk (X) r-(Lr-(" ’Lr_(X) .))

When x* is a r-fold zero of f, if x < x* and there is no zeros of f in (x, x*), then the
sequence x (t) k 2, converges increasingly to x* in cubic rate ([28, p. 445]). Sim-r--,

ilarly, if x* < x and there is no zeros of f in (x* x), then ) k 2, converges
decreasingly to x* in cubic rate. Numerical evidence shows that they also converge cubically
when pathologically close zeros occur. For instance, the Wilkinson W has two very close
eigenvalues .20 10.74619418290332 and X2 10.74619418290339 with a difference of
magnitude l0-4. When starting from 10.0 targeting )20, the standard Laguerre iteration L+
and the modified Laguerre iteration L2+ have a fundamental difference in performance, as
shown below.
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Lk
+

X2o x ,,k

0.7
2 0.3
3 0.1
4 0.03
5 0.01
6 0.OO3
7 0.0008
8 0.0002
9 O.OOO07
10 0.00002
11 0.000006
12 0.000002
13 0.0000005
14 0.0000001
15 0.00000004
16 0.00000001
17 0.000000003
18 0.000000001
19 0.0000000003
20 0.00000000008
21 0.00000000002
22 0.000000000007
23 0.000000000002
24 0.0000000000005
25 0.0000000000001
26 0.00000000000002

linear
convergence

(k)k X20 "2+

0.7 cubic
2 0.1 convergence
3 0.0004
4 0.000000000008
5 -0.00000000000004 overshoot

The behavior of the modified Laguerre iterates (17) can be seen in the following theorem.
THEOREM 2.3. Let X1 < )2 < < n be zeros of f(Z) det(T XI). Then, for

x (Xm, Xm+l) and any positive integer r < n, we have

f’(x)
(18) .m < x < L+(x) < L2+(x) < < Lr+(x) < Xm+r if > O,

f(x)

(19) .m-r+l < Lr-(X) < < L2-(x) < L_(x) < x < Xm+l if
f’(x)
f(x)

<0

with the convention ’i --(X) for < 0 and Zi +cxfor > n.
(The proof is given in 7.1.)
Remark 2.4. Let x 6 (Xm, Xm+l) be the starting point of the Laguerre iteration for

evaluating Xm+l. On some occasions, there may exist a group of zeros to the right of ),m+l,
say, Xm+l < Xm+2 < < Xm+r, which are relatively close compared to the distance from x
to Xm+l, as shown in Fig. 2.

’m X rn+l m+r

FIG. 2.

To reach )m+l from x, it may take many steps in the actual computation before reaching the
cubic convergence neighborhood ofZm+l, and the algorithm may be slowed down significantly.
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In this case, the modified Laguerre iteration can be used to speed up the process, since, by the
above theorem, Lr+(X) is always bigger than L+(x). Specifically, if the number r of those
relatively close zeros can be estimated, we may use the modified Laguerre iteration L,.+(x).
By Theorem 2.3,

x < L+(x) < Lr+(x) < ,m+r,
and Lr+(x) is relatively close to ,km+l. It might happen that m+l < Lr+(X). In this case, we
can reduce r according to tc(Lr+(X)), the number of eigenvalues of T smaller than Lr+(X),
which is a by-product ofthe algorithm DETEVL in Fig. 1. An algorithm ESTMLT for estimating
r will be given in Fig. 8.

2.3. Stopping criteria. Let Xi, 1, 2 be a sequence generated by the Laguerre
iteration and xi x*. Then, ultimately,

XIx+ o(Ixi+ xil).

From (16) an obvious criterion for stopping the iteration at xi+l is

(20) IXi+l-Xil<_2.5e, [mjax(13j]-k-Iflj+l])] + IXi+lle.

From our experience in numerical testing, this criterion seems too strict. In fact, the criterion

(21)
’Xi+l--Xi[2 [mja.< 2.5e x(l/3jl-t-Iflj+ll) + IXi+lle
[xi Xi-l

has never failed. It comes from the following consideration: the Laguerre iteration converges
cubically. Assuming Ixi+ xil < Ixi xi-ll, we have

IXi+l xil " Ixi x*l lxi-1 X*l 3 ’ CIXi Xi-ll 3,
IXi+lc,-,
Ixi xi-113

Thus

x* x*.3 13 (’Xi+l-Xil)3lxi+l-xil2[Xi+l " ClXi CIxi+I xi [Xi+l xil
Ixi Xi-ll

<
]xi Xi-ll

In our algorithm, we stop the iteration if either (20) or (21) is satisfied.
The algorithm LAGIT in Fig. 3 summarizes the fundamental elements of the Laguerre

iteration we described in this section.

3. Splitting and merging processes.

3:1. Splitting process. In order to find some or all the zeros of f(.) - det[T I],
where

(22) T

19/1

fll 02 /2 0

0 n--2 On--1 /n--1

/i 0,
i=l n-l,
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Algorithm LAGIT

input: subscript i, initial point x 6
interval [ai, bi] 9 i mlt evaluated by ESTMLT in Fig. 8.

output: the i-th eigenvalue li of T.
begin LAGIT

X --’X
for 1, 2

Lr+(xt), if x(xl) <i
with mltXl+l

Lr-(Xl), if X(Xl) >_
tl XI+I Xl
to! 2.5 [max](l]l / I]/l)] / Ix/l

if (,8,l<tol)or (I>I and <tol) go to (#)

(##) evaluate ----(X+l), (X+l) and g(x+) by" DETEVL
update [ai, b/] according to K(X/+l)
if mlt > and l(Xl+l)- (xt)l > I then

mlt ix(Xt+l) x(xt)l
Xt+l (xt + xt+l)/2
go to (##)

end i f
end for
li Xl+

end LAGIT

FIG. 3. Algorithm LAGIT.

by the Laguerre iteration, a set of proper starting values is desirable. For this purpose, we
introduce the split matrix " by replacing some/k in T with zero, i.e.,

(23)

where

(24) To=

The eigenvalues of ? consist of eigenvalues of To and T1. In this section, we shall sturdy the
relations between the eigenvalues of T and those of T. It turns out that eigenvalues of T form
an excellent set of starting values of the Laguerre iteration.

Now, let us consider the homotopy h R x [0, 1 ---> R defined by

h(Z, ,) det ([(1- ,) + tT]-
det[T(t) .I],

where T(t) =__ (1-t)+tT. It is clear that for each e (0, 1], T(t)is an unreduced symmetric
tridiagonal matrix, and h (.0, to) 0 if and only if .0 is an eigenvalue of the matrix T(to). Let
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Zi(t) denote the ith smallest eigenvalue of T(t). Then every Zi(t) is a continuous function of
and for each 0, Zl(t) < < Ln(t). Hence, the graphs of ki(t)’s are disjoint except

possibly at 0. It was proved in [16] that any horizontal line . )* can intersect at most
one nonconstant i(t) in [0,1] and, consequently, for each < < n, .i(t) is either constant
for all e [0, or strictly monotonic, as shown in Fig. 4.

X= ,i (t)

,i (1)

t=0 t=l

FIG. 4. Eigenvalues of T(t) when increasesfrom 0 to 1.

These important properties, along with certain interlacing and perturbation theorems, lead
to the following theorem, which is essential to our algorithm.

THEOREM 3.1. Let

)L1 < 2 < .n and l <_ L2 <_"" <_ Ln
be eigenvalues of T and ’, respectively. Then

(i) L16(,2), n 6(Ln-,L,), i6(Zi-,Li+), 2in-1;
(ii) Z 6[-Ik1,1), n 6(n,n+lkl], Xi 6(i-,i+), 25in-1.

(The proof of this theorem is given in 7.2.)
Notice that the multiplicity of any eigenvalue of can be at most two, because both T0

and Ta are unreduced. Therefore, for any 25 n 1, (i-, i+l) is always a nonempty
interval.

Corollary 3.2 follows immediately from the above theorem.
COROLLARY 3.2. For each 1 n, in the open intemal (i, Li) (or (Li, i) if

i > Zi), there is no Xj or jfor j n. In other words, for 1,..., n, let Zi be the
open inteal with end points Xi and Zi, then {Zi }i= is a collection ofdisjoint intemals.

According to this corolly, for each n, the Laguee iteration starting from
can reach Xi without any obstacles (s3e Fi. 5). Thus, to evaluate the ith smallest eigenvalue Xi
of T, the coesponding eigenvalue Z of T is always used as a staaing point in our algorithm.

1

_
X

<- n-1, n -FIG. 5. Corallary 3.2.

3.2. Merging process. The eigenvalues of in (22) consist of eigenvalues of To and T1
in (24). To find eigenvalues of To and T1, the splitting process may be applied recursively (see
Fig. 6) until 2 x 2 or 1 x 1 matrices are reached.
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After T is well split into a tree structure as in Fig. 6, a merging process in the reverse
direction from 2 x 2 and/or 1 x 1 matrices can be started. More specifically, let To be split
into T0 and TI in the splitting process. Let a) (m’) be eigenvalues of

/o=(To0 Tot0 )
in ascending order. Then the Laguerre iteration is applied to the polynomial equation

fo (.) det[To .I] 0

from every .) to obtain the corresponding eigenvalue ") of T, 1 m. This process
is continued until To and T1 are merged into T. That is, in the final step all the eigenvalues of
T are obtained by applying the Laguerre iteration to f()) det(T I) from eigenvalues
of To and T1.

Split Merge

T

T T

To To1 Tlo

Tom Too Too To11 TIoo Tol T110 T111

FIG. 6. Splitting and merging.

In the rest of this section, we discuss, without loss of generality, only the case of merging
submatrices To and T1 in (24) into T in (22), or finding eigenvalues

of T from eigenvalues of

21 22 2n

of 7 by the Laguerre iteration.
From property (i) of Theorem 3.1, for each n, .i ()i-1, .i+l) with the

convention )0 -o and )n+l +o. Suppose i is not a zero of

f(.) det(T .I),

namely, i .i. Then, either i > Li or i < .i; this can be determined by the Sturm
sequence at Zi. In the following discussion, we suppose 2 > ’i. (If 2 < i, similar
arguments along the same line given below follow.) It follows from Proposition 2.1, when the
Laguerre iteration

L+(x) x +
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is applied at i, we have

’i < L-(fi) < fi < L+(fi) < i-t-1

and two sequences

x)-- L+(i) = L+(L+-I(i)), x= z_(L) -=

k 1, 2 with L+(i) L (.i) i can be generated with the property

i <---" < X(-2) < X(1) < i < X < X(+2) < "--"’> ’i+1"

In order to reach ,i from i, we want to stay with the sequence {x)}. Recall that this

sequence converges cubically to ,i only when x reaches a certain neighborhood N of .i.
Before reaching N, the progress of the Laguerre iteration toward convergence may not be
faster than that of the method of bisection. A simple observation (see Fig. 7) shows that for x
near .i in (.i, i+1), -f’(x)/f(x) always assumes a negative value and thus the denominator
in the definition of L+ (x) has larger magnitude if "-" is chosen and the necessary condition
for cubic convergence is satisfied ([28, p. 445]). To illustrate the role of the sign of -f’/f
in the convergence behavior, we use WI [28, p. 308] as an example. Starting from 0.27 and
targeting eigenvalue ,3 0.9475343675292932, the iteration L+ is given below.

k x(+k) ,3 sign of -f’/f

0.8

2 0.7

3 0.5

4 0.2

5 0.01

6 0.000004

7 0.00000000000002

linear convergence

f’/f changes sign

and cubic convergence begins

f, =
y=f(x)

y=f(x)

X

/ f’-0

FIG. 7. Natural direction ofconvergence.

Therefore, the sign of -f’/f at x(_) - Ji plays a critical role in deciding whether the

Laguerre iteration at x(_) should be replaced by the method of bisection to accelerate the
process:

(i) If -f’/f < 0 at x(_), then the Laguerre iteration should be used, i.e., x(_)

Lk (x(__)) k--1 2,
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(o) x(_0)(ii) If f’/f > 0 at x_ then is not in N. The method of bisection should be used
at x(_). Namely, x(_) should be replaced by (i-1 + x(-))/2.

As we mentioned in Remark 2.4, if there are certain eigenvalues of T, li-r+ < <
li- < ki, which are relatively close to ,i compared to the starting point x()_ then it may
take many steps of the standard Laguerre iteration L_ before showing cubic convergence. In

(o)this situation, the modified Laguerre iteration Lr- should be used at x_ Specifically, after
x(__) is altered in a bisection adjustment in (ii) above, we first estimate the number r of those
eigenvalues of T from the information of the closeness of the eigenvalues j’s of/" In our
algorithm, we put .j in this group if

])j i-ll < 0.01Ix(--) 9i-11.
An overestimate of the number r causes essentially no harm because LAGIT dynamically
reduces r during the iteration, while an underestimate may result in slow convergence. An
algorithm ESTMLT to estimate r is designed in Fig. 8.

Algorithm ESTMLT

input: initial point x, sign(li--x), subscript i,
eigenvalues I <"" <. of

output, mlt, the estimated numerical multiplicity of
the eigenvalue li of T

begin ESTMLT
mlt 1
for k I, 2

j + k. sign(li x)
if Ii-1 )jl < 0.01Ix )i-l[ then

mlt mlt +
else-

go to (#)
end i f

end for
(#) end ESTMLT

FIG. 8. Algorithm ESTMLT.

4. Cluster and partial spectrum.

4.1. Cluster evaluation. By a straightforward verification, from Theorem 3.1 one can
obtain the following proposition.

PROPOSITION 4.1. If[a, b] contains k eigenvalues of f’, then [a, b] contains at least k- 2
and at most k + 2 eigenvalues of T. More precisely, let tc (x) be the number ofeigenvalues of
T that are less than x e R and let .s+ )s+k be all the eigenvalues of in [a, b]. Then
s -1 < tc(a) < s + l and s + k -1 < c(b) < s + k + l.

This proposition can be illustrated by following eigenvalue curves )i(t) of T(t) =- (1
t) f / T as two extreme cases that are shown in Fig. 9.

By this proposition, if 7 has a cluster of m(> 3) eigenvalues, say .i+ .i+m, then
)i+2 .i+m- can be accelted as eigenvalues of T without further computations. In our
implementation, we set )i i when

Ii/ 3i-11 < error_tolerance.
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i(t)

t
t=l

a

i(t)_

t=O t=O

T T T T

FIG. 9.

k+2

t
t=l

4.2. Evaluating partial spectrum. In our algorithm, the ith smallest eigenvalue i of
T is always used as the starting point of the Laguerre iteration to obtain the th smallest
eigenvalue ‘ki of T. Therefore, when eigenvalues of T in demand are identified in,magnitude,
say largest 20%, they can be evaluated by using the largest 20% eigenvalues of T as starting
points without computing other eigenvalues of either T or T.

To find eigenvalues of T inca given interval [a, b], the eigenvalues of T in [a, b] are
known, say ‘ks+l ‘ks+k. By evaluating x(a) and x(b), the actual member of eigenvalues
of T in [a, b] is tr x(b) c(a), so that ‘kK(a)+l ‘kK(a)+o are the eigenvalues of T in
[a, b]. By Proposition 4.1, s- _< to(a) _< s + and s + k- < x(b) < s + k- 1, so tr can
either be k 2, k 1, k, k + 1, or k + 2. Thus, at most k + 2 starting points are necessary to
evaluate these tr eigenvalues of T. Let

,ks a, Xs+ Xs+ Xs+k Xs+k, Xs+k+ b.

Among them, ‘kr(a)+l ‘kx(a)+cr will lead to all r eigenvalues of T in [a, b].
The algorithm MERGE in Fig. 10 puts together all the elements discussed in 3 and 4.

5. Numerical testing. Our algorithm is implemented and tested on SPARC station
with IEEE floating point standard. The machine precision is e , 2.2 x 10-16.

5.1. Testing matrices. In the following description of matrix types, ci, n
denote the diagonal entries and/i, 1 n are the offdiagonal entries. The testing
matrices are classified into 12 types.

Matrices with known eigenvalues.
kzr nType 1. Toeplitz matrices [b, a, b]. Exact eigenvalues: {a + 2b cos }k=l ([ 10, Ex. 7.4,

p. 137]).
Type 2. or1 a-b, cti afor 2 n- 1, Cn a+b. j b, j 1 n- 1.

Exact eigenvalues" {a + 2bcos (2k-nl)Zr }l<_k<_n ([10, Ex. 7.6, p. 138]).
a forodd

Type 3. oti= /i=l.
b for even i,

Exact eigenvalues"

a + b 4- [(a b)2 + 16cos2 ] }2
l<k<n/2

and a if n is odd
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Algorithm MERGE

input T [i--I, (i, i], interval [a, b]
eigenvalues s+l < < s+k of in [a,b].

output eigenvalues of T in [a, b].
begin MERGE

set s a, s+k+ b
il :tc(a)+l, i2 :to(b)
for il i2

determine the interval (ai, bi)9 .i by Theorem 3.1
if Ibi-ail > tol then

X l,

f’(x) f"(x)
(#) call DETEVL at x to obtain --f(x) f(x)

(x, bi) if x < i (i.e. to(X) < i)
(ai, bi)

(ai, x) if x > i (i. e. to(X) >_ i)

if x ’(Li_l, Li+l) or sign -f(x) #sign()i-x) then

X (ai -4r bi)/2
go to (#)

end i f
call ESTMLT to estimate the multiplicity of i
call LATIT to obtain ,.i

else
i (ai + bi /2

end i f
end for

end MERGE

and to(x)

FIG. 10. Algorithm MERGE.

([ 10, Ex. 7.8 and 7.9, p. 139]).
Type 4. ci 0,/i /i(n i). Exact eigenvalues" {-n + 2k + 1}l_<k_<, ([10, Ex. 7.10,

p. 140]).
Type 5. ti -[(2i 1)(n 1) 2(i 1)2], fli i(n 2). Exact eigenvalues:

{-k(k- 1)}<k<n ([10, Ex. 7.11, p. 141]).
Wilkinson and random matrices.
Type 6. Wilkinson matrices W+./9i 1,

n + for even n and 1 < < n_
2’

ni-g’ for even n and g < _< n,

n@_i+l for oddnandl <i<
n+ln+ for odd n and W- < < n2

([28, pp. 308-309]). Most of the eigenvalues are in pairs consisting of two numerically
indistinguishable eigenvalues.

Type 7. Random matrices, oti’s and/3i’s are random numbers on [0, ].
LAPACK testing matrices. (Matrix Types 8-12 were generated using the LAPACK test

matrix generator 1 ].)
Type 8. Matrices with eigenvalues evenly distributed between its smallest and largest

eigenvalues.
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Type 9. Matrices with geometrically distributed eigenvalues. Namely, eigenvalues can
be written as {qk}l<k<n for some q (0, 1).

Type 10. Matrices with an eigenvalue and the remaining in (-e, e).
Type 11. Matrices with eigenvalues evenly distributed in the interval (0, except one

eigenvalue with very small magnitude.
Type 12. Matrices with an eigenvalue and the rest of the eigenvalues are evenly dis-

tributed in a small interval 10-2 e, 10-12 + el.
5.2. Testing codes. We compare the performance of the following five algorithms:
(1) S-M: our split-merge algorithm;
(2) B/M: bisection/multisection subroutine DSTEBZ in LAPACK;
(3) D&C: divide-and-conquer subroutine TREEQL developed by J. Dongarra and D.

Sorensen, dated May 17, 1985 [7];
(4) RFQR: root-free QR routine DSTERF in LAPACK, as recommended in LAPACK for

evaluating eigenvalues only;
(5) QR: QR routine DSTEQR in LAPACK, as recommended in LAPACK for evaluating

eigenvalues or eigenpairs.

5.3. Storage comparison. The storage requirements of these five codes for evaluating
eigenvalues of an n x n matrix are:

RFQR: 2n.
QR: 4n. (n2 + O(n) if eigenvectors are also evaluated.)
S-M: 7n.
B/M: 12n.
D&C: 2n9 + O(n).

The storage requirement ofour algorithm, as well as those ofQR and B/M, is low. Because
eigenvectors are stored, the code D&C requires n2 storage, which makes it somewhat difficult
to manipulate matrices with order higher than 500 on most of the workstations. The low
storage of our algorithm also eases the memory contention in the parallel implementation.

5.4. Accuracy test. The accuracy is tested in two ways. First, we test all those algorithms
on matrices chosen from Type to Type 5 using their default error tolerances. These matrices
have known eigenvalues. Thus the error can be directly evaluated. Let i be the approximation
of the exact eigenvalue .i. Table gives the error

m,ax I1 ,-  ,1/11 11 /
It appears that our algorithm achieves the best accuracy on these matrices. The accuracy of
our algorithm, as well as B/M, is independent of the matrix size, whereas the QR, RFQR, and
D&C seem less accurate when the matrix size becomes larger. On matrices of Type 4, with
n 1999, the error of RFQR is more than 1916 times larger than ours.

On the remaining types of matrices whose exact eigenvalues are unknown, the following
test is made. From 2.1, the accuracy of DETEVL is

e()Q 2.5e [m.ax(lJjl +I/j+ll)]j
Ifan evaluated eigenvalue ,i has this accuracy, then r(.i-2e(.i)) < and tc ()i +2e(;i)) >_ i.
We examine the percentage of failures of this test on all the methods. The results are in
Table 2. As a reference, we also list the percentage of failures on matrices of Type to
Type 5. Notice that this test is apparently in favor of B/M and S-M because both algorithms
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TABLE
Accuracy on matrices with known eigenvalues. Because ofthe memory requirement, the D&C algorithm cannot

be executed on our machinefor n 999 or 1999.

n 99 n 199 n 499 n 999 n 1999

Type S-M 0.67 e 0.67 e 0.67 e 0.67 e 0.67
a 4 B/M 1.00 e 1.00 e 1.00 e 1.00 e 1.00
b D&C 1.00 e 2.67 e 4.67 e

QR 2.00 e 4.00 e 4.00 e 4.67 e 9.00
Type 2 S-M 0.67 e 0.67 e 0.67 e 0.67 e 0.67
a 4 B/M 0.67 e 0.67 e 0.67 e 0.67 e 1.00
b D&C 1.33 e 2.67 e 4.67 e

QR 2.67 e 2.67 e 4.00 e 4.67 e 6.67
Type 3 S-M 0.80 e 0.80 e 0.80 e 0.80 e 0.80
a 4 B/M 0.80 e 0.80 e 0.80 e 0.80 e 0.80
b D&C 3.68 e 1.60 e 2.40 e

QR 4.00 e 4.00 e 8.00 e 8.00 e 13.6e
Type 4 S-M 0.16 e 0.04 e 0.13 e 0.036 e 0.032e

B/M 0.65 e 1.29 e 1.03 e 1.23 e 1.23
D&C 1.95 e 7.76 e 7.71 e
QR 7.18 e 16.2 e 15.4 e 22.6 e 24.1

Type 5 S-M 0.53 e 0.65 e 0.65 e 0.65 e 0.65
B/M 0.85 e 0.85 e 1.06 e 1.05 e 1.05
D&C 1.27 e 1.25 e 1.85 e
QR 1.69 e 4.99 e 6.86 e 3.26 e 7.35

involve the evaluation of tc (.), while the QR algorithm, which is considered quite accurate in
general, may have a failure rate close to 70%.

5.5. Speed test. To compare the efficiency of these four algorithms, we perform the
following experiments:

Evaluating all eigenvalues without computing eigenvectors. The results are in Table 3.
Our S-M algorithm shares this feature with B/M, QR, and RFQR, while the D&C algorithm
cannot separate the evaluation of eigenvalues and eigenvectors.

Evaluating all eigenvalues and eigenvectors. Results are in Table 4. For this test, we use
the standard QR routine DSTEQR instead of root-free QR DSTERE Both S-M and B/M are
basically designed to evaluate eigenvalues only. So, after running S-M and B/M, the inverse
iteration code DSTEIN in LAPACK is used to evaluate the corresponding eigenvectors. In
Table 4, the time for S-M is actually the time consumption of (S-M)+DSTEIN, and the time
for B/M is the time consumption of (B/M)+DSTEIN.

ofthe largest eigenvalues without computing eigenvectors. Both S-M andEvaluating
B/M have a great advantage in this case. The time consumption is reduced to about of the
time for evaluating the entire spectrum. On the other hand, both QR and D&C must evaluate
all the eigenvalues to obtain the largest 3" The numerical results are shown in Table 3.

Evaluation of 1/2 ofthe largest eigenvalues and their corresponding eigenvectors. Again,
only S-M and B/M have this feature. The results are in Table 4. Both QR and D&C must

2 of them are unnecessary.evaluate all the eigenpairs even if
From those results, RFQR is apparently the fastest algorithm in computing all the eigen-

values. In this case, the speed of our algorithm S-M is competitive with RFQR with better
accuracy. In evaluating all the eigenvalues and their corresponding eigenvectors, our algorithm
leads DSTEQR by a considerable margin.
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TABLE 2
Accuracy on matrices with unknown eigenvalues (percentages are the rates offailure in the accuracy test).

Because ofthe memory requirement, LAPACK matrix generator can not produce testing matricesfor higher order.

n=99 n=199 n=499 n=99 n=199 n=499

S-M 0% 0% 0% S-M 0% 0% 0%
Type B/M 0% 0% 0% Type 7 B/M 0% 0% 0%

D&C 0% 10.6% 56.9% D&C error error error
RFQR 5.1% 4.52% 6.81% RFQR 11.1% 11.6% 26.9%
QR 0% 7.53% 7.01% QR 5.05% 12.1% 24.6%
S-M 0% 0% 0% S-M 0% 0% 0%

Type 2 B/M 0% 0% 0% Type 8 B/M 0% 0% 0%
D&C 0.% 9.04% 58.5% D&C 0% 0% 4.01%
RFQR 4.04% 4.02% 8.42% RFQR 2.02% 1.50% 15.2%
QR 3.03% 6.53% 8.42% QR 0% 0.50% 16.8%
S-M 0% 0% 0% S-M 0% 0% 0%

Type 3 B/M 0% 0% 0% Type 9 B/M 0% 0% 0%
D&C 21.2% 0% 0% D&C error error error
RFQR 3.03% 1.51% 3.61% RFQR 1.01% 0% 0%
QR 9.09% 7.54% 10.0% QR 0% 0% 0%
S-M 0% 0% 0% S-M 0% 0% 0.20%

Type 4 B/M 0% 0% 0% Type 10 B/M 0% 0% 0.40%
D&C 0% 4.52% 0.40% D&C 12.1% 2.51% 2.40%
RFQR 6.06% 11.1% 14.6% RFQR 0% 0% 0%
QR 3.03% 8.54% 9.42% QR 0% 0% 0.40%
S-M 0% 0% 0% S-M 0% 0% 0%

Type 5 B/M 0% 0% 0% Type 11 B/M 0% 0% 0%
D&C 0% 0% 0% D&C 1.01% 1.01% 19.0%
RFQR 1.01% 2.01% 2.00% RFQR 0.81% 10.6% 18.2%
QR 0% 1.00% 3.21% QR 0.84% 6.53% 21.0%
S-M 0% 0% 0% S-M 0% 0% 0%

Type 6 B/M 4.04% 8.04% 8.22% Type 12 B/M 10.1% 0% 3.21%
D&C 8.08% 14.1% 36.9% D&C 5.05% 1.51% 0.80%
RFQR 51.5% 60.8% 69.3% RFQR 0% 0% 0%
QR 51.5% 56.3% 56.1% QR 3.03% 0% 0.20%

The results also show that our algorithm can be applied efficiently to evaluate partial
spectrum and partial eigenpairs. The speed is several times faster than B/M in most of the
cases. In comparison with D&C, our algorithm leads substantially except in the cases where
a large number of clusters exist (Types 6, 10, and 12). However, the timing of D&C in those
cases is somewhat misleading, because we obtained error messages. Sorensen-Tang [25] and
Gu-Eisenstat 11 reported different approaches to achieve orthogonality of eigenvectors for
D&C algorithm. The version of D&C code TREEQL we used does not have this feature.

6. Discussions.

6.1. Rank-two versus rank-one tearing. For the matrix

(25) T
[i O,
i=l n-1.
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TABLE 3
Execution time (in seconds) for evaluating all eigenvalues without computing eigenvectors: figures outside

parentheses are the number ofsecondsfor evaluating all eigenvalues. Thefigures inside parentheses represent the
timesfor the corresponding codes to evaluate 1/2 ofthe largest eigenvalues. Neither D&C nor QR can take advantage
of this case and thus has no such time listed. The D&C code TREEQL must evaluate all eigenvectors in order to
evaluate the eigenvalues.

n =99

S-M 1.27 (0.52)
Type B/M 3.40 (1.26)
a 4 RFQR 0.76
b D&C 8.56

S-M 1.51 (0.66)
Type 2 B/M 3.30 (1.31)
a 4 RFQR 0.69
b D&C 8.15

S-M 1.26 (0.61)
Type 3 B/M 3.26 (1.26)
a 4 RFQR 0.69
b D&C 9.05

S-M 1.29 (0.56)
Type 4 B/M 3.43 (1.32)

RFQR 0.71
D&C 8.99
S-M 1.32 (0.56)

Type 5 B/M 3.38 (1.28)
RFQR 0.70
D&C 8.92
S-M 0.82 (0.34)

Type 6 B/M 2.21 (0.72)
RFQR 0.68
D&C 2.39
S-M 1.07 (0.50)

Type 7 B/M 3.39 (1.26)
RFQR 0.86
D&C 7.27
S-M 1.47 (0.59)

Type 8 B/M 3.43 (1.32)
RFQR 0.71
D&C 8.99
S-M 1.02 (0.46)

Type 9 B/M 1.98 (0.98)
RFQR 0.45
D&C 1.48
S-M 0.51 (0.25)

Type 10 B/M 0.25 (0.27)
RFQR 0.59
D&C 0.94
S-M 1.43 (0.63)

Type 11 B/M 3.38 (1.31)
RFQR 0.72
D&C 9.01
S-M 0.30 (0.28)

Type 12 B/M 0.26 (0.29)
RFQR 0.53
D&C 0.85

n= 199

4.13 (1.55)
12.4 (4.24)
2.21
59.1
5.33 (1.94)
12.3 (4.27)
2.28
55.7
4.25 (1.61)
12.2 (4.26)
2.05
62.3
4.35 (1.64)
12.8 (4.56)
2.30
62.3
4.39 (1.67)
12.5 (4.23)
2.31
62.2
2.13 (0.79)
7.13 (2.45)
2.05
6.89
3.71 (1.25)
12.4 (4.39)
2.58
23.7
5.12(1.81)
12.8 (4.43)
12.4
62.5
2.95 (1.21)
7.00 (3.39)
1.30
6.96
0.57 (0.34)
0.37 (0.39)
1.83
4.06
5.00 (1.81)
12.7 (4.44)
2.17
62.2
0.35 (0.33)
0.32 (0.46)
1.47
3.90

n =499

23.4 (8.18)
73.5 (24.5)
12.5
910.
31.2 (10.5)
73.5 (24.5)
12.6
851.
23.8 (8.49)
72.4 (24.4)
11.5
905.
24.9 (8.55)
77.4 (26.1)
13.0
906.
25.0 (8.85)
74.8 (23.4)
12.7
893.
9.11 (3.14)
40.7 (13.4)
10.0
46.9
15.9 (5.17)
74.5 (25.4)
15.0
141.
29.1 (9.96)
76.8 (26.0)
12.0
848.
16.1 (5.82)
40.6 (20.2)
6.61
73.6
2.53 (1.47)
0.60 (0.79)
9.94
41.9
28.4 (9.39)
75.4 (25.4)
12.2
845.
0.65 (0.69)
0.60 (0.77)
7.59
39.1
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TABLE 4
Execution time (in seconds) for evaluating both eigenvalues and eigenvectors: the figures outside parentheses

are the number of seconds for evaluating all eigenpairs. The figures in parentheses represent the times for the
corresponding codes to evaluate eigenpairs ofthe largest 1/2 eigenvalues. Neither D&C nor QR can take advantage
ofthis case and thus has no such time listed. *: error messages output when executing the D&C code TREEQL

n=99

S-M 3.45 (1.32)
Type B/M 5.55 (2.02)
a 4 D&C 8.56
b-- QR 15.2

S-M 3.73 (1.40)
Type 2 B/M 5.48 (2.00)
a 4 D&C 8.15
b QR 15.2

S-M 3.50 (1.36)
Type 3 B/M 5.65 (2.05)
a 4 D&C 9.05
b QR 14.0

S-M 3.55 (1.37)
Type 4 B/M 11.4 (2.75)

D&C 8.99
QR 14.9
S-M 3.72 (1.39)

Type 5 B/M 11.7 (12.6)
D&C 8.92
QR 15.0
S-M 3.05 (1.13)

Type 6 B/M 4.34 (1.50)
D&C 2.39*
QR 14.1
S-M 3.38 (1.29)

Type 7 B/M 5.64 (2.10)
D&C error
QR 17.4
S-M 3.78 (1.40)

Type 8 B/M 5.61 (2.07)
D&C 8.99
QR 15.3
S-M 7.35 (1.75)

Type 9 B/M 7.95 (2.19)
D&C error
QR 12.0
S-M 8.31 (1.79)

Type 10 B/M 8.16 (1.67)
D&C 0.94*
QR 13.1
S-M 3.74 (1.41)

Type 11 B/M 5.61 (2.07)
D&C 9.01
QR 15.2
S-M 8.13 (1.69)

Type 12 B/M 8.56 (1.70)
D&C 0.85*
QR 11.3

n= 199

13.6 (4.77)
21.6 (7.38)
59.1
112.
14.8(5.10)
21.6 (7.45)
55.7
115.
14.0 (4.96)
21.8 (7.48)
62.3
104.
13.4 (4.69)
67.6 (12.6)
62.3
115.
14.1 (5.34)
67.7 (12.6)
62.2
115.
11.3 (3.82)
16.1 (5.45)
6.89*
105.
13.1 (4.40)
21.3 (7.36)
error
135.
14.5 (4.97)
21.8 (7.41)
62.5
121.
45.2 (7.30)
45.2 (9.36)
error
93.4
55.6 (8.30)
55.1 (8.28)
4.06*
100.
14.4(5.01)
21.4 (7.33)
62.2
121.
55.0 (8.30)
56.2 (8.61)
3.90*
80.7

n =499

116. (45.0)
164. (60.9)
910.
1744
124. (47.2)
165. (60.8)
851.
1763
202. (68.8)
249. (84.1)
9O5.
1582
81.7 (27.5)
846. (124.)
906.
1815
127. (72.7)
843. (123.)
892.
1781
65.6 (21.9)
95.6 (31.9)
46.9*
1478
75.1 (24.7)
131. (44.0)
error
2108
87.3 (28.9)
132. (44.1)
849.
1818
610. (76.4)
601. (83.7)
error
1265
784. (99.4)
771. (98.1)
41.9"
1906
86.8 (28.9)
130. (43.6)
845.
1906
776. (99.1)
769. (99.5)
39.1"
1186
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Our split-merge process is similar to Cuppen’s divide-and-conquer method [4], where T is
split by a rank-one tearing:

(26)
0 T1)

T- P) for P)
/3k o

In our algorithm, we split T by a rank-two tearing:

(27) T(2)= (T0(2) 0 )0 T(2) T- p(2) for p(2) 0

For 0 : 0, the matrix p(1) is of rank one, and the rank of p(2) is of rank two. (Throughout this
section, the superscripts 1) and 2) are used to indicate the rank-one and rank-two tearings,
respectively.) There are some interesting properties of Cuppen’s rank-one tearing such as a
separation result stronger than Theorem 3.1 ([9, Thm. 8.6.2, p. 462]). However, if we consider
the distance from the eigenvalues of perturbed matrices T(1) or T(2) to the corresponding
eigenvalues of T, our rank-two tearing is better than the rank-one tearing, because we can
always apply the Laguerre iteration from closer starting points.

LEMMA 6.1 [3, p. 34]. Let A and B be real symmetric matrices with eigenvalues
.(A) <... < .n(A) and.(B) < < .n(B), respectively. Then

m.ax IZ(A) q(B)[ _< IIA nil.
J

LEMMA 6.2. Forrealsymmetric matrices A and B, let {,i(A)}in=l {.i(B)}in=l and {.i(A-
B)}i=ln be eigenvalues of A, B, and A B (in ascending order), respectively. Then

I)(A) (B)I _< ILi(A B)].
i=1 i=1

Proof Use [3, Thm. 9.7, p. 45] with the Ky Fan n-norm ([3, p. 28]). [3

The following theorem compares the rank-one and rank-two perturbations as in (26)
and (27). It shows that the upper bound for rank-two perturbation on each eigenvalue is no
more than one half of the upper bound for rank-one perturbation; and the total perturbation
of rank-two tearing is bounded above by the lower bound of total perturbation of rank-one
tearing.

THEOREM 6.3. Let T, T), and T(2) be as in (25)- (27) with spectrums {i }i--1’n {.}1) }i=l,n
and {k2)}in=, respectively, in ascending order. Then

o +
(28) I.i .}1)1 <, n,

---102+/4
i= 1 n,(29) I.i- .}2)1 < I/1

101

=1 =1
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Proof The spectrums of p(1) and p(2) are {0, (02 -{-" fl)/0} and {0, +/3k}, respectively.
By Lemma 6.1, for each < < n,

]Xi )(1) p(1).- I_ II- IOl

It is easy to see that

o +
min
0>0 0

Thus,

102 +/32

2 101

It follows from Lemma 6.2 that

i=1

On the other hand,

i=1

i=1 i=1

Itr(T) tr(T))l Itr(P)l 101 + >_

where tr(A) denotes the trace of a matrix A. S
From this theorem one can easily see that to reach the eigenvalue ,ki of T by using .}1) of

T(1) as a starting point, more work is expected than starting from ,k2) of T(2) instead. Indeed,
n 1)numerical testing shows that for rank-one perturbation, i=l Ii } can be four times as

big as in__l I.i .}2)1 in rank-two perturbation. Table 5 lists the comparison of these two
perturbations on 12 types of matrices given in 5 with n 99.

TABLE 5
Numerical comparison between rank-one and rank-two perturbations.

Matrix Rank two

types Ei I’i .(2)i
Type 0.726965858
Type 2 1.472573929
Type 3 0.468625974
Type 4 35.97841949
Type 5 1780.795116
Type 6 0.758494678

Rank one Matrix

types

2.000000000 Type 7
2.000000000 Type 8
2.000000000 Type 9
98.99494937 Type 10
4900.000000 Type 11
2.000000000 Type 12

Rank two

Zi I’i ’i
(2)

0.151873922
0.451587126
2.3505 x 10-8

10-17

0.229865425
10-17

0.455857515
0.805204125
3.961010-8

10-17

0.397815459
10-17

In the case of the singular value evaluation, which is equivalent to the symmetric tridiag-
onal eigenvalue problem on matrices with zero diagonal entries, rank-two tearing has another
advantage of keeping the structure of zero diagonal. Thus the eigenvalues of split matrices
can be evaluated within a tiny relative error 18].
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6.2. On parallelization and vectorization. Our algorithm can be parallelized in a sim-
ilar way as in D&C [7]. There are two levels of parallelism. First, when the matrix T is split
in a tree as in Fig. 6, then solving the eigenproblem of each submatrix is independent of the
others and thus can be done by one processor or a group of processors. Second, when solving
the eigenproblem of a submatrix of order m, each one of the m eigenvalues can be evaluated
separately by performing the independent Laguerre iteration. Thus if a group of processors are
assigned to this submatrix, these independent Laguerre iterations can be distributed to those
processors. The combination of both levels makes our method fully parallel and an excellent
candidate for advanced architectures.

Our method is also suitable for vector computing. For instance, when m eigenvalues of a
submatrix are being computed, the algorithm evaluates the determinants det(T x I) and their
derivatives at several starting points X Xm. This process can be performed with some do
loops described in Fig. 11, where the/-loops are vector operations.

for l’m
initialize il, OiO, Oil, #iO, and ’il

end for
for ]:2"m

for =|:m

IOU U ( x),-I + 1-

ij- ij
end for

end for

FIG. I. Vector&able loops.

The implementation strategies and experimental results of the parallelization and vector-
ization of our method will be reported in a separate paper [26].

6.3. Other possible variations. Our algorithm presented in this paper mainly consists
of a split-merge process and a carefully implemented Laguerre iteration. The purpose of the
split-merge process is to separate the eigenvalues of the target matrix T and obtain initial
approximations to these eigenvalues. The Laguerre iteration is used because of its superior
global properties and rapid convergence. There are other possible substitutes for the elements
of our method.

The use ofrank-one tearing in splitting. It was shown in 6.1 that the rank-one tearing
makes a larger perturbation to the spectrum and hence requires more iteration steps in merging.
Nevertheless, its distinguished separation property and deflation potential may serve as a trade-
off.

The use ofthe Newton iteration in merging. The Newton iteration can certainly be used
as a substitute for the Laguerre iteration in our method. Then the process will be slower in
convergence but the cost per step become less. The major disadvantage of using the Newton
iteration is the loss of the global monotonic convergence property. An efficient algorithm
based on the Newton iteration may be developed if such difficulty can be resolved.
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Acceleration ofbisection. Instead of splitting the matrix, one can split the spectrum by
bisection/multisection using the Sturm sequence. After the eigenvalues are well separated,
the Laguerre iteration can be used to achieve rapid convergence. This would be similar to the
idea of [2]. The difficulties of this approach seem to be:

(1) if the spectrum can not be well separated (e.g., when clusters exist), the algorithm
would be reduced to bisection/multisection;

(2) usually good initial points for the iteration are not available unless enough bisection
steps have been taken.

7. Proofs of the theorems.

7.1. Proof of Theorem 2.3.
LEMMA 7.1. Let f(X) =_ 1--Iin__l (X Xi) be a polynomial with real zeros ,kl < X2 <_ <

Xn. Then, for any real number x for which f(x) 5k O, there is a parameter 0 x such that
Lr+(X) and Lr-(X) defined in (17) are the two zeros ofthe quadraticfunction in y

(31) qb(O, y) = (x y)2 y’- (O ’i )2 r(O y)2 with r < n.

Proof Let r/= x y and/z 0 x. Then

i=1
X ,i

/Z2S2 + 2/ZSl + n

where

ft(x) ft(x)2 f(x) f"(x)
S1-- S2--f(x)’ f(x)2

With these notations, q (0, y) 0 can be rewritten as

(32) /d,2(?]2S2 r) + 2#O(Os r) + r/2(n r) O,

which can be considered a quadratic equation in/z 0 x. By making the discriminant A
of (32) in/z zero, we have

[rl(rls1 r)]2 (r]2s2 r)o2(n r) O.

And, consequently, for

S1 "+" /- (ns2 S1)

or

n
y x rl x Lr+(X),

S1 -6 /nZr---(ns2 S1)

equation (32) in/z has a double zero/z.. It is clear that/z. :/: 0. Otherwise, 0 0 and thereby
Zr+(X) x, which leads to f(x) 0. Thus 4(0, Lr+(x)) 0 for 0 -7- x. [3

Proofof Theorem 2.3. We shall only prove (18). Inequalities in (19) follow by a similar
argument.
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First, we show that there is always a unique zero y(O) of (31) in (x, Am+r] for every 0 x.
In fact, if 0 < x, then 4(0, x) -r(O y)2 < 0 and

Arn+r (0 Am+i)2 (0 Am+r)2

i=l Am+i

0 Xm+ ). )> (0 Am+ (0 Am+ O.
i=1

0 Am+

Hence there is a zero of 4(0, .) in (x, Am+r). This zero is unique because 4(0, .) is quadratic.
For 0 > x, equation (31) can be rewritten as

(0-Y)2x-y -i=l
(> 0).

As a continuous function of y in (x, 0), is monotonically decreasing from +z to

0. Thus there is a unique y(O) (x, O) satisfying (31) for every 0 > x. If 0 < Am_t_r,
y(O) < 0 < Am+r. If 0 > Am+r,

t(0, Am+r)
i=1 Am+i

(0 Am+i)2 (0 m+r)2

>__. [(0 Am+i)2 (0 Am-l-r)2] >_. 0.
i=1

Thus y(O) (x, Am+r] since tp(0, x) < 0.
It is easy to verify that L+(x) is the closest zero of 4(0, y) to the right of x for some 0,

that is, y(O).
The inequality L+(x) < Lr+(X) for r > is trivial in case of- f’x) > 0.f(x)

7.2. Proof of Theorem 3.1.
LEMMA 7.2 (Strict interlacing property). Let A be an unreduced symmetric tridiagonal

matrix. Form 1, 2 n, let A(m) be the leading m x m principal minor (i.e., A(m) consists

of entries of A in the first m rows and m columns) with eigenvalues {A}m)}im=l in ascending
order. Then

(m+l) .(m) (m-i-l) A(mm (m+l)Am+l) < Am) < ""2 < ""2 < < Am < < ""m+l

Proof See [24, p. 131 ].
LEMMA 7.3 [24, p. 193]. Let A and B be n x n symmetric matrices and Ai(A) and

Ai (A + B) be the th smallest eigenvalues of A and A + B, respectively. Suppose B has
positive and v negative eigenvalues. Then

Ai-u(A) < Ai(A + B) < Ai+r(A)

with the convention Ao(.) -cx and An+l (’) --(X).

Proofof Theorem 3.1. The matrix To is the k x k leading principal minor of T. By the
interlacing property given in Lemma 7.2, the spectrum of To is contained in (A1, An). We may
permute the rows and columns of T in reverse order, so that the accordingly permuted T1 is
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an (n k) x (n k) leading principal minor of permuted T. Hence the spectrum of TI is
also contained in (.1, .n). It follows that )1 < 1 and .n < .n. Since T T 4- p(2) where
p(2) is defined in (27) with liP(2)[[ [/k[, by the Weyl lemma, [.j .j[ _< [/k[. Hence
Zl I/k[ _< 1 < .1 and .n + 1/1 >_ Xn > .,. The eigenvalues of p(2) are 0 and /k, thus,
by Lemma 7.3, ,i-1

x_
< ,ki _< .i+A and Zi-1 _< .i _< ,ki+l. It remains to show that Zi Zi-1,

.i i+1, and .i .i-1, .i Zi+l. We shall prove i ki-1. The remaining cases follow
by similar arguments.

Consider the homotopy

h(., t) det[(1 t) 4- tT .I1
det[T (t) ZI1,

where T() (1 t) 7 + T. Let i (t) denote the ith smallest eigenvalue of T (t). Then every
.i(t) is a continuous function of t. For O, T(t) is unreduced, so Ll(t) < < ., (t), and
the graphs of )i(t)’s are disjoint except possibly at 0.

By the three-term recurrence (6), it is easy to see that h(., t) 2 2/ fl (.)+ J(.) where

Ji and J are polynomials in X. Suppose i .i-1 .,, then h(,ki(O), O) h(Zi_l (1), 1)
0, which implies fl(.,) f2(),) 0. Thus the constant function .(t) ;k, satisfies

nh(.(t) t) 0 for all t. This constant function .(t) must be one of {)j( )}j=l Since )(1)., ,ki_l(1), so .(t) _-- .i-(t) and hence ,ki_l(t) ,k, i. Accordingly, .i-1(0)
.i- .i, or .i is a double eigenvalue of . Since both To and T are unreduced, they must
have the same eigenvalue Z, at which J (.,) 0.

Now, by differentiating

h(,k,t) 2 2f (.) +

To )I

det

twice with respect to t, one can verify that Ji 00 is the characteristic polynomial of the
(n 2) x (n 2) matrix

0 0 )0 T1

where 70 is the leading (k 1) x (k 1) minor of To, and IF1 is equal to the submatrix T1
with the first row and the first column deleted. By the interlacing property, Ji (.,) 0 since, is an eigenvalue of both To and T1 and thus cannot be an eigenvalue of either iF0 or iF 1.

This contradiction proves L ’i--1. ["]
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THREE-DIMENSIONAL INVERSE OBSTACLE SCATTERING FOR TIME
HARMONIC ACOUSTIC WAVES: A NUMERICAL METHOD*

LUCIANO MISICIt AND FRANCESCO ZIRILLI

Abstract. A numerical method for a three-dimensional inverse acoustic scattering problem is considered. From
the knowledge of several far fields patterns of the Helmholtz equation a closed surface 0D representing the boundary
of an unknown obstacle D is reconstructed. The obstacle D is supposed to be acoustically soft or acoustically hard
or characterized by a given acoustic impedance.

Key words, acoustic scattering, inverse obstacle problem

AMS subject classifications. 35R30, 35J05

1. Introduction. Let R be the three-dimensional euclidean space, x__ =(x, y, z)T e R3

be a generic vector, and the superscript T denote the transpose operation. The euclidean scalar
product will be denoted with (., .) and will denote the euclidean norm.

Let D C R3 be a bounded simply connected domain with smooth boundary 0D; in the
following we assume that D contains the origin. Let ui(x_) be an incoming acoustic plane
wave, that is,

(1.1) U X__ eik(x’t)

where k > 0 is the wave number and e R3 is a fixed unit vector (i.e., I111 1). Let
us denote with uS(x__ the acoustic field scattered by the obstacle D and with u(x__) the total
acoustic field, that is,

(1.2) u(x) ui(x) + u(x).

The total acoustic field u(x) satisfies the Helmholtz equation

(1.3) A u(x__) -+- k2u(x__) 0 x__ 6 R3 \ D,

where A 02/Ox2 + 02/Oy2 + 02/Oz2 is the Laplace operator. The scattered field uS(x)
satisfies the Sommerfeld radiation condition at infinity

(1.4) lim r ku 0,

where r Ilxll. Moreover the total acoustic field u(x) satisfies a boundary condition on
0 D. This boundary condition is the mathematical counterpart of the physical character of the
obstacle, that is, for acoustically soft obstacles we require the Dirichlet boundary condition

(1.5) u(x) 0, x__ 19D;

for acoustically hard obstacles we require the Neumann boundary condition

(1.6)
Ou(x)

0, x 6 OD,gn

*Received by the editors September 20, 1991; accepted for publication (in revised form) August 7, 1993. The
research reported in this paper has been made possible through the support and sponsorship of the United States
Government through the Air Force Office of Scientific Research under contract AFOSR 90-0228 with the Universit
di Camerino.
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camvax, cineca, i t).

tDipartimento di Matematica "G. Castelnuovo", Universita di Roma "La Sapienza," 00185 Roma, Italy
(apzrm@ i tcaspur. bitnet).
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where n (x), x 0D is the unit outward normal to OD at the point x; and finally for obstacles
characterized by an acoustic impedance we require the mixed boundary condition

Ou(x)
(1.7) u(x) + X-- 0, x OD.

On

We assume X to be a real constant to derive the relations of 3; however this assumption can
be avoided.

We call the direct problem the problem ofdetermining the scattered field u x ), x__ R3\D
given the incoming field ui(x), the obstacle D, and its physical character, that is, given one
of the three boundary conditions (1.5), (1.6), (1.7). The direct problem is a boundary value
problem for the Helmholtz equation and has been widely studied. For an exposition of several
mathematical results on the direct problem, see, for example, 1 ]. In particular it can be shown
1 that the scattered field u (x) corresponding to the boundary condition (1.5), (1.6), or (1.7)
has the following expansion:

(1.8) u(x) Fo _, k, _) + 0 -fi r -- o
so that when r cx the leading term of the expansion in inverse powers of r is given by a
spherical wave eikr/r coming out from the origin modulated by the "far field" F0. We note
that F0 depends on k, a_q_, which are the parameters characterizing the incoming wave (1.1) and
on x__/llx_ll for x_ :fi 0. We note that the Helmholtz equation (1.3) is obtained from the
wave equation assuming that the incoming field and the corresponding scattered field are time
harmonic; that is, their time dependence is given by a factor eit where 09 is a constant.

The inverse problem that we consider here is the following: given the character of the
obstacle (i.e., acoustically soft, hard, or characterized by an acoustic impedance) and the far
field F0(, k, a_q_) for one or several incoming waves u (x) with different incident directions
a_q_ and/or wave number k, determine the boundary of the obstacle OD. This inverse problem
is known to be ill posed and, due to its great interest both in mathematics and in several
application fields, has been widely studied; for a review see [2].

The numerical methods used to solve the inverse problem considered here can be divided
in two types: the first type consists of an iterative procedure that at each step requires the
numerical solution of a direct problem; the second type consists of genuine methods for the
inverse problem that do not require the solution of the direct problem. In the first type we
mention the work of Roger [3], Murch, Tan, and Wall [4], Wang and Chen [5], Angell, Colton,
and Kirsch [6], and Kristensson and Vogel [7]. In the second type we mention the work of
Kirsch and Kress [8]-[ 10] and the work of Colton and Monk 11 ].

In this paper we introduce a numerical method to solve this inverse problem based on the
Herglotz wave function method introduced by Colton and Monk in [11 and further developed
by Misici, Zirilli, and their coauthors in [12]-[15]. In particular, based on previous work by
Misici and Zirilli 14], we extend the Herglotz function method introduced in 11 for acous-
tically soft obstacles to hard obstacles or obstacles characterized by an acoustic impedance.
The analytical relations obtained are exploited to build up numerical algorithms. Finally these
algorithms are efficient in the so-called resonance region, that is, when

(1.9) kL 0(1),

where L is a characteristic length ofthe obstacle D. In 2.we derive the analytical relations that
are the basis of the numerical methods. In 3 the basic numerical method developed for the
solution of the inverse problem is presented. In 4 some special features of the reconstruction
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procedure in the case of acoustically soft obstacles are shown. Finally in 5 we introduce
the test problems used to test the methods of 3 and 4 and we show the numerical results
obtained.

2. The mathematical formulation of the inverse problem. For x, y R3 let

(2.1) (I)(x__, y)
eikllx-y_ll

4rr IIx__ yll

be the Green’s function of the Helmholtz operator that satisfies the Sommerfeld radiation
condition at infinity. It is easy to see that

eikllxll -ik(_,y) ( )(2.2) (I), y) 4zrkllxl-------e / O ,llx_ll z when x --+ o;

moreover from the Helmholtz formula 14] we have

fo I O(I)(x,y) Ou(y) ] {_ui (x) if x e D,(2.3) u(y) dp(x__, y) dr(y)
o On(y_) On()_ J us(x) ifx__R3\D,

where da (y) is the surface measure on 0D. Substituting (2.2) in (2.3) and using (1.8) we have

(2.4) u(y)Fo(, k, _) O(e-a’(’Y))on(y_) On(y)OU(Y)e-i’(LY-)] do’(y)._

Let B {x__ 6 R3 Ilx_ll

_
}, 0B be the boundary of B and dX be the surface measure on 0B.

We denote with L2(0B, dZ-) the space of square integrable complex functions with respect to
the measure dik. For g() 6 L2(0B, d)) and (2.4) interchanging the integrals we have

(2.5)

Fo, k, ot)g( _)d.( _)
B

g( )dL u(y)
4zr s D On(y)

fo [ Or(y) Ou(y) ]u(y) da(y)
4r D On (y) On (y_.)

On(y)OU(Y) e_ik(Ly)] da(y)_

where

(2.6) v(y) fOB g( -)eik(-’Y)d’( -)"

It is easy to see by differentiating under the integral sign that v(y) is a solution ofthe Helmholtz
equation for every y 113.

Let Z l, Z2, Z3 be the sets of the eigenvalues of the Laplace operator inside the domain
D with the Dirichlet boundary condition (1.5), the Neumann boundary condition (1.6), or the
mixed boundary condition (1.7), respectively. We give the following definitions.

DEFINITION 2.1. Given -k2 q Z1, let w(y) be the unique solution of the following
boundary value problem:

(2.7) (A + k2)w (y) O, y D,
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-ikllylle
(2.8) wl(y)

kllYll Y OD.

We say that D is a Herglotz domain with respect to the Dirichlet boundary condition if there
exists gl() L2(0B, dX) such that

(2.9) Wl(y) fOB gl (’" )eik(-’Y-)d()"

In a similar way we have the following definition.
DEFINITION 2.2. Given -k2 q E2, let w2(y) be the unique solution of the following

boundary value problem:

(2.10) (A -+- k2)w2(y) O, y D,

0w2(y) 0 (e-ikll-yll )(2.11)
On(y) On(y) \ kll_Yll Y 3D.

We say that D is a Herglotz domain with respect to the Neumann boundary condition ifthere
exists g2() L2(0 B, dX) such that

(2.12) w2(y) fos gz()eikGy)dX(-)"
DEFINITION 2.3. Given X R and -k2 E3, let w3 (y) be the unique solution of the

following boundary value problem:

(2.13) (A q- k2)w3(y) O, y D,

3w3(y_)
+ X

\ kllyll Y 0D.(2.14) w3 (y) + X On (y) On (y)

We say that D is a Herglotz domain with respect to the mixed boundary condition if there
exists g3() LZ(OB, dX) such that

(2.15) w3(y) fS g3( _)eik(-’Y-)dZ(. ).

To our knowledge a characterization of Herglotz domains is not known; however it is easy
to see that the class of Herglotz domains is not empty. In fact a straightforward computation
shows that the sphere of center the origin is an Herglotz domain in the sense of Definitions
2.1-2.3; moreover the numerical experience of 5 can be regarded as experimental evidence
that the domains considered satisfy the previous definitions.

In the following we consider only domains D that satisfy the appropriate Herglotz condi-
tion, that is, Definitions 2.1, 2.2, or 2.3. In the case of the inverse problem for the acoustically
soft obstacle from (2.5), using (1.5) and (2.8) we have

1
(2.16) Fo(, k, )gl()d)(_) - ot 3B.

B
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Reasoning in the same way we have

(2.17) Fo(, k, ct)g2)d.()

for the acoustically hard obstacle and

fO(2.18) Fo(, k, )ga()dk()

for the obstacle characterized by an acoustic impedance.

Vot 6 OB

The numerical method for the inverse problem for the acoustically soft obstacle is based
on the relations (2.16), (2.9), (2.8), which connect the data, i.e., the far fields to the unknown
0 D. In a similar way we will exploit (2.17), (2.12), (2.11) to solve the inverse problem for
the acoustically hard obstacle and (2.18), (2.15), (2.14) to solve the inverse problem for the
obstacle characterized by an acoustic impedance.

3. The numerical method. Given D C R3 and the boundary condition (1.5), (1.6), or
(1.7) satisfied by u on 0D, we will exploit numerically the analytic relations derived in 2 as
follows. Since most of the content of this section is independent of the boundary conditions
chosen, to fix the ideas we consider the inverse problem for acoustically soft obstacles, i.e.,
the relations (2.16), (2.9), (2.8). When necessary we will comment on the peculiar features of
the corresponding problems for acoustically hard obstacles or obstacles characterized by an
acoustic impedance. Our general strategy can be summarized in three points.

(i) Use (2.16) to go from the knowledge of the far fields F0 to the Herglotz kernel
gl () of the domain D.

(ii) Use (2.9) to go from the knowledge of the Herglotz kernel gl () to the Herglotz
wave function w (y).

(iii) Use (2.8) to go from the knowledge of the Herglotz wave function wl (y) to the
boundary of the obstacle 0D.

More precisely, given D, let 21 {or e OB 1, 2 N} be the set of directions
of the incoming waves, g22 {ki R] -k2i q E1 1,2 N1} be the set of the
nonresonant wave numbers of the incoming waves and f23 {i 6 3B 1, 2 M}
be the set of directions where the far fields F0 are measured. For 1, 2, 3 we assume
that the elements of i are distinct. We observe that is not possible to know a priori that the
wave numbers chosen are nonresonant. The data of our inverse problems will be the numbers
Fi,il,j 1, 2 N, il 1, 2 N1, j 1, 2 Mthat represent the measurements
of Fo(j, kil, oti). In the numerical experience shown in 5 these data are obtained by solving
numerically the direct problem (1.3)-(1.5).

Let (0, 40 be the polar angles so that

(3.1) (0, 40 (sin0 cosq, sin0 sin4, cos0)r

and Ulm ) Ylm Ptm (cos O) cos mqb, Vlm () ?’lm Plm (Cos O) sin m$, 0, 1,2 rn
0, 1 be the spherical harmonics, where J/In are the normalization factors in L2(0B, d.)
and p/m are the Legendre functions. It is well known that

{Ulm, Vim} l=0,1 is an orthonormal complete set of L2(OB, d.).
m=0,1

From the data our computation proceeds as follows.
Step 1. From the data to the coefficients of the expansion in spherical harmonics of the

far field F0(, ki,, oti), 1, 2 N, 1, 2 N.
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Let us first consider the case f23 {i 1, 2 M}. Given an integer Lmax >_ 0
we assume that the far field F0(, ki, u-i) can be approximated by a truncated expansion in
spherical harmonics, that is,

Lmax Lmax
Fo(_,kil u_i) EE ’zi’’i UIm()-’EE L-’i’i r"

-r0,1,m,2 rim ).O,l,m
/=0 m=0 /=1 m=l

We note that the unknown coefficients appearing in the truncated expansion (3.2) are (Lmax d-
1)2 complex constants. To determine these coefficients we impose that

Lmax Lmax
(3.3) EE "l’il’i0,1,m, glm(’j + EE "lil’io,l,m,2 glm(.j Fi,il,j,

/=0 m=0 /=1 tn=l

j=l,2 M.

Equations (3.3) are a linear system of M equations in (Lmax q- 1)2 unknowns, so that to
determine the unknowns we need M > (Lmax -I- 1)2. The condition number of the linear
system (3.3) grows dramatically with the number ofequations M, so that its numerical solution
become practically unfeasible even for small values of Lmax such as Zmax 4, 6, 8.

The use of regularization procedures such as Tichonov regularization to solve (3.3) are
helpful but insufficient to cure the ill conditioning. We note that the right-hand side of (3.3)
is supposed to represent actual physical measurements that are affected by significant exper-
imental errors so that ill conditioning is a true challenge. This ill conditioning problem is
solved by reducing the number of unknowns to be determined and reducing in a similar way
the number of equations to be solved. This is obtained exploiting the special features of the
linear system (3.3).

Step 2. From the far fields F0(, ki u-i)il 1, 2 N1 1, 2 N to the Herglotz
kernel gil ( ).

Let gi () 6 L2(0B, d)) be the Herglotz kernel associated to the boundary condition
(1.5), the domain D, and the wave number ki 6 22. We assume that gi (_) can be approxi-
mated by a truncated expansion in spherical harmonics, that is,

(3.4)
Lg Lg

gil() EEgmlUlm() -4- EEgm2Vlm()’
/=0 tn=0 /=1 m=l

where 0 < Lg < Lmax is an integer. Using the orthogonality properties of the spherical
harmonics the relation (2.16) will be approximated with

Lg Lg

EE lgi,il,i il EE Ki’il’i il ----, i= 1,2 N.(3.5) O,l,m,l glml -I- O,l,m,ElSlm2 ki/=0 m=0 l=1 rn=l

Equations (3.5) are a linear system of N equations in the (Lg + 1)2 unknown coefficients

gtm2}, so that to determine the unknowns we need N >_ (Lg + 1)2. We remark that

the unknown coefficients {gml, gtm2} are complex numbers. The number of incoming waves
N can be drastically reduced if the unknown coefficients to be determined are reduced in a
corresponding manner. This reduction can be achieved if we make some a priori assumptions
about the symmetries of the obstacle D, and we assume that the same symmetry is conserved
in the Herglotz kernel gi (_). In this paper we consider the following three choices.

(i) OD is cylindrically symmetric with respect the z-axis, that is, OD {x
f(O)(O,b) 0 < 0 < zr, 0 < q < 2zr for some function f. In this case if we as-
sume the same symmetry for gi () we have gnl 0 if rn > 0 and gm2 0 for every l, rn
so that the linear system (3.5) has only Lg / 1 unknowns and as a consequence we need only
N > Lg + 1 incoming waves.
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(ii) 0D is cylindrically symmetric with respect to the z-axis and symmetric with respect
to the equator. Arguing as in (i) we can conclude that the linear system (3.5) has only [Lg/2]+ 1
unknowns. With [Lg/2] we have denoted the integer part of Lg/2.

(iii) 0D is a general surface, that is, no special symmetries are assumed.
When it is necessary the system (3.5) is solved using a regularization procedure. We

note that when some symmetry about 0D is assumed and these .sy.mmetries are exploited
jtVil ,i ]t?tl ,tas previously shown a large number of the coefficients {, 0,/,m,l’ 0,1,m,2 of the system (3.5)

determined in Step 1 are multiplied by unknowns {gm 1, gme} that are assumed zero.
Step 3. From the Herglotz kernel gil () to the Herglotz wave function w,il (y), il

1,2 N1.
From (2.9) and (3.4) an explicit computation gives us an approximated expression of

l/)l,il (Y), that is,
(3.6)

Wl,il(y 4zr y _,gmitjl(killlYll)Ulm(2) + _,, (killyll)Vtm(2)
1=0 m=0 l=1 m=l

where )3 y/llyll and jt is the spherical Bessel function of order I.
Step 4. From the Herglotz functions Wl.il (Y), 1, 2 N1 to the boundary of the

obstacle 0 D.
For simplicity we assume that there exists 0 < a < b < +oo and a smooth func-

tion f(O, qS) such that a < f(O, dp) < b, for all 0, 4 and we have 0D {(r, 0, 40 r

f(O, go), O <_ O <_ rr, O <_ ck < 2zr}.
The reconstruction of the boundary 0D from the Herglotz functions is based on the

relation (2.8) in the case of the acoustically soft obstacle, or the relation (2.11) in the case of
the acoustically hard obstacle, or the relation (2.14) in the case of the obstacle characterized
by an acoustic impedance. The relation (2.8) must be interpreted as a nonlinear equation that
defines implicitly f as a function of 0 and , the relations (2.11), (2.14), due to the presence
of the O/On term, are nonlinear expressions involving f, , , that is, first-order partial
differential equations. So we expect that the reconstruction of 0D in the acoustically soft case
should be easier than in the remaining cases. In 4 we will show an ad hoc procedure to exploit
(2.8). Here we restrict our attention to a general procedure to obtain D that can be applied
always. We approximate 0D with a truncated series of spherical harmonics:

La La
(3.7) f(O, ) ,mlflm() "Jr-

_
a Clm2Vlm(),

1=0 m=0 1=1 m=l

where Lo > 0 is chosen depending on 0D, i.e., simple obstacles can be reconstructed with
small Lo, that is, Lo 4, 6. Moreover if it is assumed that OD has some of the sym-
metries previously considered, these symmetries can be easily translated into properties of
the coefficients {Clml, Clm2}, that is, the appropriate coefficients can be chosen zero. Let
C_. {Clml, Clm2}, 0 <_ < Lp, 0 < rn < be the (La + 1)2-dimensional real vector of the
unknown coefficients; the unknown boundary is obtained by minimizing with respect to c the
following functions:

(3.8) I (_c) d4 sin 0

when the acoustically soft obstacle is considered;

(3.9)

e-ikq f 12Wl,it +
ki f

dO,

I2(c) 7- dq sin0
i1=1

-n w2,il +
ki f

dO,
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when the acoustically hard obstacle is considered;

(3.10) /3(c) . db sinO ( O)( e-il"tf)[
2

+ X-n w3,i, + kilf dO,

when the obstacle with acoustic impedance is considered.
In (3.8)-(3.10) the Herglotz wave functions obtained in Step 3 are computed in (r

f(O, qb), O, ), is the normal derivative with respect to the surface r f(O, ), and f
is approximated with (3.7). The factor 1/ki in (3.8)-(3.10) is chosen to make the addenda
corresponding to different values of k of the same order of magnitude. Finally the integrals
appearing in (3.8)-(3.10) are approximated by some simple quadrature rule. We observe that
the functions Ii (c), 1, 2, 3 are nonnegative functions and that, if we neglect the effects
of the approximations introduced, the surface r f(O, ) corresponds to a point where

Ii (_c) 1, 2, 3 is zero, that is, r f(O, qb) is a global minimizer of//(c). We note that
in general the surface 0D is only a proper subset of the set of points satisfying the relations
(2.8) or (2.11) or (2.14).

When the minimization of Ii (c) does not give a satisfactory reconstruction of 0D we
minimize P/( c instead of Ii (c), where

(3.11) Pi(c) Ii(c) + q(c), 1, 2, 3

and q (c) is a penalization term. The penalization term q (c) is chosen as follows:

nl n2

(3.12) q(_c) EE pij(f(Oi, j) fij.)2,
i=1 j=l

where pi > 0 are weight factors, and are approximated values of f in the direction (0i, P)
that we assume known. For the acoustically soft obstacles the values Jo can be obtained by
solving (2.8) with 0 Oi, P P as a nonlinear equation for f. In the remaining cases the
nonlinear partial differential equations (2.11), (2.14) become nonlinear equations when

(3.13) Of Of O.

For a large class of surfaces (3.13) is satisfied in some special points such as the North Pole
(i.e., 0 0, 4 arbitrary), the South Pole (i.e., 0 zr, 4 arbitrary) or the equator (i.e.,
0 -, 4 arbitrary). At these points (2.11), (2.14) can be solved as nonlinear equations to
obtain approximate values f/. of f to be used in the penalization term (3.12).

The minimization of Ii (c) or Pi (c) is performed with one of the following three al-
gorithms: DBCONF [17], that is, a quasi-Newton local minimization algorithm, SIGMA
[18],[19], that is, a global minimization stochastic algorithm, or DUNLSJ [20], that is, a
nonlinear least squares algorithm.

The quasi-Newton algorithm performs only a local minimization but is computationally
cheaper than the global minimization algorithm. The nonlinear least squares algorithm is
specifically suited for the minimization of Ii (c) 1, 2, 3.

4. The reconstruction of 0D in the acoustically soft case. In 3 we have observed that
(2.8) can be interpreted as a nonlinear equation defining f implicitly as a function of 0 and q.
Differentiating (2.8) with respect to 0 and p we have

[ (--.ll)e-ikilf] Of OWl’ilO Wl’il -{- if + O, 0 < 0 < zr 0 < < 2r,(4.1) kil Or f2 - + O0
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[ ( 1)e-i"S]ofatOl,il
.-t- iS .-i- -o, o < 6t < 7l,, o < b < 27t..(4.2) ki,

Or f2 - + O
Equations (4.1), (4.2) can be interpreted as ordinary differential equations for the unknown

f. We note that, in the reconstruction procedure considered here, f is not approximated with
a truncated series in spherical harmonics as in (3.7) and that the choice of several values of k
(i.e., kil, ix 1, 2 N1) does not play any role. To obtain f(O, dp) we proceed as follows.

(i) For fixed 0 and q, let 0 q 0; we solve (2.8) as a nonlinear equation. Let j0
be the solution found.

(ii) Given f00 we solve, for 0 < 0 < rr, the differential equation obtained by taking the
real part of (4.1) with the initial condition

(4.3) f(0, 0) j0.

Let j(0, 0) be the solution found. We verify that j(0, 0) satisfies (2.8).
(iii) Given j(0, 0) we solve, for 0 < q < 2r, the differential equation obtained by

taking the real part of (4.2) with the initial condition

(4.4) f(O, O) fo(O, 0).

Finally we verify that the f(O, qb) obtained in this way satisfies (2.8).
The differential problems considered in (ii), (iii) are initial value problems for scalar

differential equations and are solved numerically using a Runge-Kutta-Fehlberg method (i.e.,
the subroutine RKF45 [21 ]).

The problem considered in (iii) is performed only a finite number of times corresponding
to a discretization of the variable 0.

We note that if the obstacle is cylindrically symmetric with respect to the z-axis (iii) is
not necessary and the problem is solved after performing (i), (ii). Moreover the differential
equations of (iii) for different values of 0 are independent from one another and can be solved
in parallel. The set of solutions of (2.8) in general contains the surface f(O, ok) as a subset so
that when performing (i)-(iii) only trajectories that appear to define a closed surface should
be considered. Finally the solution of the inverse problem based on the differential equations
(4.1), (4.2) is limited to the acoustically soft obstacles and appears to be more sensitive to
error in the data than the minimization procedure described in 3. However its computational
cost is very small compared to the minimization procedures previously described.

5. The numerical experience. In this section we describe the numerical results obtained
using the numerical methods described in 3 and 4 on several test problems. When we
consider the boundary condition (1.7) we choose X 1. To the numerically generated data
Fi,il,j Fo(j, kil, a__i) is added a random error term, that is, Fi,i,j is substituted with

+ +
where >_ 0 is a parameter and is a random number uniformly distributed in [-1, ]. The
surfaces OD considered are the following:

(5.1) x + y + g2 1 oblate ellipsoid,

(5.2) x + y + gz 1 prolate ellipsoid,

(5.3) gx + y + z short cylinder,
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(5.4) (x2 + y2)5 + z long cylinder,

2( 1)1/2

(5.5) r cos2 0 + sinE 0 Vogel’s peanut,

(5.6) r 1 cos 20 horizontal platelet,

1
(5.7) r 1 + cos 20 vertical peanut,

(5.8) r + 2 cos 30 pseudo-Apollo,

(( sin0 )
2

\ ()2)
-1/2

(5.9) r H-- + cos 0 corrugated ellipsoid,

(sin0)2 ()2)
-1/2

(5.10) r
\h(b)

+ cos0 ellipsoid,

( 2sin0)10 )-1/10(5.11) r= \H(q) + csl 0 corrugated cylinder,

1
(5.12) r + H(b) sin2 0 corrugated platelet,

2

where

(5.13) h(q) cosb + sin2 q

(5.14) H(dp) (Rh -Jr Ah cos 4q + Bh cos 8b + Ch cos 16402,

and

0.3 0.05 0.01
(5.15) Ah -i-f; Bh 1-- fh; Ch 1.34]; Rh 1 --(Ah + Bh + Ch),

j is the corrugation parameter. In our numerical experience j 0.2. The obstacles D
corresponding to (5.1)-(5.4) are convex bodies symmetric with respect to the z-axis and to
the equator, the obstacles corresponding to (5.5)-(5.8) are nonconvex but they maintain the
symmetry with respect to the z-axis. Finally the obstacles D corresponding to (5.9)-(5.12)
in general, are nonconvex and nonsymmetric with respect to the z-axis. We observe that a
characteristic length L of the obstacles can be chosen to be one. Tables 5.1-5.4 show some
numerical results obtained with the methods described in the previous sections. In the EL2 and
Emax columns of those tables we use the notation ct (/3) to mean or. 10. Table 5.1 summarizes
the results obtained with the obstacles (5.1)-(5.4); Table 5.2 summarizes the results obtained
with the obstacles (5.5)-(5.8); finally Table 5.3 summarizes the results obtained with the
obstacles (5.9)-(5.12).

We remark that in the reconstructions presented in Table 5.3 the obstacles are considered
as general surfaces, that is there is no use of symmetries in the reconstruction procedure.
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Object
oblate ellipsoid

prolate ellipsoid

short cylinder

long cylinder

TABLE 5.1
Axially symmetric convex obstacles: Lmax Lg 8; 1 AI" 23 A2.

Recon- Boundary Reconstruction
struction condition Lt kl k2 method

Dirichlet 3 RKF45
2 3 RKF45
3(*) Neumann 4 2 no DBCONF
4(*) 4 2 no DBCONF
5 Mixed 4 2 no DBCONF
6 4 2 no DBCONF
7 Dirichlet 3 RKF45
8 3 RKF45
9 Neumann 4 2 no DBCONF
10 4 2 no DBCONF
11 Mixed 4 2 no DBCONF
12 4 2 no DBCONF
13 Dirichlet 3 RKF45
14 3 RKF45
15 Neumann 6 2 no SIGMA
16 6 2 no SIGMA
17(*) Mixed 6 2 no SIGMA
18(*) 6 2 no SIGMA
19(*) Dirichlet 3 RKF45
20(*) 3 RKF45
21 Neumann 6 2 3 SIGMA
22 6 2 3 SIGMA
23 Mixed 6 2 no SIGMA
24 6 2 no SIGMA

Penalization term
North Pole Equator epsilon

0.0
0.05

no no 0.0
no no 0.05
no no 0.0
no no 0.05

0.0
0.05

no no 0.0
no no 0.05
no no 0.0
no no 0.05

0.0
0.05

no no 0.0
yes yes 0.05
yes yes 0.0
yes yes 0.05

0.0
0.05

yes yes 0.0
yes yes 0.05
yes yes 0.0
yes yes 0.05

EL2
0.868(--4)
0.703(--3)
0.546(--2)
0.880(-2)
0.365(-2)
0.589(-2)
0.256(-4)
0.966(-2)
0.172(-1)
0.157(-1)
0.432(-2)
0.869(-2)
0.629(-2)
0.147(-1)
0.304(-1)
0.626(-1)
0.306(- 1)
0.468(-1)
0.302(-2)
0.369(-2)
0.543(-1)
0.482(-1)
0.415(-1)
0.425(-1)

Object
Vogel’s peanut

"horizontal platelet

vertical peanut

pseudo-Apollo

TABLE 5.2
Axially symmetric nonconvex obstacles: Lmax Lg 8; Q1 .41; 3 .42.

Recon- Boundary Reconstruction
struction condition Lp kl k2 method

1(*) Dirichlet 4 3 no SIGMA
2(*) 4 3 no SIGMA
3 Neumann 4 2 no SIGMA
4 4 2 no SIGMA
5 Mixed 4 2 no SIGMA
6 4 2 no SIGMA
7 Dirichlet 4 3 no SIGMA
8 4 3 no SIGMA
9 Neumann 4 2 no SIGMA
10 4 2 no SIGMA
11(*) Mixed 4 2 no SIGMA
12(*) 4 2 no SIGMA
13 Dirichlet 4 3 no SIGMA
14 4 3 no SIGMA
15 Neumann 4 2 3 SIGMA
16 4 2 3 SIGMA
17 Mixed 4 2 3 SIGMA
18 4 2 3 SIGMA
19 Dirichlet 4 3 no SIGMA
20 4 3 no SIGMA
21(*) Neumann 4 2 3 SIGMA
22(*) 4 2 3 SIGMA
23 Mixed 4 2 3 SIGMA
24 4 2 3 SIGMA

Penalization term
North Pole Equator epsilon

no no 0.0
no no 0.05
no no 0.0
no no 0.05
no no 0.0
no no 0.05
no no 0.0
no no 0.05
no no 0.0
no no 0.05
no no 0.0
no no 0.05
yes yes 0.0
yes yes 0.05
no no 0.0
no no 0.05
no no 0.0
no no 0.05
no no 0.0
no no 0.05
yes no 0.0
yes no 0.05
yes no 0.0
yes no 0.05

EL2
0.128(-1)
0.175(-1)
0.596(-1)
0.176(-1)
0.273(-1)
0.128(-1)
0.451(-1)

failure
0.103(+0)
0.202(+0)
0.861(-1)
0.156(0)
0.172(-1)

failure
0.725(-1)

failure
0.649(- 1)

failure
0.602(- 1)
O. 114(+0)
0.359(-1)
0.325(-1)
0.551(-1)
0.321(-1)
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TABLE 5.3
Generic obstacles: Reconstruction method "DUNLSJ," without penalization term: Lmax Lg 6; Lp

4; kl 2; f21 A3; 3 A3.

Object Reconstruction Boundary condition
Corrugated Ellipsoid

Ellipsoid

Corrugated Cylinder

Corrugated Platelet

2
3(*)
4(*)
5
6
7
8
9
10
11
12
13
14
15
16
17(*)
18(*)
19(*)
20(*)
21
22
23
24

e EL2
Dirichlet 0.0 0.276(- 1)

0.02 0.428(- 1)
Neumann 0.0 0.287(- 1)

0.02 0.417(-1)
Mixed 0.0 0.325(- 1)

0.02 0.133(+0)
Dirichlet 0.0 0.291(- 1)

0.02 0.296(- 1)
Neumann 0.0 0.303(- 1)

0.02 0.308(- 1)
Mixed 0.0 0.152(+0)

0.02 0.245(- 1)
Dirichlet 0.0 0.534(- 1)

0.02 0.652(- 1)
Neumann 0.0 0.502(- 1)

0.02 0.118(+0)
Mixed 0.0 0.569(- 1)

0.02 0.675(- 1)
Dirichlet 0.0 0.663(- 1)

0.02 0.129(+0)
Neumann 0.0 0.105(+0)

0.02 failure
Mixed 0.0 0.654(- 1)

0.02 0.175(+0)

TABLE 5.4

Performance as afunction ofe. Object: Long Cylinder; Boundary condition: Dirichlet. Lmax Lg 8; Lp
6; kl 3; l 41" 3 d13. Reconstruction method "SIGM/V’ without penalization term.

Reconstruction

2
3
4
5
6
7
8

Emax EL2
0.0 0.611(- 1) 0.286(- 1)
0.05 0.614(- l) 0.294(- 1)
0.10 0.587(-1) 0.298(-1)
0.20 0.525(- 1) 0.398(-1)
0.30 0.865(- 1) 0.548(- 1)
0.40 0.109(+0) 0.655(-1)
0.50 0.123(+0) 0.714(-1)
0.60 0.131(+0) 0.752(-1)

In Figs. 5.1-5.9 the reconstructions denoted with (*) in Tables 5.1-5.3 are shown. Let
(0i, qj) (i, j), 1, 2 35, j 0, 35 and let f(Oi, (#j) be the exact

values of the surfaces given by (5.1)-(5.12) and f(Oi, dpj) be the corresponding values ob-
tained by the reconstruction procedure of3 and 4. Let e(0, b) f(O, ) fc(O, q); in the
Tables 5.1-5.4 we use as a performance index the relative L2 error, that is,

(5.16) EL
]1/2e2(0, 0) + e2(zr, 0) + E5=l E5=0 e2(Oi, j)

]1/2
or the relative L error, that is,

(5.17) Emax
i=1,2 35max{le(0, 0)1, le(zr, 0)1, le(Oi, j)l, j=o,1 35
i=1,2 35max{If(0, 0)1, If(zr, 0)l, If(Oi, qj)[ j=0,1 35
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(a) (b) (c)

FIG. 5.1. (long cylinder). (a) Original; (b) reconstruction 19 of Table 5.1; (c) reconstruction 20 of Table 5.1.

(a) (b) (c)

FIG. 5.2. (oblate ellipsoid). (a) Original; (b) reconstruction 3 of Table 5.1, (c) reconstruction 4 of Table 5.1.

(a) (b) (c)

FIG. 5.3. (short cylinder). (a) Original; (b) reconstruction 17 of Table 5.1’ (c) reconstruction 18 of Table 5.1.

Let us define the following sets"

A1 (0i, 0) Oi i]-, 0, 10

(5.19)

Aa (0i, 4j) 10i i-i--d 9; 4j j, j 0, 8, U{0, 0}U{r, 0},
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(a) (b) (c)

FIG. 5.4. (Vogel’s peanut). (a) Original; (b) reconstruction of Table 5.2; (c) reconstruction 2 of Table 5.2.

(a) (b) (c)

FIG. 5.5. (pseudo-Apollo). (a) Original; (b) reconstruction 21 of Table 5.2; (c) reconstruction 22 of Table 5.2.

(5.20) A3 (Oi, qj) 10i i-, 7; qj j, j 0, 6 t_J{0, 0}Ll{zr, 0}.

In our numerical experience wechoose

(5.21) "1 ,41

when the obstacles of Tables 5.1, 5.2 are considered or

(5.22) "21 A3

when the obstacles of Table 5.3 are considered. The set Q2 is either {2}, {3}, or {2, 3} (see
Tables 5.1-5.3). Finally when the obstacles of Tables 5.1, 5.2 are_considered f23 is given by
A2 and when the obstacles of Tables 5.3 are considered f23 is given by A3. We observe that
with these choices the resonance condition (1.9) is satisfied. The far field data corresponding
to these choices are obtained by solving numerically the corresponding direct problems, that
is, the boundary value problems (1.3), (1.4), (1.5), or (1.3), (1.4), (1.6), or (1.3), (1.4), (1.7)
using a T-matrix approach 16].

In our numerical experience we have Lmax Lg 6 or 8, Lp 4 or 6 (see Tab-
les 5.1-5.3). Finally in Table 5.4 we show the performance of our algorithms for increasing
values of e in the case of the acoustically soft long cylinder. The method based on the global
minimization algorithm SIGMA appears to be the most powerful one at the price of higher
computational cost. The cornputations previously described have been performed on a VAX
6310 with VMS operating system.
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(a) (b) (c)

FIG. 5.6. (horizontal platelet). (a) Original; (b) reconstruction 11 of Table 5.2; (c) reconstruction 12 of Table 5.2.

(a) (b) (c)

FIG. 5.7. (corrugated platelet). (a) Original; (b) reconstruction 19 of Table 5.3; (c) reconstruction 20 of Table 5.3.

(a) (b) (c)

FIG. 5.8. (corrugated ellipsoid). (a) Original; (b) reconstruction 3 of Table 5.3" (c) reconstruction 4 of Table 5.3.

(a) (b) (c)

FIG. 5.9. (corrugated cylinder). (a) Original; (b) reconstruction 17 of Table 5.3; (c) reconstruction 18 of Table 5.3.
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SPARSE PRECONDITIONED ITERATIVE METHODS FOR DENSE LINEAR
SYSTEMS*

YI YAN
Abstract. Two sparse preconditioned iterative methods are presented to solve dense linear systems arising in the

solution of two-dimensional boundary integral equations. In the first method, the sparse preconditioner is constructed
simply by choosing a small block of elements in the coefficient matrix of a dense linear system. The two-grid method
falls into this category when the dense linear system arises from the Nystr6m method for a second kind boundary
integral equation. In the second method, the sparse preconditioner is obtained through condensation of the coefficient
matrix by discrete Fourier transforms, which can be implemented efficiently using fast Fourier transforms. Both
iterative methods involve only O(N) arithmetic operations per iteration and converge rapidly when the dense linear
systems arise from quadrature methods for boundary integral equations arising in two-dimensional problems. The
author’s numerical experiments demonstrate the computational efficiency of each method.

Key words, dense linear systems, sparse preconditioners

AMS subject classifications. 65F10, 65R20

1. Introduction. We present two algebraic iterative methods for solving the dense linear
system Lw b, where L is an N x N nonsingular, nonsymmetric, and dense matrix, and b is
an N x 1 vector. Such a linear system arises in boundary integral equation methods (BIEMs)
for solving problems from two-dimensional potential flows, acoustics, electromagnetic waves,
and elasticity. For these two-dimensional problems, the size of the linear system may be mod-
erate, but many such systems may need to be solved. Among the examples are multifrequency
analysis using BIEMs in acoustics and electromagnetic applications and time-dependent prob-
lems solved in the frequency domain by BIEMs. Hence, iterative methods are usually required
for its efficient solution. The development of iterative methods has focused on the solution of
the typical dense linear system

(1.1) (I + A)w b

arising in second kind boundary integral equations, where both matrices ! + A and (I 4- A)-1
are bounded by constants independent of N under the induced L2-norm (see, for example, [3]
and [13]). Among the iterative methods are two-grid methods (see Brakhage [1], Atkinson
[2], [3], Hackbusch [9], [10], Atkinson and Graham [5], Atkinson [6]) and multigrid methods
(see Hackbusch [9], [10], Hemker and Schippers [12], Schippers [21], and Mandel [14]). The
two-grid and multigrid methods take advantage of the properties that an integral equation is
approximated by a family of linear systems (1.1), and that information from different grid
levels can be communicated. These properties enable the linear system (1.1) to be solved
at a lower level iteratively. Other iterative methods include the Krylov-space-based methods
such as conjugate gradient to the normal equations (CGN), generalized minimum residual
(GMRES) and conjugate gradient square (CGS) methods, which have been combined with
the fast multipole method for the rapid calculation of the matrix vector products; see, for
example, Rokhlin [20] and Greenbaum, Greengard, and Mayo [8]. A comparison of CGN,
GMRES, and CGS methods can be found in 16]. Recently some preconditioners have been
proposed (see Vavasis [22] and Nabors, Korsmeyer, and White 15]) for the linear system (1.1)
arising from three-dimensional problems.

*Received by the editors May 18, 1992; accepted for publication (in revised form) September 1, 1993. This
work was supported in part by National Science Foundation grant RII-8610671 and the Commonwealth of Kentucky
through the University of Kentucky Center for Computational Sciences.

rDepartment of Mathematics, University of Kentucky, Lexington, Kentucky 40506 (yan@ukcc. uk. edu).
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Another typical dense linear system is from singular boundary integral equations with
logarithmic, Cauchy, or hypersingular kernels and has the form (see, for example, 19], [4],
[7])

(1.2) (C + B)w b,

where C is an invertible circulant matrix, and B is a N x N dense matrix with both matrices
! + C-1 B and (! + C-1 B)-1 bounded by constants independent of N under the induced
LZ-norm (see, for example, 19]). Iterative methods for this linear system (1.2) have also been
studied (see Reichel 17], Hebeker 11 ], and Graham and Yan [7]), but have received much
less attention.

In the iterative methods of this paper, the most difficult task is to find appropriate precon-
ditioners. These preconditioners are quite different from those proposed in [15] and [22] and
are constructed by using information only from the linear systems (1.1) or (1.2) themselves.
This idea is different from those in the two-grid and multigrid methods, where preconditioners
are built by employing information of a linear system at a low level. When the preconditioners
are found, we introduce preconditioned stationary Richardson iterative methods. Our major
focus in this paper is on the description of these iterative methods. Their convergence analysis
and error estimates will not be provided, except for a necessary citation of some references.

A block-preconditioned Richardson iteration (BPRI) method is presented for the linear
system (1.1). It is equivalent to a two-grid method when (1.1) arises from the Nystr6m method
for second kind boundary itegral equations. Thus the BPRI method provides a new way to
look at the two-grid method. Its convergence in this special case follows from an analysis for
a two-grid method given in [2].

The block-preconditioned iterative method cannot be applied directly to the linear sys-
tem (1.2) when C is not the identity matrix. Instead, a Fourier-condensation-preconditioned
Richardson iteration (FCPRI) method is introduced. Since (1.1) can be viewed as a special
case of (1.2), the FCPRI method also applies to (1.1). Its convergence was recently analyzed by
Yan [23] and Reichel and Yan 19] for systems (1.1) and (1.2) arising from quadrature methods
for boundary integral equations. A similar preconditioned iterative method was introduced in
18] for solving some Cauchy singular integral equations of the second kind.

Both BPRI and FCPRI methods have sparse preconditioner matrices and involve only
O(Nz) arithmetic operations per iteration. They are applied to boundary integral equations
arising in some exterior boundary value problems and various numerical results are presented
that demonstrate their computational efficiency.

We remark that the O(Nz) arithmetic operation can be further reduced to O(N) by
applying the fast multipole method used in [8] and [20]. A justification of this reduction in
arithmetic operation is beyond the scope of this paper.

2. BPRI method. Assume that N is an even integer, and let

N N
(2.1) A [aj,k:],

2
< j’ k <_ ,

which can be partitioned by columns as

(2.2) A (a-N aN
In addition, we assume that N riM with 0 E Z+ and M is an even integer. Let

a:, k=ol,-- <l< ,
ak

o, otherwise,
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and define

(2.3) A’ (a-N/z+, aN
The matrix A’ is a matrix whose ol column, -- + 1,..., 2, is the ol column ofA, and
whose other columns are zeros. Thus A’ is constructed by a block of columns of A and is
sparse when r is relatively large.

The dense linear system (1.1) can be written as

(2.4) (I + rlA’)w (oA’ A)w + b.

Generally, we do not expect IIoA’ -All to be small, where I1" denotes the L-2-norm,
because r/A’ is sparse. Equation (2.4) is then not appropriate for a Richardson iteration. It is
known that the integral operator form of the matrixA usually has the property of compactness.
This property allows us to expect (oA’ A)A to be small. Therefore, we use the relation
w b -Aw to rewrite (2.4) as

(2.5) (I + rlA’)w (oA’ A)(b Aw) + b.

Based on this equation, we introduce the following stationary Richardson iteration method

(2.6) (I .-[- oAt)w(m+l) (oA’ A)(b Aw(m)) -1- b, rn 0

in which (I + oA’) is used as its preconditioner. This preconditioner is sparse because A’ is
sparse. Combining (2.5) and (2.6) we obtain

(I q- rlAt)(w(re+l) w) -(oAt- A)A(w(m) w),

which obviously leads to the convergence of this iterative method when the condition

(I / oA’)-1 (0A, A)A _< <

is satisfied.
At each step of the iterative method, a sparse linear system of the form

(2.7) (I + oA’)v g

must be solved. We now show that this requires only the solution of an M x M linear system.
Let

and define

M M
* <p, q<-,ap,q aop, oq, 2

AM--lap,q].
The matrix At is a submatrix of the matrix A.

We introduce a restriction operator Rt from Cv to Ct by

RMu [u,, u,2 uot]r, for u [Ul uv]r

and a prolongation operator Pt from Ct to CN by

Ptv [v’ vv] r, for I [l)1,..., I)M] r
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with

| vt, k=rll,
1)k 0, otherwise.

With this notation, it Can be proved that (2.7) is equivalent to

(2.8) v* + rlAMV* RMg,

(2.9) v -oA’PMv* + g,

where v* Ct. This shows that the solution ofthe sparse linear system (2.7) can be determined
in only (N- M)M operations by solving the M x M system (2.8) followed by a matrix-vector
multiplication.

Let the residual be r(m) b (I + A)w(m). The iterative method (2.6) can be written as

(2.10) W(m+l) W(m) At- r(m) (I q- rlA’)-lAr(m).

This form of the iterative method is far superior to the form (2.6) because it requires fewer
arithmetic operations involving matrices and vectors. An algorithm for this method is given
as llows.

ALGORITHM 1
Input:

Compute the residual.

Smoothing step-

Preconditioner correction-

Output:

w(m).

r(m) b (I + A)w(m).
Ar(m).
(m) (I q- oA’)-IAr(m).
w(m+l) w(m) _1_ r(m) (m).

The total number of arithmetic operations for each step of the iteration is approximately

2M32N2 + + (N- M)M.

In the case where the linear system (1.1) arises from the Nystr6m method, this algorithm is
an equivalent form of the algorithm given by Atkinson and Graham (see (1.17) of [5]). The
algorithm of this algebraic form is more transparent for computing since neither approximate
integral operators nor a matrix from a low level are involved. We emphasize that Algorithm
is valid based on the assumption that (1.1) arises in second kind boundary integral equations
on smoolb boundafes. When boundary wth corners is considered, it is shown in [5] that
some special treatment near corners is necessary for satisfactory performance of the two-grid
method. It may be possible to modify the preconditioner in Algorithm and preserve its
sparsity structure to cope with the special modification around corners. Moreover, it may be
possible to apply Algorithm 1 to (1.1) arising in three-dimensional problems.

3. FCPRI method. Now consider the solution of (1.2), and let

N N
B=[bj,k],

2
<j, k<-.

We introduce a unitary matrix/7 defined by

F N-1/2[wJk], N
2

<j,
N
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2zr This matrix is the matrix of the discrete Fourier transform.where w e-ih with h
If we apply the discrete Fourier transform to the linear system (1.2), and let

dO N-/2F*w, g N-1/2F*b, and By F*BF, then we obtain an equivalent linear
system

(3.1) (D + Bf)dp g,

where D F*CF diag(-N/2+l N/2), and 3j are the eigenvalues of the circulant
matrix C.

The matrix Bf has a nice property, namely, if the elements of the matrix B are

bj,k hb(tj, tk), tj hj, tk hk,

where b(s, a) is a given function, then the elements by(j, k) of Bf are the approximate
Fourier coefficients of the function b(s, a). In the boundary integral equations arising in two-
dimensional problems, the function b(s, a) is usually periodic in each variable. Thus these
Fourier coefficients are usually small when either j or k becomes large. Therefore By can be
approximated by a sparse matrix By in the block matrix form

Bf 0 Bf, 0

000

where By, is an M x M matrix described as follows.
As in the BPRI method, we employ the elements bop, oq of the matrix B. These elements

form a submatrix BM given by

with

BM [b*p,q]

M M
* _m<p, q<bp,q =bop,oq, 2 -"

Let O)M e-ih’ with h’ 2rr
O, and define the M x M unitary matrix FM by

M MFM--M-1/2[ooq], < p, q <
2

This is a lower-dimensional matrix of the discrete Fourier transform. The matrix By, is then
defined as

Bf, FMbMFM [bf,(p, q)].

Consequently, the matrix Bf [bf(j, k)] is defined by

bf,(j,k), if--<j, k< T,by(j, k)
0, otherwise.

We view By as a condensed matrix ofB by the discrete Fourier transform.
Now choosing the preconditioner as D / By, we introduce the stationary Richardson

iteration method

(3.2) (D -[- B’){(rn+l) (f Bf)d
(m) -[- g, rn O,
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Combining (3.1) and (3.2) we obtain

(D -- f)((m+l) )) (B"f Bf)((m) )), m=0,1

Hence, this iterative method is convergent when the condition

(D + f)-l(f By)II _< < 1

is satisfied.
At each step of the iteration, a sparse linear system of the form

(3.3) (D + Bf)v p

must be solved. This sparse linear system only requires the solution of an M x M linear
system, which is explained as follows.

LetVM [I)_M/2+l VM/2] T, PM [P-M/2+I PM/2]T, andDM diag(3-M/2+l,
tM/2). Equation (3.3) is then equivalent to

(3.4) (DM + Bf’)VM PM,

N M M N
(3.5) 3jVj =pj 2

< j <
2

and < j _<
Equation (3.4) is clearly an M x M linear system, while the solution of (3.5) is explicit.

Define the residual by r(m) g (D + Bf)t(m). Equation (3.2) can be rewritten as

(3.6) tl)(m+l) tl)(m) -- (D -I-- f)-lr(m).
Analgorithm rthis methodisgivenas llows.

ALGORITHM 2
(I) Matrix generation:

I. Compute

2. Compute

3. Compute

(II) Iteration:

Input:

Compute the residual-

Preconditioner correction:

Output:

(III) Final output-

Compute

D F*CF using FFT.

g N-1/2F*b using FFT.

FMBMFM using 2-d FFT.

dp(m

r(m) g --Ddp(m) F*[B(Fdp<m))].
b(m) (D q- f)-lr(m).
i)(m+l) )(m)

__
(m).

W(m) NI/2Fdp(m) using FFT.

The final step is conducted only when a stopping criterion for the iteration is satisfied. The
operation count for each step of the iteration is approximately

2M3N2 + + 2N log N + N + (N- M).

For both the BPR! and FCPRI methods, M should be chosen within O(N2/3) to minimize
operation counts in the iterations. Since (1.1) is a special case of (1.2), both the BPRI and
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FCPRI methods can be applied. With the choice ofM cN2/3, the FCPRI method obviously
requires less arithmetic operations than the BPRI method does in solving (1.1).

Algorithm 2 is designed for (1.2) arising in singular boundary integral equations on a
smooth boundary. When a boundary with corners is considered, the algorithm may lead to
poor performance. Also, unlike the BPRI method, Algorithm 2 cannot be applied to three-
dimensional problems.

4. Applications and numerical results. Consider the exterior Neumann boundary value
problem

Au =0 forx R2\f2,
OU
=f forx 6 Of2,
On

u(x) c log Ixl + o(1),

Using its single layer potential representation, this problem can be reformulated as the solution
of the second kind boundary integral equation

(4.1) w(s) + w(a)b(s, a)da -2f(v(s))lv’(s)], x [-zr, zr],

where n denotes the unit normal vector to the boundary 0f2 directed into the exterior of
and

(v(s) v(r)), n(v(s))lv’(s)l
b(s,a)

zr Iv(s) v(r)[2

with v(s) a regular 2zr-periodic parametric representation of the boundary 0f2 of the form

P(S) (Pl(S), P2(S)), S G [--Tr, 7r].

We approximate (4.1) by the quadrature method

N/2 N N
(4.2) wj 4" h b(tj, tk)wk -2f(v(tj))lv’(tj)l, j -q- 4-

k=-N/2+l

27rfor the approximate values wj of w(tj), where h -y and tj jh. This quadrature method
has an exponential rate of convergence when v(s) and f(v(s)) are smooth functions (see, for
example, [13], [19], [23]).

In applications of the BPRI and FCPRI methods to the linear system (4.2), we choose
M [N2/3], which is roughly the largest M, to ensure that the total operation count is O(N2).
We iterate until the relative correction satisfies

(4.3)
[[w(m+l w(m)[I ,

[Iw(m+lll

where I1" denotes the Euclidean vector norm. In our test example, we choose the real number
e by

max{ 10-N/8 6}

where the factor 10-N/8 is chosen to avoid performing unnecessary iterations when N is
small and where 3 is chosen close to a required precision. We choose 3 10-15 or 10-12
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tO retain and observe the exponential rate of convergence of the quadrature method. We
report the errors in the norm when the solution w(s) is known. For this purpose, we let
rh w [w(t-v/2+l) w(tv/2)] r. The column IT in Tables 1-5 gives the smallest value ofm
for which (4.3) is satisfied. The CPU time with respect to the values ofN are also reported. For
comparison to known iterative methods, some results using the unpreconditioned biconjugate
gradient method (BCG) are also presented. All calculations are performed in double precision
on the University of Kentucky’s IBM 3090-600J.

Our first example is for an elliptic boundary v(s) (cos(s), 0.25 sin(s)) and for the
right-hand side of (4.1) equal to 1.6 cos(s). The solution of this equation is w(s) cos(s).
The numerical results are reported in Table 1. Since w(s) is an eigenfunction of the integral
equation, this example is trivial for the BCG method, and it is not necessary to present the
results using BCG method.

TABLE
max{ 10-v/8, 10-15}.

M N BPRI method FCPRI method

IIwzr) rh toll IT CPU(sec) IIwzr) rh wll IT CPU(sec)
4 8
4 16
8 32
16 64
16 128
32 256
64 512

6.15E-3 2 0.01
1.06E-3 3 0.01
4.13E-6 3 0.06
2.12E-11 3 0.22
3.97E-16 5 0.95
8.14E-16 3 3.03
1.70E-15 2 11.11

5.35E-3 2 0.02
2.14E-3 3 0.02
8.81E-6 3 0.05
4.51E-11 3 0.17
4.77E-16 5 0.62
8.59E-16 3 1.94
1.50E-15 2 6.99

The results in Table show that both methods retain the exponential rate of convergence
of the quadrature method in a small number of iterations, and that the FCPRI method is faster
than the BPRI method when N becomes sufficiently large, which confirms the estimate of the
operation counts.

The second example is for the same boundary but with the right-hand side of (4.1) replaced
by a nonsmooth function sin(s)I. The numerical results are reported in Table 2.

TABLE 2
max{ 10-N/8, 10-15}.

M N BPRI method FCPRI method BCG method

IIw(*r)ll IT CPU(sec) IIw(lr)ll IT CPU(sec) IIw(Zr)ll IT CPU(sec)

4 8
4 16
8 32
16 64
16 128
32 256
64 512

0.40580131 2 0.01
0.39807268 3 0.02
0.39353375 3 0.05
0.39253860 0.22
0.39228584 5 0.96
0.39222236 3.02
0.39220647 2 11.03

0.40443277 2 0.01
0.39682981 5 0.03
0.39353052 5 0.07
0.39253861 0.20
0.39228584 10 0.87
0.39222236 4 2.12
0.39220647 2 6.99

0.39661736 2 0.01
0.39695696 3 0.02
0.39352994 4 0.05
0.39253860 6 0.21
0.39228546 8 0.93
0.39222236 8 3.61
0.39220647 9 15.54

The number ofiterations for the BPRI method is same as in Table 1, but the number ofiterations
for the FCPRI method is quite different. The reason is that the BPRI has a smoothing step
while the FCPRI does not. This smoothing step makes the convergence behavior of the BPRI
insensitive to the nonsmooth right-hand side.

The third example is for a nonconvex kite-shaped boundary v(s) (cos(s)+0.65 cos(2s)-
0.65, 1.5 sin(s)) and for the right-hand side of (4.1) equal to 0.5 cos(s). The numerical results
are reported in Table 3.

In the second and third examples we are not able to report the errors since the exact
solutions are not known. However, it is clear that the three methods converge to the same
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TABLE 3
max{ 10-v/8, 10-15}.

M N BPRI method FCPRI method BCG method

IIw(It) IT CPU(sec) IIw(It) IT CPU(sec) IIw(tr) IT CPU(sec)

4 8
4 16
8 32

16 64
16 128
32 256
64 512

0.71873226 2 0.01
0.72309351 3 0.02
0.72119042 4 0.07
0.72116795 4 0.27
0.72116795 7 1.28
0.72116795 4 4.00
0.72116795 2 13.47

0.72675829 2 0.01
0.72013247 5 0.03
0.72118769 8 0.09
0.72116795 6 0.26
0.72116795 11 1.08
0.72116795 6 3.10
0.72116795 2 9.45

0.70013867 3 0.01
0.71889127 4 0.02
0.72117184 6 0.07
0.72116795 9 0.30
0.72116795 12 1.34
0.72116795 12 5.24
0.72116795 12 20.97

digits in a small number of iterations. As expected from the theoretical estimate, the FCPRI
method is faster than the BPRI method when N becomes sufficiently large. In addition, both
the BPRI and FCPRI methods are faster than the BCG method for the large linear system. This
is expected. For example, the second example yields a symmetric positive definite matrix, and
so the convergence rate of the BCG method relies on how close the condition number of the
matrix is to the unity. Although the condition number of the matrix is independent of n based
on the approximation theory of Fredholm integral equations, this condition number is not
close to the unity. To make the BCG method competitive with the BPRI and FCPRI methods
a preconditioner as used in BPRI and FCPRI is required to ensure the condition number close
to one.

Using its single layer potential representation, the solution ofthe exterior Dirichlet bound-
ary value problem

Au=0 forxR2\f2,
u f forxOf2,

u(x) clog Ixl + o(1), Ixl

can be reformulated as the solution of the first kind boundary integral equation

/ w(r) log
7t" d_

(4.4)
where

SmO
2e-1/2 sin

2
dtr+ w(tr)b(s, cr)dtr f(v(s)), x [-zr, r],

1 V(S) V(O’)
b(s, or) log le1/2zr 2 sin z

We approximate this equation by the quadrature method

N/2

(4.5)
k=-N/2+l

-(1 + 2Rj_k) + hb(tj, tk) wk f(v(tj)),
N N

where

N/2-1(- 1)t 1 kl2zr
N + E csRI

k=l
N

which has an exponential rate of convergence when v(s) and f(v(s)) are smooth (see [19]).
Our test example for this problem is for an elliptic boundary v (s) (cos(s),0.25 sin(s)) and for
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TABLE 4
max{10-v/8, 10-12}.

M N

4 8
4 16
8 32
16 64
16 128
32 256
64 512

FCPRI method

IIwZr) rh wll IT CPU(sec)
3.35E-3 2 0.02
1.34E-3 3 0.02
5.50E-6 3 0.04
2.82E-11 3 0.14
1.26E-14 4 0.48
1.37E-14 2 1.42
2.82E-14 4.89

the right-hand side of (4.4) equal to cos(s). The solution of this equation is w(s) 2.5 cos(s).
The numerical results are reported in Table 4. Since w(s) is an eigenfunction for (4.4), the
results of the BCG method are not presented.

In this example only the FCPRI method can be applied because the linear system (4.5)
appears only in the form of (1.2). The exponential rate of convergence of the quadrature
method is retained after few iterations.

The final example is for the same elliptic boundary but with the nonsmooth function
sin 3 as in the right-hand side of (4.4).

TABLE 5
max{10-V/8, 10-12}.

M N FCPRI method BCG method

IIw(r) IT CPU(sec) IIw(Ir) IT CPU(sec)
4 16
8 32
16 64
16 128
32 256
64 512

0.48809454 12 0.03
0.48954680 17 0.12
0.48953378 11 0.25
0.48953297 19 1.09
0.48953293 6 1.93
0.48953292 2 5.19

0.48912633 4 0.02
0.48954909 7 0.07
0.48953379 16 0.38
0.48953297 40 3.08
0.48953293 50 14.31
0.48953292 77 83.93

In comparison to the FCPRI method, the BCG method is a bad choice for this example because
of its slow convergence. Here the condition number of the matrix is proportional to the matrix
dimension n, and, again, a preconditioner is required to improve performance of the BCG
method.

Acknowledgment. The author wishes to thank the referees for their constructive sugges-
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CALCULATIONS ON MASSIVELY PARALLEL COMPUTERS*
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Abstract. Dense linear systems of equations are quite common in science and engineering, arising in boundary
element methods, least squares problems, and other settings. Massively parallel computers will be necessary to
solve the large systems required by scientists and engineers, and scalable parallel algorithms for the linear algebra
applications must be devised for these machines. A critical step in these algorithms is the mapping of matrix elements
to processors. In this paper, the use of the torus-wrap mapping in general dense matrix algorithms is studied from both
theoretical and practical viewpoints. Under reasonable assumptions, it is proved that this assignment scheme leads to
dense matrix algorithms that achieve (to within a constant factor) the lower bound on interprocessor communication.
It is also shown that the torus-wrap mapping allows algorithms to exhibit less idle time, better load balancing, and
less memory overhead than the more common row and column mappings. Finally, practical implementation issues
are discussed, such as compatibility with basic linear algebra subprograms (BLAS) levels 1, 2, and 3, and the results
of implementations of several dense matrix algorithms are presented. These theoretical and experimental results are
compared with those obtained from more traditional mappings.

Keywords. LU factorization, QR factorization, Householder tridiagonalization, parallel computer, dense matrix,
toms-wrap mapping

AMS subject classifications. 65Y05, 65F05

1. Introduction. Dense linear systems of equations are quite common in science and
engineering applications, appearing in boundary element methods, problems involving all-
pairs interactions, and least squares problems, among others. The kernel computation for
these applications usually involves some factorization of the matrix to transform it to a more
convenient form. The factored matrix can then be used to solve linear systems of equations,
perform least squares calculations, determine eigenvectors and eigenvalues, or whatever other
computation the application requires 19].

For a dense n x n matrix, most of these factorization algorithms require O(n3) floating
point operations and (R) (n2) storage. Current sequential supercomputers can store and operate
on systems with tens of thousands of unknowns. For example, a single processor CRAY
Y-MP with 256 megawords of memory operating at its peak theoretical speed of 333 million
floating point operations per second (Mflop/s) can compute the LU factorization of a 16,000
x 16,000 matrix in about 2.3 hours. Solving substantially larger problems or sequences of
moderately sized problems on even the fastest single processor machines is prohibitively time
consuming. It is clear from the computational requirements that to solve such problems will
require computers capable of billions of floating point operations per second. This, in turn,
will require massively parallel computers based on scalable architectures. To effectively use
these machines, algorithms must be devised that scale well to large numbers of processors.

Efficient use of massively parallel computers is a subject of much current research, and
numerous papers have been published about dense linear algebra algorithms on these ma-
chines. Because of its importance for solving linear systems, the LU factorization (and the
related triangular solve) has been the primary subject of this research ], [2], [4], [5], 11 ],
[12], [16], [17], [21], [26], [31], [32]. There have been far fewer papers concerned with the

*Received by the editors May 28, 1992; accepted for publication (in revised form) September 3, 1993. This
work was supported by the Applied Mathematical Sciences program, U.S. Department of Energy, Office of Energy
Research, and was performed at Sandia National Laboratories, operated for the U.S. Department of Energy under
contract number DE-AC04-76DP00789.

tSandia National Laboratories, Albuquerque, New Mexico 87185 (bahendr@cs.sandia.gov,
dewomble@cs, sandia, gov).
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efficient computation of the QR factorization, Householder tridiagonalization, or the eigen-
value problem [7], [8], [22], [37]. Fewer still have tried to address dense matrix algorithms in
general.

Early implementations of dense matrix algorithms, and in particular the LU factorization,
mostly used row or column decompositions in which entire rows or columns of the matrix
were assigned to individual processors [17], [18], [21], [26]. The columns or rows that a
processor owned were usually "wrapped" or scattered throughout the matrix to obtain good
load balancing. On computers with 64-128 processors, the efficiencies of these algorithms
were usually between 50% and 75% for the largest problems that could be stored on the
machines, but the algorithms did not scale particularly well as the number of processors
increased 17], [21 ].

An alternative method for assigning matrix elements to processors is the torus-wrap map-
ping. Variants of this assignment scheme have been independently discovered by several
researchers, and consequently given a number of different names including cyclic [23], scat-
tered [15], grid [36], and subcube-grid [8], as well as toms-wrap [30]. The mapping was first
described by O’Leary and Stewart in a data-flow context [29], [30], and the synergy between
the torus-wrap mapping and the hypercube topology was observed by Fox 14], 15]. Variants
of the torus-wrap mapping have been used in high performance LU factorization codes on a
number of different machines [3], [4], [6], [9], [27], [35], [36]. Assuming each matrix element
is stored on only a single processor, Ashcraft built on work by Saad to show that for LU factor-
ization, the torus-wrap mapping exhibits communication properties within a constant factor
of optimal [1 ], [32]. (Ashcraft has recently devised an algorithm with lower-order commu-
nication that violates this nonduplication assumption, but it requires an impractical factor of
pl/3 additional storage, where p is the number of processors [2].) Various algorithms for QR
factorization employing the torus-wrap mapping have been described that use Givens rota-
tions [8], modified Gram-Schmidt [37], and Householder reflections [22], [27]. A torus-wrap
mapping algorithm for Householder tridiagonalization is described in [7]. A triangular solve
algorithm using this mapping that achieves asymptotically optimal performance is presented
in [5], [28]. Because of its scaling properties, the torus-wrap mapping has been suggested as
the basic decomposition for parallel dense linear algebra libraries [13].

Despite the evident recent popularity of the torus-wrap mapping for a number of different
dense linear algebra implementations, a careful analysis ofthe strengths and weaknesses of the
mapping has been lacking. One purpose of this paper is to provide such an analysis, including
communication overhead, memory requirements, and load balancing issues. Our approach is
to identify the critical computation and communication components ofdense matrix operations
on distributed memory computers and then to analyze the impact of different mappings on the
performance of these components. Thus, the results in this paper are more general than much
of the current literature, and we anticipate that our analysis will provide a basis for future
research in this area.

Another purpose of this paper is to explore the practical aspects of implementations of
dense matrix algorithms using the torus-wrap mapping. Three algorithms are actually imple-
mented for this end, LU factorization, QR factorization, and Householder tridiagonalization.
Using these implementations, we compare the performance of a range of torus-wrap mappings
with that of the row-wrap and column-wrap mappings, and we examine the scalability of the
toms-wrap mapping to large numbers of processors using numerical results obtained on a
1,024-processor nCUBE 2. We also present models of performance for these three implemen-
tations that allow us to examine such effects as communication/computation overlap and the
effect of vector lengths on communications and on the BLAS operations. These models then
allow us to predict the optimal toms-wrap decompositions.
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In 2, we characterize the basic operations required for dense matrix algorithms and their
implications in the parallel computing environment, deriving lower bounds on required inter-
processor communication. We define the toms-wrap mapping in 3 and describe its relation-
ship to more familiar decomposition schemes. In 4, we discuss in more detail the properties
of the torus-wrap decomposition, including its communication requirements, scalability, and
compatibility with the standard BLAS routines. We present data from implementations of
several different dense matrix algorithms in 5. These results clearly show the advantages of
the torus-wrap mapping. Conclusions are presented in 6.

2. Dense linear algebra operations and communication. Nearly all dense linear alge-
bra algorithms consist of a sequence of fundamental operations that transform a matrix into
some more desirable form. The two most important such operations are Gauss transformations
and Householder reflections. These operations generally dominate the computational effort in
a dense linear algebra algorithm, so their efficient execution is essential for good performance.
On a message passing multiprocessor the execution time of an algorithm can depend greatly
upon its communication patterns, so minimizing the communication for these fundamental
operations is important for achieving good parallel performance [23], [24], [33].

To understand the communication required to perform Gauss and Householder transfor-
mations, consider Fig. 1, where A is an m n matrix, u is an m-vector and v an n-vector. Under
either a Gauss transformation or a Householder reflection (or a Gauss-Jordan transformation),
each element of A is updated by the outer product of u and v; that is Aij +-- z’ij at- bli l)j. The
difference between the algorithms is in the construction of u and v, which is a lower-order
operation in both computation and communication. The outer product update of an element of
A depends on the element of u directly to its left and the element of v above it. The processor
that calculates the new value for .lij must know the old 4ij as well as ui and vj, which may
require some communication. We will establish a lower bound on the total communication
volume for this operation, which is a subset of the communication required to perform a Gauss
or Householder transformation.

FIG. 1. Structure ofGauss and Householder transformations.

We denote by N(q) the number of matrix elements owned by processor q, and let p be
the total number of processors. We will assume that

(i) each element of A (and of u and v) is owned by a single processor, and
(ii) the matrix elements are balanced; that is, for each processor q, N(q) > cmn/p for

some constant ot > 0.
We define the communication volume Vc of an algorithm to be the total length of all

the messages the algorithm requires. For numerical algorithms, messages typically consist
of floating point numbers, so the lengths are most naturally measured in terms of number of
floating point values. The following theorem is a generalization of results found in [32].
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THEOREM 2.1. Under assumptions (i) and (ii) above, the communication volume required
to execute a Gauss, Householder, or Gauss-Jordan transformation is at least 2/otpmn
(m +n).

Proof Each element in the matrix needs the value of v above it and the value of u to its
left. Let t denote the number of processors owning elements of row and t be the number
of processors owning elements of column j. To transmit u (or vj) to all the processors in row
(or column j) requires at least t" (or t 1) messages of length 1, so the communication

volume can be bounded by
m n

(1) Vc >_ Z(t;- 1)+ (t;- 1).
i---1 j=l

Now we denote by s (and s) the number of rows (and columns) of which processor q
rni=lt, andowns at least one element. It follows from the definitions that ]=1Sq

nEqL1 SqC Zj=I t. Substituting these identities into (1) yields

p

Vc > -(m +n)+ (s + s)
q=l

p

_> -(m + n) + E 2/sr Cqsq.
q=l

c > N(q) > mn/p, soAssumption (ii) ensures that for each q, SqSq
P

Vc > -(m + n) + E 2V/otmn/p
q=l

2/pmn (m + n).

COROLLARY 2.2. Under assumptions (i) and (ii) above, the communication volume re-

quired to execute a Gauss, Householder, or Gauss-Jordan transformation on a square n x n
matrix is at least 2n (d-fi 1).

Ashcraft has recently proposed an LU factorization algorithm that requires O(p/3n2)
communication volume, but it violates assumption (i) [2]. This algorithm is impractical in its
current form, requiring an extra factor of pl/3 storage.

The lower bound expressed in Theorem 2.1 is attainable, up to a constant factor. For
simplicity we let m and n be divisible by v/, and assume that m + n < ?’ min(m, n) for
some constant y. If we assign each processor a dense rectangular block of the matrix of size

(m/v/-) x (n/q/-), then a 1, and each row and each column will be ownedbyonly ofthe
processors. The total communication volume involved in broadcasting a row will be n (q/- ),
and for a column m(q/- 1), implying a total of (n + m)(q/-fi i) < , v/-&-- (m + n),
which is within a constant factor of the bound from Theorem 2.1.

We note that if each column (or row) of the matrix is owned by a single processor, then
a Gauss or Householder transformation requires the broadcast of that column (or row) to all
other processors. This involves a communication volume ofm (p- 1) (or n (p- 1)). Assuming
again that m +n < , min(m, n) for some constant ,, this volume is at least (2/y)V/-n (p- 1),
which is larger than the lower bound by (R) (q/).

Finally, we observe that the results in this section are a consequence of the fact that dense
linear algebra operations can be formulated to require only a restricted form ofcommunication.
Values must be exchanged within each row of the matrix and within each column. Any
operation that involves this communication pattern will be amenable to a similar analysis.
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3. The torus-wrap mapping. Most of the previous work on parallel dense linear algebra
has involved assigning elements of the m x n matrix .4 to processors using columns, rows, or
blocks. In a column (or row) scheme, entire columns (or rows) of the matrix are assigned to
a single processor. One possibility is to have columns 1 through n/p assigned to processor
zero, columns n/p + 1 through 2n/p assigned to processor one and so on. Since most matrix
factorizations work from left to right, decreasing the number of active columns, this scheme
has the disadvantage that processor q has no work left to do after column (q + 1)n/p is
processed. For this reason, it is preferable to assign columns 1, p + 1, 2p + 1 to processor
zero, columns 2, p + 2, 2p + 2 to processor one, and so forth to form what is known as a
column-wrap mapping. Column-wrap (and row-wrap) mappings have been the most widely
used choice for dense linear algebra algorithms, but as noted in 2, row and column methods
require (R)() more communication volume than necessary. For machines with a small
number of processors, the simplicity of these mappings may outweigh the communication
drawbacks, but for massively parallel machines this factor of/ can be very important.

In block schemes, each processor is assigned a single dense rectangular submatrix. Many
different block mappings are possible involving differently shaped rectangular submatrices and
different assignments of blocks to processors. As mentioned in 2, block schemes can come
within a constant of achieving the lower bound on communication volume. However, they
have the same problems with idle processors that the nonwrapped row and column methods
have. Hybrid block-column-wrap or block-row-wrap mappings are also possible. In these
mappings, instead of owning a scattered set of single columns (or rows), a processor owns a
scattered set of several adjacent columns (rows).

An analogy with row and column methods suggests wrapping a block mapping in both
rows and columns. The result is what we will call the torus-wrap mapping. As there are
many different block mappings, there are correspondingly many torus-wrap mappings. If the
number of processors p can be factored as a product of Pr and Pc, then we can construct a
block mapping in which the blocks are of size (m/pr) x (n For any appropriate Pr and
Pc values, we get a block mapping and its torus-wrap counterpart. We note that in the limiting
cases the torus-wrap mapping reduces to a row-wrap mapping (when Pr P and Pc 1),
or a column-wrap mapping (when pc p and Pr 1). We call the special case in which

Pr Pc a square torus-wrap mapping. If it is not the case that m is divisible by Pr and n by
Pc then some processors will own one more row and/or column than others.

Another choice in a block mapping occurs when deciding which blocks get assigned to
which processors. Because communication in dense linear algebra algorithms occurs pre-
dominantly within rows or within columns, it is convenient to assign blocks in such a way
that communication among the set of processors owning a row (or column) is efficient. With
mesh architectures, this is achieved by constructing a set of blocks that reflect the shape of the
processor array. If the mesh is constructed as a rectangle of pr x Pc processors, then the blocks
are of size (m r) x (n/Pc), which are assigned to processors in the natural way. The rows
and columns are then wrapped to generate the corresponding torus-wrap assignment. This
constitutes what we will call a natural toms-wrap mapping, and ensures that row (or column)
communication occurs entirely within rows (or columns) of the processor mesh. An example
of the natural torus-wrap is depicted in Fig. 2, where the mesh is of size 8 x 4, and the value
displayed at each location is the processor that owns the corresponding matrix entry.

For hypercubes, we can exploit the fact that a d-dimensional hypercube can be viewed as
the product of two hypercubes of dimensions dr and dc, where dr + dc d. This is accom-
plished by dividing the bits of the processor identifier into two sets, br and bc of cardinality
dr and de, respectively. The bits of br can be associated with the row numbering of the matrix
elements, and those of bc with the column numbering. That is, all the processors owning
elements from a single row of .4 have the same br bits, and all processors with elements from
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a column have the same bc bits. This assignment scheme ensures that communication within
a row involves changing only bits of be, while communication within a column involves only
bits of br. So each row of the matrix lies within a subcube of dimension dc, and each column
in a subcube of dimension dr. In this way, a total of pc 2dc processors are assigned elements
of each row, and Pr 2dr processors are assigned elements of each column.

0 2 3 0 2 3

4 5 6 7 4 5 6 7

8 9 10 11 8 9 10 11

12 13 14 15 12 13 14 15

16 17 18 19 16 17 18 19

20 21 22 23 20 21 22 23

24 25 26 27 24 25 26 27

28 29 30 31 28 29 30 31

0 1 2 3 0 2 3

4 5 6 7 4 5 6 7

FIG. 2. Processors owning matrix elements in a natural torus-wrap.

One method for assigning processor numbers on a hypercube is to take the row number of
a matrix element, subtract one, express the result modulo pr, and then take the Gray code ofthe
resulting dr bit number. (For a discussion of Gray codes, see 15].) Performing the analogous
calculation on the column bits, and assigning matrix elements to the resulting processors
generates the Gray-coded toms-wrap, which is discussed in detail by Chu and George in [8].
An example corresponding to Fig. 2 is depicted in Fig. 3. The advantage of the Gray-coded
toms-wrap is that neighboring elements of the matrix are owned by neighboring processors.
More formally, a Gray-coded torus-wrap embeds a Pr by Pc mesh into a hypercube.

0 1 3 2 0 1 3 2

4 5 7 6 4 5 7 6

12 13 15 14 12 13 15 14

8 9 11 10 8 9 11 10

24 25 27 26 24 25 27 26

28 29 31 30 28 29 31 30

20 21 23 22 20 21 23 22

16 17 19 18 16 17 19 18

0 3 2 0 1 3 2

4 5 7 6 4 5 7 6

FIG. 3. Processors owning matrix elements in a Gray-coded torus-wrap.

Figures 2 and 3 indicate another way to define the torus-wrap mapping. The assignment
pattern of the leading pr by pc submatrix defines a tile, and the entire matrix is covered by
copies of this tile in the obvious way.

An important generalization of the torus-wrap mapping is the block-torus-wrap, in which
the matrix is first decomposed into a collection ofblocks of size 81 x 82. Each block is assigned
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tO a single processor in such a way that the distribution of blocks mirrors the distribution of
elements in a torus-wrap mapping. We note that the torus-wrap is a special case of the block-
torus-wrap in which 31 d;2 1. The block-torus is a natural generalization of block-row
and block-column methods. Using blocks instead of single elements has both advantages and
disadvantages, as will be discussed in the next section.

It is convenient to note that for all the mappings considered above, each processor is
assigned precisely the matrix elements that lie in the intersection of a particular set of rows
and columns. Bisseling and van de Vorst call mappings with this property Cartesian [4].
Merely specifying a set of row indices and column indices for each processor uniquely defines
a Cartesian mapping. Under a block mapping, a processor is assigned a consecutive set ofrow
indices and a consecutive set of column indices. In a torus-wrap mapping, the row indices
assigned to a processor constitute a linear sequence separated by Pr, and the column indices
a sequence with step size Pc. In a row (or column) mapping, each processor is assigned all of
the column (or row) indices and a subset of the row (or column) indices.

We conclude this section by observing that a matrix distributed among processors in a
torus-wrap format can be viewed as a permutation of a matrix distributed in a block scheme.
Specifically, a matrix Ab distributed in a block-wrap format can be treated as l-I] At 1"12, where
rI and l"I2 are permutation matrices and At is a matrix distributed in a torus-wrap format.
This equivalence allows for a different interpretation of the torus-wrap mapping. As observed
in [27], a standard factorization algorithm on At can be viewed as a factorization of Ab in
which the rows and columns are eliminated in a permuted order. An important result of this
observation is that it is possible to take advantage of the attractive properties of a torus-wrap
mapping without necessarily having to redistribute the matrix among processors. For example,
a block system can be solved by a routine that assumes a torus-wrapped system, and the result
is correct up to permutations. More precisely, A-lx FIA-1Flx, so a block mapping can
be made to perform like a torus-wrap mapping, without redistributing the matrix, by merely
permuting the right-hand side and the solution vectors.

4. Virtues of the torus-wrap mapping. The torus-wrap mapping has a number of dis-
tinct advantages over the more conventional assignment schemes. These virtues become
increasingly important as the number of processors increases. Generally, the torus-wrap
mapping requires less communication than row or column schemes and it has excellent load
balancing properties. These advantages will be discussed in detail in the following subsections,
and their impact on performance of a collection of linear algebra algorithms will be presented
in 5. Many of these issues are familiar to researchers who have used the torus-wrap mapping
and have been touched on in a number of publications describing specific implementations.

4.1. Communication volume. The square toms-wrap mapping allows Gauss and House-
holder transformations to be executed with a total communication volume of (R) (--h), which
is within a constant factor of optimal. Row and column schemes require about a factor of
more communication. We note, however, that if the matrix or the number of processors is
small, message startup time dominates the message transmission time so that this factor of

is not seen. Also, when p is small, the reduced communication volume may not com-
pensate for the increased complexity of the torus-wrap. The direction of high performance
computing is toward large problems and massive parallelism, so the factor of/ will become
increasingly important.

Most linear algebra algorithms involve a sequence of about rh Gauss or Householder
transformations, where rh min(m, n). This implies an overall communication volume of
(R)(rh /pmn) for torus-wrap, and (R) (prh /-th--r) for row and column mappings. The number of
floating point operations (flops) is typically (R)(rhmn), which, if balanced, implies (R)Ohmn/p)
per processor.
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If we wish to solve larger problems by increasing the number of processors without
increasing the memory of each processor, then the largest problem we can solve has mn cp
for some constant c. This implies that the number of flops per processor is (R) (rh) and the torus-
wrap communication volume is (R)(ph), while the row or column communication volume is
(R)(pl’Srh). All contemplated interconnection networks for massively parallel machines have

(p) wires, so the toms-wrap communication requirements have the potential to scale well.
However, no proposed network has f2 (pl.5) wires, so row and column schemes will eventually
be limited by communication. Similar but more detailed analyses for LU factorization can be
found in [1 ], [4].

This advantage is not specific to Gauss and Householder transformations. The proof of
Theorem 2.1 can be applied to any operation that requires communication within rows and
columns, implying that such operations can be performed with near optimal communication
volume using a torus-wrap mapping.

4.2. Communication parallelism. Although helpful for scaling analyses, communica-
tion volume may not be a particularly useful metric for performance modeling because it
ignores any overlap in the communication operations. It is often the case that several mes-
sages can be transmitted simultaneously on different communication channels. To correctly
predict performance, the times required by these overlapping messages should not be added.
We define the effective communication volume of an algorithm to be the total length of all the
messages that are not overlapped. The effective communication volume is a good estimate
of the time required for communication operations when most messages are long so message
startup time is negligible. This is the case for most dense linear algebra algorithms on large
matrices.

With a toms-wrap mapping, the transmission of a column involves Pr overlapping broad-
casts to Pc 1 other processors. Assuming a logarithmic broadcast and a message length of
rn/Pr, this results in an effective communication volume of dcm/Pr. Similarly, the transmis-
sion of a row requires an effective volume of drn/pc. When dc dr d/2, the combined
effective volume is d(m + n)/(2V), but for the limiting cases of row or column mappings,
it is dn or dm, respectively. If rn and n are about equal, the square torus-wrap napping has
an effective communication volume of about a factor of Vc less than that of row or column
mappings. When the matrix, is not square, or the row and column communication loads are
not exactly equal, a nonsquare torus-wrap mapping may be best. This will be the case for
some of the examples we consider in 5.

Since it roughly approximates communication time, the effective communication volume
allows us to investigate the proportion of execution time devoted to communication. For
dense factorizations of square matrices the sequential operation count is usually O(n3), so
if the load is well balanced the time spent performing these operations should be l(n3/p).
A dense factorization typically requires (R)(n) Gauss or Householder transformations, so the
ratio of effective communication volume to parallel operation time is (R) ((dr pr + dcpc)!n).
For row or column schemes, this implies that the ratio of communication time to compute
time grows as (R)(dp/n), but for a square torus it only grows as (R)(dv-/n). Assuming that
each processor has finite memory, n can only grow as /-fi. In this case, the relative cost of
communication scales as (R)(d) for row and column mappings, but as (R)(d) for a square
torus. The proportion of time spent on communications grows much more slowly for a square
torus than for row or column mappings, allowing scalability to much larger machines.

Forhypercubes, there are sophisticated broadcast schemes that manage to overlap commu-
nications more effectively than simple logarithmic broadcasts [24]. These algorithms use all
ofthe wires in a cube (or subcube) to perform a broadcast. Using these algorithms, the row and
column transmissions involve a combined effective communication volume of rn/Pr + n/pc.
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When n and m are about equal, a square torus is still better than a row or column method by
about a factor of

4.3. Message queue overhead. Row or column schemes require broadcasts of entire
rows or columns of the matrix. Torus-wrap methods only require broadcasts of subsets of
rows and columns with lengths n/pc and m/pr. To exploit the advantages of asynchronous
communications, a processor that expects to receive a message must have space reserved for
it. The amount of reserved space is less for a square torus than for a row or column mapping
by a factor of about 4r-ft. This leaves more space that can be devoted to other things, like
storing matrix elements. Consequently, the torus-wrap mapping allows larger problems to be
solved than row or column mappings.

With block-torus-wrap methods, sets of blocks are broadcast together. The total commu-
nication volume is unchanged, as is the effective volume, but since sets of columns (or rows)
are broadcast together, the number of startups is decreased and the lengths of messages are
increased by a factor of 32 (or 31). This reduces the total communication time but increases
the amount of memory required for communication.

4.4. BLAS compatibility. Much work has been done developing a standard set of basic
linear algebra subprograms or BLAS, which are available as a high performance library on
many machines 10], [25]. The BLAS were devised with dense vectors or matrices in mind,
but with the torus-wrap mapping each row and column is scattered. Although processors
do not own any consecutive portion of the matrix, the submatrix assigned to each processor
is rectangular and can be stored in a dense matrix format. For all the operations required
for Gauss, Householder, and Gauss-Jordan transformations, this submatrix can be treated as
dense, which allows the use of levels one, two, and three BLAS operations.

4.5. Load imbalance. To achieve optimal performance from a parallel computer, it is
important that each processor has nearly the same total amount of work to do; that is, the
computational load must be balanced. For most dense matrix algorithms, the total number
of floating point operations that have to be performed to update matrix element A (i, j) is
proportional to min(i, j). We will define the load of element A (i, j) as min(i, j) and the load
on a processor as the total load of all the elements it owns. Under a torus-wrap mapping,
if A is an m n matrix, the most heavily loaded processor will be the one owning element
A(m, n), and the least loaded will be the processor that would own A(m + 1, n + 1) if A were
larger. We denote the former processor by q and the latter by s, and let their loads be W(q)
and W(s), respectively. We are interested in A W(q) W(s).

We observe that except for entries in the last row or last column of A, each element owned
by q has a neighbor down and to the right that is owned by s. Similarly, with the possible
exception of elements in the first row or first column, each value owned by s has a neighbor
owned by q to the upper left. Each such pair of elements contributes a value of -1 to A. If
we denote the number of pairs by Np, then

A -Np + Wm,n(q)- WI,I(S),

where Wi,j(x) is the load on processor x from elements in the row and elements in the column
j of the matrix.

We denote the first row partially owned by processor q in the torus-wrap mapping as r0,

and the corresponding first column as co. We assume for concreteness that m > n; the other
case is analogous. The values of Np and W1,1 (s) are easy to compute. To compute Wm,n(q)
we separately sum the contributions from elements in the last row, elements in the last column
that are above the diagonal, and the remaining elements in the last column on or below the
diagonal. Some algebra gives the following result:
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Np (m-r)(n-c)=(m-ro)(n-co)/p,pr Pc
WI,(s) Lco/pcl Im/p] + [ro/Prl In/pc] [co/pcJ [ro/Pr],

Wmn(q)--(n’k-c)(n-cO )+1
2 Pc

_t_ [n--ro]( pr (In--ro ] )) m--n]ro+ --1 +n
Pr - Pr Pr

In the limit as m, n, and p become large WI, becomes negligible, as do r0 and co, so A
approaches n:Z/(2pc) + n(m n/2)/pr mn/p. (If n > m the corresponding result is
A mZ/(2pr) +m (n m mn/p.) For a square matrix, this maximal load imbalance
reduces to nZ(pr + Pc 2)/(2p). So for a square matrix, a square toms-wrap induces less
load imbalance than a row-wrap or column-wrap by a about a factor of /-fi/2. A similar
conclusion is reached for parallel LU factorization by Bisseling and van de Vorst in [4].

Assuming that each processor has finite memory, then for square matrices n can grow
as 4rfi. Since the number of flops grows as n3, the run time should scale roughly as n3/p,
which is proportional to /-fi. The maximum load imbalance scales as Pr + Pc, which is p
for row or column mappings, but/ for a square torus-wrap. Consequently, the proportional
load imbalance increases as for row or column mappings, but stays constant for a square
toms-wrap.

Similar results apply for a block-toms mapping. For simplicity in the analysis, we assume
that 32 3 3, and that n and m are both divisible by 3. In this case, we can generalize
the previous analysis by counting blocks instead of single elements. Letting the Np and Wi,j
notation now apply to entire blocks, Np scales linearly with 3 because the workload imbalance
associated with a pair of diagonally adjacent blocks increases as 33, but the number of blocks
decreases as 3z. Similarly, Wm,,, increases by about a factor of 3, while W,I increases by
about a factor of 32/2. Since the the contribution of W, to A is negative, the growth in the
load imbalance with delta is at most linear. For large m, n, and p and small 3, the Np and
Wm,n terms will dominate W,, so the load imbalance from a block-toms scheme with square
blocks will approach 3{n2/(2pc) + n(m n/2)/pr ran where m >_ n. The important
conclusion is that if the block sizes are small, the maximal load imbalance is proportional to
the linear dimension of the blocks.

4.11. Processor idle time. Even if all the processors have the same total amount of work
to do, the overall calculation will be inefficient unless each processor always has something to
work on. Algorithms using Gauss or Householder transformations usually begin by computing
a function of the first column (or row) of the matrix; the norm for Householder and the largest
element for Gauss. If this first column (row) is not distributed, as in a column (row) mapping,
then the other processors need to wait until this calculation is complete. This problem is
exacerbated by using a block-column (or block-row) approach to allow level three BLAS,
since several columns (rows) must be manipulated before the other processors have any work
to do. A toms-wrap mapping allows some parallelism in the processing of each column or
row, which reduces this potential idle time problem. With a block-toms-wrap mapping, the
idle time at the beginning of the calculation grows linearly with 31 or 32.

Most factorizations eliminate the rows and/or columns of the matrix in order, from left to
right and top to bottom. As the factorization nears completion, only processors that still own
active matrix elements have work to do. With column (or row) schemes, processors begin to
drop out when there are p columns (rows) remaining. Block methods are even worse. With
the torus-wrap, however, all the processors stay active until there are only Pc columns (or pr
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rows) left to eliminate. If the matrix has p more (fewer) rows than columns then a row-wrap
(column-wrap) mapping avoids this problem, but for the important special case of square and
nearly square matrices, the torus-wrap mapping allows greater parallelism near the end of the
computation. As at the beginning, with a block-torus-wrap the idle time at the end of the
calculation grows linearly with 3 or t2.

5. Numerical results. In this section, we discuss the implementations of three dense
matrix algorithms, LU factorization, QR factorization, and Householder tridiagonalization.
For each of these examples, we investigate the performance implications of using different
mapping schemes, both analytically and experimentally. All numerical experiments were
performed in double precision C on a 1,024 node nCUBE 2 hypercube at the Massively Parallel
Computing Research Laboratory at the Department of Energy’s Sandia National Laboratory.

Our algorithms require only very simple communication patterns consisting of broadcast,
collect, and binary exchange operations. We implemented each of these functions in a simple,
generic way so that the resulting code should run on any architecture. Although our timings
given are for a specific computer, the broad conclusions should be appropriate for other
machines. For hypercubes there are asymptotically more efficient communication algorithms
as was alluded to in 4.2, but our implementations do not exploit them.

5.1. LU factorization. Our first example is LU factorization with partial pivoting of a
dense n x n matrix A. This the most important factorization in linear algebra as it is a very
efficient method for solving systems of linear equations. There are several variants of LU
factorization, each requiring 2n3/3 + O(n2) flops. Our algorithm uses the column-oriented,
kij version as described in [19]. The algorithm is summarized in Fig. 4, where Roman
subscripts denote integers and Greek subscripts denote sets of integers.

Our implementation of this algorithm incorporates double precision arithmetic and uses a
Gray-coded torus-wrap mapping. As presented, this algorithm can be used with any Cartesian
mapping, but in practice, block algorithms would be modified to send fewer, larger messages.
The algorithm can be easily modified for a block-toms-wrap mapping, but since nCUBE only
supports level one BLAS, we did not investigate this possibility. Improvements in performance
have been observed on other machines using block algorithms [35]. To minimize the time
spent waiting for the determination and broadcast of pivot elements our algorithm employs a
compute-ahead technique. The processors owning the next column in the matrix generate and
send the pivot information before updating the remainder of their elements.

The nCUBE 2 has 1,024 processors arranged in a ten-dimensional hypercube. Each
processor has four Mbytes of memory, which must be divided between the operating system,
code, data, and communication buffer. Using the optimal distribution of data among the
processors, we can allocate about 3.8 Mbytes for data storage in our code. This means that
the largest double precision, dense matrix that can be factored in core is about 22,000 x
22,000. Factoring the Linpack benchmark matrix of this size requires 3612 seconds (1.96
Gflop/s), using a processor decomposition in which Pc 64 and Pr 16, which is the
optimal decomposition of 1,024 processors for this size problem as will be seen later in this
section.

To investigate the effect of the different torus-wrap decompositions on scaling we need to
use a matrix that can be stored on fewer than 1,024 processors. We factored an 8,000 x 8,000
matrix with different numbers of processors and the results are presented in Table 1. We note
that although we can store a matrix of size n 11,000 on 256 processors, the communication
buffer requirements of the nonoptimal row and column distributions require that we reduce
the size of the matrix, as was discussed in 4.3.

We can model the performance to gain insight into the scaling properties and the optimal
balance between Pc and Pr. There are four major contributions to the run time of the LU
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Processor q owns row set c and column set 3
For j 1 to n

(, Find pivot row ,)
If j / Then

(, Compute maximum of entries in column j ,)
q .’: maxic ]Ai,j]
Binary exchange to compute V maxq Vq

s := index of row containing the entry y

(, Generate update vector, v, from column j of A ,)
If j 6/3 Then

Aa,j :-- Ao,j/y
V :: A,j
Broadcast column va and s to processors sharing rows

Else Receive v and s

(, Exchange pivot row and diagonal row, and broadcast pivot row ,)
If j Then

Send wt Aj,3 to processor owning
If s 6 ot Then

Receive
ut :: As,
Broadcast row ut to processors sharing columns
As := wt

Else Receive u
If j c Then

Aj, := u/

If j oe and j ,B Then
A(j, j) A(j, j) (, Restore diagonal ,)

c :=c \ {j}
,B :=/3 \ {j}

(, Remove j from active rows ,)
(, Remove j from active columns ,)

FIG. 4. Parallel LUfactorizationfor processor q.

TABLE
Run times on the nCUBE 2for LUfactorization ofan 8,000 x 8,000 matrix.

256 Processors

1 256
2 128
4 64
8 32
16 16
32 8
64 4
128 2
256

Seconds
2568
1335
930
777
719
706
729
806
996

512 Processors
Pc Pr Seconds

512 2406
2 256 1064
4 128 624
8 64 462
16 32 396
32 16 372
64 8 376
128 4 412
256 2 506
512 712

1,024 Processors
Pc Pr Seconds

1,024 2394
2 512 953
4 256 483
8 128 307
16 64 237
32 32 207
64 16 201
128 8 215
256 4 260
512 2 364
1,024 589

factorization code: a pivot entry search and pivot column update, a row broadcast, a column
broadcast, and an outer product update ofthe unfactored submatrix. We will need the following
values taken from the nCUBE 2 manuals for our model.
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Variable Description Microseconds
Tc,a message startup time 100.
Tc,b transmission time per double precision number 4.00
T a startup time for pivot operations 16.3

’,
computational time for pivot operations (per element) 1.955
startup time for a daxpy 11.0

Td,b computational time for a daxpy (per element) 0.964

With these variables, the total time spent computing the outer product updates ofthe unfactored
portion of the submatrix using the column-oriented daxpy can be modeled as

n2 n 3

Tupdate Pc Td,a 4- -p Td,b.

The time spent on pivot entry searches, which includes a local search and a binary exchange by
those processors containing part of a column, and pivot column updates can be approximated
by

n2

Tpivot nTp,a 4- X-S-__ Tp,b -Jr-drn(2Tc,a 4- 3Tc,b),
Z,pr

where we recall that dr and dc are the dimensions of the subcubes to which columns and rows
are assigned, respectively. The time for a logarithmic broadcast of the pivot row is about

( n2 )Trow=dr nTc,a+pcTc,b
Finally, the time for a logarithmic broadcast of the pivot column is approximated by

n2

Tcolumn dcn Tc,a + --- Tc,b.
zp,.

The total run time Ttotal is modeled by summing the four contributions above.
We note an important difference between the contributions to the overall run time of the

row broadcasts and the column broadcasts. If the processor holding column j + 1 is the first
processor to complete its portion of the broadcast of the pivot column, then the search for
the pivot and update of column j 4- 1 can be overlapped with the remaining stages of the
broadcast of column j. When a Gray-coded torus-wrap mapping is used on a hypercube, the
processors holding column j 4- are neighbors of those owning column j. Consequently,
a logarithmic broadcast can be structured in such a way that the processors owning column
j 4- 1 quickly receive column j and then have no further participation in the broadcast. Thus
the factor dc multiplies only the startup time in the contribution to the total run time. The row
broadcast, on the other hand, cannot be overlapped with any computations (without destroying
the load balance of the algorithm) so that dr multiplies both the startup and transmission time
contributions to the total run time.

The data from Table is shown graphically in Fig. 5, where instead of the run time, the
vertical axis is the Mflop/s rate achieved. To generate these values, we used the number of
flops required by the sequential algorithm, about 3.41 x 1011.

We observe that the optimal distribution is not achieved at dc d,.. Qualitatively, the major
reason for this is the fact that column broadcasts can be overlapped with computations while
row broadcasts cannot. Tupdate and Tpivot also contribute to this phenomenon since the startup
time for column operations is reduced by increasing dc, and the communication time required
to find the pivot element (which is the dominant term in Tpivot) is reduced by decreasing dr.
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FIG. 5. Performance ofthe LUfactorization code on the nCUBE 2.

This observation can be examined quantitatively by looking at the model. Specifically, if
we write Ttota in terms of n, d, dc and the timing constants, differentiate with respect to
and set the resulting expression equal to zero, we obtain the equation

22dc ( Tp,b +2d Tc,b ) 2dc (4Tc,an ln

6Tc,b ) ( ( 1) )Td,a+ d-dc+n2
Tc,b =0.

We cannot solve this equation in closed form, but, in practice, simple numerical techniques
can be used to compute the optimum value of dc. Here, we derive an approximate expression
for the optimum value of dc. First, we observe that errors in the linear term involving dc
have only a small effect in the final solution and replace (d dc + 1/In 2)Tc,b with dTc,b/2.
Second, we observe that for most cases of interest 2:dc-d >> 2dc/n so that the second term can
be dropped from the expression. Now, solving for dc yields

d l ( Td,a + dTc,b/2)(2) dc + log2 Tp,b + Tc,b

We note that even though this value is approximate, the predictions are close to the observed
optima as shown in Fig. 5. The predicted peak performances (for integer values of de) are 487
Mflop/s for d 8 andd 3,925 Mflop/s for d 9 andd 3, and 1700 Mflop/s for d 10
and dr 4. We see from (2) that the optimum value of dc is shifted from the value d/2 by an
amount that depends on the startup time for the daxpy operation, the computation time for the
pivot search operation, and the amount of row communication that cannot be overlapped with
computation, but this shift is relatively small on the nCUBE 2 because the constants involved
are of similar magnitudes.

One way to improve the performance of the code for large d would be to use the BLAS
to update rows (in the outer product update) rather than columns. This would have the effect
of increasing the vector lengths for the BLAS calls and reducing the number of startups. We
did not incorporate this improvement into the code because the optimum performance occurs
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for dr < d/2 and would not be affected by the switch. This improvement will be discussed in
more detail in 5.2 dealing with QR factorization.

As parallel machines are built with more and more processors, it becomes possible to
solve larger and larger problems. An important metric of parallel algorithms is how they scale
to larger problems on more processors [20]. We will assume the amount of memory available
to a processor remains constant, so the largest dense matrix that can be stored on a machine has
n :z cp for some constant c. We define scaled speedup to be the ratio of computation rate to
the single processor computation rate for problems in which the number ofmatrix elements per
processor remains constant. We note that this definition of scaled speedup is based on holding
the memory requirements on each processor constant, not the workload on each processor.
Because the LU factorization of a dense matrix requires O(n3) flops but only O(n2) storage,
holding the workload per processor constant would result in lower scaled speedup values.

The results of a set of runs to determine scaled speedups are presented in Table 2. The
first column of the table gives the linear dimension of the square matrix and the second the
dimension of the hypercube. The third column contains the values of dc and dr that proved
optimal. The fourth column shows the observed total number ofMflops per second ofexecution
time, where a flop count of 2n3/3 is used. The fifth column divides the fourth by the number
of processors. Scaled speedups are presented in the sixth column. The last column presents
efficiencies, which we define to be the scaled speedup divided by the number of processors.
We note that the efficiencies greater than one in the second and third rows of the table are due
to the fact that the BLAS operations have greater efficiency with longer vectors.

TABLE 2
Timesfor LUfactorizations ofscaled matrices.

Matrix Cube dr: dc Mflop/s
size dim. observed
500 0 0:0 1.94
707 0:1 3.94
1,000 2 0:2 7.84
1,414 3 1:2 15.41
2,000 4 I: 3 30.78
2,828 5 2:3 60.99
4,000 6 2:4 121.95
5,657 7 3:4 242.40
8,000 8 3 5 483.50
11,314 9 4 5 963.50
16,000 10 4:6 1917.19

Mflop/s
per proc.

1.94
1.97
1.96
1.93
1.92
1.91
1.91
1.89
1.89
1.88
1.87

Scaled Eff.
speedup

1.00 1.00
2.03 1.01
4.04 1.01
7.94 0.99
15.87 0.99
31.44 0.98
62.86 0.98
124.95 0.97
249.23 0.97
496.65 0.97
988.24 0.96

In 4.1, we discussed the complexity of the communication volume and concluded that
use of the torus-wrap mapping results in better scaling of an algorithm than either the row-
wrap or the column-wrap mapping. This is born out by Fig. 6, where the performance of row-
wrap and column-wrap mappings are compared to the optimal torus-wrap mapping for these
scaled problems.

5.2. QR factorization. Our second example is Householder QR factorization without
pivoting of an rn x n matrix A. After LU, QR is probably the most important factorization
in linear algebra and is used in least squares problems, eigenproblems, basis generation, and
other settings. The total flop count for this algorithm is 2n2(m n/3) + O(n2) for the usual
situation in which rn >_ n 19]. Our parallel algorithm is outlined in Fig. 7 and is described
in greater detail in [22]. Alternative QR algorithms that use the torus-wrap mapping can be
found in [8], [37].
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FIG. 6. Mflop/s/processor ratesfor LUfactorization with different processor mappings.

Processor q owns row set c and column set/3
For j to n

(, Generate Householder vector, v, from column j of A ,)
If j E ,8 Then

(, Compute contribution to norm of column j ,)
T}/q := Ao,jA,j

Binary collapse y yq to processor owning Aj,j
If j E c Then

Aj,7 := A, + sign(A7,j)
Vo :---
Broadcast v,, (and r) to processors sharing rows ot

Else
Receive v (and r)

/ "=/ \ {j} (, Remove j from active columns ,)

q. T
r/} .= v,, A,,/ (, Compute portion of dot-products ,)
Binary exchange (with appended r) among processors sharing

columns/ to compute r/ := r
Aa,: "= A,,: (2/r)vr (, Update the submatrix ,)

ot "= c \ {j} (, Remove j from active rows ,)

FIG. 7. Parallel Householder QRforprocessor q.

As with the LU implementation described in 5.1, to minimize time spent waiting for a
Householder vector to be computed and broadcast, the processors that share the next column to
be processed generate and broadcast their elements of the Householder vector before updating
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the rest of their matrix elements. Run times for the same set of problem sizes considered in
5.1 are presented in Table 3.

TABLE 3
Run times on the nCUBE 2for QRfactorization ofan 8,000 x 8,000 matrix.

256 Processors 512 Processors 1,024 Processors
Pc Pr Seconds Pc Pr Seconds Pc Pr Seconds

256 3105 512 2612 1,024 2515
2 128 2087 2 256 1532 2 512 1324
4 64 1643 4 128 1042 4 256 779
8 32 1463 8 64 834 8 128 537
16 16 1428 16 32 756 16 64 436
32 8 1381 32 16 729 32 32 408
64 4 1384 64 8 713 64 16 381
128 2 1437 128 4 736 128 8 383
256 1559 256 2 814 256 4 418

512 996 512 2 507
1,024 715

The total run time for this algorithm can be modeled as the sum ofthe times for computing
Householder vectors, broadcasting Householder vectors, generating inner-products and per-
forming outer product updates. In addition to those parameters from 5.1, our model requires
the following values from the nCUBE 2 manuals.

Variable Description Microseconds
Tn,a startup time for a 2-norm 13.0
T,,,b computational time for 2-norm (per element) 0.863

To generate a Householder vector the processor owning the top element must know the
vector’s 2-norm. The total time spent performing this task consists of the time for the local
computations followed by the time for a binary collapse to combine the partial sums, which
can be approximated by

Tnorm n Tn,a "Jr-
n(2m n)

Tn b --[-drn(Tc,a -[- Tc,b

The total time spent broadcasting Householder vectors can be modeled as

n(2m n)
Tbcast dcn Tc,a "[" Tc,b.

2pr

As with the LU factorization column broadcast, the generation of the next Householder vector
overlaps with all but the first stage of the broadcast of the current one. Thus the factor dc does
not appear in the per element term of the broadcast.

The time for computing all the dot-products is the sum of the time required for the nu-
merics, Tdot_calc, and the time for combining all the partial sums within each column Tdot.comm.
Although for hypercubes there are asymptotically more efficient alternatives [15], [34], we
perform this communication using a binary exchange that requires redundant numerical opera-
tions. The gains from the more sophisticated algorithms are of a low order and so insignificant
for large problems, and by not exploiting hypercube specifics we can reach broader conclusions
about the performance of toms-wrap algorithms.

The numerical operations associated with the dot-products can be performed as a daxpy
within rows, or as a ddot within columns (which has about the same startup and per element
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cost as a daxpy). Our implementation dynamically chooses whichever of these operations
involves fewer startups. For simplicity of analysis, we ignore the fact that the optimal choice
can change during a run for nonsquare matrices, in which case the dot-product terms are about

n2(m -n/3)
Tdot-calc

n min(n 2m_______n Td,a + Td b,
2 Pc Pr 2p

drn2

Tdot-comm drnTc,a-l--pcTc,b.
Finally, the outer product updates on submatrices can be performed using daxpys within

either columns or rows. We again choose whichever leads to fewer startups, so the total update
time can be approximated as

n2(m n/3)
Tupdate

n min(n ,2m_______n Td,a + Td,b.2 Pc Pr 2p

The data from Table 3 is shown graphically in Fig. 8, where the vertical axis is the Mflop
rate achieved. To compute rates, we used the sequential flop count, which for this problem is
about 6.83 x 1011 flops.
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FIG. 8. Performance ofthe QRfactorization code on the nCUBE 2.

The cusp in the curves is due to switching between a row oriented and a column oriented
application of the level one BLAS. We expect the model to overpredict performance since by
only including communication and BLAS it neglects any overheads. In the extreme case of
column-wrapping, the model clearly overestimates the overlap of computation with commu-
nication. The model can be used to predict the optimal decomposition of processors among
rows and columns by setting the derivative of the expression for run time to zero. However,
as in 5.1, no-closed form expression results. The peak performance is achieved when dr is
somewhat less than dc due primarily to the greater communication within columns than within
rows. A nonsquare torus also allows for fewer BLAS startups.
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TABLE 4
Timesfor QRfactorizations ofsquare matrices.

Matrix Cube dr: dc
size Dim.
500 0 0:0
707 0:1
1,000 2 0:2
1,414 3 0:3
2,000 4 3
2,828 5 1:4
4,000 6 2:4
5,657 7 2:5
8,000 8 3:5
11,314 9 3 6
16,000 10 3:7

Mflop/s Mflop/s Scaled Eft.
observed per proc. speedup

1.97 1.97 1.00 1.00
3.98 1.99 2.02 1.01
7.95 1.99 4.04 1.01
15.83 1.98 8.05 1.00
31.42 1.96 15.97 1.00
62.76 1.96 31.90 1.00
124.56 1.95 63.31 0.99
249.06 1.95 126.59 0.99
494.32 1.93 251.24 0.98
989.71 1.93 503.03 0.98
1963.91 1.92 998.01 0.97

As in 5.1, we ran a sequence offactorizations in which the memoryrequired per processor
remained constant, allowing us to compute scaled speedups. The results are presented in
Table 4. As before, the efficiencies greater than one are due to longer vectors in the BLAS
routines.

Computation rates per processor for this set of problems are plotted in Fig. 9, comparing
the optimal toms-wrap to row- and column-wrap mappings. As with LU, the torus-wrap
mapping allows for much greater scalability than row or column schemes.
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FIG. 9. Mflop/s/processor ratesfor QRfactorization with different processor mappings.

5.3. Householder tridiagonalization. Our third example, Householder tridiagonaliza-
tion of a symmetric n x n matrix A, is used in eigenvector calculations of symmetric or Her-
mitian matrices. The best sequential algorithm requires 4n3/3 + O(n2) flops and n2/2+ O(n)
storage [19]. An algorithm that fails to exploit the symmetry of the matrix will require ad-
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ditional computation and memory, so it is better to store and manipulate only a lower (or
upper) triangular part of the matrix. This causes problems for row or column oriented map-
pings since a particular row (or column) of the matrix is now stored partially as a row and
partially as a column. The same issues arise with other algorithms for symmetric matrices,
like Cholesky decomposition. However, since a square torus-wrap mapping treats rows and
columns symmetrically, it is well suited to deal with this problem.

Our algorithm for square tori is outlined in Fig. 10. Each processor stores its portion
of the lower triangular part of A in a column major format. One property of torus-wrap
mappings as we have defined them is that for square tori the processors owning diagonal
matrix elements are assigned a set of row indices equal to their set of column indices. This
is also true for block torus-wrap mappings with square blocks, but it is not generally true
of Cartesian mappings. This property makes transposing vectors easy, since these diagonal
processors have the appropriate elements of both a vector and its transpose. We exploit this
convenience in our implementation, which limits us to square tori. A similar algorithm is
described in [7].

As evidenced by Fig. 10, exploiting symmetry makes this algorithm more complicated
than those for LU and QR. First a Householder vector v must be generated and broadcast.
The appropriate elements of the transpose of v (and later w) are then communicated to each
processor. Next comes the calculation of s A v, where A is the remaining submatrix. This
is followed by the computation of w 2(s (vrs)v/r)/r, where r Ilvll 2, Finally, an
outer product update of the matrix elements is performed.

We implemented this algorithm on the nCUBE 2 and used the code to factor an 8,000 x
8,000, double precision matrix, which required 1653 and 556 seconds on cubes of dimension
eight and ten, respectively.

The algorithm in Fig. 10 can be generalized to apply to nonsquare torus mappings, but this
involves substantial complexity in performing the transpose operations and the matrix-vector
multiplications. Although we did not implement this more general algorithm, we can develop
a performance model to investigate the tradeoffs associated with different mappings. Our
model will require the parameters introduced in the previous two sections and the following
values from the nCUBE 2 manuals.

Variable Description Microseconds

Ts,a startup time for a dscal 7.8
Ts,b computational time for dscal (per element) 0.554
Tt,a startup time for a ddot 10.0
Tt,b computational time for ddot (per element) 0.984

Computing and broadcasting the Householder vectors is very similar to the operation
required in Householder QR as described in 5.2.

n2

Tnorm n Tn,a + Pr Tn,b + drn(Tc,a + Tc,b),

den2
Zbcast-" dcn Tc a -1- -X--- Tc b

Unlike the models for LU and QR, we include the time for each stage of the broadcast. This
is because the binary exchanges in the algorithm keep the processors tightly synchronized,
which reduces the potential to overlap computation with communication.
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Processor q owns row set oe and column set fl of lower triangular A
For j 1 ton-

ot := a \ {j} (, Remove j from active rows ,)

(, Generate Householder vector, v, from column j of A ,)
If j /3 Then

T/q :-- Aot, jAot,j
Binary collapse ?, yq to processor owning Aj+I,j
If j + ot Then

z 2(?’ + ]Aj+I,jIt-)
Aj+I,j := Aj+I,j + sign(Aj+l,j)x/-

Vo := A,j
Broadcast va (and r) to processors sharing rows c

Else Receive v (and r)

fl :=/3 \ {j} (, Remove j from active columns ,)

(, Get elements of vT to the correct processors ,)
If c =/3 Then

Broadcast v/3 to processors sharing columns
Else Receive v/3

(, Compute Av ,)
q Tr "= A/3"

Binary collapse among processors sharing columns fl
to diagonal processor to form r/3 := r

If ot fl Thensq "= r + A,v (, excluding diagonal contribution ,)
Else s := A,v
Binary exchange among processors sharing rows u

to form su := s
(, Compute vTs and generate w ,)
q :=i UiSi
Binary exchange among processors sharing columns

to fo :: oq (and append z)
2w := (s-

(, Get elements of 1/) T to the correct processors ,)
If u =/3 Then

//)/3 :-- tOo
Broadcast w/3 to processors sharing columns

Else Receive w/3

A,/3 := Ao,/3 v,w wv (, Update the submatrix ,)

FIG. 10. Parallel Householder tridiagonalization for processor q.

For square tori, transposing v and w just requires broadcasts from the diagonal processors,
but for nonsquare tori it is more complicated. We denote Pmax max(pr, pc), and dmax
max(dr, dc), with the obvious Pmin and dmin counterparts. Transposition can be accomplished
with dmin stages of a broadcast with message length about n/Pmax, followed by dmax dc
stages of a binary exchange in which the message length doubles after each stage. We note
that for nonsquare tori, some copying of data is also required. The total time spent performing
these operations is about
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dminn2 n2 PmaxTtrans 2drn Tc,a + Tc,b + 1) Tc,b.
Pmax Pmax Pc

This formula is assymetric in rows and columns because the recursive doubling stage in the
transpose need only occur if dr > dc. Otherwise, the last term in the expression reduces to
zero.

Computing Av is somewhat problematic since only the lower triangular portion ofthe ma-
trix is stored. We denote this triangular portion as L , and the portion of L below the diagonal
as L2. We observe that ,v L r v + L2v, which requires communication in both rows and
columns. Our algorithm first performs a ddot to determine the contribution from L v. These
values are combined and sent to the processors owning the diagonal matrix elements using
precisely the opposite of the communication pattern used above for transposition. Next, the
contribution from L2v is computed using a daxpy, and these values are Combined across rows
using a binary, exchange. As a side effect, the binary exchange synchronizes the processors
within each row and a total of about (Pc 1)n2/2 redundant flops are performed. As with our
implementation of QR factorization, for hypercubes there are asymptotically more efficient
alternatives to the binary exchange [15], [34], but our implementation does not use them. The
calculation and communication time for this operation can be approximated as

n2 n 3

T,v_calc -pc Tt,a "- Td,a -+- -6-p Tt,b - Td,b),

n2 Pmax dcn2
Tjv_comm (dr --I- dc)n Tc,a "+"

2pmax
(dmin --pc 1) Tcb, -I- Tc,b.

Forming vrs involves local computation, followed by a binary exchange among the
processors sharing a set of column indices. This serves to synchronize the processors within
each column, and requires a total of about (pr 1)n2/2 redundant flops. Also, the same
local computations are repeated by each column of processors, implying an overall additional
(Pc 1)n2 flops beyond those in the sequential algorithm. The time for this computation and
communication can be modeled as

n2

Tdot-calc n Tt,a + Pr Tt’b

Zdot-comm drn Tc,a + Tc,b ).

Each processor can now generate its own elements of w, using a dscal followed by a daxpy.
As above, this calculation is duplicated Pc times, resulting in about 2(pc 1)n2 extra flops.
The time spent in this step is about

n2

Tgenw n(Td,a + Ts,a) + pr(Td,b + Ts,b).

Updating by -vwr wvr is now a local operation performed by each processor on its own
data. Each column of J can be updated with two daxpys, so the time for this operation can
be modeled as

n2 n3

Tupdate Td,a + Td,b.

The total time is modeled as the sum of the terms above. The predictions of the model for
an 8,000 x 8,000 matrix are plotted in Fig. 11, with the observed values for square tori
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included for comparison. In computing rates, we use the sequential flop count, which is about
6.83 x 1011 for this problem.

As expected, the model indicates that a square torus is better than row or column methods
for this problem. The cusp in the model is due to the different communication patterns that
apply depending on the relative sizes of pr and Pc. We note that for these problems, the model
predicts a slight improvement in performance when dr (d/2) 1, but the model neglects the
additional copying required for nonsquare tori. We can use the model to predict the optimal
tradeoffbetween Pr and Pc in general, but as in 5.1 and 5.2 no closed form expression exists.
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FIG. 11. Performance ofthe tridiagonalization code on the nCUBE 2.

As in 5.1 and 5.2, to investigate scaled speedup we ran the code on problems in which
the local memory requirements remained constant. The results are presented in Table 5.

TABLE 5
Timesfor Householder tridiagonalization.

Matrix Cube Mflop/s Mflop/s Scaled Eft’
size dim. observed per proc. speedup
500 0 1.87 1.87 1.00 i.00
1,000 2 7.25 1.81 3.88 0.97
2,000 4 27.84 1.74 14.89 0.93
4,000 6 107.30 1.68 57.40 0.90
8,000 8 413.01 1.61 220.95 0.86
16,000 10 1596.33 1.56 853.97 0.83

On a single processor, the performance of the tridiagonalization code is about 5% less
than that for LU or QR. This is a consequence ofexploiting the symmetry of the matrix and can
be expected in other algorithms that work on symmetric matrices like Cholesky factorization.
The short columns in the rightmost portion of the lower triangular matrix and the short rows at
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the top result in many short vectors in the BLAS. Also, index calculations are more complex
with a triangular matrix, adding some overhead to the calculation.

In addition, the performance of the tridiagonalization code scales less well than either LU
or QR. The efficiency on 1,024 processors is about 83%, while for QR and LU it was in the
upper 90s. This is a consequence of three factors. First, the repeated computations add about
n2(7pc + pr)/2 flops to the sequential algorithm. Second, exploiting symmetry requires a
greater amount of communication. Third, the two binary exchanges effectively synchronize
the processors, which reduces the potential for hiding communication with computation. The
second factor will also influence other algorithms on symmetric matrices. Having said this, it
is still true that the tridiagonalization code performs well, achieving greater than 75% of the
peak BLAS performance on 1024 processors.

6. Conclusions. We have presented analytical and empirical evidence that for many
dense linear algebra algorithms, the torus-wrap mapping is better than row or column map-
pings. The primary advantage ofthe toms-wrap is that it requires less communication, leading
to better scalability, but there are a number of additional advantages including better load bal-
ancing, reduced processor idle time, and shorter message queues.

After factoring a matrix, one typically wishes to use it, for example, to solve linear systems
or least squares problems. This requires using the factored products to modify one or more
vectors. If only a few vectors are involved, then the flop count is (R) (n2), an order of magnitude
less than the factorization. In this case, since the cost of the factorization dominates, a torus-
wrap mapping for the factorization is likely to give the best overall performance. In addition,
algorithms exist for doing a single triangular solve using the toms-wrap mapping that run in
the asymptotically optimal time of n2/p + O(n) [5], [28].

If many vectors must be modified, then they can be combined to form a matrix that can
be assigned to processors in a torus-wrap fashion. The same techniques that were employed
in the factorization can now be used in the triangular solves, and good performance should
result. For instance, the LU factorization code described in 5.1 has been used to invert a
matrix by solving n linear equations on the nCUBE 2 at an overall computational rate of 1.96
Gflop/s.
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ERRORS WHEN SHOCK WAVES INTERACT
DUE TO NUMERICAL SHOCK WIDTH*

RALPH MENIKOFF

Abstract. A simple test problem proposed by Noh, a cold gas with uniform initial particle velocity directed
towards a rigid wall, demonstrates a generic problem with numerical shock capturing algorithms at boundaries that
Noh called "excess wall heating." The same type of numerical error is shown to occur when shock waves interact.
The underlying cause is due to the numerical shock profile. The error can be understood from an analysis of the
asymptotic solution of the partial differential equations when an artificial viscosity is added. The position of the front
for a numerical shock wave can be defined by matching the total mass in the profile to that of a discontinuous shock.
There is then a difference in the total energy of the numerical wave relative to a discontinuous shock. Moreover,
the relative energy depends on the strength of the shock. The error when shock waves interact results from the
difference in the relative energies between the incoming and outgoing shock waves. A conservative differencing
scheme correctly describes the Hugoniot jump conditions for a steady propagating shock. The error implied by the
asymptotic energy shift occurs in the entropy generated by the numerical dissipation in the transient when the waves
interact. The entropy error remains localized and does not dissipate. A scaling argument shows that as the viscosity
coefficient approaches zero, the error shrinks in spatial extent but the peak pointwise error is constant in magnitude.
Consequently, the convergence of the inviscid limit to the hyperbolic solution is nonuniform in regions where shocks
have interacted.

Key words, hyperbolic conservation laws, shock interactions, viscous profiles
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1. Introduction. The equations for ideal fluid flow form a hyperbolic system of conser-
vation laws

(1.1) Ot uPu + Ox Pu2 + P ,
p(- + E) P(1/2U2 + E)u + Pu

where p is the density, u is the particle velocity, E is the specific energy, P(V, E) is the
pressure, and V 1/p is the specific volume. Dissipation only occurs across a shock wave
and physically is accounted for by imposing the Rankine-Hugoniot jump relations across
the shock discontinuity. Finite difference shock-capturing algorithms are frequently used to
obtain a numerical solution to the fluid flow equations. These schemes have a numerical
dissipation that gives a shock wave a small width measured in grid cells, but an artificially
large spatial width compared to the typical shock width that physically occurs. The effect
of the artificial shock width is largest during a transient when a shock wave forms or when
shock waves interact. To determine the effect of the numerical shock width, we analyze the
asymptotic solution for a simple shock interaction when a viscous dissipative term is added
to the ideal fluid equations.

The problem we consider in detail is a strong shock in an ideal gas reflecting from a
rigid wall. This is equivalent to the interaction between equal strength shocks of the opposite
family. It is similar to a test problem Noh [6] introduced that exemplifies errors in numerical
calculations due to artificial viscosity. In Noh’s problem the initial data consists of a uniform
state of cold gas with a constant velocity directed toward a rigid wall. Its solution has a
strong outgoing shock. Because of the zero initial sound speed, an analytic solution exists in
planar, cylindrical, and spherical geometry. Typically, numerical solutions have an entropy

*Received by the editors May 10, 1993; accepted for publication September 7, 1993. This work was supported
by the U. S. Department of Energy.

tTheoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (rt:m@lanl.
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error at the boundary. The shock interaction problem considered here is less singular than
the Noh problem. The initial state is assumed to have a smooth viscous profile rather than a
discontinuity in the velocity. Furthermore, the Mach number of the outgoing shock is finite.
Nevertheless, the same type of entropy error occurs in the numerical solution of the shock
interaction problem.

The hyperbolic solution of the shock interaction problem consists of an outgoing shock
wave. Because the flux at the boundaries is constant, the total mass, momentum, and energy
in the viscous solution can be compared with those in the hyperbolic solution. We define
the shock position of the viscous wave to have the same total mass and momentum as the
hyperbolic shock wave. An important quantity in the asymptotic analysis is the energy of the
viscous shock relative to the energy of hyperbolic shock.

We show that there is a shift in the relative energy between the incoming and outgoing
waves. This implies that an entropy error must occur during the transient shock interaction.
For the shock reflection problem, the transient takes place when the shock profile overlaps
with the boundary. After the transient, the entropy is frozen in place, i.e., convects along
particle trajectories, and the error does not dissipate.

A scaling argument due to Noh shows that under mesh refinement the entropy error
decreases in spatial extent but the peak pointwise error is constant in magnitude. Since the
coefficient of viscosity decreases with the mesh size, the scaling implies that the convergence
of the inviscid limit to the hyperbolic solution is nonuniform in regions where shocks have
interacted.

In particular, for avon Neumann-Richtmyer artificial viscosity the shift in the relative
energies is calculated analytically. A numerical example illustrates how the transient shock
interaction gives rise to an entropy error. From the general energy arguments we are led to
conjecture that the numerical shock width in any shock-capturing algorithm without significant
heat conduction will give rise to an entropy error when shock waves interact.

2. Asymptotics. When the fluid equations are regularized by a viscous dissipation term,
a shock wave very rapidly approaches its asymptotic steady state profile. In fact thisis a
necessary condition for shock capturing algorithms to satisfy the Hugoniot jump conditions.

Let us consider a steady state viscous shock wave. Suppose the wave is right facing and
propagating with velocity or. Furthermore, let the reference points Xa and xb be in the ahead
and behind state, respectively, with xb < Xa. The position of the wave can be defined by
comparing the viscous profile with a discontinuous shock and adjusting the discontinuity such
that the two waves have the same total mass.

The condition that the waves have the same mass is given by

fx
xs fxXa

(2.1) 0 dx

Relative to Xb the shock position based on the mass is given by

(2.2) x xb + (,% ,oa)- dx (,o(x) ,oa).

Similarly, the position of the wave could be defined by matching the total momentum. The
shock position based on momentum is obtained from (2.2) by replacing the mass density ,o
with the momentum density u.

In steady state the mass flux is everywhere constant, (u ) m. Hence, there is a
linear relation between mass density and momentum density ,ou o’ + m. Consequently
the shock position, based on either the mass or momentum of the wave, is the same.
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We could also base the shock position on the total energy. However, the energy density
u2, ( + E)p is not Galilean invariant. This would lead to a nonuniqueness in the

shock position. Instead, we define the relative energy between the viscous profile and the
discontinuous shock with the shock position based on mass

(2.3)

xs

fxlar dx (8 8b) + dx (8

dx (8 8a) (x Xb) (8b

We note that 3gr > 0 corresponds to an excess energy in the viscous profile over the discon-
tinuous shock.

We next show that the relative energy is Galilean invariant and hence well defined.
In a reference frame moving with relative velocity u’ the energy density is transformed to

’ + puu’ +t- p(u’) Substituting into (2.3) we find that the additional terms are
proportional to the mass and momentum density and have the same form as in (2.1). Hence,
the additional terms vanish when xs is chosen to be the shock position based on mass or
equivalently momentum.

3. Von Neumann-Richtmyer viscosity. Viscosity can be incorporated into the planar
one-dimensional (l-D) fluid equations by adding a viscous pressure to the fluid pressure,
P -+ P+ Q in (1.1). We analyze the viscous fluid equations using a yon Neumann-Richtmyer
viscosity [5] and an ideal gas equation of state. The von Neumann-Richtmyer viscosity is
defined by the viscous pressure

Cv P e2(OxU)2 if Oxu < O;(3.1) Q O, otherwise,

where C is a dimensionless viscosity and is a length scale proportional to the shock width.
We note that Q is Galilean invariant. Without loss of generality we can set C 1. For an
ideal gas, with y > 1, the equation of state is

(3.2) PV (, 1) E.

In this case, there is an exact analytic formula for the viscous profile of a shock wave. Let
cr be the shock velocity and the variable

be a scaled length relative to the shock front. The viscous profile is given by [7]

(3.4)

(3.5)

I(Va Vb) sin(w),V(w) 1/2(G + G) +

P(w) 1/2(Pa + Pb) 1/2(Pb P,) [sin(w) +
k

-(’ + 1)(Va V6) COS2(W)2

(Va + V)+ (Va- Vb)sin(w)

(3.6) [ (Va- Vb)cOs2(w) ]Q(w) (’ + 1) (Pb Pa)
(Va + Vb) + (Va Vb)sin(w)

(3.7) u(w) r rn V (w),
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where rn pa(t7 Ua) is the mass flux through the shock front. From the Hugoniot jump
conditions m2 (Pb Pa)/(Va Vb). We note the shock profile is of finite width extending
from the ahead state at Wa 1/2 rr to the behind state at Wb --1/2 rr.

The shock position based on mass is given by

(3.8) ws Wb @ (Pb Pa)-1 dw rpa
La-r/2 (Va + Vb) + (Va Vb)sin(w)

The integral is of the form evaluated in the appendix. It can be simplified to give

(3.9) ws Wb "-1- 0(01/2 -- 1)’

where rl V, ! Vb is the compression ratio of the shock. We note that the compression ratio is
in the bounded interval < 0 < (F / 1)!(F 1). For the limiting case of a weak shock r/--+
and ws --+ O, and for a strong shock 0 -’+ (F + 1)/(F 1) and w 0 with -zr < w < 0.

It is convenient to calculate the relative energy of the shock profile in the rest frame of
the shock-front, i.e., tr 0. In this case the kinetic energy is pu2 1/2m2V and the energy
density can be expressed as

m2g= V + (y-1)-1P.

Substituting this expression into (2.3) for the relative energy we obtain

2 )
1/2

(3.11) 6r__
t’+l e [1/2m2 f’/2 dw V(w) +

J -r/2
dwP(w)

F- a-r/2

7’a (ms 11)6) (b a)l

The integrals can be evaluated with the formulae in the appendix

r 2

17r Va + Vbdw V(w)
a -rcl2

71/2 1
dw P w 1/2 rr Pa -t- Pb - F -t- 1)

1/2 Pb Pa
a-/2 + 1

After straightforward algebraic manipulation, we obtain for the relative energy

7rF_l F+I
g.(Pb Pa) (’ 3)

0(/.]1/2 -[’- 1) 2

71/2- /-(y+l) j0(1/e + 1)

We note that the relative energy is in general nonzero and has the following three proper-
ties:

(i) 3gr is a function of the shock width. In particular, 3r -- 0 as the shock width goes
to zero.

(ii) 8gr is a function of the shock strength. For weak shocks gr/ (Pb Pa)e and
for strong shocks 8gr/ (Pb Pa). Moreover, gr ._ 0 as the shock strength goes to
zero.
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(iii) 3gr is a function of the equation of state (EOS). The relative energy depends on the
EOS through the shock profile. Because the viscous pressure depends only on the density
and velocity, the profile is expected to vary with the EOS. In the weak shock limit, r
and the factor in curly brackets goes to (7 3?’)(0 1)/4. Thus, depending on the EOS,
the relative energy can have either sign. Numerical evaluation of (3.12) shows that 3,r > 0
when 1 < ?’ < 2+, r < 0 when > 3-, and the sign ofr depends on shock strength
for intermediate values such as y 2.5.

These impoant propeies are expected to be true for any reasonable viscosity.

4. Effect of shock width on a shock interaction. In the limit of weak shocks, the
numerical shock width has a negligible effect because both the relative energy and the entropy
change of a shock wave approach zero. As the strength of a shock wave increases, the shock
width has an impoant effect on a shock interaction.

We consider the simple case of a strong shock reflecting from a rigid wall. Figure 1
shows the results of a numerical calculation, discussed later in more detail. It illustrates the
effect described by Noh [6]. The pressure and panicle velocity are in good agreement with the
analytic solution but there are large eors localized near the wall in the density and specific
energy. We explain below how this eor is a consequence of the shift in the relative energy
of the shock profiles resulting from the shock interaction.

To compare the viscous solution with the hyperbolic solution, we compute the difference
in the relative energy between the incoming shock and the outgoing shock

(4.1) Agr =g -g[.

We note that Agr > 0 coesponds to a net excess energy in the viscous shock profiles
compared to the hyperbolic shocks. Let the pressure behind the incoming shock be Ps.
The compression ratio of a strong shock is Os ( + 1)/( 1). The reflected shock is
characterized by its pressure ratio, P/P + 2/( 1), and its compression ratio,
PrslP, I( I).

The scale for the relative energies is

F- g+l
ePs.

Substituting the values for the pressure and compression ratio into (3.11) we obtain for the
relative energies

{(g--l)2 [(g+l)l/2 ] ]6gf/e g(g 3) (g- 1)2
g + 1 1/2 2

1
+1 -1 g-1

g/e =(g-3) 2(g-l) -1 -1 --(g+l)(g-1)[( g )1/g-1-1].
The above foulae determine Agr as a function of g. The difference of the relative

energy, shown in Fig. 2, has the following general propeies:
(i) Agr as g 1. This singularity is due to the singularity in the compression

ratio at g 1.
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FIG. 1. Numerical profilesforplanar Noh problem: Piston driving strong leftfacing shock that reflectsfrom a

rigid wall at x O. Numerical profiles are at time when reflected shock is at x O. 1. The fluid has an ideal gas
EOS with y 5/3. The solid line is the hyperbolic solution and the dashed line is position ofthe piston.
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FIG. 2. Difference ofthe scaled relative energy for strong shock reflection with Eulerian viscous length scale;
E "--,T/6.
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(ii) Ar/ 0 at , 2.4.
(iii) The minimum value ofAr --0.34 occurs at ),’ 4.65.
(iv) Ar - 0 as y - o.

We note that in general Ar is not zero.
The analytic formulae for dsr and d describe the continuum steady viscous shock

profiles of the partial differential equations (PDEs). They would approximate the values for
a numerical calculation with a uniform Eulerian grid to the extent that the artificial viscous
shock profile is resolved. In a Lagrangian calculation the length scale for the artificial viscosity
is typically chosen to be the grid spacing Ax. Consequently, the viscous length scale
changes with the flow. In one space dimension, for a real viscosity Q vOx u, the usual choice
for an Eulerian grid corresponds to a constant kinematic viscosity v and for a Lagrangian grid
to a constant dynamic viscosity r/= pv.

For the shock reflection problem, the reflected shock length scale is decreased by the
compression ratio of the incident shock. Neglecting the change in length scale within the
shock profile, for a Lagrangian calculation the difference in the relative energies would be

(4.2) (Ar)z 8Es ’ 18Ers.
y+l

The relative energy of the reflected shock compared to the incident shock is increased
by its higher pressure and density but decreased by its lower Mach number. The decreased
viscous length scale in a Lagrangian calculation cancels the effect of the increased density
on the relative energy of the reflected shock compared to the incident shock. The difference
in the Lagrangian relative energies for the shock reflection is shown in Fig. 3. We note that
the singularity at 7’ 1 in Ar/ has been removed but a singularity remains in the energy
scale e.

0.00

-0.01

-0.02

-0.03

-0.04
2 3 4

FIG. 3. Difference ofthe scaled relative energyfor strong shock reflection with Lagrangian viscous length scale;
E =r/.

For a typical case, ?’ 5/3, the approximate Lagrangian relative energy difference equa-
tion (4.2) is a factor of 100 smaller than the Eulerian difference equation (4.1) and has the
opposite sign. This suggests the effect of the change in shock profile from the incoming to
outgoing wave would be smaller for a Lagrangian algorithm than for an Eulerian algorithm.
However, the large change in magnitude may be fortuitous and due to the approximation which
neglects the change in length scale within the shock profile.
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4.1. Consequence ofshift in relative shock energy. The numerical error shown in Fig. 1
can be understood as follows. The constant flux ahead of the outgoing wave can be accounted
for by comparing the position of the shock in the viscous solution to that of the hyperbolic
solution. The shift in the energy of the viscous shock profiles implies that a uniform state
behind a steady state outgoing wave can not simultaneously satisfy the flux relations for mass,
momentum, and energy. Instead, the shock interaction must result in a transient. The transient
occurs on both a fast and slow time scale and results in an entropy error when comparing
the viscous solution to the hyperbolic Solution. The two time scales can be seen in the time
sequence of numerical profiles shown in Fig. 4. The numerics are discussed later in more
detail.

FIG. 4. Time sequence of numerical profiles for planar Noh problem The range of the sequence covers the
transient in which the shock interaction takes place Curves and 2 are the profiles ofthe incident left-facing shock.
In curves 3 and 4 the profile is in transitionfrom the incoming to outgoing shock. Curves 5-9 are the profilesfor the
right-facing reflected shock. Curve 9 is essentially the asymptotic wave profile. The horizontal solid line corresponds
to the value behind the reflected shock.

Over the fast time scale, (shock width)/(shock velocity), the viscous pressure smooths
out any discontinuity in the nondegenerate or acoustic modes. This is important when the
positions of the incoming and outgoing shock waves are within a few shock widths of the
wall. The pressure and particle velocity rapidly equilibrate to their respective values behind
the reflected shock as the incoming shock profile changes to the outgoing profile. On the slow
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time scale, the wave profile of the viscous solution approaches the steady state profile and the
wave-structure of the viscous solution asymptotically approaches the outgoing waves in the
solution to the Riemann problem.

On the slow time scale, the shift in energy is small compared to the total energy behind the
shock. The energy mismatch in the shock profiles can be distributed over the region between
the wall and the shock front by acoustic waves. The entropy error at the shock front is small
and further decreases rapidly for large t. This is a consequence of the fact that the Hugoniot
jump conditions give the correct entropy jump across a steady state shock profile independent
of the form of dissipation.

On the fast time scale, the energy shift is significant compared to the total energy in
the shock profile. This results in a significant entropy error in the interaction region during
the transient in which the shock profiles change. After the pressure and particle velocity have
equilibrated, the viscous pressure in the interaction region approaches zero and the subsequent
change in entropy is negligible. Without heat.conduction, which would give rise to diffusion of
entropy, the entropy error is frozen into the particle trajectories. Thus, the bulk of the entropy
error from the interaction is confined to within a few shock widths of the wall.

Let us consider in more detail the interaction region for the case when Ar > 0. Near
the wall the outgoing viscous wave must have a deficit in energy equal to Ar to compensate
for the energy difference in the shock profiles. Because the wall causes the particle velocity
to approach zero, the energy density reduces to pE P/(?, 1) and is proportional
to P. When the reflected wave has propagated a couple of shock widths, the pressure has
approximately equilibrated to the value behind the outgoing hyperbolic shock. To conserve
total energy, the viscous shock front must be slightly behind the hyperbolic shock front. Then
to conserve mass, on average/9 must be above the value for the hyperbolic shock. Since P is
approximately constant, a high value for p implies on average the entropy Scx. log(Pipr’) is
low.

At the wall, the pressure rise is more characteristic of a single strong shock than a double
shock. Since the entropy is greater for a single strong shock then for two sequential shocks to
the same final pressure, right at the wall we expect the entropy to be high and the density to be
low. This implies there is an oscillation in the density and entropy in the vicinity of the wall.
The pressure and density determine the specific energy through the equation of state. At the
wall, a low value of p results in a high value of E. This agrees with the results of numerical
calculations and is what Noh [6] called "excess wall heating," even though there is a damped
oscillation in the energy about the value behind the hyperbolic shock.

Finally, to conserve total momentum the velocity profile overshoots and becomes slightly
negative immediately behind the viscous shock front. We note at the wall that the mass and
energy flux are identically zero. However, the momentum flux depends on the wall pressure
and varies with the shock profile during the transient interaction. This affects the rate at which
the asymptotic shock position based on mass and momentum equilibrate. Since the transient
wall pressure depends on the form of the dissipation, the entropy oscillation at the wall is
expected to vary with the numerical algorithm.

As the wave moves further away from the wall, the viscous profile more closely approaches
that of a steady state shock wave. Consequently, the entropy jump across the viscous wave
rapidly approaches the value for the hyperbolic shock. As time progresses, further errors in
entropy outside the interaction region are negligible.

To understand the small distance it takes for the shock to form and the pressure and velocity
to equilibrate we estimate the magnitude ofr relative to the energy in the shock profile.
For illustrative purposes we assume , 5/3. From (3.3) the shock width is Ax 2.72. The
compression ratio of a strong shock is r/ (, + 1)/(, 1) 4. From (3.12), the energy
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ratio is 8.f/(Ax,s) 1/9. Thus the energy in the shock profile will have a small effect on
the shock interaction after the outgoing shock has propagated a couple of shock widths. This
also suggests that an entropy oscillation, related to the transient wall pressure that is algorithm
dependent, can greatly increase the L norm of the entropy error.

We note that the initial data for Noh’s test problem corresponds in effect to taking the
relative energy of the incoming wave to be zero. Furthermore, the outgoing wave is a strong
shock. In this case, the energy difference for the interaction is Ar sr. Again, in general
Ar is not zero and an entropy error occurs from the transient interaction that forms the
outgoing shock. For a typical numerical calculation, Lagrangian shock-capturing algorithm,
and ?, 5/3, the difference in the relative energy is larger for an initial velocity with a
discontinuity than for an initial velocity with a smooth profile. Consequently, the entropy
error in Noh’s test problem on shock formation is larger than the error for the shock interaction
problem we are considering. The Noh problem is a very good test problem for numerical
algorithms because it exaggerates a generic type of error that occurs for shock interactions.

4.2. Results of numerical computation. It is unlikely that the details of the transient
interaction region can be calculated analytically. Here we present the results of a numerical
calculation that illustrates the general features of the solution discussed in the preceding
section.

The calculation was performed with the HYDROX code [9]. It uses an old Lagrangian
algorithm based on control volumes that is conservative and formally second-order accurate.
It was chosen merely to demonstrate the effect with an "off the shelf" code. We expect other
codes using newer algorithms that can resolve a shock with fewer cells to have a quantitatively
smaller but qualitatively similar entropy error.

For the numerical example, a piston boundary condition is used to generate a strong left
facing shock wave in an ideal gas with , 5/3. To avoid numerical problems from a zero
sound speed in the ambient state, a Mach number of or/c0 100 instead of an infinite strength
shock was used. The calculation used 150 cells to ensure that the incoming shock had a well-
developed profile before reflecting from a rigid wall boundary. A purely quadratic artificial
viscosity with a relatively large coefficient of Cv 10 and correspondingly small time step,
Courant-Friedrichs-Lewy (CFL) factor of 0.1, was used to minimize post shock oscillations
so that the dominant error is from the shock interaction. The large numerical viscosity results
in a partially resolved shock profile over several cells. This enhances the radial extent of the
entropy error at the wall. Though computationally inefficient, it is convenient for illustrative
purposes to exaggerate the effect.

The profiles after the transient has decayed away are shown in Fig. 1. Each dot corresponds
to a grid point. The rigid wall is at the left and the piston is at the right. We note that the
pressure and particle velocity are in good agreement with the hyperbolic solution. There are
errors in density and specific energy in localized regions about both boundaries. The error at
the piston boundary is identical to Noh’s original problem. Because of Galilean invariance,
an impulsively driven piston is equivalent to an initially constant velocity directed towards a
stationary wall.

A time sequence of profiles of the shock interaction at the rigid wall is shown in Fig. 4.
We note that the incoming shock width is about Ax 0.02. Hence the plots have zoomed
in on a region within a couple of shock widths of the wall. We see that the pressure and
particle velocity equilibrate almost immediately to their respective values behind the reflected
shock. The shock profiles have stabilized and the density and specific energy have almost
equilibrated to their steady state values after the reflected shock has propagated only two
widths of the incoming shock. For an ideal gas the entropy is proportional to log(P/p).
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Since P/p oc E /pv-1 and P is constant behind the reflected shock, the entropy profile has
the same qualitative shape as the specific energy profile. Consequently, we see that before the
entropy equilibrates to its value behind the reflected shock there is an excess followed by a
deficit in entropy within one to two shock widths of the wall.

Finally, the results of another calculation with an algorithm that resolves a shock with
fewer cells is shown in Fig. 5. The numerical algorithm uses a linear plus quadratic artificial
viscosity, Q CvlpCJ[u] d- Cv2pJ[u]2, where J[u] is a monotonicity limited velocity jump
within a cell. The parameters used were Cvl 0.5, C2 2/3 and CFL factor of 0.25. The
figures shows that within two cells the shock profile varies from 10%-90% of the asymptotic
values ahead of and behind the shock. Qualitatively, the results are the same as in Fig. 1. As
expected, the error at the wall involves fewer cells. We also note that the first cell next to the
wall boundary has a deficit rather than an excess of energy. This illustrates that the transient
wall pressure is algorithm dependent and quantitatively effects the entropy error.

Both these calculations show a qualitatively similar effect; nonzero entropy error localized
to the interaction region. Quantitatively, the entropy error varies in magnitude, spatial extent,
and even in sign. We believe the entropy error is due to the change in the relative energy of
the shock profiles and conjecture that any shock capturing algorithm without significant heat
conduction will have a qualitatively similar error.
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5. Nonuniform convergence ofinviscid limit. For a shock reflecting from a rigid wall, a
scaling argument due to Noh [6] shows that under mesh refinement the entropy error decreases
in spatial extent but the peak pointwise error is constant in magnitude. Since the coefficient of
viscosity decreases with the mesh size, the scaling implies that the convergence of the inviscid
limit to the hyperbolic solution is nonuniform. Here, we extend this result on nonuniform
convergence to a general shock interaction.

The inviscid fluid equations are scale invariant. Scaling space and time amounts to a choice
ofunits. Viscosity introduces a length scale that breaks the invariance. However, under scaling
the viscous pressure is multiplied by a constant. Therefore, by scaling the viscosity coefficient
along with the length and time scales, the equations are again invariant. This scaling invariance
applies to both the PDEs and the finite difference equations in either Eulerian or Lagrangian
coordinates provided that the artificial viscous length scale is proportional to the grid spacing.

A solution to the fluid equations with the von Neumann-Richtmyer viscosity is invariant
under the transformation x’ tx, t’ ct and ’ a; i.e., for fixed if Ucv (x, t) is a
solution to the equations with viscosity coefficient Cv then U2cv(X, t) Uc(x/c, t/ct) is
also a solution. Furthermore, this transformation preserves velocity and hence the initial value
data. Therefore, the inviscid limit corresponds to a -- 0. In this limit, the entropy error at
the wall decreases in spatial extent but is constant in magnitude. Hence the inviscid limit for
the shock reflection problem converges in L or L2 but not in L.

A shock reflecting from a rigid wall is equivalent to the symmetric collision oftwo shocks,
i.e., equal strength shocks of the opposite family. The argument that the cause of the error is
due to the asymptotic shift in the relative energy between the incoming waves and the outgoing
waves implies that the equal strength of the incoming waves is not important. Consequently,
shock interactions in general will result in nonuniform convergence of the inviscid limit.

Numerical shock-capturing algorithms differ from each other and the continuum PDEs
with regard to three properties that are important for the shock interaction problems. The mesh
spacing introduces two dimensionless ratios. The first ratio is the CFL number cat/Ax. The
second ratio is the shock width divided by the mesh spacing, or the number of cells over
which the shock is spread out. In addition, numerical algorithms can use different forms of
dissipation. This affects both the stability and minimum number of cells required for a shock.
Moreover, the form of the dissipation determines the shock profile and hence the relative
energy gr.

Once the CFL number is small enough for stability, it is not expected to affect the behavior
of the solution. The argument based on the change in relative energy of the shock profiles
suggests that all shock-capturing algorithms without significant heat conduction will have the
same qualitative entropy error when shock waves interact. Since the relative energy difference
scales with the shock width, we expect the entropy error from a shock interaction to be smaller
when the shock width is narrower.

The entropy error from a shock interaction can be affected by an adaptive mesh. Coars-
ening a mesh is a smoothing operation. Behind the shock front it has an effect similar to heat
conduction. Smoothing out the energy oscillation in the interaction region can greatly reduce
both the spatial extent and the magnitude of the entropy error.

6. Effect of source terms. Noh [6] also has a version in cylindrical and spherical ge-
ometry of his test problem on the formation of a shock from a velocity discontinuity. This
introduces an additional effect on the outgoing shock wave due to the geometrical source term.
Depending on the form of the artificial viscosity, some numerical algorithms have much larger
errors for the test problem in cylindrical and spherical geometry than in the planar case.

The geometrical source term is singular at the origin. Consequently, when a shock ap-
proaches the origin, within the shock profile the geometric source term becomes comparable
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in magnitude to that of the viscous term. When this occurs, the conservation form of the
equations no longer imply the usual Hugoniotjump relations across a shock; i.e., the nonzero
shock width becomes important.

A real effect in which the Hugoniot jump relations are modified occurs for detonation
waves [2]. In this case, the competition between a chemical reaction and a geometrical source
term gives rise to the curvature effect in which the detonation velocity depends on the curvature
of the detonation front 10], [4]. Quantitatively, the magnitude of the curvature effect depends
on the details of the reaction rate. To first order, the Hugoniotjump conditions are modified by
the addition of terms proportional to the ratio of the reaction zone width to the front curvature.
An artificially large numerical shock width and a geometric source term can have a similar
effect near the origin. Furthermore, the magnitude of the effect depends on the dissipation
rate within the shock profile.

From the Gurdeley similarity solution, an ideal converging shock is singular at the origin.
The shock width provides a length scale that regularizes the singularity when the shock reflects
from the origin. After reflection there are large gradients behind the shock front. The shock
has to propagate a sufficient distance from the origin for the gradients behind the shock to be
small compared to those within the shock profile. This is a necessary condition for the usual
Hugoniot jump relations to apply across the shock independent of the form of dissipation.

Thus, when source terms or gradients behind the shock front are large compared to the
dissipation within the shock profile, the viscous solution can differ significantly from the
hyperbolic solution. In the absence of a shock wave, the geometric source term does not result
in any dissipation. Consequently, an entropy error due to the interaction of a shock wave and
a geometric source term is convected and remains localized. Since the error is expected to
be proportional to the shock width over the radius, algorithms with the smallest shock width
should have the smallest error.

For the 1-D fluid equations in cylindrical and spherical geometry, there are two natural
possibilities for the artificial viscous dissipation. The first form results from projecting the
inviscid three-dimensional (3-D) fluid equations onto the radial coordinate and then adding
a scalar artificial viscous pressure. The second form adds an artificial tensor viscosity to the
3-D fluid equations [8], 11 and then projects onto the radial coordinate. The resulting form
of the dissipation in the two cases is different. A traceless stress tensor corresponds to a
shear viscosity. In contrast to a scalar viscosity, there is no artificial dissipation for a uniform
compression with a shear viscosity. Numerical experiments have shown that the traceless
tensor form of artificial viscosity gives a smaller entropy error for the Noh problem ].

7. Conclusion. We have analyzed the problem of a strong viscous shock reflecting from
a rigid wall. For the von Neumann-Richtmyer artificial viscosity, we have shown that the
same type of error occurs as for the Noh problem [6]. The phenomena is much more general
than a boundary effect, "excess wall heating." It is an entropy error that occurs either when
a shock is formed or during the transient when shock waves interact. The error is due to the
difference in energy relative to the hyperbolic solution of the viscous profiles for the incoming
and outgoing shock waves. After a shock has passed entropy is convected. Consequently, the
entropy error from a shock interaction remains localized and does not dissipate. Noh’s scaling
argument has been extended to show for shock interactions that under mesh refinement the
entropy error decreases in spatial extent but the peak pointwise error is constant in magnitude.

From the energy argument based on the shock profiles, we conjecture that the same
behavior occurs for an arbitrary shock interaction with any dissipative mechanism that results
in a nonzero shock width, provided there is no heat conduction to diffuse entropy. The
dissipation may correspond to a term added to the hyperbolic PDEs, e.g., an artificial viscosity,
or can be numerical in nature, e.g., resulting from truncation errors in the differencing scheme,
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or a Riemann solver used in the Godunov method. The fact that hyperbolic finite difference
schemes deliberately underresolve the shock profile is not critical as long as the algorithm is
stable. The truncation errors merely introduce an oscillation in the shock profile as the position
of the shock front propagates between grid points.

The entropy error when shock profiles interact implies a nonuniform convergence of
the inviscid limit to the hyperbolic solution. Nonuniform convergence can be expected at the
shock front. An additional nonuniformity can occur in a region in which the solution is smooth
resulting from a shock interaction that occurred in the region’s past history.

A more severe form of this entropy error occurs when a shock wave is incident on a
material interface or contact. For materials with different equations of state or when the
contact is a discontinuous change in zoning, there can be a large transient resulting from the
change in profiles for the incident, transmitted, and reflected shock waves. In Lagrangian
algorithms the effect is partially ameliorated by choosing the grid such that the wave speed in
units of zones per time step is the same for the outgoing shocks on each side of the interface.
However, the minimal error is similar to that which occurs for the shock interaction discussed
here.

In more complicated 1-D fluid flows, additional errors can result from the inhomogeneities
caused by the entropy error from shock interactions. For example, subsequent shock waves
will scatter off the inhomogeneities and spread the spatial extent of the error. This effect is
partially ameliorated by the fact that shock heating raises the sound speed. Hence, subsequent
reflected shocks have a lower Mach number and the additional entropy errors they cause
decrease as the shocks weaken.

In two dimensions, the interaction of two incoming shocks gives rise to wave patterns
[3]. A.steady interaction region in two space dimensions is qualitatively similar to the time
dependent interaction region in one dimension. Hence, we expect an entropy error for two-
dimensional (2-D) wave patterns in the region in which the shock profiles overlap. Errors from
numerical shock profiles in two dimensions may have a more dramatic effect on the subsequent
flow than in one dimension. For example, as the strength or angle between the incoming shock
waves evolves in time, the wave patterns can bifurcate. One well-known bifurcation is the
transition from regular to Mach reflection. Because the transition point of a bifurcation is a
threshold phenomena, it can be very sensitive to parameters such as the viscous shock profile.
Another example occurs in an unstable 2-D flow. The inhomogeneities from entropy errors
caused by shock interactions can be the seed of a perturbation which subsequently leads to or
enhances the growth of an instability. This raises the important question as to whether in two
dimensions the inviscid limit always converges to the hyperbolic solution.

For some applications, the nonuniform convergence is important. One example is when
comparing the calculated temperature at a wall to experimental data. The numerical entropy
error from a reflected shock results in a high wall temperature that does not dissipate in
time. Moreover, the calculated wall temperature does not improve under mesh refinement.
Having understood the cause, we can compensate for this error, e.g., with sufficient resolution
by averaging over a small region in the vicinity of the wall. Another example is when the
material is chemically reactive. In particular, for an explosive a numerical hot spot caused by
a shock interaction can initiate a detonation and greatly affect the fluid flow.

The spatial extent of the entropy error when shocks interact is proportional to the shock
width. Thus, this error is smallest for those numerical schemes that minimize the artificial
shock width. In particular, this type of error can be eliminated by using a front tracking
algorithm.
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Appendix: Evaluation of integral. The needed integrals can be evaluated by contour
integration as follows. Suppose a > b > 0 and n is a nonnegative integer. Let z eix. Then
the basic integral of interest can be expressed as

zr cos(nx)
dx

a + b cos(x)
Re fc -idz zn

z a + 1/2b(z+ 1/z)

=Im odZ1/2bzZ+az+1/2b’
where Co is the arc of a unit circle in the upper half of the complex plane.

The denominator of the integrand on the right-hand side has two zeros located at

z+ [-a 4- (a2 b2)1/2] lb.

These lie along the real axis with z_ < -1 and -1 < z+ < 0. Let C be the path formed by
closing the path Co along the x axis but going around the pole at z+ in the upper half plane.
By applying Cauchy’s residue formulae we obtain

cos,nx, z.
PV dxdx Im dz

ba + b cos(x) 1/2bz2 .+ az d- -
zr Residue(z+)

:rr ((a2-b2)l/2-a)
n

(a2 b2) 1/2 b

Xn

b-bx2 + ax

+ izr Residue(z+

Using the symmetry of the sin and cos functions over a half cycle we note two special
cases of the above formula

:rr/2 fo
r

dx dx
,I-r/2 a + b sin(x) a + b cos(x)

(a2 b2)1/2

zr/2 COS2(X) fo
n" sin2(x)

dx dx
,I-zr/2 a + b sin(x) a + b cos(x)

fzr cos(2x)
J0 a+bcos(x)

zr
[a-(a2-b2)/2]b2
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GAUSS-SEIDEL ITERATION FOR STIFF ODES FROM CHEMICAL KINETICS*
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Abstract. A simple Gauss-Seidel technique is proposed that exploits the special form of the chemical kinetics
equations. Classical Aitken extrapolation is applied to accelerate convergence. The technique is meant for imple-
mentation in stiff solvers that are used in long range transport air pollution codes using operator splitting. Splitting
necessarily gives rise to a great deal of integration restarts. Because the Gauss-Seidel iteration works matrix free,
it has much less overhead than the modified Newton method. Start-up costs therefore can be kept low with this
technique. Preliminary promising numerical results are presented for a prototype of a second order backward differ-
entiation formula (BDF) solver applied to a stiff ordinary differential equation (ODE) from atmospheric chemistry.
A favourable comparison with the general purpose BDF code DASSL is included. The matrix free technique may
also be of interest for other chemically reacting fluid flow problems.

Key words, numerical stiff ODEs, chemical kinetics, air pollution modelling

AMS subject classifications. Primary: 65L05; Secondary: 80A30, 80A32

1. Introduction. Large scale, long range atmospheric air pollution models are compu-
tationally very expensive 10]. Usually the computational work is heavily dominated by the
numerical treatment of the stiff ODE systems describing the chemical kinetics model in use.
These ODE systems are of the nonlinear form

d
(1.1) -rTY-- f(t, y) "= P(t, y) L(t, y)y, y(t) (yl(t) ym(t)) r

where P(t, y) is a vector and L(t, y) is a diagonal matrix. The components Pk(t, y) and
Lk(t, y)yk are nonnegative and represent, respectively, production and loss terms. The re-
ciprocal of Lk is the physical time constant or characteristic reaction time for compound yk.

Generally the range of time constants is large, which implies that in most applications the
ODE system is stiff. For example, if we assume that the popular operator splitting approach is
used, then a common situation is that (1.1) must be solved repeatedly, over several hundreds
of split-step time intervals, at any of thousands of grid points. As a rule the length of this
time interval is the stepsize used in the advection step, which for part of the chemical species
occurring in atmospheric applications is much larger than the time constant. This introduces
the stiffness. When the chemistry is nonlinear and many species are involved, say, 20 to 50,
it is clear that a highly efficient stiff solver, tailored to the application under consideration, is
indispensable. Due to the great number of restarts, one for each split-step time interval, it is
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particularly important to use integrators that keep the inevitable start-up costs low, in compar-
ison with a common stiff ODE integration. In addition, the integrator must be able to change
stepsize rapidly with little costs because in practice rate coefficients in atmospheric chemistry
models are temperature or time dependent. This dependency can cause sudden changes in
the concentrations, which can be followed accurately and efficiently only if stepsizes can be
adjusted efficiently.

2. The Gauss-Seidel iteration. The purpose of this note is to present some preliminary,
but promising, results of a simple Gauss-Seidel iterative technique for solving implicit rela-
tions. Because this technique works matrix free, a change of stepsize involves no numerical
algebra overhead at all. This results in low start-up cost compared to Newton-type iteration.
The Gauss-Seidel technique is very cheap in the start-up phase where usually a few iterations
are sufficient. When the stepsize increases, the convergence will normally slow down. In the
experiments reported in this note we have successfully applied the classical Aitken extrapola-
tion to accelerate convergence over a wide range of stepsizes. So far only a single extrapolation
step has been considered. In the near future more sophisticated acceleration techniques will
be the subject of further investigation. Moreover, switching between Gauss-Seidel and the
modified Newton iteration will be examined. We also experimented with the Jacobi iteration,
but less successfull,,. In the experiments reported here, the Gauss-Seidel technique signifi-
cantly improved convergence, especially for larger stepsize values. Yet the Jacobi iteration
may be of interest in the initial transient phase, because one Jacobi iteration is always cheaper
than one Gauss-Seidel iteration. For simplicity of presentation, in this note we focus on the
Gauss-Seidel iteration.

We have implemented the Gauss-Seidel iteration process in a prototype of a new solver.
This prototype uses as the main integrator the variable step, second order BDF formula

(2.1) y"+ yn + ’rf(t,+ yn+), "r tn+l tn,

where ?, (c + 1)/(c + 2), c (tn t,_)/(t,+ tn) and

(2.2) yn ((c + 1)2y’ y"-)/(c2 + 2c).

We emphasize that second order is sufficient because for reactive flow problems a low level
of accuracy of, say, 1% is good enough. A higher level is thought to be superfluous, due to
errors made in other (operator splitting) processes and uncertainties in the reaction constants
of the chemistry models.

The Gauss-Seidel technique exploits the chemical kinetics form (1.1), by which (2.1) can
be written as

yn+))- yn yn+(2.3) yn+l F(y"+) (I + ?’rL(tn+ -+- "cP(tn+l )).
The Gauss-Seidel iteration is now straightforwardly applied to the nonlinear system of equa-
tions y F(y) in the standard way. The diagonal form of L makes this process essentially an
explicit one. Note that the technique can be implemented in a completely similar way into a
diagonally implicit Runge-Kutta code, say, into one of order two with two stages. Due to the
one-step nature, much larger differences between successive stepsizes can then be realized.
A disadvantage is that more iterations are required per integration step. This is attributable to
the computation of the second stage. In our future work, we will explore the efficiency of a
two-stage Runge-Kutta method versus that of our BDF method.

Note that for components for which both P, and L, are constant in y, the solution of (2.3)
is obtained in one iteration. This means that when individual components rapidly approach
their steady state values P,/L,, they are handled very efficiently. In this connection the current
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iterative approach bears a resemblance to the explicit pseudo-steady approximation approach
evaluated in [9]. The schemes evaluated in [9] show a very good stability behaviour, but
proved to be so inaccurate that generally they cannot compete with state-of-the-art, general
purpose codes like DASSL and RADAU5 [6], even in the low accuracy range requested. A
comparison with DASSL, presented in 4, will show that the iterative Gauss-Seidel technique
offers better prospects for the development of fast, special purpose solvers for stiff ODEs in
chemically reacting flows. Because the comparison is based on a single test problem, it is
obvious that more experimental work is needed to justify completely the use of the Gauss-
Seidel technique for chemical sub-models.

3. The prototype solver. We now present a brief outline of our prototype solver. This
outline contains all the information needed to appreciate the experimental results presented in
the next section. We begin with the variable stepsize strategy for the BDF method. Let E"+1

be a local error indicator and consider the weighted error norm

(3.1) [IE"+lllw -max(lE+ll/W), W ATOL + RTOL [yn l,

where ATOL and RTOL are the absolute and relative error tolerance. If IIEn+l Ilw < 1.0, then
the integration step is accepted and otherwise rejected. The new stepsize mew is estimated by

(3.2) mew max(0.5, min(2.0, 0.8/v/llE+llo))VoO.

The square root appears here since our local error indicator is

2
(3.3) En+l (cy"+1 (1 + c)yn + yn-1)

c+l

which yields r2y"(t) + O(r3) upon substitution of the exact solution. Hence we do not
estimate the true local error of the BDF method, which is O(r3). The main reason is that
we wish to avoid the explicit use of derivative values in En+l As is well known, this would
amplify small insignificant errors in the solution because of the stiffness, which hinders the
prediction of the new stepsize. In codes using modified Newton iteration, this amplification
is suppressed by an additional forward-backward substitution. Because we use Gauss-Seidel
iteration, we cannot do this and therefore prefer to use the conservative estimate (3.3), which,
in our experience, works well in combination with (3.2) and the iteration strategy described
below. It is obvious, though, that more extensive tests are needed to justify (3.3) completely.

The missing starting value is computed with the implicit Euler method. To obtain a safe
guess for the initial stepsize, we replace En+ in (3.1) by rf(to, yO) and define r such that the
weighted error norm is equal to one, i.e.,

(3.4) r min(W/If(to, y)l).

Hence the initial step is chosen so that the first Taylor series term rf(t0, y0) satisfies the
absolute/relative tolerance requirement. The two-step scheme is then applied with the same
stepsize and after that the variable stepsize mechanism is activated. Normally, (3.4) will lead
to a rather small initial guess, which will be accepted and subsequently rapidly increased
according to (3.2). This is also the case in the experiments reported here.

Let yi) denote the approximation to y"+l after iterations with the Gauss-Seidel method
for (2.3) or its counterpart for the implicit Euler method. Let ITOL be a tolerance value. As
an initial guess we use y0) yn. The first iterate yi) satisfying

(3.5) IlY<- y<i-)l[w < ITOL, > 2,
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is accepted as the new approximation y+l. Hence a minimum of two iterations is used at
each timestep. The iteration is interrupted if IlYi yi-lllo > Ily-1> y-2llo. In the
experiments reported here, such failure has not occurred.

Aitken extrapolation is applied for > 3. Let zi be the Aitken extrapolated value at the
ith iteration. Then, if (3.5) does not hold, zi is accepted as the new approximation y+l if

(3.6) lie)- z->llo _< ITOL, > 4.

Aitken extrapolation is applied to all components and consequently involves overhead, such
as componentwise checks on zero division. For simple models the overhead may therefore
annihilate the resulting speed in convergence. For the model example used below it has proven
to be attractive, especially for larger stepsize values. For small stepsize values in a transient
phase where only a few Gauss-Seidel iterations are used, the extrapolation has little effect, of
course.

4. Numerical results. Following [8], [9], we present results for an air pollution model
from atmospheric chemistry with 20 components and 25 reactions (see the Appendix). The
initial data is such that an initial transient is present, while the Lipschitz constant is about
1.5 107. This was estimated in [9] by means of an explicit Runge-Kutta integration. Hence
the ODE system is very stiff, provided the integration interval is sufficiently large, which is
true here. We will give results for minute, which is slightly after the initial transient,
and 60 minutes, at which time the solution gets close to its steady state.

We also include a comparison with DASSL (see ]; we have used the double precision
version DDASSL available from Netlib [5]). This general purpose BDF solver has been
applied as a black box using only default options, except that the initial stepsize was also
determined by (3.4). Both DASSL and the new BDF solver can produce negative solution
values. However, in the experiments reported here we have not noticed this. It should be
noted that the reaction constants in the model example are constant, so that outside the initial
transient no sudden large changes in the concentrations occur. This slightly favours DASSL
in our comparison. It should also be noted that DASSL is a differential algebraic equation
(DAE) solver and hence carries some overhead needed to solve nonlinearly implicit DAEs,
even when it is applied to ODEs in normal form, such as (1.1). When this overhead becomes
truly noticeable, then it is likely that BDF codes developed for ODEs, like VODE [2] or
LSODE [7], will be faster than DASSL. The interested reader is referred to [6, V.5], where
several codes are briefly compared. More specific results obtained with VODE for chemical
kinetics problems can be found in [3], [4].

For the prototype solver, Table yields the following information at the specified time
T. SD the number of significant digits for the maximum relative error, defined by

(4.1) SD lOgl0 rnx Yi yk(T)]
lyk(T)l

STEPS the number of integration steps, ITER the total number of Gauss-Seidel itera-
tions, and CPU cpu time in seconds. Although CPU is an approximate value and implemen-
tation and machine dependent, the given times are indicative for comparison purposes (with
an accuracy of at most 0.01 sec. on a Silicon Graphics Indigo workstation, using the Fortran77
Compiler Options -c -r8 -O). In Table 1 results are given for the following two coupled values
for ATOL and RTOL,

(4.2) ATOL IO-6TOL, RTOL TOL, TOL 10-1, 10-2.

Recall that for reactive flow problems a low level of accuracy suffices, say, 1% (SD 2).
For these two values of TOL, the initial stepsize rl determined by (3.4) is equal to 4.7 10-7
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and 4.7 10-8, approximately. These small initial stepsizes reveal the initial transient and arise
because we take ATOL rather small, which is desirable since a number of the concentrations
are zero at the initial time and remain small for evolving time. To illustrate the convergence of
the Gauss-Seidel iteration, two values forITOL were used, viz., 10-2 and 10-3. We emphasize
that for the air pollution model considered here, ITOL 10-2 is sufficiently small to come
close near the accuracy of the second order BDF formula. Note that inequalities (3.5) and
(3.6) are based on the weighted error norm that contains ATOL and RTOL.

TABLE
Values (SD, CPU, STEPS, ITER) using Aitken extrapolation.

TOL 10-1
=60

TOL 10-2
=60

ITOL 10-2

(1.87, 0.03, 42, 153)
(2.11, 0.04, 56, 273)

(2.68, 0.06, 94, 369)
(3.10, 0.09, 132, 663)

ITOL 10-3

(1.87, 0.03, 42, 183)
(2.40, 0.05, 57, 351)

(2.68, 0.07, 94, 438)
(3.08, 0.11,132, 773)

We see from Table that for the present example problem Gauss-Seidel iteration accel-
erated with Aitken extrapolation works very well. The rather high accuracy the prototype
code yields for the tolerance values used is due to the conservative error indicator (3.3). Note
that for TOL 10-1, ITOL 10-2, we are near the 1% error level. The average number
of Gauss-Seidel iterations over the entire interval [0, 60] for this tolerance combination is
approximately five. To illustrate the stepsize variation and convergence behaviour of the ac-
celerated Gauss-Seidel iteration, Fig. 1 shows for this tolerance combination a plot of the
stepsize sequence rn and of the associated number of iterations. We see that over a large range
of stepsizes the number of Gauss-Seidel iterations remains limited. Only near the end of the
interval, where we get close to the steady state and rn becomes quite large, the number of
iterations starts to grow.

To show the effect of the Aitken extrapolation, we refer to Table 2, which gives the same
information as Table 1, but without application of Aitken extrapolation. As to be expected,
Aitken extrapolation becomes truly effective for the smaller tolerances TOL 10-2 and
ITOL 10-3, while the convergence acceleration is largest for the larger stepsize values
used when we approach steady state.

TABLE 2
Values (SD, CPU, STEPS, ITER) without using Aitken extrapolation.

TOL 10-l
=60

TOL 10-2 t=l
=60

ITOL 10-2

(1.87, 0.03, 42, 171)
(2.10, 0.05, 57, 450)

(2.68, 0.06, 94, 484)
(3.07, 0.12, 132, 1016)

ITOL 10-3

(1.87, 0.04, 42, 288)
(2.39, 0.08, 57, 669)

(2.68, 0.09, 94, 754)
(3.08, 0.18, 132, 1537)

DASSL was also applied for the two coupled tolerances (4.2) and solved the problem
without error test and convergence failures. The results of DASSL, in terms of SD, CPU,
STEPS, ITER, and JEVS, are contained in Table 3. Now, ITER the number of modified
Newton iterations (or backsolves) and JEVS the number of Jacobian evaluations (or LU de-
compositions). Note that DASSL computes the Jacobians by numerical differencing. DASSL
yields results near the 1% error level for TOL 10-2. Comparing the results for TOL O- 1,
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FIG. 1. Stepsizes (upper plot) and number of Gauss-Seidel iterations (lower plot) for the tolerances TOL
10-1 ITOL 10-2 for 0 < < 60. Aitken extrapolation was applied.

ITOL 10-2 from Table with those in Table 3 for TOL 10-2, we see that near the 1%
error level the prototype code runs approximately three times as fast as DASSL.

TABLE 3
Values (SD, CPU, STEPS, ITER, JEVS)for DASSL.

TOL 10-1
=60

TOL 10-2
=60

(0.84, 0.07, 30, 42, 19)
(1.20, 0.09, 42, 60, 25)

(2.17, 0.09, 49, 69, 19)
(2.09, 0.12, 69, 99, 25)

5. Conclusion. When solving atmospheric flow problems with operator splitting, stiff
ODE integrations like the one discussed here must be carried out at thousands of grid points
many times in succession. It is therefore of great practical interest to develop special purpose
solvers which for this application run considerably faster than very efficient, general purpose
codes like DASSL, of course without sacrificing accuracy and reliability. The preliminary
results presented here show that our prototype solver, which as yet merely differs from a
general purpose code in that a Gauss-Seidel iteration is applied instead of a Newton-type
iteration, offers very good prospects for this purpose. An additional advantage of the Gauss-
Seidel technique is that it reduces the storage requirements considerably. In large air pollution
models the chemistry has to be carded out at thousands of grid points and, therefore, the
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storage requirement can be a restrictive factor. We will therefore continue our efforts towards
the development of a fast stiff ODE solver for chemically reacting atmospheric flow problems
along the lines proposed in this paper.

Appendix: Description of the example problem. We give the chemical model with the
reaction constants rk and define the ODE system through the reaction rates vk, the production
terms P, and the loss terms L. Also a highly accurate reference solution at and 60
minutes with the corresponding initial values is given. This reference solution shows the order
of the chemical species as used in the ODE system. The units for the rate constants are rn in-1
for first order reactions and ppm-lmin-1 for the second order ones.

The chemical reactions for the model example.
01. NO2 NO + O3P .350E+00
02. NO + 03 --+ NO2 .266E+02
03. HO2 + NO NO2 + OH .120E+05
04. HCHO 2HO2 + CO .860E-03
05. HCHO -- CO .820E-03
06. HCHO + OH HO2 + CO .150E+05
07. ALD MEO2 + HO2 + CO .130E-03
08. ALD + OH C203 .240E+05
09. C203 + NO NO2 + MEO2 + CO2 .165E+05
10. C203 + NO2 PAN .900E+04
11. PAN C203 + NO2 .220E-01
12. MEO2 + NO CH30 + NO2 .120E+05
13. CH30 -- HCHO + HO2 .188E+01
14. NO2 + OH -- HNO3 .163E+05
15. O3P 03 .480E+07
16. 03 OlD .350E-03
17. 03 -- O3P .175E-01
18. OlD -- 2OH .100E+09
19. OlD O3P .444E+12
20. SO2 + OH SO4 + HO2 .124E+04
21. NO3 NO .210E+01
22. NO3 NO2 + O3P .578E+01
23. NO2 + 03 NO3 .474E-01
24. NO3 + NO2 N205 .178E+04
25. N205 NO3 + No2 .312E+01

vl rly, I)2 --/’2Y2Y4, l)3 r3Y5Y2, 1)4 r4Y7, v5 r5Y7, 1)6 r6Y7Y6, I)7 r7Y9,

1)8 r8Y9Y6, 1)9 r9YllY2, 1)10 rlOYllYl, 1)11 rllYl3, 1)12 rl2YloY2, 1)13 r13Y14,

1)14 rl4YlY6, v15 r15Y3, 1)16 r16Y4, v17 r17Y4, 1)18 r18Y16, 1)19 r19Y16,

1)20 r20Y17Y6, 1)21 /21Y19, 1)22 r22Y19, 1)23 r23YlY4, 1)24 r24Y19Y, 1)25 r25 Y20;

el 1)2 + 1)3 -- 1)9 -]-- 1)11 -- 1)12 -- 1)22 - 1)25, P2 1)1 -+- 1)21, P3 1)1 -[- v17 -]-- 1)19 -- v22,

P4 1)15, P5 1)4 -[- 1)4 - 1)6 -[- 1)7 -+ 1)13 -[- v20, P6 1)3 -[- 1)18 -’[- 1)18, P7 1)13,

P8 v4 --[-- 1)5 -[- 1)6 - 1)7, P9 0.0, elo 1)7 -+- 1)9, ell 1)8 -1- 1)11, P12 1)9, P13 1)10,

P14 1)12, P15 1)14, P16 1)16, P17 --0.0, P18 1)20, PI9 1)23 -- 1)25, e20 1)24;

L1 rl q- rlOYll d- r14Y6 + F23Y4 - r24Y19, L2 r2Y4 d- r3Y5 d- r9Yll q- rl2YlO,
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L3 r15, L4 ---r2Y2 -k- r16 -k- rl7 -k- r23Y1, L5 r3Y2, L6 r6Y7 + r8Y9 -I- rl4yl -k- r20Yl7,

L7 r4 + r5 -f- r6Y6, L8 0.0, L9 r7 + r8Y6, L 10 r12Y2, L 11 r9Y2 + royl,

L 12 0.0, L 13 r, L 14 r13, L 15 0.0, L 16 r18 + r19, L 17 --/20Y6,

L 18 0.0, L 19 --/21 -+-/22 --/24Y, L20 -"/25.

Concentration values in ppm
at, respectively, 0 min., min., and 60 min.

1. [NO2] 0 0.37326304298606E-01 0.56462554800124E-01
2. [NO] 0.2 0.16251325412704E+00 0.13424841304232E+00
3. [O3P] 0 0.27344389305923E--08 0.41397343310918E-08
4. [03] 0.04 0.32994065756620E-02 0.55231402074779E-02
5. [HO2] 0 0.31151619385738E-06 0.20189772623092E-06
6. [OH] 0 0.26534918500427E--06 0.14645418635004E-06
7. [HCHO] 0.1 0.99423103666384E-01 0.77842491190039E--01
8. [CO] 0.3 0.30061731277555E+00 0.32450753533953E+00
9. [ALD] 0.01 0.99269949383466E-02 0.74940133838905E-02
10. [MEO2] 0 0.29529601825322E-07 0.16222931573089E-07
11. [C203] 0 0.20994901153721E-07 0.11358638332624E-07
12. [CO2] 0 0.65714929538122E-04 0.22305059757112E-02
13. [PAN] 0 0.59742964642105E-05 0.20871628827982E-03
14. [CH30] 0 0.27858639499927E-04 0.13969210168610E-04
15. [HNO3] 0 0.13959464032840E-03 0.89648848569121E-02
16. [OID] 0 0.26002979092156E-17 0.43528463693250E-17
17. [SO2] 0.007 0.69973974657447E-02 0.68992196962640E-02
18. [SO4] 0 0.26025342552954E-05 0.10078030373603E-03
19. [NO3] 0 0.38171954506700E-06 0.17721465139664E-05
20. [N205] 0 0.72454590089901E-05 0.56829432922952E-04
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QUASI-RANDOM SEQUENCES AND THEIR DISCREPANCIES*
WILLIAM J. MOROKOFF AND RUSSEL E. CAFLISCH

Abstract. Quasi-random (also called low discrepancy) sequences are a deterministic alternative to random
sequences for use in Monte Carlo methods, such as integration and particle simulations of transport processes. The
error in uniformity for such a sequence ofN points in the s-dimensional unit cube is measured by its discrepancy, which
is of size (log N) N-Ifor large N, as opposed to discrepancy of size (log log N) 1/2N-1/2 for a random sequence
(i.e., for almost any randomly chosen sequence). Several types of discrepancies, one of which is new, are defined
and analyzed. A critical discussion of the theoretical bounds on these discrepancies is presented. Computations
of discrepancies are presented for a wide choice of dimension s, number of points N, and different quasi-random
sequences. In particular for moderate or large s, there is an intermediate regime in which the discrepancy of a quasi-
random sequence is almost exactly the same as that of a randomly chosen sequence. A simplified proof is given
for Woniakowski’s result relating discrepancy and average integration error, and this result is generalized to other
measures on function space.

Key words. Monte Carlo, quasi-random, discrepancy, Brownian sheet
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1. Introduction. Since the beginning of the computer age, Monte Carlo methods have
been used to evaluate integrals, solve integral equations, and simulate physical processes [7].
These methods use a sequence ofpoints, usually a deterministic pseudo-random approximation
to a randomly chosen sequence, to sample the values of the integrand function or the possible
steps in a process. Over the years a number of techniques, such as variance reduction through
stratification, have been developed to improve the accuracy of these methods. An alternative
technique is to replace the pseudo-random sequence with a deterministic sequence having
better uniformity properties.

Uniformity of a sequence is measured by its discrepancy, which is the error in repre-
sentation of the volume of subsets of the unit cube by the fraction of points in the subsets.
Several different definitions of discrepancy can be formulated [8], [14], [17], including a sup
over rectangles or an L or L2 integral over rectangles using either all rectangles or only those
with one vertex at the origin. Integration error can be related to discrepancy either through
the Koksma-Hlawka inequality [8], 14], 17] or Woiniakowksi’s identity [26], which states
that the discrepancy is equal to the average integration error with respect to the Brownian
sheet measure. We present a critical discussion of the various definitions of discrepancy, one
of which is new, and a simplified proof of Woiniakowksi’s result is given, which allows the
result to be generalized to other measures on function space.

A quasi-random (or low discrepancy) sequence in the s-dimensional cube is a sequence
for which the discrepancy is roughly of size (log N) N-1 for large N, which is the minimum
size possible. These sequences are more uniform than random sequences because randomly
chosen points tend to clump, leading to discrepancy of size (log log N)I/2N-1/2. Evidence
of this clumping is shown in a planar projection of a pseudo-random sequence in Fig. 12;
while the top graph of Fig. 13 shows the uniformity that can be achieved with quasi-random
points. At the other extreme, regular lattices of points work well in low dimension, but in
high dimension they are not very useful. Points cannot be added to a lattice incrementally.
Instead, a given s-dimensional lattice can only be refined by increasing the number of points
by a factor 2s; i.e., the discrepancy of a lattice is of size O(1), except at special values of N
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at which the lattice is completely refined. Moreover for large s it is usually impossible to put
down enough lattice points to get good resolution.

Quasi-random sequences combine the advantage of a random sequence (points can be
added incrementally) with the advantage of a lattice (no clumping of points). Examples of
such sequences that will be considered below include the Halton sequence, Sobol’ sequence,
and Faure sequence. Bounds on the discrepancy of these sequences, as well as other analytic
properties, have been previously derived using number theoretic techniques [8], 14]-[ 17].
An alternative method for generating quasi-random sequences and bounds on integration
error using a dynamical systems approach is presented in [19].

The main portion of this paper consists of computations and critical discussion of the
discrepancy for these sequences over a large range of values of N and s. In particular for
large dimension s, the theoretical bound (log N) N-1 is only meaningful for extremely large
values of N; i.e., N O(eS).

In an attempt to directly understand the uniformity properties of quasi-random sequences
in high dimension, two-dimensional projections are presented for a variety of quasi-random
sequences. These can show considerable clumping in high dimension. Finally we present
timing results for the generation of the different quasi-random sequences.

Previous computational studies of quasi-random sequences (as well as scrambled quasi-
random sequences) and their discrepancy by Braaten and Weller [1], Bratley and Fox [2],
Bratley, Fox, and Niederreiter [3], Levitan [9], and Pages and Xiao [20] presented some useful,
but less complete, results..Some Of their results were due to transient effects, such as those
described below for the Tr discrepancy, and some of the multidimensional integration tests
were only performed for product functions. Sarkar and Prasad [22] have given a comparison
of Halton, scrambled Halton, and Faure sequences as applied to an absorption problem. In a
cogent article, Press and Teukolsky [21 discussed the Sobol’ sequences and computational
methods for generating them and showed how discontinuous integrand functions decrease the
effectiveness of Monte Carlo integration with quasi-random sequences. In two companion
papers 12], 13] we present computational studies and some analysis for quasi-Monte Carlo
methods applied to integration and simulation of some simple transport processes.

2. Discrepancy and integration error for quasi-random sequences. Given that pseudo-
random sequences work well in Monte Carlo integration, it seems reasonable to ask if other
deterministic sequences might also work. More precisely, it seems that the independence of
random numbers plays a secondary role to their uniformity in Monte Carlo calculations; so
sequences with better uniformity properties may lead to smaller errors. In order to develop
this idea it is necessary to define a uniform sequence and some measure of its uniformity. The
following is based on Niederreiter’s development of the topic in 14].

Let I denote the s-dimensional unit cube. An infinite sequence {xn in I is called
uniformly distributed if for all Jordan measurable subsets o of I

lim
1

Xj(xn) m(or)
N--- N

n=l

holds, where ,’j is the characteristic function of or, and rn (J) is the volume of or. Thus in the
limit of an infinite number of points, every region in I has proportionally the right number
of points. From this definition it follows that a sequence {xn is uniformly distributed if for
all Riemann integrable functions f defined on I it holds that

1N f,E f(xn) f(x)lim dx
N---cx - n---1
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It follows from the Central Limit Theorem that a sequence of independent, random points
chosen from the interval I with probability density one is indeed a uniformly distributed
sequence with probability one.

Practically, it is only possible to deal with a finite number of integration nodes, so it is
necessary to define some measure of uniformity for finite point sets. Such a quantity is known
as discrepancy. For a set J

_
I and a sequence of N points {Xn in Is, define

N

RN(J) - E 2(j(xn) m(J)

Various kinds of discrepancies can be defined then by restricting d to a certain class of sets
and taking a norm of RN over this class. If E is the set of all subrectangles of U, then the L
and L2 norms are defined as

(1) DN sup RN(J) I,
JE

(2) TN (RN(J(x, y)))2 dx dy
,y) 12s xi Yi

Here J(x, y) indicates the rectangle with opposite corners at (x, y). If E* is the set of subrect-
angles with one coruer at 0, then the star discrepancies are defined as

(3) Dv sup IRN(J)l,
JE*

(4) T (RN(J(x)))2 dx

Here J(x) is the rectangle with a corner at 0 and a corner at x. It should be noted that this is
not the standard notation as used by Niederreiter 14] and others. In the past, TN has denoted
what is here referred to as T. The new notation is necessary because the L2 discrepancy
over all rectangles TN had not been previously defined nor used. To be consistent with the
sup discrepancy, it makes sense to relabel the original L2 discrepancy over rectangles with a
corner at zero as T, and call the new L2 discrepancy Tv. Another kind of discrepancy, JN,
is obtained by taking the sup over all convex sets. No L2 analog exists for this class. The
infinite sequence {x, being uniformly distributed is equivalent to limN--, DN 0, where

DN refers to the discrepancy of the first N terms of the sequence. The statement is true for all
of the above discrepancies.

The importance of discrepancy as an error bound for Monte Carlo integration can be
seen from the Koksma-Hlawka inequality, which in one dimension for smooth functions f of
bounded variation reads

(5) e(f)
1 N

f(x) dx - f(Xn)
n=l

< V(f) Dv,

where Dv is the discrepancy of the sequence {Xn and V (f) fd Idfl is the variation of f.
Inequality (5) can be extended to higher dimensions; however, the definition of variation

must be modified. Assume for the moment that f is sufficiently smooth on I so that

dt
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exists. Define for all k _< s and all sets of k integers < < i2 < < ik _< s the quantity

V (k) (f; il ik) k dti ...dtik

Similarly define D*N(i ik) to be the star discrepancy of the orthogonal projection of the
sequence {Xn on to the appropriate k-dimensional subspace of Is. Then

f, f(x) dx -- f(Xn)
n=l k=l l<il<i2<...<ik<_s

V(k)(f;i,.. ik) *DN(ll ik).

It is possible to obtain a similar bound involving Tt(i ik) and an L2 version of V
defined by

W(k)(f il ik)
Oti, -.Otik tj=l

This requires a stronger condition on the integrand f than just being of L1 bounded variation.
The resulting bound is

1 N

f(x) dx -- f(Xn)
n=l k=l l<_il<i2<...<ik<_s

W(k)(f; i ik) T(i ik).

This argument may be made rigorous for a broader class of f known as functions of bounded
variation in the sense of Hardy and Krause. See 14] for details.

It is easy to see that D > D*N(il ik) for all k < s. If the variation of f in the sense
of Hardy and Krause is defined as

k=l 1_<il <i2<...<ik<_S

then inequality (5) follows immediately. This relationship does not follow when the T
discrepancy is used; in fact, in our computational tests, Tv < Tv(il ik).

The inequality (5) shows that if sequences exist with lower discrepancy than random
sequences, better than random convergence may be possible. Several such low discrepancy
sequences are discussed in the next section. However, first it is helpful to examine some of
the basic properties of discrepancy.

For a random sequence it can be shown from the law of iterated logarithms that

with probabilityone (see [14, p. 971]). This is true for any dimension s. Calculations carried
out in 6 show that E(T) Cs/N, where E(.) is the expectation, taken to be an integral
over the space pN of possible values of the s coordinates of the N random points. Cs is
a constant depending on dimension. Both of these estimates show N-5 type convergence,
which corresponds to the standard Monte Carlo error behavior for integration with random
nodes.
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Various relationships exist among the different notions of discrepancy, which allow a
sequence to be termed low discrepancy without specifying the measure. Perhaps the simplest
relationship is

D*N < DN < 2 D*N

This is clear from the fact that E* is a subset of E, while any set in E can be written as a
combination of 2 sets in E*. From the basic fact that L norms are larger than L2 norms, it
follows that

Tv < D*N

The relationship between T and TN is discussed in 5; in general, the star discrepancy is
larger. In 16] Niederreiter establishes the relationship

C DN < Tv
In his book with Kuipers [8] he also shows that the isotropic discrepancy over convex sets
satisfies

JN < 4S(DN)-

This bound is improved in 13] under the assumption suggested by Press and Teukolsky [21].
Otherproperties ofdiscrepancy include the lowerbound established by Roth and discussed

in [8];

Tv > Cs
s-1

(log N)T

N

Halton [6] showed the existence of infinite sequences in any dimension which satisfy

DN=O((lgN)S)"N
This bound is regarded as the best possible. This is an important result because it offers hope
that the standard Monte Carlo N-1/2 convergence can be improved considerably. Sequences
with this property are the topic of the 4.

3. Average integration error. A direct relation between the integration error e(f) and
the L2 discrepancy has been derived by Woiniakowski [26]. He showed that (Tv)z is equal
to the average integration error, i.e.,

(6) (T)2 E(e(f)2)

in which e(f) denotes the integration error on the left side of (5) above. The average is
taken with respect to the "Brownian sheet" measure, which is a generalization of Brownian
motion with s-dimensional "tirne." In particular the measure is concentrated on functions that
are roughly "half-differentiable" (i.e., they have HOlder exponent nearly equal to ), so that
they have infinite variation. This shows that the Koksma-Hlawka inequality (5) is a vast
overestimate, at least for this class of functions.

The Brownian sheet measure is a measure on function space. It is a natural generalization
of the simple Brownian motion b(x) to multidimensional "time" x. Denote x’ (Xi)i_.Its
in which x xi and (with the usual abuse of notation) denote f(x’) f(x)’, also
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denote the finite difference operator Di f(x’) f(x’ + Aii) f(x’) in which i is the ith
coordinate vector The Brownian sheet is based at the point x’ 0, i.e., x (1 1), and
has f(x’ 0) f(1 1) 0. For any point x’ in I and any set of positive lengths Ai
(with x + Ai < 1), the multidimensional difference D1 Dsf(x) is a normally distributed
random variable with mean zero and variance

(7)

This implies that

E((DI Dsf(x))2) At... As.

(8) E(df(x)df(y)) ,(x y)dxdy

f’--" 0in which df is understood in the sense of the Ito calculus 10] Moreover f(x’) 0 if x
for any i, and for any x in Is, f(x) is normally distributed with mean zero and variance

(9) E(f(x)2) xi.
i=1

The Brownian sheethas the same covariance properties as the product ofindependentBrownian
motions .(x) I-I,S.=l xibi(xi), but f g: . since the product is not normally distributed.

The derivation of (6) in [26] was simply a calculation ofeach side ofthe equation. Here we
present a new derivation that follows naturally the properties of the Brownian sheet measure.
First rewrite the integration error E(f) using integration by parts, following the steps of the
proof of the Koksma-Hlawka inequality 14]. Note that

(10) dR(x)

_
(x xn) dx

n=l

in which R(x) RN(J(x)) as defined in 2. Also R(x) 0 if xi 0 and f(x) 0 if xi 1
for any i, which implies that the boundary terms all disappear in the following integration by
parts:

e(f) f(x)dx f(Xn)
n=l

n--1

f (lf(.
The quantity dfin this identity is defined here through the Ito calculus, even though V (f) oo
with probability one.

It follows from (8) that the average square error is

(11)

ft,, R(x)R(y)E(df(x)df(y))

R(x)2dx
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One unnatural feature of the Brownian sheet measure used above is that the functions f
0 (i.e. xi 1) for all This restriction canare all required to vanish on the boundaries x

be removed by a generalization of the Brownian sheet that puts the values on the boundaries
0 to be generalized Brownian sheets.x
First set f(x’ 0) f(1 1) 0. Then on the s coordinate lines emanating from

the origin, let f be given by s independent Brownian motions. Next on the two-dimensional
boundaries, where all but two of the xi are zero, define f by the Brownian sheet property with
the given boundary conditions on the two sides. Continue this procedure until all boundaries
and finally the interior have been defined. The resulting measure still satisfies the equation
(8) and has the following covariance:

(12) (E(f(x’)f(y’)) -Imin(x, f/)+ II min(x, y)+...+min(x, y).
i=1 j=l ij,i=l i=1

In particular note that

(13) E(df(x’)f(y’)) 0

if x’ is an interior points of I and f/= 0 for some i.
Now compute the average integration error as before. The boundary terms do not vanish

but are all independent of each other. Use integration by parts to find that the integration error
is

e-If f(x)dR(x)

i=l Stqxi=l
f(x)dR(x)

since R(x) 0 if xi 0 for any i. The first term and the sum are independent according to

(13); also integration by parts can be performed on each term in the sum. The result is similar
to the covariance equation (12); i.e.,

(14)

E(eZ) =/, fi, R(x)R(y)E(df(x)df(y))

in which T,(il i,) is the L discrepancy for the sequence projected onto the boundary
xj 1 forj i ik.

The point 0 still plays a special role in this measure. A still more uniform measure
would be to center the Brownian sheet at a random point y inside Is. In this case the first
term in E(e2) is just the L2 discrepancy TN (without *), but there are correlations between
the boundary terms and the interior, as well as between different boundary terms, so that no
simple equation results.



1258 WILLIAM J. MOROKOFF AND RUSSEL E. CAFLISCH

4. Low discrepancy sequences. Numerous sequences have been shown to have
(.9 ((log N)S/N) behavior for their discrepancies. Included among these are sequences of
the form

Xn ([notl] [ns])

where the oti are irrational numbers, which are linearly independent over the rationals, and
[. denotes the fractional portion of the number. Another sequence that has been suggested
involves using a pseudo-random generator. If X (Pl Ps) is a random point, then the
next term in the quasi-random sequence is given by .172 (/92 Ds,/gs+l), where Ps+l is the
next number produced by the generator. Various techniques have been applied to determine
the discrepancy bounds for these sequences.

The sequences that have generated the most attention, and which have been studied in the
current research, are those based on the p-adic expansion of the integers. For any integer n,
let (n)p akak-1 ao be the base p expansion of n with 0 < ai < p. Define

Sp(n)
ao al alem+ +...+
p - pk+l

Then 0 < Sp(n) < for all n, and the sequence Sp(n) is a one-dimensional uniformly
distributed sequence. For p 2 this is known as the van der Corput sequence. An s-
dimensional generalization of this sequence {Xn }, known as the Halton sequence, is given
by

3gn (Sp, (n) Sps (n)),

where (pl p) are relatively prime integers, usually taken to be the first s primes. Several
authors have derived bounds for the discrepancy of the Halton sequence. Meijer 11 shows
that

(15) D*N<CsH(IgN)SN +0 ( (lg N)s-1)N
where

(16) Cff 2 log pkk=l

An unfortunate aspect of this bound is that the constant in the leading term grows super-
exponentially with dimension. The difficulties of the Halton sequence in high dimension are
discussed further in 6 and in [13].

The Sobol’ [23] and the Faure [4] sequences are also based, at least indirectly, on p-adic
expansions of the integers. Niederreiter [17], [18] has developed and expanded a general
theory of (t, s)-sequences, which encompasses the theory behind both of these sequences.
The Sobol’ sequence is an example of a (t, s)-sequence with p 2 independent of s, and with
growing with s. The Faure sequence is another example, but it requires that 0 by setting
p p(s), where p(s) is the smallest prime greater than or equal to s. In each case there is
a discrepancy bound equivalent to (15). For Sobol’ the coefficient of the (log N)SN-1 term
takes the form

2
Cs-- s!(log 2)

Sobol’ [23] gives the bound for t(s) in the bound for the Sobol’ sequence as

s log s s log s
K < (s) < -t- O(s log log s),

log log s log 2
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which shows that t (s) grows super-linearly. Like the Halton bound, this constant grows super-
exponentially with s, although it is not nearly as large as the Halton constant. For the Faure
sequence, the coefficient can be written

log p(s)

This has the desirable property that limso Cs 0. As Faure’s calculations show [4], CsF
is smaller than both Cs and C, and it goes to zero as dimension increases while the others
go to infinity. Because of this smaller bound, it has been claimed that the Faure sequence is
superior. A comparison of these sequences in actual computation is made in 6 below.

The actual construction of these sequences is rather complicated, and it is best to check
the papers of Sobol’, Faure, and Niederreiter for a complete description. Press and Teukolsky
[21 and Bratley and Fox [2] give detailed descriptions of the implementation of the Sobol’
sequence. For periodic integrands, the method of good lattice points, described in 14], also
offers promise, although this has not been studied in the current work.

5. Theoretical bounds on discrepancy. The Halton, Sobol’, and Faure sequences dis-
cussed in 4 are now studied in detail. First the nature of the error bounds for discrepancy of
these sequences is examined. Then actual calculations of the L2 discrepancies are presented
as a means of comparison and as a method of predicting performance in integration. This
is followed by a discussion of certain properties of the sequences that are revealed through
studying the two-dimensional orthogonal projections. Finally some computational aspects of
the sequences are examined, and recommendations are made for their use.

As described in 4, the Halton, Sobol’, and Faure sequences all have discrepancy bounds
of the form

D,N<_C (lg N)s ((log N)s-1 )N
+(.9

N

The difficulty with basing any conclusions on this bound for discrepancy is illustrated
through the following considerations. Only the bound for the Faure sequence will be con-
sidered, as it is the smallest. Let bF(N) cF(1og N)N-1 denote the leading term of the
bound on the Faure sequence including the constant given above. The best way to examine the
behavior of discrepancy with respect to N is to consider a log log plot. Thus let x log N,
which gives

log(b,(N)) log(CsF) + s log x -x.

This function has a maximum, which can be found by setting the derivative

d log(bSF(N)) s

dx x

equal to zero. Then the maximum occurs at x s, or when N es. Because the general trend
of discrepancy for a uniform sequence should be to decrease with increasing N, it follows
that the bound cannot be a useful measure of performance until after its maximum has been
attained. Thus in high dimensions, the bound gives no information until a very large number
of points is used. Moreover, in order to get the same rate of decay of error as with random
numbers, N e2s points are required. The bound has a rate of convergence of N-’95 only
when N e2. Even in low dimensions, an extraordinary number of points is required for

performance.the bound to indicate near
Not only is the convergence rate predicted by the bound somewhat questionable, but the

actual value of the bound is rather large, and grows with dimension, despite the fact that
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CF goes to zero. Figure shows the growth as a function of dimension of log(b.(N)) at
N e where it attains its maximum. As discrepancy is bounded by one, and thus the log
of discrepancy must be negative, a large positive value for the log of the bound is another
indication that for N near the maximum, the bound is not accurate.

16
Faure Sequence Discrepancy Bound Behavior

14-

12-

10-

8-

6-

4

2

0

-2
2 10 12 14 164 6 8

Dimension

FIG. 1. Maximum value ofdiscrepancy bound.

It should be noted that for fixed N, bF(N) is also an increasing function of s until it
achieves its maximum at a value of s which is somewhat larger than N (asymptotically in
N, the maximum occurs at s Ne/2). Thus for fixed N the leading order term does go to
zero as dimension increases, but only after passing through a large maximum whose value is
super-exponential in N.

It should also be noted that the influence of the terms other than the leading order one has
been neglected here. The effect of including these extra terms on the converge rate in N is
minor, at most a factor oflog(N)/(log(N) 1). However, the leading order constant Cs may
be an underestimate. This further illustrates the inadequacies of the discrepancy bound.

Figure 2 shows a plot of log bF(N) as a function of log N for dimensions 4 and 16. Also
plotted is the actual value of log Tv for each sequence. The calculation of this quantity is
described in the next section. These graphs show that even in the lower dimension, the bound
does not accurately predict the behavior of the L2 discrepancy in slope or in magnitude. Of
course the bound was derived for Dv and not TN, and the two measures of discrepancy do not
necessarily have the same convergence properties. However, both measure the uniformity of a
sequence and thus the convergence of Tv should be related to how well the sequence performs
in practice. The difference becomes even greater as dimension increases, as illustrated by
the plot for 16 dimensions. This may be somewhat deceptive because D increases with
dimension, while TN decreases; however, both are still bounded by one. No bound has been
specifically derived for Tv, but it is worthwhile to consider this quantity, because as described
next, it seems to indicate what one can expect from actual calculations.
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Faure Sequence in 4 Dimensions

15

6 8 10 12

10

-15

-20
0

log2(N)

Faure Sequence in 16 Dimensions

b16
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log2(N)

FIG. 2. L2 discrepancy TN and leading term ofboundfor Faure in 4 and 16 dimensions.

6. Calculation of L2 discrepancy. In his review article on quasi-Monte Carlo methods
and sequences 14], Niederreiter discusses only the L2 star discrepancy Tr based on rectangles,
which have one corner at the point 0. An explicit formula for this quantity was first derived by
Wamock [25] and subsequently used by Braaten and Weller [1 and Sarkar and Prasad [22].
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The result obtained for a given sequence {Xn of N terms is

1NN(Tr)2

N---5 (1 max(xn,i, Xm,i))
n=l m=l i=1

2-s+l N

-Xn,i) + 3
N

n=l i=1

If the sequence is random, such that each coordinate of each term is an independent random
number, then by integrating over the space IsN, the expected value of (T)2 for a random
sequence can be found to be

N

While useful in theoretical discussions due to its relationship with Dv, Tr suffers as a
means of comparing sequences and predicting performance because of the strong emphasis
it puts on points near 0. If xj (0 0) is a point of the N term sequence, then the
dominant term in the calculation of (Tr)2 comes from the double sum when n rn j. This
term contributes 1/N2 to the sum, which tends to dominate all other terms in the sum. Thus

Tr . A similar result is obtained if the sequence contains a point with all coordinates near
zero. If this point is excluded from the sequence, however, there is no longer a dominant term,
and Tr appears rather different. This can be seen by comparing the plots in Fig. 3. Of course
this is a transient effect with diminishing influence as N increases. However, as dimension
increases, so does the length of the transient region.

Faure Sequence in 16 Dimensions

-2

-4

-6

-10

-12

-14

First Point Near 0

First Point From 0Away

-16
0 2 4 6 8 10 12 14

log2(N)

FIG. 3. L discrepancy ofFaure with and without point near zero.

As an alternative to T, the modified L2 discrepancy TN was defined in 2. As with the
L2 star discrepancy, it is possible to derive an exact formula for TN for any given sequence
{an of N terms (the notation for a sequence is changed here from x to a to help distinguish
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between the terms ofthe sequence and the points defining the rectangles). Using the Heaviside
function

1, y>0,
0(y)=

0, y<0,

it is possible to rewrite RN as

1N(_IRv(J(y,z)) y O(zi -an,i)" O(an,i Yi) H(zi Yi)
n=l i=1 i=1

Squaring this quantity and integrating over the domain described above leads to T2, which
can be expressed as T A + B + C, where

These quantities can be evaluated as follows.
For A.

O(zi an,i)O(an,i yi)O(zi am,i)O(am,i yi)dyidzi
,zi ).I2, yi <zi

O(Zi an,i)O(Zi am,i)dzi O(an,i yi)O(am,i yi)dyi

[1 max(y, a,, am,)]O(a,, y)O(am, yi)dy

max(a,,, am,)l" min(a,,,, am,i).

Thus

A - [1 max(an,i, am,i)]" min(an,i, am,i).
n=l m=l i=1

For B.

(Zi yi)O(zi --an,i)O(an,i yi)dyidzi
,z )I2,y <zi

fol [fy,l(zi Yi)O(zi an,i)dzi] O(an,i Yi)dyi

foan"[fyil(zi-Yi)O(zi-an,i)dzi]dyi
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The inner integral is the area of a trapezoid with comers (an,i, 0), (1, 0), (1, Yi), and
(an,i, an,i Yi ). Thus we have

(zi yi)O(zi an,i)dzi (1 an,i)(1 + an,i 2yi).

Substituting this in the previous equation, it follows that

an’ 1 1 2-1an,(1 an,i)(1 "1- an,i 2yi)dyi (1 an,i) [(1 + an,i)yi Yi- J0

1-an,i (1 an,i).

Thus

2-s+l N

iIN an,i(1 an,i).
n=l i=1

For C.

(zi yi)2dzidyi - (zi yi dyi

jO 11g(1 ),ly

12

Thus

C= 12-s

Combining these elements leads to the formula

(TN)2
1 N N

N-T 2 H[1 max(an,i, am,i)], min(an,i, am,i)
n=l m=l i=l

2-S+lN
N II_, an,i (1 an,i) -Jr 12-s
n=l i=1

As with the star discrepancy, it is possible to compute the expected value of this quantity for
a random sequence. This root mean square (rms) expectation of Tv is given by

E(T) TI H dan,i
sv

n=l i=1

1
6- (1 2-).

N

Thus again the average L2 discrepancy of a random sequence decreases like N-1/2, corre-
sponding nicely with the random Monte Carlo bound.
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By comparing the formulas forT and TN, it appears likely that Tr > TN for all sequences
and all N, although this has not been proved. It is certainly true for the expected value of a
random sequence, and it has been borne out in all computations. Figure 4 compares the two
discrepancies for a couple of versions of the Faure sequence (created by starting at different
places in the sequence). The qualitative behavior of the two discrepancies is similar for large
N, but Tv is smoother and has a shorter, less extreme, transient region. This becomes even
more important in higher dimensions, where the transient region is considerably longer.

-2

-3

-7

Faure Sequence in 4 Dimensions

Faure

Expected Random

22.... N ............

2 3 4 5 6 7 8 9

log2(N)

FIG. 4. Comparison ofTN and T*N"

A disadvantage of using Tv to measure discrepancy is that no direct connection has been
established between it and integration error. Whereas the relationship Dv < Dv allows the
Koksma-Hlawka inequality to be modified to include Dv, the sup discrepancy taken over all
rectangles, it is not possible to change the L2 version from T, to Tv. Nevertheless, actual
computation of TN indicates that it is a useful gauge of integration error convergence as a
function of N. Figures 5-8 show plots of Tv (solid line) on a log log base 2 scale. The rms
expectation of TN for a random sequence (dashed line) is also plotted, along with the function
& (dotted line) for reference.

There are several interesting features of these plots, which should be noted. Sobol’ [23]
predicts that when N equals large enough powers of two, the value of discrepancy should have
a local minimum. The plot for the Sobol’ sequence in three dimensions shows this kind of
behavior. After N 21 there appears to be a cusp at the powers of 2. Closer examination
of this phenomenon shows that a minimum actually occurs at a few points short of the power
of two. Sobol’ also predicts how large N must be before this occurs, with the cut-off value
increasing with dimension. For three and four dimensions, he shows greater uniformity for
N 26 and above. However, the plots do not reveal any particularly noteworthy behavior
until, as mentioned above, N 21 for three dimensions and N 213 for four dimensions.
For s 8 Sobol’s formula for the cut off value predicts improved discrepancy for powers of
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............. Sobol’ 3-D

-4
.............. Expected Random
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-12 ............
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-16 ....
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0 2 4 6 8 10 12 14 16

log2(N)

FIG. 5. TN for three-dimensional Sobol’ sequence.

Sobol’ 4-D

Expected Random

1IN

log2(N)

FIG. 6. TN forfour-dimensional Sobol’ sequence.
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-2- ................. Sobol’ 8-D................ Expected Random

-12-
...... .................

-14 ......... ...........
180 2 4 6 1 1 14 16 18

log2(N)

FIG. 7. TN for eight-ditnensional Sobol’ sequence.
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-20

-25
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log2(N)

FIG. 8. TN for sixteen-dimensional Sobol’ sequence.
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two greater than or equal to N 222. Since this number is larger than four million, it is not
surprising that nothing special is seen on the plot for eight dimensions, which only goes out
to about 16,000.

A more important observation to be made from these plots is the transition of TN from
random-like behavior for low values of N, to perhaps eventual -type convergence. For
dimensions three and four, Tv starts near the rms expectation curve of Tv for a random
sequence, but fairly quickly starts to decay at a faster rate than N-1/2. The transition seems
to occur around the point where the rms expectation curve and the curve intersect. This is

easily shown to occur at around N 6s. This is a purely heuristic estimate, since the curve -is used only as an approximation to the asymptotic behavior of Tv and does not mean much
for smaller values of N. However, it does provide a rough estimate of the nature of TN. In
eight dimensions this predicts a transition at around N 22. Figure 7 shows that TN is just
beginning to break away from the rms expected curve around N 214. In 16 dimensions,
after an initial transient region which is near the rms expectation of TN for a random sequence,
the value of Tv for the Sobol’ sequence lies almost exactly on the rms expectation curve
out to N 216 and probably considerably farther. For this dimension the heuristic estimate
predicts the transition at 241 It might be hoped that this is an overestimate; however, this
kind of exponential growth of the transition point is similar to that of the maximum point
for the theoretical bound on discrepancy. Figure 9 compares the L2 discrepancies of various
sequences in 16 dimensions. Except for within the initial transient, all of the sequences behave
almost identically; that is, as if they were random. This indicates that in high dimensions,
unless one uses a very large number of points, quasi-random sequences are no more uniform
than random sequences.

4 Sequences and Exp. of Random in 16-D
-18

Random and
-20 .-., Expected Random

"" ’...../" ""’" ,.,., Halton

-22 Sobol’

I/ Faure

-24 ’""..,

-26 ...............
-28

-313
0 2 4 6 8 10 12 14 16 18

log2(N)

FIG. 9. L2 discrepancy in 16 dimensionsfor various sequences.

It should also be noted that the value of Tv is insensitive to where the sequence begins. All
the sequences considered are produced by mapping the sequence of integers {n 1, 2, 3
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tO points in IS; however, it is not mandatory to start with n 1. Any number of the initial
terms can be discarded without affecting Tv much, except in the transient region. The same
is true for Tr, but the change in the transient region may be much more extreme if a point
very close to zero is included. It is also possible that, when these initial terms are discarded,
Sobol’s improved bounds on discrepancy are no longer valid. For Sobol’ these occur at powers
of 2; for Faure they should occur at powers of p(s). However, as pointed out above, this
improvement is only of practical value for low dimensions; moreover, from the discrepancy
plots, it is clear that the value of discrepancy at the special values of N is not all that much
lower than otherwise. Orthogonal projections (discussed next), which are calculations of
discrepancy and computations of integrals, show that there is not much difference between
any two subsequences of equal length. Thus it does not matter what value of n corresponds
to the beginning of the sequence.

For the T discrepancy, similar dependence on dimension s is observed. To optimize
the sequence for a given dimension s, we consider "Hammersley"-type sequences in which

nthe components in the first dimension are lattice points , while the other components come
from an (s 1)-dimensional quasi-random (or random) sequence. Figures 10 and 11 show the

T discrepancy for a variety of sequences, a pure random sequence, a Hammersley random
sequence, a Hammersley-Halton sequence, and a normal Halton sequence, in dimensions 2,
10, and 15. The random sequences have discrepancy of size N-1/2 in all dimensions. In
dimension 2 the quasi-random sequences have discrepancy of size N-1, but in dimension 10
it is of size N-/2 for small N before beginning to drop off faster for larger N. In dimension
15 the quasi-random sequences have discrepancy almost exactly that of a random sequence
(i.e., of size N-/) for the values of N computed here, although it must eventually approach
size N- for extremely large N.

7. Orthogonal projections. Another approach to understanding quasi-random sequences
is to look at two-dimensional orthogonal projections of the points in Is. The assumption made
here is that if a sequence is uniformly distributed in Is, then the two-dimensional sequences
formed by pairing coordinates (i.e., the two-dimensional orthogonal projections) should also
be uniformly distributed. Moreover the discrepancy of projections of a sequence occur explic-
itly in the average error identity (6). The appearance ofnonuniformity in these projections is an
indication of potential problems in using a quasi-random sequence for integration. However, a
sequence with very nonuniform behavior in some projection may in fact be reasonably uniform
in Is. Of course, attempting to integrate a function that has strong dimensional dependence
on just the two dimensions in question will lead to poor results, but for many functions a bad
pairing of dimensions may not have much influence.

Here a catalog of potentially bad behavior is given for all the sequences under consid-
eration, along with some insight into the source of these problems. First it is worthwhile to
consider a pseudo-random sequence. Figure 12 shows the projection of4096 points on the first
and 16th dimensions of the sequence generated in.Matlab (using seed zero). The points appear
to be randomly distributed and fairly uniform. Any decent pseudo-random number generator
should be able to produce this effect for orthogonal projections. Nothing particularly different
was seen from examining other projections of this sequence.

Figure 13 shows the projection of 4096 points of the Halton sequence onto the first and
second dimensions and the 28th and 29th dimensions. Compared with the random sequence,
this low-dimensional projection appears to be considerably more uniform, and thus a better
sequence. However, difficulties with high dimensions occur, as observed in ]. If approxi-
mately 5900 points are used, then the projection onto the 28th and 29th dimensions would be
almost perfectly uniform. However, this would not be true for any other dimensional pairings,
and as more points are added the uniformity would disappear. The problem here arises from
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Comparison of Discrepancies in 10 Dimensions
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FIG. 10. L discrepancy in 2 and 10 dimensionsfor various sequences.

the use of large primes, in this case 107 and 109 for the 28th and 29th dimensions respectively.
The 28th dimension of the Halton sequence consists of monotone increasing subsequences of
length 107 terms. When this is paired with the monotone subsequences of length 109 for the
29th dimension, the lines seen in the plot occur.
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Comparison of Discrepancies in 15 Dimensions
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Halton
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Expected Random

log2(N)

FIG. 11. L discrepancy in 15 dimensionsfor various sequences.
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FIG. 12. Two-dimensional projection ofrandom sequence.
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Dimension 1" p 2

Projection of 4096 Points

Dimension 28; p 107

FIG. 13. Two-dimensional projection ofHalton sequence.

To improve this situation Braaten and Weller [1] suggest a scrambling or permutation
procedure, which preserves the traditional (log N)/N-type bound for the discrepancy. A
less elaborate, but easier to implement, scrambling technique was used in the current work.
Here the sequence was simply (pseudo)randomly scrambled independently in each dimension.
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For example, if N points in I were required, then s sequences of N random numbers were
generated and sorted from smallest to largest. This mapping oforiginal position in the sequence
to final position was then used to permute the Halton sequence. Figure 14 shows a two-
dimensional projection ofthe 29-dimensional randomly scrambled sequence. At least in terms
of projections, scrambling seems to greatly improve the Halton sequence in high dimensions.
In each dimension, this procedure does not change the one-dimensional discrepancy of the
N points. As the pairings across dimensions are (pseudo-)random, this may lead to slower,
more random-like, convergence, although the actual value of discrepancy for a given N will
hopefully be smaller over a reasonable range of N.

0 0.1 0.2 0.3 0.4, 0.5 0.6 0.7 0.8 0.9

Dimension 28; p 107

Fro. 14. 28th versus 29th dimensions ofscrambled Halton sequence.

To compare the standard Halton sequence to the scrambled version, Braaten and Weller
[1] compute the discrepancy T of the first 1000 points of each sequence in 8, 12, and 16
dimensions. This result is somewhat misleading, though, because of the use of the Tr. This
measure of uniformity weights the point zero and points near zero, such as the first terms
of the Halton sequence in high dimensions, much greater than other points in the unit cube.
The calculated value of T for the Halton sequence is almost entirely determined by the first
point. If the sequences formed by deleting the first ten points of Halton and scrambled Halton
are compared, the values of T are almost identical for this range of number of points and
dimension. This is not to say that scrambling does not improve the sequence, but just that the
improvement cannot be seen through calculation of Tr.

Press and Teukolsky [21 give some examples of the projections of the Sobol’ sequence
to illustrate how it fills out the unit square. They show how the first 256 points lay down a
fairly uniform, but distinct, pattern in the square, and how the next 256 points fill in the gaps
left by the first group. The points are put down to be uniform, and additional points "know"
about the spaces left by the original points, so they are put down to make the whole sequence
even more uniform.
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To understand what can potentially go wrong here, it is necessary to have a feel for how
the Sobol’ sequence is generated. Each dimension of this sequence is just a permutation of
the Halton sequence with prime base 2 (this is also known as the van der Corput sequence)
whenever N 2m for m 0, 1, 2, 3 These permutations are generated from irreducible
polynomials over the field {0,1 }. Ideally, polynomials of the lowest degree possible are used;
however, as dimension increases, it is necessary to use polynomials of higher and higher
degree. To generate a one-dimensional sequence from a polynomial of degree d, d 1 odd
integers jl jd-1 must be chosen with the restriction that ji < 2i. Thus there are 2d

possible ways of picking the starting values. Sobol’ has given a list of good starting values
for dimension up to 16 [24]. These are said to be better because they produce sequences that
satisfy an additional uniformity property.

What can go wrong with the Sobol’ sequence involves the pairing of dimensions. The
fact that each dimension is a permutation of the same sequence allows for certain correlations
to develop. In some cases this is good, because it allows for the phenomenon described above
where points fill in the gaps left by previous points. However, these correlations can also
produce regions in the unit square where no points fall until N becomes extremely large. Figure
15 shows a "good" pairing of dimensions using Sobol’s second and third dimensions with his
recommended starting values. A "bad" pairing of dimensions is also shown, representing what
wouldbe the 27th and 28th dimensions following Sobol’s convention for associating dimension
with generating polynomial. The polynomials used here are x7 + x5 + x4 + x2 + x + 1 and
x7 + x5 + x4 + x3 + x2 + x / and the starting values are (1,3,5,11,3,3,35) for the 27th
dimension and (1,1,7,5,11,59,113) for the 28th dimension. If one or two of these starting
values were changed, then the problem illustrated in the graph would disappear. However,
it does not seem possible to tell a priori that this is a bad pairing. Moreover, neither set of
starting values is particularly at fault, because when they are paired with other dimensions
there is no such pathological behavior.

For 29 dimensions, there are 406 pairings of dimensions that could be checked for such
correlations; this probably should be done if the Sobol’ sequence in this high a dimension is to
be used. Sobol’ may have checked this for the recommended first 16 dimensions; however, the
uniformity property that these sequences satisfy does not exempt them from such bad behavior.
There may also be higher-dimensional correlations, which would be difficult to detect.

The bad behavior seen in the second plot of Figure 15 can be explained in terms of the
filling-in-holes idea. If 8192 (213 points are used, the plot looks almost identical to what is
shown for 4096. However, the next 8192 points fall only where the gaps appear. Thus by
N 16, 384, the projection plot is almost perfectly uniform. The problem is that the cycle
for filling in holes is 213 which is too long.

The idea behind the Faure sequence is an extension of the theory of the Sobol’ sequence.
This theory, which has been somewhat extended by Niederreiter 15], is based on the idea of
the elementary rectangle base p in I This is a rectangle that is a product of s intervals of the
form [ap-d, (a + 1)p-d), where a is an integer less than pd and d is a nonnegative integer. For
arbitrary integer m, the goal is to construct a sequence such that every subsequence of length
pm ofthe form (k- 1)pm < n < kpm (n is the index ofthe sequence) has the property that each
elementary rectangle base p of volume p-m contains exactly one point of the subsequence.
Faure constructs such a sequence by taking p to be the smallest prime greater than or equal to s.

Figure 16 shows the projections onto the first and second dimensions of 3125 points ofthe five-
dimensional sequence (p 5), and 2197 points of the 13-dimensional sequence (p 13).
The second plot of this figure shows some considerable difficulties, which may initially seem
surprising given that the sequence was constructed so that every elementary rectangle base 13
with volume contains exactly one point if N is a power of 13. However, Figure 17 illustrates
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FIG. 15. Two-dimensional projection ofSobol’ sequence.

how this can happen. The grid shown divides the unit square into elementary rectangles of
volume 13 -3. It is clear that each rectangle does have exactly one point of the sequence in
it; unfortunately, the distribution of the point inside the rectangle is not uniform. It will take
approximately 134 28,561 points before the square is more satisfactorily filled.
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Dimension

Projection of 2197 points of 13-D Faure Sequence
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FIG. 16. Two-dimensional projection ofFaure sequence.

As noted above, even if a sequence has poor two-dimensional projections, it may still be
fairly uniform in Is, and there are many functions which it may integrate quite well. However,
it is important to be aware of the potential problems these sequences may have, and the
orthogonal projections are a good means of identifying and assessing the difficulties.
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FIG. 17. Two-dimensional projection ofFaure sequence.

8. Computational speed. Another aspect ofquasi-random sequences worth considering
is the computer time required to generate them. Fox [5] and Bratley and Fox [2] present such
results for various values of N and dimensions and for a pseudo-random number generator
along with the three quasi-random sequences under consideration here. Their calculations
were done on a Cyber 855 computer and include calls to the initialization routine and a routine
to evaluate a simple integral, as well as to the sequence generator. They conclude that the time
spent on the initialization routine is negligible. In comparing the sequences, they find that
Sobol’ is 1 to 3 times faster than their random number generator and 3 to 5 times faster than
Halton. They find Halton to be approximately 4 times faster than Faure. They also state that
when run on a different computer, the ordering remained the same, but the ratios for computing
times for the various sequences were much different. The results show that computation time
is approximately proportional to dimension and to number of points used.

Similar timing experiments were run for this work on an Alliant FX/80. The pseudo-
random number generator used was the routine lib_vdran supplied by Alliant and found in
the common library. The results of these experiments are given in Table 1. These results
are not definitive, since we have not made much effort to optimize our code. Nevertheless
we expect that they will be of interest to the potential user. Here, the only thing timed
was the sequence generating subroutine; the initialization routine was not included, nor was
any integral evaluated. Here, the random number generator is the fastest, and its times are
proportional to the number of points and the dimension. Sobol’ again is faster than Halton,
but only slightly so, around 1.2 times faster. Both Sobol’ and Halton have timings that are
proportional to N, but that grow slower than linearly with dimension. This is probably related
to the vector and parallel aspects of the Alliant. Sobol’ and Halton are approximately 4 to 5
times faster than Faure.
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TABLE
Timingsfor QMC sequences (in seconds)..

Generator N s 5 s 10 s 20 s 40
Random 1000 0.00363 0.00702 0.0138 0.0284
Halton 1000 0.0263 0.0335 0.0424 0.0568
Sobol’ 1000 0.0225 0.0257 0.0321 0.0467
Faure 1000 0.102 0.0976 0.123 0.189

Random 10,000 0.0353 0.0707 0.142 0.285
Halton 10,000 0.265 0.342 0.434 0.535
Sobol’ 10,000 0.231 0.269 0.367 0.517
Faure 10,000 1.14 1.08 1.28 1.99

Random 100,000 0.361 0.720 1.45 2.88
Halton 100,000 2.69 3.47 4.31 5.29
Sobol’ 100,000 2.35 2.73 3.52 5.12
Faure 100,000 13.1 11.8 13.7 20.5

As Fox points out, sequence generation time is frequently only a fraction of what is
required to evaluate a complicated integrand. Thus for many realistic problems, the question
of which generator is fastest is not all that important.

9. Conclusions. The computations described above show strong dependence of the dis-
crepancy on dimension s. While the theoretical bound N-1 is observed in any dimension for
sufficiently large N, it appears that there is a transition value of N, below which the discrep-
ancy is of size N-1/2. For such values of N, random-like behavior of the sequence can be
expected. This transition point grows exponentially with dimension.

Comparison between different quasi-random sequences have also been presented. While
the discrepancy bound suggests that Faure is a superior sequence, the actual calculation of the
discrepancy indicates that all the sequences are about the same. The orthogonal projections
show that all ofthe sequences have potential problems as dimension increases; however, Halton
is probably the worst, because all its high-dimensional pairings will be nonuniform for large
ranges of N. To a certain extent, Faure has the same problem, but the degree of nonuniformity
is not as severe. Sobol’ may be able to avoid this problem if the starting values are carefully
checked for two-dimensional correlations. Ofcourse, this does not preclude three- (or higher-)
dimensional projection problems. Although a direct connection has not been demonstrated,
we expect that nonuniformity of projections will lead to poorer performance of Monte Carlo
methods for many functions.

Finally, computational timings put Sobol’ and Halton on about the same ground, while
Faure is considerably slower.

The actual value of these sequences must be judged by their performance in Monte
Carlo methods. In the companion papers [12], [13] we present computational experiments
with quasi-Monte Carlo methods applied to multidimensional integration and to simulation
of the heat equation. Again it is found that the performance of these methods degrades
with increasing dimension. Nevertheless, quasi-Monte Carlo methods using quasi-random
sequences consistently give significant, but limited, improvement over standard Monte Carlo
methods using random or pseudo-random sequences.
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Abstract. An extension to two space dimensions of the gradient random walk algorithm for reaction-diffusion
equations is presented. This family of algorithms is related closely to the random vortex method of computational
fluid dynamics. Although the computational cost is high, the method has the desirable features of being grid free
and of automatically adapting to the solution by concentrating elements where the gradient is large. In addition, the
method can be extended easily to more than two space dimensions. A key feature of the method is discretization
in terms of the dependent, rather than independent, variable, giving it features in common with Lagrangian particle
methods. The method is derived here and its application to some simple reaction-diffusion wave propagation problems
is illustrated.
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1. Introduction. We are interested in numerical methods for solving reaction-diffusion
equations:

(1.1) U Au + f(u),

u u(x, t), x td.

We will focus mostly on the initial-value problem,

u(x, 0) u0(x),

in two space dimensions. Our goal is a method that will work well on problems that are
difficult for finite-difference methods, such as cases where the solution has sharp gradients.
For this reason, we consider a particle method in which computational elements representing
the gradient of the solution move by diffusion and are modeled by random walks. The method
is grid free and automatically adapts to the solution. We derive the method as the natural
extension of a one-dimensional (1-.D) Monte Carlo method [27]. Here we report preliminary
computational studies on some simple model problems in order to outline the main features
of the method and gain computational experience to guide future work.

An early time-dependent Monte Carlo method was proposed for the heat equation and was
based on a stochastic interpretation of the explicit finite-difference equations [8]. This method
used random walks on spatial grids, but the extension to grid-free walks was easy because
the fundamental solution of the heat equation is Gaussian. These ideas remained mostly
of theoretical interest due to the large variance of the methods. A step toward improving
the accuracy was to have the density of diffusing elements represent the gradient of the
solution, rather than the solution itself. Integrating to obtain the solution reduces the variance
considerably. This lead to the coining of the term "gradient random walk" (GRW) 11 ].

The first of the GRW methods was Chorin’s random vortex method (RVM) for incom-
pressible two-dimensional (2-D) fluid flow [5]. Subsequently, Chorin proposed the "random
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element method" [7] for 1-D reaction-diffusion equations, which models diffusion via random
walk and reaction via deterministic particle growth and decay. This method was studied fur-
ther by Ghoniem and colleagues [21 ], 11 ], both in its own right and as a model for the vortex
sheet algorithm [6]. Hald 14], 15] proved convergence for several simplified versions of the
Chorin-Ghoniem algorithm, and Puckett [22] proved convergence of the full method for the
Fisher/Kolmogorov-Petrovskii-Piskunov equation. Whereas Puckett’s estimate of the error
due to the Monte Carlo particle-based discretization was O(N-1/4), where N is the number of
particles, he presented numerical evidence that the error is actually O(N-/2). Sherman and
Peskin [27] developed a variant of the Chorin-Ghoniem method, which was purely stochastic,
and applied it to a simplification of the Hodgkin-Huxley nerve conduction equations [28].
Chauvin and Rouault [4] have proved the convergence of this variant.

The extension ofthe GRWmethod to higher dimensions began when Anderson 1 showed
how to recover a scalar field in two dimensions from a g-function representation of its gradient
in a pure convection problem. Anderson’s method relied on representing the solution as the
Laplacian ofthe solution convolved with the Green function. Integration by parts gave an algo-
rithm for the recovery of the solution at discrete points from this point-gradient representation.
Sherman and Peskin [28] sketched how to apply Anderson’s approach to reaction-diffusion
equations. Fogelson 10] used ideas similar to Anderson’s on a convection-diffusion problem,
but instead of point recovery he used a fast Poisson solver to recover the function values.

In related work, Russo [24]-[26], Raviart [23], and others [16], [9] proposed particle
methods for collisional equations. Their methods are deterministic, but share the Lagrangian
feature of the GRW discretization.

Although the problem of large variance for the Monte Carlo method has not yet been
solved, and these.methods have not displaced finite-difference methods, they have stimulated
much theoretical work.

A major motivation for studying Monte Carlo methods in this context is the deep con-
nection between reaction-diffusion equations and stochastic processes. It is well known that
certain functionals of Brownian motion have expected values that solve reaction-diffusion
equations [18]. Moreover, the microscopic phenomenology of the chemical processes de-
scribed by reaction-diffusion equations are based on the Brownian motion of the reacting
species. Thus, it is intellectually appealing to search for numerical methods that share fea-
tures in common with these fundamental viewpoints.

In addition to the connection between probability theory and partial differential equa-
tions (PDEs), the possibility of grid-free methods, especially for multidimensional problems,
remains alluring. In this spirit we present the extension of the GRW algorithm for reaction-
diffusion equations to two (or more) space dimensions and describe some of its computational
properties.

In 2 we briefly review the 1-D GRW methods and derive their extension to two dimen-
sions. In 3 we apply the method to track a traveling wavefront generated by Nagumo’s
equation without recovery. We illustrate two initial-value problems in the plane and an initial-
boundary-value problem in a half-space. In 4 we summarize the results and discuss open
problems and possible directions for future work.

2. Derivation. We first review the GRW method [7], 11 ], [27] for (1.1) with d 1:

(2.1) ut Uxx + f(u), u(x, O) uo(x).

We assume u(-c, t) 0, u(+, t) 1. The strategy is to represent v Ux by diffusing
particles. Differentiating (2.1) with respect to x,

(2.2) vt Vxx + f’(u)v, v(x, O) U’o(X),
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and discretizing v as a sum of 8-functions with strength mj, we have

N

v<x, t) Emj (x X/<t>),
j=l

where Xj (t), j N represent the location of N particles. We use capital X to indicate
that the positions are random variables. The density of the particles determines the value of
v, and heuristically one thinks of mj as the "mass" of the jth particle.

We recover u from v by u(x, t) fxoo v(x’, t) dx’:

(2.4)
N

u(x, t)= EmjH (x- Xj<t>).
j=l

Thus u is represented as a step function with jumps of size mj at Xj. If all the particles have
the same mass, m, the value of u at x is rn times the number of particles that lie to the left
of x. The boundary condition at -c is automatically satisfied, and the condition at +x is
satisfied on average with fluctuations [27]. This corresponds to conservation of mass.

As described in 11 ], there is much less noise in the computed value of u than of v because
all the particles contribute to the value at any point x. Moreover, if the particles have equal
mass, their density is large precisely where u has large gradients.

Once the initial data is discretized, the GRW method evolves the particle positions and
masses such that u satisfies (2.1). This is done by a fractional step iteration in which the
diffusion term is modeled by a random walk and the reaction term is modeled as exponential
growth or decay of the particle masses. For each timestep the sequence is as follows.

Gaussian random walk step:

(2.5) Xj(t + At) Xj(t) + crj,

where the crj are independent N(0, 2At) random variables.
Evaluate uj u(Xj(t + At)), j N using (2.4).
Kill or replicate particles with probability tf’(uj)lzXt:

1. Kill particle if f’ < 0;
2. Create a new particle at Xj if ft > 0.

Note that the only way the particles interact with each other, and hence the only way that the
nonlinearity of the equations is manifest in the algorithm, is that the local value of u depends
on the positions of all the particles. Not surprisingly, this is the step that is most difficult
computationally. Naively, computing (2.4) for all the Xj’s requires O(N2) work, but if the
particles are sorted, it requires only O(N) work plus O(N log N) for the sorting.

The Chorin-Ghoniem method [7], [21 ], 11 is essentially the same except that instead
of killing and replicating particles, the masses are increased or decreased according to the
ordinary differential equation

dmj
(2.6)

dt
f’(uj).

In the mean and to O(At) the two procedures are equivalent.
Both methods have been used to solve traveling-wave problems in one dimension. The

mechanism of wave propagation is transfer of mass from behind the front to ahead of it. With
randomized particle death and replication, particles are killed off behind the wavefront, where

f’ is mostly negative, and replicated ahead of the front, where f’ is mostly positive. With
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deterministic particle growth and decay, there is a graded transmission of mass from neighbor
to neighbor.

We now generalize the method to two space dimensions. The key issue is how to recover
u from its gradient, represented by particles. For this we follow a suggestion of Anderson
to employ Poisson’s formula [17]:

(2.7) u(x,,) f G(x x’)Au(x’, t) dx’,

where G is the fundamental solution of the Laplacian in 2:

(2.8) G(x) log Ixl.

Integrating by parts,

(2.9) u (x, t) f VG(x x’) Vu(x’, t) dx’.

As in one dimension, we represent Vu as a sum of 3-functions:

(2.10)
N

Vu(x, y, t) mj3 (x Xj(t), y Yj(t)) nj.
j=l

Now, in addition to position and mass, each particle has a unit vector, nj (j, rtj), represent-
ing the direction of Vu at (Xj, Yj).

Substituting (2.10) in (2.9) we obtain

(2.11) rj.mjnj
u(x, y, t) ii?j=l

where rj (x Xj, y- Yj). The sum (2.11) is very similar to that found in the RVM [5].
As in the RVM, if (x, y) (Xk, Yk), the kth term is excluded from the sum, and a smoothing
procedure is needed to avoid numerical instability when (x, y) (X,, Y,). See 3.

Although this method of recovering u from its gradient appears to be very different from
the 1-D method, it is actually a natural generalization. In I1, with Gxx (x x’) -3 (x x’),
then Gx(x x’) H(x’ x), so substituting (2.3) into the 1-D equivalent of (2.9) gives
exactly (2.4). From this point of view, one can reinterpret the positive and negative masses
used to represent nonmonotonic functions in [28] as particles with orientation / for up-jumps
and for down-jumps.

We can extend the analogy a little further. In two dimensions one can represent u as a
step function by constructing a contour plot and replacing u by a function that jumps in value
whenever a contour is crossed. Thus we need to be able to represent a function that is 0 outside
a closed curve F and inside. This is accomplished by placing N particles along 1-’, oriented
along the outward normal with mass

(2.12) rn
length(F)

N

Then (2.11) is an approximation to the line integral

frVG.nds"(2.13)
27r
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Applying the divergence theorem, (2.13) evaluates to 0 if (x, y) is outside F and 1 if (x, y) is
inside. Equation (2.12) says that each particle represents an oriented arc with a given length
and implies that the larger the mean radius of 1", the more particles of a given mass are required
to represent ajump of given height across F. In 3, particles would represent oriented patches
of surface area, and so on for arbitrary dimension.

Figure 2.1 shows the u-surface recovered from placing 1, 2, 4, and 10, 000 particles
equiangularly on the circle of radius 10. These figures illustrate that the particles can be
thought of as oriented steps only in a collective sense: Each one individually is a singular
dipole, and only by cancellation can a simple step be constructed.

(a) (b)

(c) (d)

FIG. 2.1. Representing a step with gradientparticles: u-surface recovered using (2.11) without smoothingfrom
(a) 1, (b) 2, (c) 4, and (d) 10, 000 particles equally spaced around a circle ofradius 10. Note changes ofscale: u-axis

scalesfor (a), (b), (c), and (d), are in the ratio 1:2:4:4. The grid covers the squarefrom (-20, -20) to (20, 20).

Moreover, the interpretation of the gradient particles as steps is only valid at 0; after
the first random walk step the particles will not lie on any meaningful curve. The Poisson
formula representation, (2.11), is more general than (2.13), however, and continues to apply
to any collection of particles in the plane.

After discretizing the initial data, one uses the same fractional step iteration as in ,
replacing (2.5) with independent Gaussian steps for Xj and Yj:

Gaussian random walk step:

Xj(t + At)

r.t + zxt rt + .,
where crj and crf are independent N(0, 2At) random variables.
Evaluate uj u(Xj(t + At), Yj(t + At)), j N using (2.11).
Kill or replicate particles with probability If’(uj)lAt:

1. Kill particle if f’ < 0;
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2. Create a new particle at (Xj, Yj) if f’ > 0.
The differences between this 2-D algorithm and the 1-D algorithm given above are that: (1)

a 2-D random walk is performed and (2) the Green function ofthe Laplacian in two dimensions
is used to compute u on the particles using (2.11). To extend this to d-dimensions we merely
use a d-dimensional random walk and substitute the Green function of the d-dimensional
Laplacian in (2.11) to perform the recovery:

(2.14) u(x, t)

where ooa is the area of the unit ball in/1a.
As in one dimension, the most expensive and algorithmically challenging step is evaluating

u at the particles because it is equivalent to calculating the interactions in an N-body problem.
Unlike the 1-D case, one cannot circumvent this difficulty by sorting the particles. A partial
solution is to apply the fast multipole method of Greengard and Rokhlin [13], [12], which
can calculate the O(N2) interactions in O(N) steps. Specifically, we used their subroutine
rapS_f2 to compute the product of the complex Hilbert matrix, Hjk 1/(zj Zk), gj

Xj + Yj with a complex vector, q, , + r/,. Notice that q, is a complex representation of
the direction of the kth gradient particle. Then, u is (Hq). The multipole method proved
to be much faster than the direct calculation of (2.11), but we had difficulty with smoothing
(see 3).

We now give results of applying the GRW method to some simple test problems.

3. Numerical examples.
Example 1. We begin with a pure initial value problem: (1.1) with d 2 and f(u)

u(1 u)(u a), a 0.25. This is Nagumo’s equation without recovery [19]. The initial
data is inside a circle of radius R0 10 and 0 outside:

iflxl R0,
(3.1) u(x, 0)

0 if Ixl > R0.

With this initial data the solution takes the form of an "excited region" (where u , 1), which
expands radially and asymptotically approaches a traveling wave as the radius cx.

To solve this problem, we place N 10, 000 particles, each with mass 2zr Ro/N, on the
circle of radius R0 10 at T 0 and advance up to T 25 with a timestep of At 0.1.
The initial data is shown in Fig. 2.1 (d), and Figs. 3.1 (a), (b) show u as a stacked contour plot
at T 5 and 25. Figure 3.1 (c) shows the expansion of the u 0.5 contour in time. It retains

approximate cylindrical symmetry although this is not imposed in the algorithm. Although
we have evaluated the solution on a rectangular grid for display purposes, the particles cluster
in a narrow band around the u 0.5 contour (Fig. 3.4(c), (d), Example 3).

As indicated in 2, it was necessary to smooth the singularity in (2.11) when particles
approached each other closely, or when evaluating the solution at a grid point near a particle.
We thus replaced (2.11) with

(3.2) m rj.nj
u(x, y, t) max-ji e2)"

j=l

The choice e 0.3 gave good results.
For comparison with the exact solution we solved the radial problem,

(3.3) Ut Urr +-Ur + f(u),
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FIG. 3.1. Example 1. Initial value problem with u inside a circle of radius 10, and 0 outside. Initially
O, 000 particles are placed along the circle, and more particles are automatically added as thefront expands (Fig.

3.2). Stacked contour plot ofu at (a) T 5 and (b) T 25. Contour levels are 0.1, 0.2 0.9. (c) Contourfor
u 0.5 at T 5, 10 25. (d) Comparison at T 0, 5 25 ofGRW profiles (dashed) along ray 0 0 with
the "exact" solution (solid) computed by afinite difference methodfor the radial (3.3).

with a finite-difference method using a small uniform mesh. Figure 3.1(d) shows the wave
profile ofthe GRW solution as compared to the finite-difference solution along a ray. Although
the shape of the profile fluctuates, the wave speed is computed accurately.

As in the 1-D algorithm, the propagation of the wave is the result of transfer of mass. In
one dimension, total particle mass and particle number, N, are conserved, so that, in effect,
particles jump across the front. In two dimensions, total mass is still conserved (u remains
near at the origin), but particle number grows with time. Since in a radially symmetric
traveling wave, the circumference of the front grows linearly, (2.12) suggests that N must also
increase linearly. After a transient, during which the shape of the profile relaxes, linear growth
is observed (Fig. 3.2). Note that N increases faster than the average radius, so that the effective
arc-length per particle decreases with time. We believe that this is because the particles lose
their radial orientation as they diffuse. If at each timestep the particles are reoriented to point
radially outward, then N grows at the same rate as the radius (not shown).

The calculation for Fig. 3.1 was programmed in C on a Cray YMP and required about 1.5
CPU hours, virtually all ofwhich was spent computing the readily vectorized N-body sum 3.2.
The same calculation took only one-fifth as long using the fast multipole FOIrRAt subroutine,
rtp 5_ 2, even though this mostly did not vectorize. However, this level of performance was
attainable only if no smoothing was done, and the resulting solutions (not shown) suffered from
large spike-like errors. Smoothing is implemented by calling a close approach subroutine,
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N/I,0000
<r>/lO

0 2’5
T

FIG. 3.2. Growth ofparticle number with time. Solid curve: The number ofparticles, normalized by the initial
number. Dashed curve: The average radius ofthe wave (computed as the simple average ofthe radii ofthe particles),
normalized by the initial radius. Both grow approximately linearly, but N growsfaster. Thus, the effective arc-length
per particle declines slowly.

which computes the interactions directly when Irl < e. This degrades performance: with
e 0.3 instability was avoided, but rat3+/-f2 actually took longer than the direct N-body
calculation, presumably because the subroutine call inhibited vectorization.

Example 2. The next example addresses the question of what happens when the shape of
the excited region changes in time. Fogelson 10] used the same discretization as in Example
to represent a circular step of concentration around a localized source, which stretches and

elongates into an ellipse due to convection and diffusion. In the case of pure convection he
showed that the particles would remain on and normal to the boundary ofthe region, F, because
it is the material curve separating regions of high and low concentration. The particles rotate
because of the derivatives of the convective term. There are no terms in reaction-diffusion
that can turn the normals, which raises the question of how new emerging directions can be
represented.

Reconsider Example 1, but with the excited region initially a square. Asymptotically,
the square again evolves into a circular traveling wave. Figure 3.3(a) shows the contours for
u 0.5 at T 5, 10 25. The shape of the front transforms from a square to a circle.
The calculation is in reasonable agreement with results of a 2-D finite-difference method (not
shown). The curved front is represented by linear combinations of the four existing directions
in the particle population. Diffusion combines with growth and decay of particles to produce,
on average, the appropriate mix of particles in the required locations. Note that this depends
on the linearity of (2.11), which is inherited from (2.9). Figure 3.3(b) shows the distribution
of particle directions (actually the difference between the argument of the particle and the
direction of its normal) at T 25, when the front is approximately circular. The distribution
closely approximates a cosine, which is sufficient to represent a circular front.

Example 3. In order to illustrate a simple example with boundary conditions we solved
(1.1) on the half-space x > 0, appending the boundary condition Ux (0, y) 0. This is done
bythe method of images: a particle at (Sj, Yj) with orientation (j, r]j) has an image particle at

(-Xj, Yj) with orientation (-j, Oj). The sum (2.11) is modified to account for the influence
of the image particles on the real particles; it is of course not necessary to compute u at the
image particles. This calculation is equivalent to two excited regions coalescing, and we have
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FIG. 3.3. Example 2. Initial value problem with the initial excited region a square circumscribing a circle of
radius 10. (a) Contoursfor u 0.5 at T 5, 10 25forthe GRW method. (b) Histogram (numbers ofparticles)
versus tan-1 2 tan-l . that is, the difference between the argument ofthe particle and the direction ofits normal.
The distribution approximates a scaled cosine, shown superimposed.

displayed it as such in Fig. 3.4. Figure 3.4(a) shows the u 0.5 contours as a function of
time, indicating the two regions expanding and merging into one large region. Figure 3.4(b)
is a surface plot at T 15. Figures 3.4(c), (d) show the particle positions in the plane to
highlight how the method adapts to the solution: The cloud of particles is confined to a narrow
band around the front, and, as the regions merge, the particles along the y-axis, which are no
longer needed to resolve the solution, are killed off.

Example 4. As a final example, we indicate how to represent more general initial condi-
tions. Consider the heat equation,

with Gaussian initial data and solution

/’/t

u(x t) _(x2+y2)/4(tr+t)e
4zr(tr + t)

In this example we choose cr 4.
We discretize with uniform step size 3u along the u direction and construct the corre-

sponding level sets l"i (here, circles). By (2.12), each curve l"i should contain particles with
combined mass

Mi length(Fi)3u 2r Ri3u.

The total mass of all the level sets M Y. Mi approximates the volume under u(x, 0). The
particle representation can be uniquely specified by distributing N particles with equal mass,
m M/N. Thus, l-’i gets Ni [Mi/mJ I(NMi/M)J particles. To avoid fractional
particles, the mass per particle on 1-’i can be adjusted slightly: mi Mi/Ni. An alternative is
to use random roundoff. The particles are spaced uniformly in arc-length (here, equiangularly)
and have the direction of the gradient, which is the outward normal to Fi (here, radial).

An alternative method is to distribute particles on a rectangular grid. With uniform spac-
ing h, total mass equal to IVu(xi, yj)lh2 is placed at the grid point (xi, yj) and subdivided into
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FIG. 3.4. Example 3. Expandingfront in the halfspace x > 0 with Ux (0, y) O, solvedby using imageparticles.
(a) Contoursfor u 0.5 at T 5, 10 25. (b) Surface plot ofu at T 15. (Plots reflect the influence ofboth
the real particles and their images.) Positions ofthe actual particles (only - ofthe particles are shownfor clarity)
at (c) T 5 and (d) T 25, showing that the particles follow the wave front, and that the superfluous particles
along x 0 are eliminated automatically.

particles, each with direction -Vu(xi, yj). This is analogous to initialization in the RVM
when an initial vorticity distribution is given. This alternative is easy to implement for our
example because Vu is known analytically, but the level set method is more natural and works
better given the symmetry of the problem. One problem with this approach arises when the
initial function is given in tabular form. The numerical derivative required to compute the
initial gradient reduces the numerical accuracy of the initial conditions passed to the GRW by
O(h-1).

In the level set approach there are two free numerical parameters, the number of level
curves, and the total number of particles; these determine the number of particles per level
curve. One must then balance coverage in the radial and azimuthal directions. We have not
studied the optimal tradeoff. Figure 3.5(a) shows the representation of the initial data with
100 level curves and initial N 10,000 (9948 after adjustments), and Fig. 3.5(b) shows the
exact and computed profiles along a ray at 0 and 4.

4. Issues for future consideration. We have taken a step toward our goal of a grid-free,
adaptive method for reaction-diffusion equations in two or more space dimensions by gener-
alizing a family of 1-D random gradient methods [27], [28], [7], [21 ], 11 ]. Example 3 shows
spatial adaptivity: The particles are concentrated around the steep gradient of the wavefront
(Fig. 3.4(c)) and, when the gradient vanishes due to interaction with a boundary (or another
expanding excited region), the particles defining that region die off (Fig. 3.4(d)). Example 2
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FIG. 3.5. Example 4. Solution of the heat equation with Gaussian hitial data. (a) Initial surface represented
by radially oriented particles along O0 level curves uniformly spaced in the u direction. A total of 9948 particles
were used. (b) Comparison of exact (solid) and computed (dashed) profiles along the positive x-axis at time 0
(upper curves) and 4.

demonstrates adaptivity with respect to particle directions: Directions not represented in the
initial data are represented by linear combinations of existing particles.

We conclude with a discussion of the limitations of the method and suggestions for
improvements.

One good feature of the 1-D discretization, which does not generalize to two dimensions,
is monotonicity. For equations that have monotonic solutions, such as Nagumo’s equation
without recovery, the numerical method is guaranteed to have monotonic solutions. This
greatly constrains the set of solutions, preventing oscillatory instabilities, for example. In two
dimensions there is no such guarantee, and the solutions may go negative as well as exceed
1. Fortunately, in our case f’ < 0 at u 0, 1, and these errors damp out, but it is evident
from Fig. 2.1 that a great deal of cancellation is involved in representing smooth solutions by
singular gradient patches.

The main drawback of the GRW method is that large numbers of particles are needed.
Although we have not done systematic timing studies, we can estimate how the efficiency
of the GRW method with direct calculation of the particle interactions compares to finite-
difference methods. Using a 2-D (nonradial) Euler method, an answer more accurate than
the GRW solution of Fig. 3.1 can be obtained in 3.6 Cray YMP CPU seconds. The GRW
is at least 3 orders of magnitude slower. Accuracy was assessed by comparing along a ray
both solutions with that of a second order 1-D (radial) solver using a fine grid. Improvement
requires reducing N and speeding up the calculation of the particle interactions.

TheGRWmay not choose the most economical representation ofthe solution. In Example
4 the accuracy decreased with time, primarily because the particles lose their radial orientation
as they diffuse. In Example we found that efficiency was enhanced by rotating the particles
so that they would always point radially. Even then, more particles are needed to resolve the
wave as the radius increases.

In order to address this problem, we have experimented with the Chorin-Ghoniem method,
which permits masses ofindividual particles to change with time while GRWconserves particle
mass [7], [21]. The result is that in Chorin-Ghoniem while particle number is conserved,
individual particles can grow or shrink exponentially in time. This leads to the need to remove
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particles that have practically vanished and to split up particles that have grown too massive.
In that case, however, the number of particles grows with time just as in the stochastic growth
and decay algorithm. We note that Fogelson 10] found that no instability was caused in the
convection-diffusion problem by allowing the masses to grow unchecked. This may reflect
inherent differences between the convection-dominated and diffusion-dominated cases. We
conclude that Chorin-Ghoniem has no practical advantage over GRW in reaction-diffusion
problems.

Another modification that could both limit the growth of particles and mitigate loss of
optimal particle direction is to recontour the computed solution numerically and reassign
particles every so often. That is, N could be reduced by redistributing the mass among a smaller
number ofparticles. This is related to the "rezoning" technique that has been effectively applied
to the RVM to reduce the variance of long time solutions [20]. One could apply rezoning by
redistributing mass onto regular grids as in the RVM, but this is more complicated in the case
of the 2-D GRW because one must compute both the x and y components of the gradient at
each point rather than the scalar vorticity.

Another more speculative possibility is to view particle "evolution" in biological terms:
particles that help define the solution proliferate while unneeded ones die. Thus, it may be
beneficial to introduce "mutations" by randomly or heuristically perturbing the directions.
This might also help in problems like Example 2 with direction-deficient initial conditions.

Because of the strong formal similarity between the GRW and RVM [5] methods, much
of the machinery that has been developed for the RVM can be applied to the GRW method.
For example, a direct implementation of the algorithm requires the computation of O(N2)
interactions between particles at each timestep. We have applied the Greengard-Rokhlin 12],
13] algorithm to accomplish this in O(N) arithmetic operations, increasing the efficiency by
almost an order of magnitude. As noted above, however, we had difficulties implementing
adequate smoothing to avoid numerical instability without at the same time destroying the
computational efficiency. An interesting alternative is to use the Barnes-Hut algorithm to do
the N-body calculation [2]. While only O(N log N) complex, Barnes-Hut permits the use of
high-order cut-offfunctions [3] in a more integral way than Greengard-Rokhlin. Thus Barnes-
Hut offers the possibility of incorporating smoothing in a subquadratic N-body algorithm.
Further research is required in this area.

An alternative to the multipole method to overcome the quadratic complexity of the GRW
would be to do, say, 10 independent runs with 1,000 particles instead of run with 10,000
particles. The solution at a fixed set of grid points would be obtained by averaging. If the
variance is O(N-1) as in the 1-D GRW methods, then averaging would yield a solution as
accurate as that of the single large simulation at 1/10 the cost. Such an approach also would
parallelize in a natural way.

A final, and promising, possibility is to model the diffusion deterministically and thereby
replace the random walk with a deterministic motion. This approach has already been applied
to simple diffusion and convection-dominated diffusion problems in one and two dimensions,
[25], [24], [9], and to collisional dynamics [26], [16]. A distinct advantage of such meth-
ods is that deterministic movement of particles to simulate diffusion eliminates the statistical
fluctuations of a Monte Carlo method. Instead, these methods have a (deterministic) dis-
cretization error associated with their approximate diffusion process. In one dimension, the
deterministic algorithms share much in common with the GRW methods, as they are grid free
and automatically adaptive. In two dimensions, the existing deterministic methods compute
the approximate derivatives required by finite differences on the moving grid defined by the
particle coordinates. It is hoped that a variant of a deterministic method can be found that
does not require the construction of a moving grid to compute the particle trajectories.
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Abstract. Algorithms are described for computing the Gaussian likelihood or restricted likelihood corresponding
to a general linear mixed model. Included are arbitrary covariance structures for both the random effects and errors.
Formulas are also given for the first and second derivatives of the likelihoods, ,thus enabling a Newton-Raphson
implementation. The algorithms make heavy use of the Cholesky decomposition, the sweep operator, and the W-
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as well as the computational order of the procedures.
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1. Introduction.

1.1. The model. The most common statistical model is the general linear model, which
has the following signal-plus-noise form:

y=X+.

Here y represents a known data vector of length n,/3 is a vector of p unknown parameters with
known design matrix X, and e is an unknown error vector. For inference purposes, e is usually
assumed to have a Gaussian (normal) distribution with mean 0 and variance matrix tr2 I, where
I is the n x n identity matrix. The model is "general" in the sense that the columns of X may
consist of either known explanatory variables, as in regression, or dummy variables with 0s
and ls indicating the presence or absence of an effect, as in analysis of variance (ANOVA).
The parameters in/ are the objects of primary interest, and they are usually estimated using
the method of least squares. Classical statistical inference via t- and F-tests are then possible
under the above Gaussian assumption.

Probably the most attractive feature of the general linear model is its considerable flexi-
bility in modeling the signal (in the form of the mean) of the data. However, the assumption
that the variance matrix of the noise vector equals tr21 is often too limiting, as under normality
this implies that each observation is statistically independent.

The general linear mixed model lifts this restriction by taking the form

y=X+Zv+e,

where y, X,/3, and e are as above, and v is a vector of g unknown parameters with known
design matrix Z. The unknown parameters in/3 and v correspond tofixed-effects and random-
effects, respectively, and the inclusion of both defines a mixed model. The parameters in/3 are
still often the objects ofprimary interest, with their estimation being an important analysis goal.
The parameters in v are considered to be random variables, and thus account for variability in
the data beyond that modeled in e. To be more precise about this variance modeling, assume
v and e .have Gaussian distributions with 0 expectations and

*Received by the editors August 10, 1992; accepted for publication (in revised form) September 14, 1993.
tSAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513 (sasrdw@unx.sas.com,

sasrdtOunx, sas. com, sallOsas, com).

1294



GAUSSIAN LIKELIHOODS FOR MIXED MODELS 1295

e 0 R

where both G and R are nonsingular. As such, the variance of y is

V=ZGZ+R.

The above general definition of the mixed model subsumes that of the classical linear
mixed model, in which R tr2I and G is a diagonal matrix of variance components [12],
13]. The simplest example of the classical case is the randomized block ANOVA, in which

the experimental units occur in clusters, or blocks, and each unit is subjected to a level of some
experimental factor, the treatment..Treatment is the fixed effect, and so Xconsists of columns
of dummy variables, where is the number of treatment levels, each column indicating the
treatment level of the observations. Similarly, block is the random effect, and Z consists of b
dummy columns, where b is the number ofblocks, each column indicating block membership.
Finally, G equals r times the b x b identity matrix, trb being the variance component for
blocks.

Other common statistical analyses falling within this unifying paradigm include the co-
variance structure approach to repeated measures 11 ], split-plot and incomplete-block designs
[20], MANOVA, seemingly unrelated regressions [23], random coefficients [22], shrinkage
estimators, and best linear unbiased predictors 15].

This article presents the details of fitting mixed models with-arbitrarily parameterized
covariance structures for both G and R. The difficulty is in estimating the parameters of G
and R, and many possible estimation methods, exist. Several traditional approaches use the
method of moments, which solves a system of equations relating expected mean squares to
observed ones. However, these methods are often only applicable to classical mixed models for
balanced data, that is, data with equal numbers of observations for each random effect. Instead,
we make use of the Gaussian assumption and employ the method of maximum likelihood as
well as one of its variants, restricted/residual maximum likelihood (REML) [6].

Unfortunately, except in special cases, the maximum likelihood or REML estimates of
the parameters in G and R must be computed by numerical methods. The resulting prob-
lems can be very computationally intensive, and only in the past decade have sufficient

computer resources been routinely available to conquer them. This article shows how to

efficiently compute the likelihoods and their first two derivatives, thus enabling a Newton-
Raphson optimization scheme. The techniques are implemented in the SAS/STAT MIXED
procedure 16].

1.2. Outline. Section 2 presents the details ofcomputing the likelihood and the restricted
likelihood of the general linear mixed model. Section 3 contains formulas for the first and
second derivatives of these likelihoods, including those needed for variance profiling and
Fisher scoring. MIVQUE(0) initial estimates are the topic of 4 and computational order that

of5.
2. Likelihoods. Given particular covariance structures for G and R, let 0 denote the

vector of unknown parameters in V; assume it is of length q. We adopt a normal-theory
maximum-likelihood approach to estimation [6], [2], 10], 19]. This approach is preferred to
the traditional ANOVA method [18].

2.1. General form of likelihoods. The negative of twice the Gaussian log likelihood for
the general linear mixed model is

-2l(fl, Oly) log IV(0)l / (y Sfl)’V-(O)(y Xfl) + n log 2zr.
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Minimizing this expression analytically for/ yields

b(O) [XCV-1 (0)X]-1XI’r-1 (O)y

and substitution into the original equation produces the negative oftwice the profile/concentrated
log likelihood for 0"

-21(Oly) log IV(0)I + [y Xb(O)]’V-(O)[y Xb(O)] + n log 2r.

Profiling means reducing the dimension of an objective function by analytic substitution. We
perform it so that the numerical optimization can be carried out only over the parameters in 0.
Assuming is the resulting optimum, fl is estimated by b(/). The larger the dimension of/,
the greater the savings in time profiling offers over the full numerical optimization on (/, 0).

The formula for the negative of twice the restricted/residual log likelihood by definition
does not involve fl, and is given by

-21R(OIy) log IV(0)I + [y- Xb(O)]’V-I(O)[y Xb(O)]

+ log IX’V -1 (0)XI + (n p)log 2n’.

The final two expressions above are the objective functions for maximum likelihood and
REML, respectively. Ignoring the constant terms, they can be written as

-2l(Oly) 11 (0) + 12(0),

-21,(Oly) 11 (0) + 12(0) + 13(0),

where

l(O) log IV(O)l,

/2(0) r(O)’g-1 (O)r(O),

/3(0) log IX’V- (O)X[,

and

r(O) y- Xb(O).

2.2. Factoring and profiling the residual variance. It is possible to proceed one step
further analytically by factoring out one parameter from V; this factorization may or may
not be natural and desirable, depending on the structure of R. Assuming that it is desirable,
denote the one parameter by tr 2, and let 0* be the new remaining parameter vector, with q
elements. A common example is a diagonal G with variance components as diagonal elements
and R 0-2 I. In this case 0* contains each unknown variance component divided by 0-2. The
likelihoods become

-21(0", o’2ly) n log 0-2 ..[.. 1 (0") + 12(0")/0-2 -- n log 2n’,

-2/n(O*, 0-21y (n p) log 0-2 _[_ l (0") + 12(0")/0-z +/3(0") + (n p) log 2n’.

Minimizing analytically for 0.2 yields

t2(O*) 12(O*)/n,

(2R(O*) 12(O*)/(n p).
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Back substitution produces the profile likelihoods

-21*(O*ly) 11(0") + n log 12(0") + n + n log(2r/n),

-21"1(0"1y) 11(0") + (n p)log12(0*) + 13(0")

+ (n p) + (n p) log[2zr/(n p)].

The only substantial difference between these and the previous expressions is that 12 has been
replaced by a multiple of log 12. The minimization thus proceeds along the same lines as when
not profiling the variance.

2.3. Likelihood calculations. Direct construction of V-1 in the expressions for the like-
lihoods can be computationally prohibitive when the number of data points n is large. As
a method for reducing the order of the calculations, we employ an extension of the W-
transformation [7], [5]. Begin by constructing the following cross-products matrix:

XR-1X XR-1Z X’R-y
Z,R-X Z,R-1Z Z,R-y
)/R-IX y’R-1Z y’R-y

Assuming R is block-diagonal, this construction is best carried out by first premultiplying
the corresponding blocks of X, Z, and y by the inverse of the Cholesky root of R, which
we denote by R-1/2. The Cholesky root is taken blockwise, thereby keeping the dimensions
small. Regarding singularity tolerances for the Cholesky root, we recommend using the
original diagonal elements of R times 104", where " is a machine-dependent constant defined
as the largest floating-point number for which " + 1 ; typically " 10-16. Twice the
sum of the logs of the positive diagonal elements of R-1/2 equals log lRI, and should be
computed for use below.

The next step involves the sweep operator, which is closely related to Gauss-Jordan elim-
ination and the Forward Doolittle procedure [4]. Sweeping the first partition of a symmetric,
nonnegative definite matrix of the form

produces

A- A-B

-B’A- C- B’A-B

where denotes a g2-generalized inverse. If A is nonsingular A- A-1.
To compute likelihoods, sweep the first partition of the following augmentation of Wo:

I+L’Z’R-1ZL L’Wo(Z,.) ].Wo(., Z)L Wo

Here L is the lower-triangular Cholesky root of G so that G LL’. This use of L
accomodates the case when G is singular [8]. The augmented matrix does not actually have
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to be stored in memory when G is diagonal [5]. In this case the sweep can be performed using
only a vector of pivots and the elements in W0. When G is nondiagonal, the lower triangle of
the augmented matrix needs to be stored in memory. As with the Cholesky decomposition,
we recommend using the original diagonal elements times 104 as the singularity tolerance
for the sweep.

Summing the logs of the positive pivots during the sweep produces

loglI + L’Z’R-1ZLI loglI + ZLL’Z’R-1I
log IR + ZGZ’I + log IR-11
log VI log RI.

Adding this expression to log IRI computed above yields ll.
The sweep results in the following matrix:

XtV-1X XtV-1Z yV-ly

ZtV-1X ZtV-1Z Z’V-ly

y’V-1X y’V-Z y’V-l y

Then sweeping the submatrix

XtV X XtV-ly ]ytV-1X y’V-y

on all but its last row produces

The sum of the log of the pivots from this sweep is 13, and (X’V-1X)- is the approximate
variance matrix of b.

One further reduction in dimensionality can be accomplished when ZGZ’ and R are
both block-diagonal, and the blocking form of R is the same or nested within that of ZGZ’.
We call such blocks of ZGZ’ subjects. In this case the data from different subjects are
statistically independent, and the entire procedure above can be performed subjectwise on the
data, successively accumulating l, 12, aiad 13.

3. Derivatives. The maximum likelihood or REML objective functions can be opti-
mized numerically using a Newton-Raphson algorithm, which is preferred to the Expectation-
Maximization (EM) algorithm because of its convergence properties and information matrices
13]. One proviso for Newton-Raphson is that the covariance structures of G and R be twice-

differentiable. Possible structures for G and R in this class include diagonal, compound
symmetry, unstructured autoregressive, Toeplitz, and several spatial types [11], [24]. A
Kalman filter approach can pOssibly be used to obtain second derivatives of more complicated
time-series structures such as autoregressive-moving average and autoregressive conditionally
heteroskedastic. Other heteroskedastic structures involving/ as a part of the variance func-
tion can be difficult to differentiate, although pseudo-likelihoods can be constructed in this
case ].
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Assuming the likelihoods can be differentiated, define the gradient vector and Hessian
matrix as follows:

02
Hk O000-------;lk(O)

for k 1, 2, 3. We subsequently drop the functional reference to 0, and use subscripting
outside brackets to denote elements and dots to denote differentiation.

3.1. General form of derivatives. The following expressions are similar to those given
in [11], [13]:

[g]r tr(V-’r),
[g2] -r’V-V-r,
[g3]r --tr (X*W-1 rW-lX*)

for r q, and recall q is the number of elements in 0. Here X* XC for a matrix C
satisfying CC’ (X’V- X)-. We have

for r, s q. The second term in [n2]rs is not found in the above references; it results
from profiling on/3. Note that the final term in each of the Hk expressions vanishes if l?rs 0,
which is usually the case, except for most time-series and spatial structures.

The components g3, H2, and H3 can be written more concisely if we define

With this notation,

[g3lr -tr(H),

=/_/;,s

[H3] =tr(H’s- HH).
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3.2. G derivatives. In this section we consider an efficient approach to computing deriva-
tives with respect to those elements of 0 in G. As with the likelihood calculations, the method
is an extension of the W-transformation [7], [4] and avoids direct construction of V-. All of
the computations are performed using the partitions of the following matrix:

w(x, x) w(x, z) w(x, r)

W= W(Z, X) W(Z, Z) W(Z, r)

W(r, X) W (r, Z) W(r, r)

X., V-1X. X.,V- Z X.’V- r

Z,V-X* Z,V-Z Z,V-r

r,V-l X. r,V-1Z r,V-r

W can be computed by changing y to r and X to X* in the matrix obtained in the likelihood
calculations.

Note that if r corresponds to an element of G, then l)r Z(TrrZ’. Substituting this into
the general formulas and performing cyclic permutations inside of the trace operator yield
convenient forms for the derivatives. Intuitively, this algorithm turns the inversion problem
"inside out." The following are the results:

[gllr tr(W(Z, Z)Or),
[g2] -W(Z, r)’GW(Z, r),

[g3]r -tr (W(X, Z)(3rW(Z, X))

[Ol]rs -tr (W(Z, Z)W(Z, Z)s)
+tr (W(Z, Z)(,s)

[Hz]r 2W(r, l)rm(l l)rsm(g, Y)

-2W(r, Z)OrW(Z, X)W(X, Z)sW(Z, r)

-W(r,Z)rsW(Z,r),

[H3lrs 2tr (W(X, Z)OW(Z, Z)(TrW(Z, X))
-tr (W(X, Z)(7,rW(Z, X)W(X, Z)dW(Z, X))
-tr (W(X, Z)&W(Z, X)).

The simplifying components are

H W(X, Z)&W(Z, r),

H’s 2W(r, Z)OrW(Z, Z)OsW(Z, r) W(r, Z)rsW(Z, r),

H W(X, Z)(rW(Z, X),

H’s 2W(X, Z)OW(Z, Z)(TsW(Z, X) W(X, Z)OrsW(Z, X).

As in the likelihood calculations, the dimensionality of the above calculations can be
reduced when ZGZ’ is block-diagonal and its blocks contain those of R. Then the entire
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procedure above can be performed blockwise, successively accumulating the derivatives on a
subject-by-subject basis.

3.3. R derivatives. For derivatives with respect to those elements of 0 in R, we make
heavy use of the identity

V -1 R-1 R-IZMZ,R-

where

M (G-1 + Z’R- Z)-1.

For a derivation, see [9] or 17, 10.8].
When R is block-diagonal, this expression shows that operations involving V- can be

computed without inverting large matrices. Our strategy is to substitute this expression for
V-1 into the general formulas and then to cyclically permute matrices inside the trace operator.
We also use the fact that if r corresponds to an element of R, then l?r =/r.

The resulting expansions are lengthy, but many of the terms equal 0 for some important
special cases. For example, ifM 0, as is the case when there are no random effects or when
computing MIVQUE(0) estimates, then only one term in each of the expansions is needed.
Also, several of the terms drop out if s 0. Finally, none of the equations are needed if R
is equal to r2 I. The following are the results:

[g] tr (R-1/)
-tr (MZ’R-I [r R-1Z)

[g2]r -r’R-lfR-Ir
+2r’R-ZMZ’R-rR-r

_r,R-I ZMZ,R-R-ZMZ’R-Ir,
[g3] -tr (H),

where

H X*’R- [rR-l r

_X*’R-ZMZ’R-1[rR-r
_X*’R-IrR-ZMZ’R-r
+X*rR-ZMZ’R-1rR-1 ZMZ’R-I r,
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2r’R-l [?r R-l [s R-lr
_2r,R-1ZMZ,R-1 [?rR-1 sR-lr
_2r’R-1rR-1ZMZ’R- [?sR-lr
+2r R-1ZMZ’R- [rR-1ZMZ’R-1 [?s R-r

-2rR-1 [rR- [?sR-1ZMZ’R-r
+2r’R-ZMZ’R-1 [rR-[R-ZMZ’R-r+2r’R-rR-1ZMZ’R-1sR-1ZMZ’R-lr
-2r’R-ZMZ’R-1 [rR-1ZMZ’R-sR-1ZMZ’R--r’R- Jrs R-l r

+2r’R-1 jrsR- ZMZ’R-lr
_r,R-ZMZR-jrsR- ZMZ’R-lr,

H X* R k R X*

_X*’R-ZMZ,R-I [,. R-aX*

_X*’R-rR-1ZMZ’R-X*

+X*’R-ZMZ’R- [,.R-1 ZMZR-X*,

Each of the terms above can be computed piecewise if R is block-diagonal. This is carried out
by expanding the/r factor into a sum of the blocks. The individual blocks can be computed
by looping through the random effects, while the other factors in the term need to be computed
previously. The use of R-/2 throughout is recommended.

3.4. Cross derivatives. Here we derive expressions for [Hk] when r corresponds to a
parameter from R and s corresponds to a parameter from G. This effectively means repeating
some of the formulas from the previous section with/ replaced by Z(TrZ’. We assume that
G and R share none of the same parameters, so all of the 2-dot terms are zero. Also note that
H, H, H, and H will already be computed by one of the previous methods.
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where

[H],. -tr (Z’R-R-Z)+2tr (Z’R-’kR-’ ZdZ’R-’ZM)
-tr (Z’R-kR-ZMZ’R-’ZdZ’R-ZM)[Hz]rs H’ 2H H

[H3], tr(H’*- HH),

and

H,
2Ar BsB’Z’R-r,

H, 2AzBB’Z’R-X*

Ar r’R-l krR-I Z
-r’R-1ZMZ’R-k R- Z,

A=X*’R-lkrR-1Z,
-X*’R-ZMZ’R- [rR-1Z

B MZ’R-IZ- I.

The matrix W0(Z, .) obtained in the likelihood calculations can be used in computing the
above expressions.

3.5. Derivatives when factoring or profiling the residual variance. We now describe
derivatives appropriate for the objective functions described in 2.2. Two different forms are
presented: the first uses the factored objective functions and considers cr 2 as a parameter to
be differentiated; the second uses the profiled objective functions and eliminates cr2 from the
optimization problem. The second method is more efficient for optimization purposes because
it has one less parameter than the first. For the first case, the formulas are as follows:

0"0 I gl q" g2/2, 10--77..[-2l(0", O"2)1
n/o.2 12/o.4

30"
[--21R(O*, r2)] I gl q- g2/rr2 q- g3 1,(n p)/o"2 12/O"4

02

0(0", O’2)0 (0 *, 0"2)
[-2l(0", 0"2)] I H1 -[- H2/(y2

-2/cr4

__g2/O.4 I--n/o-4 + 212/o-6

02

O(0*, 0"2)0(0*, 0"2)
Hl q- H2/ry2 nt- 93

[-2l (0", 0"2)
--2/O’4

g2/O.4 I--(n p)/cr4 q- 212/o"6
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For the second case, let g and H denote g2 and HE divided by the appropriate t2. The
profiling formulas are then as follows:

02

00*
[-21"(0")] gi + g,

0"
[-21(0’)1 g + g + g3,

[-2/*(0", 0.2)] Hi + H g2g* *’/n,
0(/9*, 0"2)0(0* 0.2

02 _, _,l/(n
0"2)0(0*, 0"2)[-21(0" 0"2)] H1 + H g292 / -P)+ H3.

These profiling formulas result from

log 12
12

12

02 02aoao,12
0000’

log 12 12

3.6. Overall and scoring derivatives. So far we have seen how to calculate g
01//(00) and H/c 021/c/(00’), k 1, 2, 3. In this section we show how to put these
together to form overall first and second derivatives. Once formed, the Newton-Raphson step
is obtained by computing the inverse of the second derivative matrix, the Hessian, times the
first derivative vector, the gradient.

Tables 1 and 2 present the overall derivatives for maximum likelihood and REML esti-
mation, respectively. The maximum likelihood formulas are profiled with respect to the fixed
effects. The rows labeled "Factoring" and "Profiling" correspond to the results from the pre-
vious section concerning the residual variance parameter, 0.2. For the factoring and profiling
formulas, all of the derivatives are evaluated at 0*. Also, g and H denote g2 and HE divided
by the appropriate 2.

TABLE
Overall derivativesfor maximum likelihood estimation.

Technique Gradient Hessian
Newton

Scoring

Factoring-Newton

Factoring-Scoring

Profiling-Newton

Profiling-Scoring

gl +g2

gl +g2

gl + g2/a2
n/tl 12/tl4

gl + g2/tr2
n#r 12/r4

gi + g
gl + g

HI+H2

H2/o"2 -g2/o"4

/0"4 -n/o.4 + 212/o.6

[ -Hl gl/c2 ]1 n/o"4

gg /nHl + n- **’

-HI ,l
g(g( /n

Also in Tables and 2 are formulas for a modification of the Newton-Raphson algorithm
known as Fisher scoring. A scoring algorithm works by replacing the second derivative matrix
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TABLE 2
Overall derivativesfor REML estimation.

Technique Gradient Hessian

Newton

Scoring

Factoring-Newton

Factoring-scoring

Profiling-Newton

Profiling-scoring

gt + g2 + g3

g +g2 + g3

gl -F g2/tr2 -F g3
(n p)/t 12/t74

gl + gE/a2/ + g3

(n p)/tr 12/tr4

gl +g + g3

gl +g. +g3

H+H+H3

-HI + H3

H + H2/r + H3 -g2/(r4

--g2/tr4 --(n p)/tr4 + 212/tr6

[ -HI + H3 gl/tr

l/cr2 (n + p)/cr4

Hi + a + a3 gg’/(n p)- + n gg’/(n p)

with its expectation at the true values of the parameters. This entails setting b(O) equal to/3
before taking expectations, thereby changing r to Zv + e. The only random components are
those with a subscript of 2, and the resulting expressions are as follows:

Eb=# [12 (O n,

Eb=#[12(O*)] tr2n,

Eb=# [g2 (O gl (O),

Eb=,a[g2(O*)] --ff2gl (0"),

Eb=,[H2(O)] -2H1 (0) + tr (V- I?),
Eb=,[H2(O*)] -2tr2H (0") + tr2tr (V- 17).

The scoring formulas in Tables and 2 omit the 2-dot terms above and are less computationally
demanding than the full Newton-Raphson approach. Also, the profiling-scoring formulas are
only a partial implementation, as it is cumbersome to take the expectation of gg’. Another
partial scoring implementation involves using

Err’= V X’X*’

directly, although this technique has nearly the same computational order as full Newton-
Raphson.

One may wish to transform the Hessian for the (0", cr2) parameterization into that for the
0 parameterization. This is accomplished by

H(O) BH(O*, cr2)B’ + A.

For example, if 0* (0’, 0)

0

0

--g(O)/o"4

0

0

--g(O)/tr4

--g(O)/t74

--g(O)/ff4

2/0"4[0g(0) "k- Og(O;)]
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1/o.2 0 0

B 0 1/o.2 0

-0;/erE --0/erE
Note that A vanishes both at the optimum and when scoring.

4. Initial estimates. We recommend the MIVQUE(0) method 14] for computing initial
estimates. One advantage of this approach is that in certain balanced cases it produces the
REML estimates, thus eliminating the need for Newton-Raphson iterations. Disadvantages
include the fact that the resulting V may not be positive definite and that MIVQUE(0) may not
be appropriate for many time-series and spatial structures. In these cases we suggest setting
V to some easily obtained and sensible value, or using user-supplied initial values. A brief
explanation of MIVQUE(0) estimates now follows, and then their computing formulas are
given.

As before, let y be data with variance matrix V, with V containing q unknown parameters
denoted by the vector 0. An assumption for the MIVQUE(0) approach is that we can write

q

z=,o.
r=l

This essentially requires V to have a general linear structure with rs 0, an assumption not
satisfied for many time-series and spatial structures. Define

P V- V-X(X’V-X)-1 XtV-1

The MIVQUE(0) estimates of 0 solve the equations

[tr (PI?rPl?s)]r,sO --[y’P#rPY]r

where P is computed at V I. It is a special case of the MIVQUE(V0) method that consists
of setting the quadratic forms y’Pl?rPy equal to their expected values given V V0 [18].
By examining 3.1, these equations are equivalent to

-(H + H3)O -g2.

We solve this system for 0 when using REML.
For maximum likelihood, we solve the modified MIVQUE(0) equations

[tr(V-1I?rV-ls)]r,sO --[Y’PPY]r’

which consist of setting the quadratic forms y’PPy equal to the expected values of
rt 1/-- r V- r given V I. These equations reduce to

-HO -g2.

When profiling 0.2 out of V, the following formulas are used. For REML,

I [tr (P l)r P)],-),([tr (PP)]
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which, under the idempotency of P, becomes

-(n + H3)

For maximum likelihood, we have

n p cr2 12

[tr (V-’ V-’) q-1
r,s=l

([tr (V-’ V-’)]q;)

[tr (V-1 V-1)]q; I [tr(V-2)

tr20* ]cr2

[Y’PPY]-I ]y’Py

which, when V 1, becomes

I n 0.2 12

5. Computational order. Using the notation from Table 3, the following are estimates
of the computational speed of the algorithms described above. For likelihood calculations,
the cross- products matrix construction is of order n(p / g)2 and the sweep operations are
of order (p + g)3. The first derivative calculations for parameters in H are of order qg3 for
maximum likelihood and q(g3 + pg2 + p2g) for REML. If ZGZ’ is block-diagonal with
blocks corresponding to subjects, then replace g by g/s and q by qs in these calculations. The
first derivative calculations for parameters in R are of order qs(t3 + gt2 + g2t) for maximum
likelihood and qs(t3 + (p + g)t2 + (p2 + g2)t for REML. For the second derivatives, replace
q by q (q / 1)/2 in the first derivative expressions. When there are both G and R parameters,
then additional calculations are required of order equal to the sum of the orders for G and
R; this is the most computationally intensive case. The approximate memory requirement in
bytes is 40(p + g2) + 32(p + g)2.

TABLE 3
Notationfor order expressions.

Symbol Number

P
g
n

q

S

columns of X
columns of Z
observations

covariance parameters
maximum observations per subject
subjects

Note that the second derivatives cost approximately q/2 times as much as the first deriva-
tives, which in turn cost approximately q times as much as likelihood evaluations. This leads
one to suspect that first-derivative (quasi-Newton) or derivative-free methods may outperform
standard Newton-Raphson for large problems. Sparse matrix techniques are also a possi-
bility, and progress is being made primarily by animal breeders, who often have millions of
records [21 ].
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To provide a brief illustration of the efficiency of the algorithms described in this paper,
Tables 4 and 5 describe several small examples and their run times on different computing
systems. All calculations are performed with Release 6.08.01 of the SAS/STAT MIXED pro-
cedure 16], and Table 5 displays time to completion ofPROC MIXED with its default options.
Approximately 5-10% of the time is spent in initial data set-up and post-convergence calcu-
lations, while the remainder is consumed by a ridge-stabilized Newton-Raphson algorithm
with REML MIVQUE(0) starting values (4). Convergence is assumed when the relative
orthogonality criterion 13] is less than 10-8.

Table 4 lists the dimensions of each example using the notation from Table 3. In addition,
the number of covariance parameters, q, is divided into those corresponding to G (qG) and
R (qR), indicating the appropriate formulas from 3. Table 4 also includes the number of
likelihood evaluations and Newton-Raphson iterations required for convergence.

Examples 1, 3, 6, and 7 are all simple random effects models with diagonal G and R.
Examples 6 and 7 employ the same data and model; however, Example 6 breaks Z into 30
subjects during the computations as described at the end of 2. In contrast, Example 7 operates
on the entire 630 columns of Z at once. Examples 2 and 5 have no G matrix; Example. 2 has a
large, unstructured-block-diagonal R matrix, and Example 5 has a 306 x 306 dense R matrix.
Finally, Example 4 has a diagonal G matrix and a Toeplitz-block-diagonal R matrix.

Table 5 compares the computing speed of these examples for several common hardware
configurations. The times increase roughly as we move down and left on the table, and all of
them are less than an hour. As expected, the PCs ran the slowest, with OS/2 outperforming
Windows by a factor ranging from 2 to 6. The HP Unix workstation ran approximately twice
as fast as OS/2 and 1.5 times slower than a standard IBM mainframe system. The addition of a
vector facility on the IBM mainframe produces savings ranging from 5-30% over the standard
configuration. The Convex system was the fastest of the six.

One anomaly in Table 5 is the slowness of the mainframes for Example 6 as compared
with Example 7. Because of its block-diagonal nature, we would expect Example 6 to run
faster than Example 7, as it did on most of the other systems. Further investigation showed
that the elapsed times of the mainframes for Example 6 were more than 3 times the CPU times,
whereas in the other six examples they were less than 1.5 times the CPU times. The extra time
resulted from I/O inefficiency, and a re-run under virtual I/0 produced an Example 6 time of
02:18 for the 3090 with the vector facility.

TABLE 4
Dimensions ofrun-time examples, using notationfrom Table 3.

Number of Number of
Example p g n q qG qR s evaluations iterations

3 33 308 7 6 31 11 4 2
2 5 0 2002 10 0 10 4 930 4 2
3 108 285 240 8 7 240 9 3
4 84 21 108 6 2 4 36 3 11 6
5 4 0 306 2 0 2 306 4 2
6 231 630 3008 3 2 21 30 6 3
7 231 630 3008 3 2 3008 6 3

For a rough comparison with previously published results, Lindstrom and Bates [13]
report a run time of 6.32 seconds for Example on a Vax 11/750 running 4.3 BSC Unix.
They utilize Newton-Raphson formulas based on the QR decomposition. The QR method
has higher numerical stability than the sweep-based methods described in this paper because
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TABLE 5
Elapsed times in minutes:secondsfor the examples in Table 4 running on various systems.

Example

486 PC 486 PC HP 9000/720 IBM 3090 IBM 3090 Convex 3800
Windows 3.1 OS/2 2.1 HP-UX 9.01 MVS MVS-vector ConvexOS

16 mb 16 mb 32 mb 32 mb 32 mb 512 mb

00:05 00:03 00:02 00:01 00:01 00:01
2 04:40 01:12 00:42 00:28 00:25 00:33
3 03:23 02:20 00:54 00:48 00:35 00:10
4 09:53 01:51 01:05 00:46 00:44 00:44
5 52:57 07:16 04:07 02:47 02:36 02:41
6 53:49 14:42 06:05 09:26 09:02 01:56
7 52:57 21:11 08:43 05:25 03:42 02:08

it operates on X and not X’X. However, the QR method is approximately two times slower
than the sweep [3, 5.3.9], and Example provides a confirmation.

In summary, the algorithms appear to be able to handle moderately sized problems quite
well. More rigorous investigation is called for to precisely determine their practicality.

Acknowledgments. We thank several referees for helpful comments, Tim Gregoire at
VPI for pointing out [9], and Leigh Ihnen and Connie Dunbar at SAS for aid with the run-time
examples.
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THIN PLATE SPLINES WITH DISCONTINUITIES AND FAST ALGORITHMS
FOR THEIR COMPUTATION*

DAVID LEE AND JYH-JEN HORNG SHIAU

Abstract. This paper discusses the problem of fitting noisy data in high dimensions. Using a reproducing
kernel Hilbert space approach, the authors study thin plate splines, which preserve and incorporate discontinuities
explicitly. Both smoothing and interpolating splines are computed. To cope with the formidable cost of computation,
the authors propose four different fast algorithms, which are an order of magnitude faster than conventional methods.
To construct the splines the authors assume that the location and type of discontinuities are known. However, this
information is usually not available in practice. A discontinuity detector in high dimensions based on a residual
analysis is investigated.

Key words, discontinuity, thin plate spline, smoothing spline, interpolating spline, reproducing kernel Hilbert
space, recursive block Toeplitz matrix, fast algorithm, inversion, LU decomposition, QR decomposition, numerical
stability, preconditioning
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1. Introduction. The problem of data fitting in high dimensions arises in many appli-
cations in science and technology. A number of approaches have been proposed, including
thin plate smoothing splines [51], thin plate interpolating splines [33], projection pursuit re-
gression (PPR) [18], generalized additive models [5], sliced inverse regression (SIR) [31],
principal Hessian directions (pHd) [30], discretized Laplacian smoothing by Fourier meth-
ods [34], multivariate adaptive regression splines (MARS) [17], and interaction splines [50].
Among these methods, spline estimates provide satisfactory solutions for regression problems
of recovering unknown functions from noisy data. They are often used as a useful descriptive
tool for statistical data analysis. In addition to the pleasing graphical display of fitted splines,
which allows analysts to gain more insight from the data, splines provide good estimates of
some interesting quantities of unknown functions, such as derivatives and integrals. They
also have many interesting theoretical properties, such as optimality in terms of minimizing
approximation errors [45]. There are many techniques for constructing splines. An elegant
method is to derive splines by a reproducing kernel Hilbert space approach [15], [51], [33].
The problem is then reduced to solving a system of linear equations.

A serious problem encountered in practice is that the underlying structure of the functions
to be recovered may have discontinuities. This is typical in applications such as seismology,
tomography, image processing and analysis, computer graphics, economic or environmental
systems, and meteorology. Splines tend to smooth out the discontinuities and hence do not

provide satisfactory results. To cope with such difficulties, different approaches have been
proposed, such as splines with multiple knots [14], splines in tension [40], splines with dis-
continuities [41]-[43], [26], [20], [47], [35], [28], and many other methods. Most of these
techniques are for curve fitting in one dimension. However, practical applications often re-

quire data fitting in two dimensions or higher. We also observe that discontinuities are not
incorporated in the construction of splines in an explicit way in many of these techniques.

A more series problem is the formidable computation cost. For example, to compute a
spline in a reproducing kernel Hilbert space, we solve a system of linear equations with a
dense coefficient matrix. Given N data points, the computation cost of a direct method such
as Cholesky factorization is O(N3) [33] and is not practical when N is large.

*Received by the editors November 11, 1991; accepted for publication (in revised form) September 20, 1993.
AT&T Bell Laboratories, Murray Hill, New Jersey 07974-0636 :1_ ee@research, at:t. ccrn).

AT&T Bell Laboratories, Princeton, New Jersey 08540. Current address: Institute of Statistics. National Chiao
Tung University, Hsinchu, Taiwan, Republic of China (jyhj en@ erns, nct:u, edu. t:w).
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In this work, we study an extension ofsmoothing and interpolating thin plate splines in high
dimensions such that the spline estimates of the unknown function preserve discontinuities.
We use a reproducing kernel Hilbert space approach to construct the splines and incorporate
discontinuities in an explicit and quantitative way. The problem is then reduced to solving
a system of linear equations. We develop fast algorithms for the computation with a cost
O(N2 log N). We remark that these algorithms can also be applied to thin plate splines
without discontinuities with the same cost.

The remaining sections are organized as follows. We review thin plate splines (without
discontinuities) in 2 and discuss discontinuities briefly in 3. In 4 and 5, respectively,
we study smoothing and interpolating splines with discontinuities, assuming that we know
where and of which type the discontinuities are. We present four different fast algorithms
for computing the splines in 6. Finally, we discuss a residual discontinuity detector in high
dimensions in 7.

2. Thin plate splines (without discontinuities). We first review briefly thin plate splines
without discontinuities. For details, see [47], [33], [41]. Assume that data [zl zv]’
are obtained from the statistical model

(2.1) zi f(ti)+ ei, 1, 2 N,

where ti (Xli Xdi) E Rd, R is the set of real numbers, ei’S are uncorrelated zero mean
noise with variance tr 2, and f Rd ---> R is a smooth function. A smoothing spline estimate

f* of f is the minimizer of the variational problem

(2.2) min
gEW"(R’t)

1 [g(ti) zi]2 -[- J(g)"i=l
where

m
(2.3) J(g)

Oll l.. 19ldo +...+Otd=m
fF(Omg)

2

oo Ox’ Ox dxl dxd,

where W(Rd) is the Sobolev space on Rd, and > 0 is the smoothing parameter controlling
the tradeoff between fidelity to data and roughness of the solution. The null space of J(.) in

W(Rd) is H0 Pm-1, which is the span of the M (d+-l) monomials of total degree less
then m. For example, for rn 2, Pm- (1, X Xd). It is necessary that 2m d > 0 so
that W(Rd) is a reproducing kernel Hilbert space [33]. Also note that N > > M. For more
details about the reproducing kernel Hilbert space, see [4].

Let {s sM} be a fixed set of M points in Rd such that -,_M= avcpv(su) 0 for
/z M implies av 0 for all v M, where {qv} is a basis of Pm-1. Such
points {s can be chosen from {ti if and only if the following N x M matrix is of full rank:

(2.4) T

(q) M(tl)

1 (tu) qbM(tN)

Functions on Rd with absolutely continuous (m 1)st derivatives and square integrable mth derivatives ].
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This assumption usually holds since N > > M. From now on, we assume that T is of full
rank. We choose a basis v of P,,_ such that

(2.5) qv(su) 8u, [ 0 for/z 7/: v,

for/z v.

An inner product in Ho P,,- can be defined as

M

(2.6) (f, g)/4o := Z f(su)" g(su) for f, g Ho.
#=1

It can be easily shown that Ho, with respect to the innerproduct defined in (2.6), is a reproducing
kernel Hilbert space with the reproducing kernel

M

(2.7) Qo(s, t) q(s) q(t).
v-’l

Note that the corresponding norm in H0 is a seminorm on W(Rd) with the null space

H "2,0(Rd) := {hlh(su) O, lz M}.

On the other hand, we can define an inner product in HI according to (2.3), i.e.,

(2.8) (f, g)/41

y m, f_x ?(. m( ) (
oq+"’+ad=m Oll t’" "Oldt oO cx OX Xj 0X

amg )---. -Ox dx dxd.

Then the corresponding norm in HI is a seminorm on W’ (Rd) with the null space H0. Define

(2.9) Em(s) [ Om’allsllzm-a In Ilsll for d even,

[ Om,d s 2m-d for d odd,

where

(_l)d/2+l+m
for d even,

22m-lzrd/2(m 1)!(m d/2)!Orn,d
V(m d/2)

for d odd,
22"* zra/2 (m 1)

and I1" is the Euclidean norm on Ra. Then the reproducing kernel of H1 is given by [33]

M M

Ol(S, t) Em(t s) E Pu(t)Em(su s) E v(s)Em(t Sv)
#=1 v=l

(2.10) M M

+EE *u(s)*(t)Em(s" so).
/=1 v=l

It can be shown [51 that the smoothing spline estimate, the minimizer of (2.2), can be
expressed as

N M

(2.11) f;(t) ZciEm(t ti) + EdvSv(t),
i=1 v=l



1314 DAVID LEE AND JYH-JEN HORNG SHIAU

and the coefficients E [c cv]’ and d [d dg]’ can be obtained by solving the
quadratic minimization problem

(2.12) man ([[-
where T is in (2.4) and K is an N x N matrix with the (i, j) entry Em(ti tj). Note that the
choice of the points {sv and the construction of {qV} are avoided in this approach.

When the data are exact (i.e., no noise) or when the noise level is low, i.e., ei O,
interpolating spline estimates can be appropriate. An interpolating spline is the minimizer of
J(g) in (2.3) for all g 6 W’ (Rd) with g(ti) zi, 1, 2 N. The unique interpolating
spline can be expressed as

N M

(2.13) f(t) ciEm(t ti) d- dvdpv(t),
i=1 v=l

and coefficients and can be obtained by solving the following constrained quadratic min-
imization problem:

min6’K6,

where matrix K is the same as that in (2.12), and the constraints are

fo*(ti) zi, 1,..., N.

3. Discontinuities. We now discuss discontinuities, which are to be incorporated in the
splines. We do not intend to be formal or complete here. A more systematic study is under
way and will be included in a forthcoming paper.

We define a separating hypersurface as a hypersurface that has no intersections with itself,
partitions Rd into two simply connected regions, and has Lebesgue measure zero. We assume
that discontinuities can only occur on finitely many separating hypersurfaces.

In the presence of function value discontinuities, apparently, the problem could be de-
composable. More specifically, the separating hypersurfaces partition Rd into a finite number
of simply connected regions; we can estimate the minimizer of (2.2) in each region and then
combine the minimizers of all the regions as the minimizer for the whole space. This is a valid
approach for fitting data in one dimension [28] and the arguments for decomposition in higher
dimensions are the same. However, there are two problems with this approach. If the data
are sparse or distributed unevenly, then smoothing splines provide a poor estimate in regions
with only a few or no data points. Furthermore, to find a minimizer in a (finite) region is
difficult; the approach described in 2 is no longer valid, since the reproducing kernels do not
have a finite form [15] and the computation is rather involved. Therefore, unlike in the case
of one dimension, the problem is not decomposable in high dimensions, at least in terms of
reliability of the estimation and feasibility of computation. On the other hand, in the presence
of derivative discontinuities, it is obvious that the problem is not decomposable, since the
function may be continuous across a separating hypersurface. Based on the above arguments,
we do not decompose the problem even in the presence of function value discontinuities.

When we construct the splines we assume that we know the location and type of discon-
tinuities. However, to determine the location and degree of discontinuities and measure their
sizes is an important yet complicated problem [28]. In practice, the available information is
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usually function value discontinuities whose size can be well approximated by a low-degree
piecewise polynomial. For simplicity, in this paper we only consider the case when the discon-
tinuities are on the function values and their sizes can be well approximated by a low-degree
piecewise polynomial. For the most general case, where we have derivative discontinuities
with sizes that are of arbitrary functional forms, the situation is more involved, and we shall
discuss it in a forthcoming paper.

For simplicity, assume that there is only one separating hypersurface and that there are
only function value discontinuities along the hypersurface. The size of discontinuities may
vary with different locations on the hypersurface. We model the size of the discontinuities
by low-degree piecewise polynomials. Informally, let y(t) be an indicator function, which
has value 0 on one side and value on the other side of the separating hypersurface. We
approximate the size of discontinuities by piecewise polynomials in Pm-1, denoted by Pm-1.
Consequently, the discontinuities are represented by a function in the space
where {qi is a basis of/Sm_l and r is its dimension. Note that the linear space/5m_1 depends
not only on rn but also on where and how the pieces ofpolynomials in Pm- arejoined together,
i.e., the smoothness constraints at the junctions. On the other hand, we take the integrand in
(2.3) as defined on Ra almost everywhere except on the hypersurface where discontinuity
occurs and at the location of the junctions of the pieces of polynomials. The null space of
or(.) in (2.3) is Pm-I. However, we choose not to digress to a study of piecewise polynomials.
in high dimensions, which is a topic by itself. For clarity, from now on we only discuss the case
when discontinuity size is approximated by polynomials in Pro-l, i.e., Pm-1 Pm-1. All the
results hold for the general case except those for the bases and consequently the dimensions
of the null space.

4. Smoothing splines with discontinuities. We assume that the size of discontinuities
can be approximated by a polynomial in Ho Pm-1. Consequently, the discontinuities are
represented by a function in the space He (Ply Pt?’) where {qi} is a basis of H0.

Assume that H fq W(Ra) {0}. Let J] -]’=1 0)qvY and j Y=1 0bvY be
any two functions in H. We define an inner product on H by

M

v--1

Then it can be shown [41 that H2 is a reproducing kernel Hilbert space with the reproducing
kernel

(4.1)
M

Q2(s, t) y(s)y(t) E(s) (t).
v--1

To cope with the discontinuities, we expand the function space to include H2. To make

Ho orthogonal to H2, we need to redefine the inner product of Ho. Since {i} is a basis for
Ho, let j] M=I al)qv and J 7y= a2)bv be any two functions in Ho. We define an
inner product on Ho by

M

2Functions g in (2.3) has prespecified derivatives at the location of the junctions that are determined by the
smoothness constraints of functions in/Sm_ 1-
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Then it can be easily shown that H0 is a reproducing kernel Hilbert space with the reproducing
kernel

(4.2)
M

Qo(s, t) v(s) v(t).
v’--1

In the presence of discontinuities, function J(.) in (2.3) is interpreted differently. The
integrand is defined on Ra almost everywhere except on the hypersurfaces, where discontinuity
occurs and which are of measure zero. By observing that J(f) 0 for f 6 H0 H2, we
define H H0 H1 He. It can be shown [41 that H is a reproducing kernel Hilbert space
with the reproducing kernel

Q(s, t) Qo(s, t) + Q (s, t) + Q2(s, t),

where Q0, Q1 and Q2 are in (4.2), (2.10), and (4.1), respectively.
Let Li be the evaluation functional at ti, N, i.e., Li(g) g(ti) for g 6 H.

Since H is a reproducing kernel Hilbert space, Li is a continuous linear functional. By
the Riesz Representation Theorem, there exists Oi H, the representer of Li, and, by the
reproducing property, Oi Q(’, ti). Let i P Oi, where P is the projection operator to H.
Then

(4.3) esi(s) P Q(s, ti) Q (s, ti).

A function in H can be expressed as

(4.4)
N M M

i=1 v=l v=l

where ai’s, dv’s, and 0v’s are real numbers, and p _k ( N, tl M, tl ’ M)"
The orthogonality of p to the finite dimensional space spanned by i’s, qi’s, and ti"S and the
reproducing property make p(ti) (i, P) 0 for N.

Substituting (4.4) into (2.2), we have

(1 )(4.5) min II- T/ Wll2

,z,p

where 112 is the L2-norm, is the data in (2.1), / [dl dM, O1 OM]’,
[C CN]’, T is now changed to an N x 2M matrix

(4.6) T

bl(tl) bm(tl)

bl (tx) M(tX)

4(t)’(t) qbM(t)?,(t)

Cl (tN)’(tN) M(tW)’(tw)

and W is an N x N matrix whose (i, j) entry is Q (ti, tj), i, j N.
Immediately we note that p 0 and the coefficients and/3 can be easily computed by

solving the quadratic minimization

(4.7) min (I1-T/-
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Note that the computation of the matrix W involves the construction of {s and P}. Similar
to [51], we can bypass W and directly work on an N N matrix K whose (i, j) entry is
Em (ti tj), i, j N, where Em is given in (2.9). More specifically,

(’ 0 Em(tl t2) Em(tl tN-1) Em(tl tN)

Em(t2 t) 0 Em(t2 tN-) Em(t2 tN)

(4.8) K=

Em(tN-1 t) Em(tN-1 t2) 0

\ Em(tN--tl) Em(tN--t2) Em(tN--tN-1) 0 j

Em (tN-1 tN)

From (2.10), (4.4) can be rewritten as

(4.9)
N M M

i=1 v=l v=l

where i’S, d’s and 0v’s are real numbers, and p* 2_

with /* Em ("- ti), N.
It is known that although Em (" s) is not in H, it has the desired reproducing property

in H. That is,

(4.10) (Em("- s), f(.)) f(s) for f 6 H1.

Furthermore, it can be verified that

(4.11) (Era(" s), Em(" t)) Em(s, t) Em(s t).

By (4.10) and the orthogonality of p* to ’s, we have p*(ti) (Em(" ti), p*(’)} 0.
Substituting (4.9) into (2.2), from (4.10) and (4.11), we have

(,min I1- T KEII *
tT,Z,p*

+ )E’KE + XllP 1122

which immediately leads to p* 0, and the smoothing spline estimate is

(4.12)
N M M

f;(t) E ciEm(t ti) + Z dvqv(t) +

_
Ovv(t)y(t),

i=1 v=l v=l

where the coefficients E [Cl CN] and fl [d dM, 01 OM]’ are computed by
solving the quadratic minimization

(4.13) min (11_-T/-KII2 + UKY)
5. Interpolating splines with discontinuities. When the data is exact or when the noise

level is low, interpolating spline estimates could be more appropriate. An interpolating spline
is defined as the minimizer of J(g) in (2.3) for all g 6 H with g(ti) zi, 1, 2 N.
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Similar to smoothing splines with discontinuities, the unique interpolating spline estimate can
be expressed as

N M M

(5.1) fo*(t) E Cigm(’ ’i) "+" E dvqbv(t) + E Ovqb(t)y(t),
i=1 v=l v=l

where the coefficients are computed by a constrained quadratic minimization

(5.2) min ’K
with constraints

(5.3) fo*(ti) zi, N,

where K is the matrix in (4.8).

6. Fast algorithms for computing the splines. To compute the smoothing and interpo-
lating splines we solve the quadratic minimization problems in (4.13) and (5.2), respectively.
They can be easily reduced to solving systems of linear equations. For splines without dis-
continuities, direct methods have been proposed with a cost O(N3) [33], [51], [41]. We now
present four different fast algorithms for the splines with or without discontinuities with a cost
O(N2 log N).

The first approach is based on a fast algorithm for multiplying a recursive block Toeplitz
matrix by a vector. The algorithm was reported in [27] and applied to the computation of in-
terpolating thin plate splines in two dimensions (without discontinuities). We now present our
results for both smoothing and interpolating thin plate splines with or without discontinuities
and in arbitrary dimensions. This algorithm is numerically stable.

The other three approaches are based on fast block Toeplitz matrix inversion, LU decom-
position, and QR decomposition, respectively. However, they can only be used for smoothing
spline computations, and their numerical stability remains to be further explored.

We first examine the recursive block Toeplitz structure of the N x N matrix K in (4.8)
and describe a fast algorithm for multiplying this matrix by a vector. Based on this result, we
obtain the first algorithm. We then discuss the inversion of recursive block Toeplitz matrices
and derive the other three algorithms. Finally, we compare and comment on different issues
such as space decomposition and numerical computations.

6.1. Recursive block Toeplitz matrices. An N x N Toeplitz matrix is a matrix A
(bi,j), i, j N, with the property that bi,j bi-l,j-1, 2 < i, j < N. Let aj-i bi,j;
then we have

ao al aN-1

(6.1) A
a-i a0

a-(N-l) .a-i a0

We consider the following n x n block matrix A(2) (B,(I), which is a block Toeplitz

matrix, i.e., B(1 B() 2 < i, j < n, and each block B{I_)I,j_ is an n x n Toeplitz matrixi,j i-l,j-l’
itself. Since there are two levels of blocking, and at each level it is an n x n (block) Toeplitz
matrix, we call it a 2-level recursive block Toeplitz matrix with blocking factor n. Obviously,
A(2 is an N x N matrix, where N n.
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Let A) B,I); then we have

(6.2) 2,1 (2)

Since each block A}1) is a Toeplitz matrix, let

d(1)
"n-1

A1)

A(ll A(01)

(1)(6.3) A

ai,o ai, ai,n-

ai,-1 ai,o

ai,1

ai,-(n-1) aa,-1 ai,o

Here, the first subscript of each entry ai,j is used to specify its position in A (:) of (6.2),
(1) of (6.3), where/ jand the second subscript j is used to specify its position in A

--(n- 1) (n- 1).
Generally, a d-level recursive block Toeplitz matrix with blocking factor n is defined

recursively as an n x n block Toeplitz matrix such that each block is a (d-1)-level recursive
block Toeplitz matrix with the same blocking factor. Much effort has been devoted to studying
Toeplitz and recursive block Toeplitz matrices [48], [6], [27].

We are interested in fast multiplications of a d-level recursive block Toeplitz matrix Aa
by a vector U(d) with acost O(N log N), where N na, and n is the blocking factor. Let

(6.4) D(d) A (d) U(d).

An entry of A (e) is ah i,, where ir specifies its position in the rth level block matrix, r

We can impose a recursive block structure on the N x vector U(d) similar to that of
A(a); U(a) is a d-level recursive block vector: U(a) [U(a-I),..., Un(d-1)]’, where each

Ui(a-l), 1,..., n, is a (d-1)-level recursive block vector, and the final level of blocks is
simply n x vectors. The (il id)th entry of U(a), Uil iu, is the one belonging to the ilth
block at the first level of blocking to the id-i th block at the (d 1)th level of blocking,
and is the iath entry of the final level of blocking. We impose the same structure on D(d), and
denote the (il ia)th entry by di, ia"

6.2. Fast multiplication of a recursive block Toeplitz matrix by a vector. In this sub-
section we describe a fast algorithm, which multiplies a recursive block Toeplitz matrix by a
vector. For details, see [27].

We define two polynomials A(t) and U(t), and we reduce the matrix multiplication
problem to a problem of multiplying the two polynomials A(t) and U(t). The degree of the
two polynomials is of order O(N), and we can use the fast fourier transform (FFT) for the
polynomial multiplication with a cost O(N log N) [2].

Let

n-1 n-1

(6.5) A(t)= ai id tjkilid
i=-(n-1) id=--(n--1)
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where ai, ia is an entry of matrix A (d), and )i ia td=l(n + it 1)(2n 1)d-l.
Let

(6.6) U(t) -... uj, jd tvjl ja

jl’-I jd’-I

)d d 1)d-Iwherevj j=[(2n-1 -1]-v4=(jt-1)(2n-
The following algorithm multiplies an N x N d-level recursive block Toeplitz matrix by

a vector in time O(N log N).
ALGORITHM 6.1. Fast multiplication of a d-level recursive block Toeplitz matrix Ad) by

a vector Ud.
1. Construct polynomials A(t) and U(t) from A(d) and Ud), as in (6.5) and (6.6).
2. Compute P(t)= A(t) x U(t)using the FFT.
3. The (i id)th entry of D(d) A (d) X U(d) is di id P, where p is the

coefficient of in P(t), and. (2n- 1)[(2n- 1)d- 1]
2(n 1)

d

it(2n 1)d-l.
1=1

THEOREM 6.1. Algorithm 6.1 multiplies an N x N d-level recursive block Toeplitz matrix
by a vector in time O(N log N).

6.3. Matrix K. Assume that data are given on regular grids in a d-cube in Rd. For
simplicity, assume that N nd where n is the resolution in each dimension. We now show
that matrix K in (4.8) is a symmetric d-level recursive block Toeplitz matrix with blocking
factor n.

For clarity, we only prove it for d 2, and the general case can be proved by induction.
The N data points ti, N, are obtained on regular grids in row order, and we relabel
them as ti, j, i, j 1 n. Matrix K in (4.8) is an nz x nz matrix, or an n n block matrix
with each block in an n x n matrix.

One checks that Ki,k: j,t, the (k,/)th entry ofthe (i, j)th block ofK is on the ((i 1)n +k)th
row and ((j 1)n +/)th column of K, which is Em (ti,k tj,t). The (k + 1, + 1)th entry in
the same block is Em (ti,k+ tj,t+). Since ti,j’s are on regular grids, the Euclidean distance is

Ilti,k--tj,lll Ilti,k+l --tj,l+111, and from (2.9) Ki,k+l;j,l+l Ki,k;j,l, i.e., each block is Toeplitz.
Similarly, gi+l,k;j+l,l gi,k;j,l, and K is a block Toeplitz matrix. One easily checks that K
is symmetric, and we have the following proposition.

PROPOSITION 6.1. Given data points on regular grids, the matrix K in (4.8) is an N x N
symmetric d-level recursive block Toeplitz matrix with blockingfactor n and N nd.

6.4. Computing smoothing splines. Setting the partial derivatives ofthe objective func-
tion in (4.13) with respect to each parameter to zero, we have

(K + NXI)+ T ,
(6.7)

T’7 6,

where I is an N x N identity matrix. Denote S K + NXI. Note that since K is symmetric,
S is also symmetric. Let Kmax be the largest entry in the matrix K. One easily checks that S
is diagonally dominant and hence positive definite if Z > [Kmaxl/r. Then we can solve

3This assumption is not essential. Without it, an approach similar to that in 6.5 can be used with a cost
O(N2(M + log N)). See 6.7.
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the system in (6.7) uniquely, since T is of full rank. We have

(6.8) / (T’S-1T)-T’S-1 and = s-l( T/).
The vectors/ and 7 can be computed in the following six steps:

1. s-;
2. A r’.;

(6.9)
3./ (T’S- T)- f2;

5.

6. Z=S-f4.
Steps 2 and 4 cost O(MN), and step 5 costs O(N). Steps and 6 can be done by solving

the system of linear equations S b. Direct methods such as the Cholesky factorization
cost O(N3) [33]. Instead, we use the conjugate gradient method, which converges in no
more than N iterations [23], [46]. At each iteration, we multiply the coefficient matrix S
by an N vector. Since S K + N)I and K is a recursive block Toeplitz matrix, the cost
is O(Nlog N), using Algorithm 6.1. Therefore, the total cost is O(N2 log N). Step 3 is to
invert an M x M matrix T’S- T with the cost O(M3) and then multiply by a 2M vector
with the cost O(M2). However, to compute T’S-T could be costly. We compute S-IT
first where T is an N x 2M matrix. To compute S- T, we only have to multiply S- by
each column of T. Using the same approach as for steps and 6, we determine that the
cost for each column multiplication is O(N2 log N) and the total cost of computing S-1T is
O(MN2 log N). Finally, the computation of T’(S- T) costs O(M2N). Note that N > > M
and we have the following theorem.

THEOREM 6.2. Given data points on regular grids, smoothing splines in (4.12) can be
computed in time O(MN2 log N).

With a different decomposition of the function space H, smoothing splines can be com-
puted in time O(N2(M + log N)). See item (i) in 6.7.

6.5. Computing interpolating splines. To solve the minimization problem in 5 for the
interpolating spline, we apply Lagrange multipliers and obtain

K+Ko3=0,
(6.10) T’a3 0,

where r3 are the multipliers. It can be easily checked that the coefficient matrix is symmetric
but not positive definite since the trace is 0. Therefore, we may have difficulties in solving the
system by either direct or iterative methods.

Assume that system (6.10) is A b, where the coefficient matrix A is symmetric and of
full rank. Let , A. We solve AZfi for )7 first and then compute , A,. To solve for,, the coefficient matrix A2 is symmetric and positive definite. However, the condition number
of A2 is the square of that of A, and that can cause problems in the numerical computation.

We now use an approach that leads to a system of linear equations with symmetric and
positive definite coefficient matrix without increasing the condition number. This approach
is similar to that in [33] for interpolating splines without discontinuities. However, in the
presence of discontinuities, it is more involved. We shall decompose H differently than in 4
and use different reproducing kernels.
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By the assumption that the matrix T is of full rank, we can find 2M data points such
that the corresponding 2M rows in (4.6) are linearly independent Denote them by {tk, v
1 2M}.

Let 0 (4 4M, qF qM?’). We then find v 0, v 2M such
that

(6.11) v (tk,) 6v,,, v,/z 2M,

where 6,, is the Kronecker delta defined in (2.5).
Let1 ff",o(Ra) := {h 6 HIh(tk,) 0, v 2M}. Similarto the arguments in

2 for smoothing splines without discontinuities, we can define corresponding inner products
on 0 and, respectively, such that H 0 . It can be shown that/ is a reproducing
kernel Hilbert space with the reproducing kernel

(6.12)

2M 2M

Ol(S, t) Em(t s) (P(t)Em(tk. s) v(s)Em(t tk.)
/=1 v=l

2M 2M

+ _,, ,(s)(t)Em(t, t,,),
#=1 v=l

where Em is in (2.9).
By a similar argument as in [33], the interpolating spline can be represented as

(6.13)
N 2M

j=2M+I v=l

Given the N N matrix

(6.14) Q

Ol (q, t) O1 (t, tN)

Ol(tN, tl) Ol(tN, tN)

we delete the kth rows and columns, v 2M, and obtain an (N 2M) (N 2M)
matrix 0. From the selection of kv’s, since 01 is the reproducing kernel of, 0 is the Gram
matrix of (N 2M) linearly independent elements in space H1 and is symmetric and positive
definite.

To obtain cj’s, we substitute the remaining N 2M data values into (6.13):

N 2M

(6.15) Ol (t,, tk;)cj zk, zk,,v(t,), 2M + N.
j=2M+I v=l

Obviously, this is

(6.15’) 0Y ,
where the (N 2M) x (N 2M) matrix Q is obtained from (6.14), and the (N 2M)

2M (tk,) 2M + N.vector a consists of constants ai zk, Y=I z,,,
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Since is symmetric and positive definite, direct methods such as Cholesky factorization
can be applied with a cost O(N3). We can use the conjugate gradient method, which converges
in no more than N 2M iterations. At each iteration, we multiply by a vector. However,

is not a recursive block Toeplitz matrix any more, and additional efforts are needed.
At each iteration, we multiply the (N 2M) x (N 2M) matrix Q by an (N 2M) x

vector f. We can expand into an N x vector " such that the added kth entries are 0, v
2M. We then compute Q; and delete the kth entry of the product, v 2M.

Therefore, if we can multiply the N x N matrix Q by a vector in time O(N log N), we have
the desired complexity.

From (6.14), (6.12), and (4.8), the ith entry of Q; is, N:

(6.16) (QY)i

(6.16a)

(6.16b)
2M N

U=I j=l

(6.16c)
2M N

v=l j=l

(6.16d)
2M 2M N

/=1 v=l j=l

To compute (6.16a), .the approach in 6.4 applies and takes time O(N log N). The second
multiplier of (6.16b) is the kuth entry (KY)k,, which has been obtained from (6.16a). To
compute (6.16c), we precompute Y7=1 (P(tj)xj for all v in time O(2MN), and then compute
all the entries in time O(MN). Similarly, we compute (6.16d) in time O(MN + M2). Since
M < < N, it takes time O(N(M + log N)) to compute Q:. We summarize this in the
following theorem.

THEOREM 6.3. Given data points on regular grids, interpolating splines in (5.1) can be
computed in time 0 N2 M + log N)).

6.6. Three more fast algorithms. We now discuss different fast algorithms for com-
puting the spline estimates. However, they are only applicable for smoothing splines. These
approaches use different existing fast algorithms for block Toeplitz matrices and take ad-
vantage of the recursive block Toeplitz structure of the matrices involved, yielding a cost
O(Na(M + log N)). We describe the algorithms infor..mally.

To compute the smoothing splines, we compute/3 and 7 in (6.8). The dominant cost is
to compute S-1T where T is an N x 2M matrix and S K + N)I. From Proposition 6.1,
K is a symmetric d-level recursive block Toeplitz matrix, I is an identity matrix, and . is a
sufficiently large constant so that S is positive definite. Therefore, the N x N matrix S is a
symmetric and positive definite d-level recursive block Toeplitz matrix with blocking factor
n and N na.

We first discuss inversion of a recursive block Toeplitz matrix. We apply a classical
algorithm [3] for block Toeplitz matrix inversion with a cost of n2 block operations where
each block is a (d-1)-level recursive block Toeplitz matrix. Among the block operations,
inversion and multiplication have a dominant cost. We apply the algorithm recursively.
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We now show by an induction on the level of recursion d that inversion takes time
O(n2d log na-). For an n n Toeplitz matrix, inversion takes time O(n2) and multiplication
O(ne logn) [21]. For d 2, ne block operations are needed where each block is an n n
Toeplitz matrix. Since block multiplication cost dominates, the cost to invert a 2-level recur-
sive block Toeplitz matrix is O(n4 log n). Suppose that inversion of a (d-1)-level recursive
block Toeplitz matrix takes time O(n2(d-l) 1ogn(d-1)-l), d > 2. We now show that inversion
of a d-level recursive block Toeplitz matrix costs O(n2d log nd-). Indeed, it takes n2 block
operations where each block is a (d-1)-level recursive block Toeplitz matrix. By the induction
hypothesis, inversion of such a block costs O(n2(d-1) log nd-2). It costs O(nd-1 log nd-l) to
multiply such a block by a vector if we use Algorithm 6.1, and therefore a multiplication of
two such blocks costs O(n2(d-1) log nd-1), which dominates the inversion cost. Therefore,
the total cost is O(n2d log nd-1)). Since N nd, we have the following proposition.

PROPOSITION 6.2. It takes time O(n2d log ha-l), which is O(N2 log N), to compute the
inversion ofa nonsingular d-level recursive block Toeplitz matrix with blockingfactor n.

The above result is used for the following three approaches to compute S-1T. Recall that
T is an N x 2M matrix and that S is a symmetric and positive definite d-level recursive block
Toeplitz matrix with blocking factor n and N nd.

(i) Inversion. The simplest method is to compute S- in time O(N2 log N) and then
compute S-1T in time O(MN2). Therefore, using a fast inversion of recursive block Toeplitz
matrices, S-1T and hence the smoothing spline in (4.12) can be computed in time O(NZ(M
log N)).

(ii) LU decomposition. Suppose that the ith column of T is . Then S-1T can be
obtained from S-1 if, 2M. Note that S-lt. can be computed by solving the
system of linear equations Sa] . We compute an LU decomposition of S LU where
L and U are lower and upper triangular matrices, respectively. Then we can solve the system
LUi by back substitutions in time O(N2), 2M.

For a fast LU decomposition of S, we use the algorithm in [39] and the cost is n 2 block
operations, of which inversion and multiplication have a dominant cost. Since each block is a
(d-1)-level recursive block Toeplitz matrix, from Proposition 6.2, each block inversion costs
O(n2(d-1) log nd-z) and multiplication O(n2(d-) log nd-1). Therefore, the total cost of an
LU decomposition is O(n2d log rid-l), which is O(N2 log N).

In summary, using a fast LU decomposition, S-IT and hence the smoothing spline in
(4.12) can be computed in time O(NZ(M + log N)).

(iii) QR decomposition. Instead of LU decomposition, QR decomposition of S can
also be used to solve S . We first decompose S T where 7" is an orthogonal matrix
and 7"4. is an upper triangular matrix. To solve the system S g, we have TT g, and
7a,. T’ where T’ is the transposition of T. We first compute T’ in time O(N2) and then
a back substitution gives

A fast QR decomposition can be obtained using the method in [44], which also requires
n2 block operations. Similarly, each block operation costs O(n2(a-l) log na-) and the total
cost of a QR decomposition is O(n2a logna-1), which is O(N2 log N).

In summary, using a fast QR decomposition, S-T and hence the smoothing spline in
(4.12) can be computed in time O(N2(M + log N)).

For interpolating splines, the coefficient matrix in (6.15’) is obtained by deleting 2M rows
and columns from matrix Q in (6.14). On the other hand, matrix Q is not block Toeplitz either;
it is obtained by changing every entry of a block Toeplitz matrix; see (6.12). It seems to be
difficult to compute the interpolating splines from (6.15’) by applying known fast algorithms
on block Toeplitz matrices.

To conclude this subsection, we comment that the numerical stability of these three fast
algorithms is still not well understood. Furthermore, their application relies heavily on the
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block Toeplitz structure and cannot be used for solving systems as in (6.15’) where each entry
of the block Toeplitz matrix is perturbed. On the other hand, the first approach works since
we make an adjustment after each iteration and we can still take advantage of the recursive
block Toeplitz structure that is "buried" in the coefficient matrix in (6.15’).

6.7. Comparisons and remarks. We now briefly compare different techniques and com-
ment on numerical computations.

(i) Space decomposition. We use two decompositions of the function space Hn
for smoothing splines, H H0 H Ha, and for interpolating splines, H H0 ) .
As commented earlier, we cannot use the first decomposition to compute interpolating splines,
since the resulting coefficient matrix of the linear system is not positive definite. However, it
can be easily checked that we can use the second decomposition to compute the smoothing
splines. As a result, similar to Theorem 6.3, we have the following theorem.

THEOREM 6.2’. Given data points on regular grids, smoothing splines in (4.12) can be
computed in time 0 N2 M + log N)).

Therefore, we can use the second decomposition for both smoothing and interpolating
splines. We stillpresent the first decomposition for the smoothing splines because it suggests
a different and interesting approach by itself, and, furthermore, there is no need to compute

tk and q as in (6.11). More importantly, the resulting coefficient matrix is a recursive block
Toeplitz matrix and the other three fast algorithms can also be applied with the same cost as
in Theorem 6.2’.

(ii) Preconditioning and numerical stability. The first approach only uses the FFT,
which is numerically stable. The multiplicative constant in the FFT is 2, and therefore the
multiplicative constant in the algorithm is small. On the other hand, the numerical stability of
the other three fast algorithms on block Toeplitz matrices is still not well understood.

In the first approach, at each iteration we multiply a block Toeplitz matrix by a vector.
We can take advantage of the structure of the coefficient matrix and precondition the system
[9] to significantly accelerate the convergence 16].

(iii) Splines without discontinuities. As special cases, the approaches used here can also
be applied to the computation of splines without discontinuities, and we obtain algorithms with
a cost O(N2(M + log N)).

(iv) More on cost. We approximate the size of discontinuities by a low-degree (piece-
wise) polynomial, and M is the dimension of the linear space of the (piecewise) polynomials.
Typically, M is small and can be treated as a constant. More precisely, ifM 0(log N) where
N is typically large, then the cost of computing the splines is O(N2 log N).

Also note that in our analysis we treat the dimension d as a constant.

7. A residual discontinuity detector. We assume that we know the location and type
of discontinuities when we compute the splineso Usually this is not the case in practice.
Given a set of noisy sampled data, to locate the discontinuities is itself a complicated process.
Discontinuity detection is an old but still not well-studied problem. A number of approaches
have been proposed in statistics literature, such as statistical estimation methods. The problem
is studied mostly in image analysis in terms of edge detection. We do not intend to survey
the literature here. Interested readers are referred to [13], [32], [24], [7], [41], [28] and the
references therein and recent issues of [25], [36], [37] among others.

We propose a discontinuity detector in high dimensions based on a residual analysis.
Given an input function f, we smooth f by convolving it with a kernel (typically bell-

shaped) function G F f’G, where * is the convolution operator. The difference of
the original function and the smoothed function is called the residual: R f- F. If the
input function has a discontinuity at to Rd, then with some assumptions the residual has
a zero-crossing exactly at to, i.e., the residual R has a sign change across to. We study the
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correspondence between the discontinuities of the input function f and the zero-crossings of
the residual R. We state the results in Theorem 7.1 and leave the proof for the Appendix.

DEFINITION 7.1. A function f Rd --+ R has a discontinuity at to if (i) there is an open
ball B, centered at to; (ii) there is a separating hypersurface, which passes through to and
which partitions B into two connected open regions B+ and B_; (iii) f(t) is continuous in

B+ and B_, respectively; and (iv) f(to+) f(to-) O. The difference is the size of the
discontinuity.

We use f(to+) to denote the limit of function f when is approaching to in regions B+
and B_, respectively. More specifically,

f(t0+)= lim f(t) and f(t0-)-- lim f(t).
t--+ to,teB+ t--- to,t B_

THEOREM 7.1. Suppose that f(t) has a discontinuity ofsize at to

(7.1) --If(to+) f(to-)l > O.

Assume that a kernel G supports on a ball D, which is centered at the origin, and that D
is sufficiently small such that D cc_ B to, where denotes a translation of ball B. Let
D_ D f3 (B_ to) and D+ D f3 (B+ to). Furthermore, assume that the kernelfunction
G(t) is continuous, symmetric, positive definite, and normalized:

(7.2) fz G(t)dt 1.

Let F be the convolution ofthe inputfunction with the kernel G

(7.3) F(t) f*G(t).

Then the residual

(7.4) R(t) f(t) F(t)

has a zero-crossing at to, i.e., R(to-) R(to+) < 0, if

(7.5) 6 >
L(to)

min {fo_ G(t)dt, fz+ G(t)dt}’
where

(7.6) L(to) fz If(t + to)- f(to-)lG(t)dt + fz If(t + to)- f(to+)lG(t)dt.

The condition in (7.5) shows that if the size of the discontinuity is large enough then there
is a zero-crossing of the residual, which corresponds to the discontinuity. From a different
perspective, for a discontinuity of a fixed size the right side of (7.5) has to be small enough
so that the discontinuity can be represented by a zero-crossing in the residual. This implies
that the numerator L(to) should be small. From (7.6), L(to) is an estimation of the (weighted)
sum of the deviations of the input function f on both sides of the discontinuity to. Therefore,
the input function f cannot vary too drastically on each side of the discontinuity, particularly
when it is getting close to the discontinuity. On the other hand, the denominator should not
be too small. Consider the two extreme cases.
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Case (i). fz_ G(t)dt , fz+ G(t)dt , . For example, this case occurs when the sep-
arating hypersurface is a hyperplane in D. Then the right side of (7.5) obtains a minimum
value.

Case (ii). fz_ G(t)dt , 0 or fz+ G(t)dt , O. For example, this case occurs when
the separating surface forms an angle of two hyperplanes of degree almost zero. Then the
right side of (7.5) approaches infinity. This implies that if discontinuities form a smooth
hypersurface of low curvature then they are easier to detect and if they form a sharp corner
then detection becomes very difficult. This phenomena have been observed in edge detection
implementations as a piece of folklore without adequate explanations.

Note that condition (7.5) depends on to, where the discontinuities occur. When function

f satisfies a Lipschitz condition on both sides of the discontinuity:

If(t + to-)- f(t0-)l < L fort 6 D_

and

If(t + to+) f(t0+)l < L fort e D+,

which one can easily check using the following corollary.
COROLLARY 7.1. When function f satisfies a Lipschitz condition on both sides of a

discontinuity with a Lipschitz constant L > O, if

min{fz G(t)dt, fz/ G(t)dt}’

then the residual in (7.4) has a zero-crossing at the discontinuity.
Based on either Theorem 7.1 or Corollary 7.1, a preliminary scheme for discontinuity

detection can be proposed, i.e., find all zero-crossing points for the residual function R(t).

8. Conclusion. We study thin plate splines in high dimensions, which preserve and in-
corporate discontinuities, using a reproducing kernel Hilbert space approach. To cope with
the formidable cost of computation, we propose fast algorithms, which are of an order of
magnitude faster than conventional methods. For the detection of discontinuities, we discuss
a residual detector in high dimensions. To conclude this paper, we mention briefly several
issues that remain to be resolved.

We study splines, which incorporate function value discontinuities. We further assume
that discontinuity size is well approximated by low-degree piecewise polynomials. In gen-
eral, when there are derivative discontinuities and their size can be arbitrary functions, the
construction of the splines is more involved. We will discuss this in a forthcoming paper.

We derive fast algorithms based on an assumption that data points are on a regular grid.
This is typical in applications such as image processing and analysis. For irregularly distributed
data points, the coefficient matrices of the corresponding systems are not well structured, and
to obtain fast algorithms is challenging.

We discuss briefly a discontinuity detection method from a residual analysis. Discontinu-
ity detection itself is a complicated process and is still an unsolved problem, especially in high
dimensions and for derivative discontinuity detection. Most of the discontinuity detectors are
in one dimension and usually do not have any theoretical justification. Our method is in high
dimensions with a mathematical justification. However, from practical point of view, much
work has to be done to make it useful. For instance, it is essentially a high-pass filter [8], and
the filter response (residual) could be noisy. This has been observed in early works on imple-
mentations of residual analysis in one dimension 10]. Postprocessing such as thresholding is
needed for eliminating spurious responses [7], [29].
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Appendix: Proof of Theorem 7.1. Without loss of generality, assume that f(to-) <
f(to+). We show that if inequality (7.5) holds then there is a zero-crossing of the residual R
at to, or equivalently,

(A.1) f(to-) < F(to) < f(to+).

Denote L_(t) If(t) f(to-)l for B_ and L+(t) If(t) f(to+)l for B+.
For B+,

f(to+) L+(t) < f(t) < f(to+) 4- L+(t).

Multiplying both sides by G(t to) and integrating over region B/, we have

f(to+) G(t -to)dt ,L+(t)G(t to)dr
+ +

f. f(t)G(t to)dt
+

<_ f(to4-) /s G(t to)dt 4- f. L+(t)G(t -to)dt.
+

Since G supports on D and D _c B to, by changing variables, we get

(A.2)

f(to+) fo G(t)dt- fo L+(t + to)G(t)dt
+

< fo f(t + to)G(t)dt
+

< f(to+) fo G(t)dt + fo L+(t + to)G(t)dt.
+ +

Similarly,

(A.3)

f(to-)fD- G(t)dt-fD_ L_(t4-to)G(t)dt

<- fo_ f(t + to)G(t)dt

< f(to-)fD_ G(t)dt + fo_ L_(t + to)G(t)dt.

Adding (A.2) and (A.3),

(A.4)

f(to-) fD G(t)dt + f(to+) fD G(t)dt- L(to)
+

<- fD f(t + to)G(t)dt

< f(to-)fo G(t)dt + f(to+)fo G(t)dt + L(to),
+

where L(to) is given in (7.6).
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Subtracting f(to-) from the first inequality of (A.4), since fo_ G(t)dt + fo/ G(t)dt
1, 8 f(to+) f(to-), and G is symmetric, we have

fo G(t)dt L(to) < F(to) f(to-).
+

Therefore, F(to) > f(to-) if

(A.5) d; >
L(to)

fo/ G(t)dt

Similarly, subtracting f(to+) from the second inequality of (A.4), we have F(to) <

f(to+) if

(A.6) ; > L(to)

fD_G(t)dt"

The theorem follows directly from (A.5) and (A.6).
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ON THE PARALLEL IMPLEMENTATION OF JACOBI AND KOGBETLIANTZ
ALGORITHMS*

JORGEN GOTZE

Abstract. Modified Jacobi and Kogbetliantz algorithms are derived by combining methods for modifying
the orthogonal rotations. These methods are characterized by the use of approximate orthogonal rotations and
the factorization of these rotations. The presented new approximations exhibit better properties and require less
computational cost than known approximations. Suitable approximations are applied together with factorized rotation
schemes in order to gain square root free or square root and division free algorithms. The resulting approximate and
factorized rotation schemes are highly suited for parallel implementations. The convergence of the algorithms is

analyzed and an application in signal processing is discussed.

Key words. Jacobi algorithm, Kogbetliantz algorithm, parallel algorithms, approximate and factorized rotations,
convergence

AMS subject classification. 65F15

1. Introduction. For a real m x n (m > n) matrix A the decomposition

A UI2Vr (UrU I, VrV I, r diagonal)

is called the singular value decomposition (SVD) of A. For a symmetric A (Ar A) the
corresponding decomposition

A WAWr (WrW I, A diagonal)

is the eigenvalue decomposition (EVD) of A. The methods of choice for the fast parallel
computation ofthese decompositions are the Kogbetliantz (SVD) and Jacobi (EVD) algorithms
[3], [23], since they exhibit a significantly higher degree ofparallelism than the QR-algorithm.

It is well known [6], [20], [8], [5], [21] that it is advantageous to apply the Kogbetliantz
algorithm (KA) to the triangular matrix R obtained fromAby a preparatory QR-decomposition
A QR. This triangular Kogbetliantz algorithm (TKA) as well as the Jacobi algorithm (JA)
only have to work with triangular matrices, since the upper triangular structure of the initial
matrix (upper triangular part (D + T) ofA Tr + D + T for the JA; upper triangular matrix
R of the QR-decomposition A QR for the TKA) can be preserved during the algorithns.

According to this upper triangular structure one sweep of the JA and the TKA can be
implemented on an upper triangular array ofprocessors with nearest neighbor interconnections
[24], [6]. The different parallel implementations of the TKA (JA) are distinguished by an

algorithm for evaluating the rotations and by an ordering scheme for the rotations. Here, we
are mainly interested in deriving efficient algorithms for evaluating the rotations. For ordering
schemes, which enable an efficient parallel implementation on multiprocessor arrays with
nearest neighbor interconnections, we refer to [23], [6].

In this paper new JAs and TKAs are derived by combining methods for modifying the
evaluation of the orthogonal rotations. These methods are characterized by the use of approx-
imate (but still orthogonal) rotation schemes and the use of factorized rotation schemes for
gaining square root free [11], [12] or square root and division free [14] rotations.

*Received by the editors November 25, 1991; accepted for publication (in revised form) September 20, 1993.
This work was performed while the author was with the Department of Computer Science, Yale University, New
Haven and was funded by a grant of the German National Science Foundation.

tlnstitute of Network Theory and Circuit Design, Technical University of Munich, Arcisstr. 21, 80333 Munich,
Germany (jugo@nws. e-technik, tu-muenchen, de).
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The possibility of using approximate rotation schemes has already been investigated for
the sequential case in [29], [10], [32]. Since in a parallel environment the arithmetic is
much more costly than other components (e.g., storage access), Modi and Pryce [25] and
Charlier, Vanbegin, and van Dooren [6] have shown that the use of approximate rotations
gives worthwhile speedups on parallel computers.

The second method for modifying rotations is the use of factorized rotations [11 ], [12],
14]. By applying these factorized rotation schemes together with suitable approximations a

further speedup can be achieved and the hardware requirements of the processor arrays can
significantly be decreased. For example, it is possible to obtain a square root and division free
TKA/JA (this is not possible if the factorized rotation scheme is applied to the exact rotations
[27]), which is essential for regular processor arrays (e.g., application specific integrated circuit
(ASIC)-based processor arrays).

In 2we only consider the JA, since the results for the JA can easily be extended to the TKA.
A brief review of the JA is given and the possibility of using approximate rotation schemes
is described. New approximations are presented, which exhibit better properties and require
less computational cost than the known approximations in [32], [25], [6]. The factorized
rotation schemes for gaining square root free or square root and division free rotations are
also reviewed. Then, the approximate rotation scheme and the factorized rotation scheme
are combined for obtaining a procedure for the design of square root free or square root and
division free algorithms. This section ends with the comparison ofthe different Jacobi rotations
concerning their required operations and their suitability for a parallel implementation.

In 3 it is shown that all the results for the JA can be extended to the TKA. The same
approximations can be used and the factorized rotations can be derived in the same way. It is
even possible to show that using the same approximation for the TKA as for the JA results in
a better overall performance of the TKA compared with the JA.

In 4 the global and the ultimate quadratic convergence of the TKA and the JA with
exact/approximate rotations is considered. In 5 it is shown that the approximate and factorized
scheme is particularly advantageous for SVD-based subspace tracking algorithms [9], [26].
Section 6 gives some concluding remarks.

2. The Jacobi algorithm.

2.1. Basic algorithm. The Jacobi algorithm works by applying a sequence of orthogonal
similarity transformations to the symmetric matrix A: A( A.

For k 0, 1, 2

(1) Af+) JpqA(k)Jpq.
We assume throughout this paper that in virtue of a parallel implementation the index

pairs (p, q) are chosen in an ordering scheme equivalent to the cyclic-by-row scheme and the
rotation Jpq includes the required row (left-sided rotation) and column (right-sided rotation)
exchanges (see 3 of [6] for details), i.e.,

1

T(2) Jpq Jpq
COS tk,

s sin

0 1
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Since the A(k) are symmetric, they are completely determined by their upper triangular
part, such that only one triangle of A(k) must be processed and the off-diagonal quantity of
A can be measured by

(3)
2 a!)

2

i=1

Since Jpq is an orthogonal transformation, i.e., and one similarity
transformation (1) affects only rows and columns p and q ofAre), it is easy to verify [12] that

2 (k+l) 2
(4) [S(k+l’]2 Is(k)]2- [(a(p)) --(apq ) ].

Obviously, the maximal reduction of S(k) is obtained if a{*+l) 0 after the similaritypq
transformation (1). This can be achieved by the following cosine-sine pair(c, s), which defines
the rotation (2):

sign (rj) a() a()pp qq(5) tex tan (pk with "t’j (k)
IrjI + V/1 + Vj

2 Zapq

1
(6) c s texC.

V/1 + L
In the subsequent sections a rotation Jpq defined by (c, s) of (6) is called an exact Jacobi
rotation.

2.2. Approximate rotation schemes. For the reduction of S) it is not necessary to com-
pute the exact Jacobi rotation, but it is sufficient to compute (c, s), such that the orthogonality
is preserved and

(7) la) Idol I,pql with0<ldjI <

holds. Therefore, the reduction of [s(k)] 2 is a factor (1 dj2) less than the reduction by
the exact rotation. A Jacobi rotation with an approximate computation of (c, s) is called an
approximate Jacobi rotation and is described by Jpq.

Since the orthogonality must be preserved for the approximate rotation, it is convenient
to establish the approximations for tan q s/c instead of (c, s). Since (1) yields

we obtain

a(k+i) djap? with dj c2 s2 25jcs,pq

(8) Idj(t, z’j)l--
2zjt 2

l+t2

The maximal value of IdjI is a measure for the badness of the approximation. It is easy
to verify that the exact Jacobi rotation yields dj(tex, rj) 0.

In the following the known approximations (KA) of [32], [25], [6] are discussed and some
new approximations (NA) are derived. The formulae for the tangent of the rotation angle of
the approximations are summarized in Table 1.
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TABLE
Formulaefor the tangent ofthe rotation angle and accuracy ofthe corresponding approximations.

Approximation Accuracy

tKA l+ladl

tKA2 rj

ojtKA3

oj(l+altrJI)tK .---:77, ,-:-- 4 +
cplOJl-UoTl

sign (rj) if lajI > l+4rtKA5 4aj

4_oj
if IrjI < 1+4

sign(rj)
i/lrjl+O:5r3tNAI oj

if IrJI <
if IrJI > (12rjI < 1)

sign(crd) iflrdl >tNA2 o’j if laJI <

sign(aj) if laJI > 1.3982
tNA3 l_Ja if Io’jI < 1.3982

sign(rd)

tNA4 r.rd with r 1/2
r 2/3
r=l

if laJI 2
if IcrjI >
if IrJI > 0.5
if IJI < 0.5

sign(orj) if laJI 2

t/a5 1/2aJ if laJI >
o-j--- if laJI <

IdjI < 0.21

IdjI <_

Idjl

IdjI < 0.25

IdjI <_ 0.6036

Iddl < 0.035

Iddl < 0.5

IdjI <_ 0.3576

IdjI < 0.25

IdjI -< 0.25

the KAs of [6] [25] are given by txA1 (formula of [25], approximationWith crj j
2 of [6]), tK,Z (formula 3 of [25], approximation 1 of [6]), and tKA3 (approximation 3 of [6]).
KA1 yields Idj] < 0.21. However, tK,l does not converge to tex for [z’jI --+ oo, although
dj(l’tSjI 0) -+ 0 holds (i.e., ultimate quadratic convergence), tK2 and tK3converge to tex
for IrjI o and therefore they yield a faster convergence than txAl as IrJI increases during
the algorithm. However, only IdjI < 1 can be achieved, because of the bad approximation for

IrJI--+ 0 (tKA2 Xg, tKA3 0 while tex 1).
A way to circumvent these problems is to distinguish between small and large values of

2IvJI. Approximation 3 of [6] can be obtained by using the approximation /1 + x2 + ix
according to the Taylor series /1 + x -[- 1/2X2 4X +’’ However, this approximation
is only accurate if Ix[ < 1. Therefore, the approximation is bad for [2rj[ > 1. But, if we
apply this approximation to

sign (rj) 2crj
(9) rex

IrJI + v/i +rj2 +V/1 +4rj2

;1 lye) and t2o t / 4crJ 1 + 2crj2) respectively, wefor IrJI < 1 ( + rJ + i
obtain tNA1 for which (8) yields Idj(tNzl, rj)l < 0.035. This NA1 requires one square root
less than the exact formula (as well as KA3) and requires a comparison (KA3 requires no
comparison but has a much worse IdjImax).
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Further NAs can be derived in a similar way. Reducing the computational cost means an
increase ofthe maximal value of IdjI but the following NAs still provide the same advantages as
NA1 in comparison to the KAs, i.e., [djlmax (( and tNA "-+ tex for Its[ 0 and [rjI oz.
The easiest way to fulfill these conditions are the approximations NA2 and NA3. NA3 is
slightly better than NA2, since for small IrjI KA3 is a better approximation than KA2. There-
fore, it can be used earlier as Irl decreases during the algorithm. Since [dj(sign(crj), crj)l

21rjI IrJI holds, this is also the reason for Idj(t3, rj)l < [dj(tNA2, trj)l. Better approx-
imations (smaller [djlmax) can easily be obtained by inserting more cases in NA2 and NA3.
This results in NA4 and NA5, respectively.

Until now we have omitted KA4 (tKA4 is formula 2 of [25]) and KA5 (try5 is given in
[32], p. 276) for the following reasons. KA4 requires greater cost and has a greater [djlmax
than KA1. Therefore, it is not discussed further in [25] and it has already been omitted in
[6]. Wilkinson [32] has already used different cases for his approximation KA5 (as well as
all NAs). However, it is easy to see that KA5 is a worse approximation and requires greater
computational cost than NA2.

In Table 2 the average number of sweeps required by 10 random matrices is shown for all
the above mentioned approximations for n 10, 20, 30, 40. For all our numerical examples
the algorithms are terminated if S(k) < 10-2S(). The better performance of the NAs in
comparison with the KAs is shown in Fig. (Fig. l(a): NA2 and NA4 in comparison with
KA2 and the exact rotation; Fig. (b): NA3 and NA5 in comparison with KA3 and the exact
rotation). The NAs require less sweeps and less computational cost than the corresponding
KAs.

TABLE 2
Required average number ofsweepsfor 10 random matrices per n.

ex. KA1 KA2 KA3 KA4 KA5

10 5.9
20 6.4
30 7.0
40 7.2

6.8 7.1 6.5 7.0 7.0
7.6 9.4 7.4 7.7 8.6
8.0 9.9 7.7 8.2 8.8
8.3 9.7 8.5 8.3 9.5

NA1 NA2 NA3 NA4 NA5

5.9 6.3 6.0 5.9 5.9
6.4 7.0 6.8 6.8 6.8
7.0 7.5 7.0 7.2 7.0
7.1 8.0 7.3 7.5 7.4

/&+ free
NA4 NA5

6.0 6.1
6.9 6.9
7.1 7.0
7.4 7.3

Furthermore, in the case of clusters of eigenvalues, for which IrJI remains small during
the algorithm, it is essential that not only IdjI becomes small as IvJI increases during the
algorithm but that the approximation is also good for small values of IvJI. These requirements
are fulfilled by the NAs. Therefore, for clusters of eigenvalues the NAs yield much better
results than the KAs. As an example in Table 3 the required number of sweeps is shown for
the Hilbert matrices of dimension n 10, 20, 30, 40.

TABLE 3
Required number ofsweepsfor Hilbert matrix ofdimension n.

n Ex. KA1 KA2 KA3 KA4 KA5

10 5 8 8 9 8 8
20 5 8 7 10 9 8
30 5 9 10 13 8 10
40 6 8 8 10 10 12

NA1 NA2 NA3 NA4 NA5

5 6 7 9 7
6 6 7 7 8
6 7 7 9 6
6 7 7 7 7

/&/ free
NA4 NA5

7 6
8 6
8 7
8 7

2.3. Factorized rotation schemes. Factorizations of Givens rotations [11 have been
used for the parallel implementation of the QR-decomposition (QRD) by several authors ],
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matrix dimension n

11,

o 9

o 8

5

/"’i ,,
..’"".’’"

t. ’/..2"/’’...z exact

.t[qf" KA3

i NA5

/ (b)

matrix dimension n

FIG. 1. Average number ofsweepsfor 10 random matrices per n.

since the implementation of the square roots can be avoided. Recently, a square root and
division free Givens rotation has been presented [14], such that a processor array for the
QRD only requires additions and multiplications and a distributed computation of the rotation
factors is possible 15]. These factorized rotation schemes can also be applied to orthogonal
similarity transformations [27], [16]. For that purpose the matrices A(k) are factorized as
follows:

(10) A’’) [z(k)] -1/2 y(,)[z(k)]-l/2
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with Z(’) diag(zk)). With a further diagonal matrix Z(k+l) diag(zk+l)) a rotation Kpq
(no matter whether it is a Givens or a Jacobi rotation) can also be described in factorized form:

(11) Kpq [z(k)]l/2
The application of the factorized rotation scheme to the similarity transformation A(k+l)

KpqT. A(k) Kpq leads to the reduction of the square roots by one half if Kpq is an exact Jacobi
rotation [27] and to the complete avoidance of the square roots [27] or of the square roots and
the divisions 16] if Kpq is a Givens rotation. A Givens rotation is distinguished from a Jacobi
rotation, since different formulae are used to compute their rotation parameters. Contrary to
Givens rotations, the exact Jacobi rotations cannot be factorized, such that square roots or
square roots and divisions can completely be avoided. However, if the factorized rotation
schemes are applied to suitable approximations of the exact Jacobi rotation, it is possible to
gain square root free or square root and division free Jacobi rotations.

The factorization of Kpq -s c according to (11) yields
c s

(12)

or

-1/2

z() (1 -I-t2) 1
V z"

1/2

(13)

Kpq [ Z(qk) (2t -’}-

z(pk) (c2t + s?) ct sta]z_) z(qk)
V

1/2

depending on st/ct and (ct, St), respectively (note that S and C are the nominator and
the denominator of the formula for the tangent t, i.e., they are different from c and s of the
rotation). These factorized rotations result in a square root free or a square root and division
free factorized rotation if the matrix elements of the matrices Kpq and Zk+) can be computed
without square roots in (2.3) and without square roots and divisions in (2.3).

(/o (k) (k).Now, the formula for the tangent of the rotation angle f(aij st(aj )/eta0
_(k) (k). / (k) (k)

must be adapted to the factorized representation by using uij Yij //zi zj which is the

number description of the matrix elements ai( according to (10). This yields

() zJ))St tYij Z}k)
(k) ZlC) _(k)

cttYij ,zj

If st tYij zj s tYij / z zj and the computation of s tYij zj )
(k) zk), _(k)and ct t.Yij zj only requires additions and multiplications, the square root free rotation

is defined by

c, with A -detKq(14) Kpq
Zq(k+l) Z(pk) A

ct
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and the square root and division free rotation by

--S;" Z(qk) C Z(pk+l,: Z(qk)" A with A -detKpq.(15) Kpq
c, s;. Z(pk, Zq(k+l) z(pk, A

This provides an easy scheme for deriving square root free or square root and division free
rotations from the formula for the tangent of the rotation angle (e.g., for the Givens rotation,

_(k) (), / (k) () ,,() /.(k)(k) (k)z().where a(k)/a (k) one obtains with uij Yij // gi gj that ,pq V’p q /Y) qpq pp

i.e., s pqV(k), ct ppv(k) z for (14) and (15), respectively).
For all factorized schemes there is a problem with the growth of the matrix elements.

To overcome this problem the scaling procedure of [14] can be applied to (14) and (15),
respectively. This scaling procedure bounds the growth ofthe elements ofthe diagonal matrices
Z(k), such that zk)

6 [0.5, 2] for all k. It only requires two single shifts and four additions of
exponents for scaling K’pq"

2.4. Factorized approximate rotations. Square root free or square root and division free
JAs can be derived by combining the approximation and the factorization of the rotations. For
the KAs the formula for the tangents of the rotation angles can be described in an appropriate
form only for KA2 and KA3. For KA1 a factorization without square roots is not possible,
since

tKA1

s’ g/Z(p)Z(qk)tKA1

CtKA1

Although stK, s’t, /z))z(q) holds, the computation ofctA, requires a square root operation.
For KA2 and KA3 one obtains

tKA2
StKA2 Pq

_(1 _(k)CtKA2 Upp Uqq

(k)v/z(pk’z(qk’q

(k) (k) .(k)
Yb z4 yqq zq

_(k CtKA2

tKA3

z zo +tyzo 4
such that square root free Jacobi rotations are obtained by (14) and square root and division
free Jacobi rotations by (15).

For the NAs different formulae for the tangent are required in dependence of the value
of IvJI, whereby it must be possible to describe each formula in an appropriate form. The
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formula for rjI < 1 of NA1 enables no square root free factorization and therefore NA1
likewise not. All other NAs (NA2-5) are composed of KA2, KA3, and tl sign(trj).
Therefore, the remaining problem, for deriving square root free or square root and division
free Jacobi rotations for the NA2-5 is that tl sign(trj) cannot be factorized such that square
roots are avoided.

In order to overcome this problem the approximation for the first cases of NA2-5, i.e.,
tl sign(trj), is replaced by the following approximation:

/ (k) (k)(16) tfl sign(o-j), p. /zb z
With sts p. sign(trj) and cq (14) and (15) yield the corresponding factorized rotations.

Since the scaling procedure guarantees zk> 6 [0.5, 2] for all k, Itfll [0.5, 2] holds. Since
this approximation tfl is only used for IvJI < b (e.g., b 0.5 for NA2), the following bounds
for the maximal value of IdjI can be given:

(17) IdJ (tfl, rj)[ _< 0.6, (p 1),

(18)
p 0.5 if z(k)z() > 2,p q

if <

,o 1 otherwise.

(18) requires additional comparisons for determining p. However, these comparisons can be
included, if they do not delay the data flow of the processor array (i.e., if the other formulae
of the approximation are more complex, e.g., KA3). Furthermore, for NA4 and NA5 the
difference between IdjImax 0.25 for IvJI > b and IdjImax for IvJI < b is reduced (1/2 instead
of 0.6).

Although ItNl for IrjI 0 no longer holds, the NA2-5 with tfl instead of tl
exhibit the same favorable properties as the NA2-5 of 2.2, since ]djlmax << 1 still holds and
the approximation is still better than the KAs. The last two columns of Tables 2 and 3 show
the required number of sweeps of the square root and division free versions of NA4 and NA5.
The required number of sweeps is about the same as for the nonfactorized forms of NA4 and
NA5.

Finally the comparison for determining the different cases, i.e., 21rsl IrjI >_ b, must
also be referred to the factorized scheme

(19) ItrJI > b (yp(kq)) 2 P"(k)"(k)’q > b2 (fppq,(k),.,(k) (k),,,(k)) 2--)’qqp

Thus, the JAs based on the approximate rotation schemes, which are suitable for the
factorized rotation schemes (KA2, KA3, NA2-5 with (17) or (18)), can be implemented
requiring only {+, ,, /} and {/, }, respectively. At the end of the JA (k kend) the results

(kend) (kend)must be refactorized. The eigenvalues are obtained by )i Yu /zi which requires n
divisions. The eigenvectors require no refactorization. They are merely not normalized but
the square of their length is contained in Zknd). Since the refactorization is only required at
the end of the JA, the corresponding operations can be transferred to the host computer and
must not be implemented on the multiprocessor array.

2.5. Comparison. Since the evaluation of the rotations is a more complex task than the
pre- and postmultiplication of the rotations, which requires (8+, 16,) for the two 2 x 2 matrix

multiplications, the hardware requirements and the data pulse frequency of a regular (e.g.,
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systolic) processor array are determined by the computational cost for the evaluation of the
rotation.

In Table 4 the required operations for the evaluation of the different Jacobi rotations
are shown. For the approximate rotations, which require different cases, the case with the
greatest computational cost is indicated and the required operations for this case are specified.
Since in general the operations +, /} are (much) more expensive than the operations {+, },
the number of the former operations is minimized for all rotations. Therefore, instead of
computing st/ct and then (c, s) with according to (6), the parameters (c, s) are computed
with ct and st as follows:

1
(20) c s st c

+
(e.g., computing the exact rotation according to (5), (6) requires (4+, 4., 3+, 2/) [25], while
using (20) only requires (4+, 5., 2/, 2/)). The exponent operations for the scaling of the
factorized schemes are not specified. We assume that the processors contain a simple unit for
the exponent manipulations (single shifts and additions), which can be executed in parallel to
the other operations.

TABLE 4
Required operations ofthe different Jacobi rotations.

Rotation Required operations

Exact 44- 4, 2+ 2/

KA1
KA2
KA3
KA4
KA5

NA (case 1)
NA2 (case 2)
NA3 (case 2)
NA4 (case 2)
NA5 (case 3)

KA2,NA2
NA4

KA3,NA3,NA5
/and + free
KA2,NA2
NA4

KA3,NA3,NA5

34- 3, 2+ 1/
24- 3, 2+ 1/
34- 4, 2+ 1/
54- 7, 2+ 1/
34- 3, 2-:
44- 6, 2+ 1/
24- 3, 2+ 1/
34- 4, 2+ 1/
24- 4, 2+ 1/
34- 4, 2+ 1/

24- 7, 1+
24- 8, 1+
34- 12, 1+

24- 8,
24- 9,
34- 12,

In a parallel implementation the number of sweeps N is predetermined [6], [3], [4]. If the
evaluation of an approximate rotation requires ta time, while the exact evaluation requires te
time with ta h te (h < 1) and if only a few more sweeps are required for the approximate
scheme, i.e., N + N1 sweeps instead of N sweeps, then the time consumption of one sweep
is reduced from Te (n 1)te to Ta (n 1)ta and the overall time consumption is

TAa (N + N1)nta (N + Nl)nhte for the algorithm with approximate rotations instead of

TeA Nte forthealgorithm withexactrotations. Obviously, TAA < TeA holds ifh(N+N1) <
N holds. For random matrices we can set N 0 for NA1, NA4, and NA5, such that

TAA h TeA holds. Even if a few more sweeps are needed with the approximate schemeu
e.g., in the case of clusters of eigenvalues (N1 4 is the worst case in Table 2 or in the case
of simpler approximations (N < 2 for NA2)--we have TAA < TeA if h(N + N) < N. For
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example, ifwe setN 10 [3] andN1 2(N1 4) TAA < TE.holdsifh < 0.83 (h < 0.71).
Therefore, the choice of the computation scheme for the evaluation of the rotation strongly
depends on the value of h for the particular computer and the particular implementation (see,
e.g., [25]; h 0.566 for KA2 (NA2) on the distributed array processor (DAP)).

The square root and division free schemes only require {+, ,} to be implemented in all
processor cells. They enable a very regular (all processors need the same hardware) parallel
implementation. Therefore, these algorithms are particularly suited for ASIC-based processor
arrays. Furthermore, the operations {+, ,} can be implemented with a time complexity of
O(log2 w) [30], while the operations {+, /} can only be implemented with a time complexity
of O(w), where w is the wordlength of the data. Clearly, NA4 and NA5 are used for a
square root and division free implementation, since they exhibit the highest accuracy of the
approximation requiring the same amount of {+, ,} as the other worse approximations.

3. Triangular Kogbetliantz algorithm.

3.1. Basic algorithm. The TKA works by applying a sequence of two-sided orthogonal
transformations to the upper triangular matrix R obtained by a preparatory QR-decomposition
A QR of the arbitrary m x n matrix A: A<) "= R.

For k 0, 1, 2

(21) A+) QpqA(k)Vpq.
Except for the preparatory QRD, the only difference between the TKA and the JA is

that the orthogonal n x n rotation matrices multiplied to the left and right of A<) are defined
by different rotation parameters. Qpq is defined by c, cos, s, sin and Vpq by
c,v cos Pk, s,v sin qk.

In order to preserve the upper triangular structure of A for all k,

(22) a+ -c,s,va(p + coc,va(pq + soc,va := 0

must be met. For a maximal reduction of the off-diagonal quantity

(23) .(k+m) _s.c..(k) s,s,va(pq) + cos,vat,q) 0pq pp

must be fulfilled. From (22) and (23) the exact formulae for computing Qpq, Vpq are obtained
in the following.

Case (t, tan is computed first; t, tan q f(t)).

(24) rK ( (
Z,aqq apq

(25) to
sign(rx)

a (qq . + a
(26) t, _(k)

Upp

Case 2 (t, is computed first; t, f(t,)).

(a(/0)2_/’a(/O2 + (a’)2
qq(27) rK2 (k)(k)app apq
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(28) tq,
-sign(rr2)

IRK21 + 41 -t- "t’/2

(29) t, PP Pq

a(k)qq
In both cases (c,, s,) and (cq,, sq,) are obtained from t, and tq, according to (20). With these
formulae a/) > 0 (i 1 n) holds for all k if a}/) > 0 (i 1 n) holds, which can
always be obtained by the initial QRD [6].

3.2. Approximate rotations. For a reduction of the off-diagonal quantity it is not nec-
essary to satisfy a(+ := 0, but it is sufficient thatPq

[a(pkq+l,[ idKlla(pkq)[ with 0 < IdKI < 1

holds. If a corresponding approximate formula is used for t, (25) and t, (28), one has to
distinguish between using Case if ak) < a(k) and using Case 2 if a (k) < ak) in order toqq pp pp --qq

guarantee IdKI < (for the exact scheme using one case is sufficient, but the test a k) < ak)qq pp
is also necessary for a stable computation [20], [6]). Obviously, (25) is the same formula for
computing t. with rK1 as (5) for computing tex with rj (the same holds for (28) and rK2).
Therefore, all the approximations of Table 1 can also be applied to the TKA (i.e., to (25)
and (28)). For (26) and (29) no further approximations are possible, since these formulae are
obtained from (22), which must be met exactly in order to preserve the triangular structure.

We will not repeat the numerical examples of the JA for the TKA, since the following
theorem shows that if the same approximation is used for the TKA and the JA, the TKA yields
a better approximation than the JA (compare Figs. 6.1 and 6.2 in [6]). In [6] the result of the
following theorem is only shown for the special case lal --+ o in order to show that
IdK(Irl 0)1 < is guaranteed for the TKA, while it is not for the JA (note that the NAs
guarantee Idl << 1 anyway).

THEOREM 3.1. lfthe same approximation is usedforthe TKA (for t. and-t, respectively)
and the JA or tex), then, for Irgi[ IrjI (i 1, 2),

IdK(rKi)l Irl" Idj(rg)l

holds with Irl < and therefore

IdKlmax < Idjlmax.

Proof We assume that lak)[ > 0, since otherwise no transformation (21) is executed.pq

Case 1 ,,(a(k)qq _< a(pk)p). With sign(rK1) sign(t,) and (26) one obtains from (23)

IdK (VK1)I
1 2 IVKll It, I- t2

l+t,
a(k) .c,qq

a()pp Cdp

Since the same approximation is used for the TKA and the JA we have for each Irgl IrJI,

IdK (rK1)I--Irl" Idj (rj)l,

with

a (k)
qq

pp
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It remains to show that Irl < holds, i.e., since all variables of Irl are positive,

With cos2 tp (1 + tan2 p)-i we have

and with (26),

(aq(q)) 2 (1 + t2) < (ap(9)2 (1 + t2q,)

...(k)...(k)(a(pg)z (aq))2 q (a(pq))2 q 2,qq,pqt. > O.

Since a(k) > 0 holds the multiplication of this inequality withqq

vx+t >0 ifa (k) >0,Pq

rx+t <0 ifa(k) <0.pq

Since sign(rxl) sign(t) these inequalities are equivalent to

rK >0 ifa() >0,Pq

rK <0 ifa() <0.pq

With (24) and a(k) > 0 this is again equivalent toqq

(k))2 2
app -(a(q’)2+ (a(pk)q) > O,

yields(k) (k),aqq apq

a (k) .cpp

a(k)qq CR,

Therefore, IdK (Vgz)l Irl" Idj (rj)l holds for each IRK21 IvJI with Irl < if (a(k)a2,-2 <ppJ ’dp

(a(t))2c Then, with (29), a (t) > 0, sign(rK2) --sign(t,) and (27), the rest of the proof isqq pp
identical to Case 1. fq

3.3. Factorized approximate rotations. For the TKA it is also possible to derive square
root free and square root and division free rotations. The factorization

(30) A(k> [Z{/0]-l/2 y(k> [x{k>]-l/2
(k) )(k) yij

aij / (k) (k)

must be used and it must be distinguished between approximating t (Case 1) or t, (Case 2).
As for the exact formula the corresponding approximate formulae are only distinguished by the

/ () (k)sign except for t sign(rK) and t, -sign(rx2) for which t% sign(rg)p/zb z4
(k)and t. sign(VK2)P p Xq must be used, respectively The methods of2 can be applied

to the TKA and the square root and division free rotations (square root free rotations in a
similar way by using (14) instead of (15) in the sequel) can be obtained as follows.

IdK(rK2)l
-2 iVK2I It,vl-t2q,

which is guaranteed by a() > a (k) This completes the proof for Case 1pp qq

Case 2 (a( < a(t)).qq With (29) and sign(r).) -sign(t,) one obtains from (23),
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Case 1. Using (30) and asuitable approximation t. for the exact t. (25), the approximate
formula ta, can be written as

s’ [ (k) (k)
s Vz z

(31) t,.
Ca Ca

whereby the computation of s’, JYij" {), z), xJ)) and c,a J[Yij," {) z), x)) (i, j
{p, q }) requires only additions and multiplications. Then, (15) yields the rotation matrix

CA SA Zp
(k)

With (30) and (31) one obtains for t, (26),

(k+l) Z(pk) A ~!
with A -detQpq.

Cq

and thereby

~, --S,Xq Cq X(qk+l, x() A,
with A. -detr;q.Vpq

Cq ep p p
.et .(k) ..(k+l) X(qk) Aq

Case 2. The factorized rotations can be derived in a similar way exchanging the role of
ta, and t,.

3.4. Summary. In summary, it is clear why we started with the JA and extended the
results to the TKA afterwards. All results for the JA (approximations, derivation of factorized
rotations) can be extended to the TKA. Particularly, the measure for the accuracy of the
approximations for the TKA, i.e., IdK I, can be derived from the respective measure for the JA,
i.e., IdjI, where IdKI Irl" IdjI holds with Irl < 1.

4. Convergence. The global convergence ofthe JA and the original KA has already been
proved by Forsythe and Henrici [10] including approximate rotation schemes. The ultimate

quadratic convergence ofthe JA has been proved by Wilkinson [31 ], and Paige and van Dooren
[28] have extended this result to the original KA. However, for the original KA there are
problems with the global and (in the case of clusters of singular values) the ultimate quadratic
convergence. These problems are completely removed by the TKA [20], [5]. Furthermore, the
TKA is advantageous for a parallel (and a sequential) implementation. The global convergence
of the TKA has been proved by Hari and Veseli6 [20] and by Femando [8] and the ultimate

quadratic convergence by Hari [21] and Charlier and van Dooren [5]. All these proofs of
the TKA are established for the exact scheme. Although the convergence of the approximate
schemes is used in [25], [6] (based on the results of 10]), no explicit proofs have been published
yet (e.g., the proof of Fernando [8] cannot be extended to approximate schemes).

In 13] the global and the ultimate quadratic convergence of the TKA and the JA is proved
for the approximate schemes. The known results for the exact schemes are obtained as special
cases (d 0). Furthermore, for the first time the presented proofs hold for the TKA as well as
for the JA. This is achieved by assuming that during the TKA and the JA the matrices remain

"essential triangular" [21 ]. Although for the JA A(k)r A(k) actually holds, we only use one
essential triangular part, such that the JA also proceeds as shown for the TKA in Fig. 2.1.1
of [20].
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In the following the theorems concerning the global and the ultimate quadratic conver-
gence are given and the methods used for the proofs of these theorems are briefly outlined.
For the details of these proofs see 13].

THEOREM 4.1 (Global convergence), lfO < [dl < 1 holds throughout the TKA and the
JA, then the column (and row) cyclic schemes ofthese algorithms are always convergent.

Proof. The proof of this theorem is modeled after the proof of the global convergence of
the TKA with exact rotations [20]. We prove that [s(k+M)]2 _< Cn Is(k)]2 (M nni---1 ) with
Cn < 1 holds for all the different algorithms presented in this paper, i.e., for the TKA/JA with
exact/approximate rotations (see 13]). D

THEOREM 4.2 (Ultimate quadratic convergence). Let

(32) Itri- trjl > 23, (i j) (distinct singular-/eigenvalues)

and suppose we have reached the stage r, where

(34) S(k+ < Y - 0 ([s(’]3)
holds where ’ for the TKA and y for the JA.

Proof. The proofofthis theorem (see 13]) follows the proofs ofPaige and van Dooren [28]
(TKA) and Wilkinson [31] (JA) (xi := a(i) with Ix/l Idxl (instead ofpq

Xi+ 0). [-]

In the case of clusters of singular values (cigenvalues) the proofs for the approximate
schemes are completely identical to the proofs for the exact scheme of [22], [5], [21]. Only
the bound (34) for the case of distinct singular/eigenvalues must be used instead of the bound
for the exact scheme.

$. Application in signal processing. By computing the singular value decomposition
(SVD) of a data matrix it is possible to extract the signal and noise subspaces of the data. The
knowledge of these subspaces is essential in many application fields, e.g., DOA-estimation
(ESPRIT, MUSIC) and state-space system identification. In practice, where the subspaces arc
usually time varying, it is even more important to be able to track these subspaces. Therefore,
in recent years different subspace tracking algorithms have been proposed. These algorithms
arc based on the rank revealin QRD [2], the Lanczos algorithm [7], or the SVD-updating
algorithm [9], [26], where the SVD-updatin algorithms are favorable in virtue of a paral-
lel implementation. The SVD-updatin algorithm works as follows: At timestep k a new
masurcmcnt vector is incorporated in the upper triangular matrix R[k-1] by a QRD update
resultin in RIll. Then, the SVD of R[] is computed usin the TKA.

The main result of [9], [26] is that it is usually sufficient to execute only one sweep [9],
or even only a fraction of one sweep [26] (only the elements of the first subdiaonal of
arc annihilated) of the TKA after each QRD update. Since the approximation of the rotations
is a marginal approximation compared to the approximation of the TKA (i.e., executin only
one sweep or a fraction of one sweep), the use of approximate rotations yields essentially the
same results with respect to trackinff capability as usin exact rotation.

To illustrate this the example of Ferzali and Proakis [9] is used, i.e., 400 sample points of
a signal composed of 3 sinusoids:

s(k) 2 cos(2zr 0.15k) + 2 cos(2zr 0.2k) + 2 cos(2zr f. k) + u(k)

thenfor some (k > r),

(33) S(r) < -,



1346 JORGEN GOTZE

whereby f jumps from 0.35 to 0.45 at k 200 and u(k) is Gaussian white noise (SNR
20 dB). Data vectors with dimension m 7 are formed from the samples. Figure 2 shows
e(k) Ilsv(k) sve(k)[[2 versus k. sve(k) is a vector that contains the exact singular values
of the k x m data matrix X(k) available at time k. sv(k) is the vector that contains the singular
values as obtained by the SVD-updating algorithm. Here, only the first subdiagonal of R[kl
is annihilated by the TKA, i.e., only a part of a complete sweep of the TKA is executed after
each QRD update. Obviously, tracking the singular values using the approximation, KA2
(Fig. 2(b)) works as well as using exact rotations (Fig. 2(a)).

1.6
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1.2

’-0.8
0.6

0.4

(a)

0 50 100 150 200 250 300 350 400
o

1.61.4- ’(b)
1.2

0.6

0.4

0.2

O0 50 O0 150 200 250 300 350 400
k

FIG. 2. e(k) versus k using (a) exact rotations and (b) the approximate rotation KA2.
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Therefore, an application specific processor array for subspace tracking can be derived,
which exhibits all advantages of the approximate factorized schemes, while the slight increase
concerning the required number of sweeps is marginal (in many practical applications even a
fraction of a sweep is sufficient).

6. Concluding remarks. In this paper new JAs and TKAs were presented by combining
methods for modifying orthogonal rotations. Suitable approximate rotations were described
in factorized form in order to gain square root free or square root and division free rotations
for the JA and the TKA.

In summary, we recommend the use of approximate schemes for the TKA as well as the
JA, since

the new approximations exhibit better properties and require less computational cost
than the known approximations. Even for the JA the required number of sweeps of
NA4 and NA5 is about the same as for the exact scheme. The TKA always performs
better than the JA, since Idglmax < Idjlmax (Theorem 3.1).
the convergence problems (for the JA) of KA2 and KA3 are removed by the new
approximations (Idl << 1 is guaranteed).
the use of approximate rotations enables the derivation of square root free or square
root and division free factorized rotations, which is not possible for the exact scheme.
for a parallel implementation the speedups gained by using approximate rotations and
by using factorized rotations can be combined. Furthermore, the hardware require-
ments are significantly decreased (e.g., the square root and division free versions of
the JA and the TKA can efficiently be implemented on an array of application specific
processors, e.g., transputers or DSPs, which contain only {+, as fast hardware).
for a VLSI-implementation of a systolic array executing the TKA and the JA only
{+, .} must be implemented in all processor cells (ASICs). In contrary to the oper-
ations {/, /}, which require O(w) time, the operations {+, .} can be implemented
needing O(log2 w) time [30]. This enables a further speedup for the square root and
division free algorithms. The approximate rotation scheme can also be combined effi-
ciently with the CORDIC scheme in order to obtain an efficient VLSI-implementation
based on the CORDIC algorithm [17], 18].
the approximate factorized schemes are particularly useful in signal processing ap-
plications (e.g., subspace tracking), since the approximate rotations perform as well
as exact rotations for many practical applications.
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Abstract. Several variants of the vertex space algorithm of Smith for two-dimensional elliptic problems are
described. The vertex space algorithm is a domain decomposition method based on nonoverlapping subregions, in
which the reduced Schur complement system on the interface is solved using a generalized block Jacobi-type precon-
ditioner, with the blocks corresponding to the vertex space, edges, and a coarse grid. Two kinds of approximations
are considered for the edge and vertex space subblocks, one based on Fourier approximation, and another based on an
algebraic probing technique in which sparse approximations to these subblocks are computed. Our motivation is to

improve the efficiency of the algorithm without sacrificing the optimal convergence rate. Numerical and theoretical
results on the performance of these algorithms, including variants of an algorithm of Bramble, Pasciak, and Schatz
are presented.

Key words, domain decomposition, Schur complement, interface probe, block Jacobi preconditioner, elliptic
equations, preconditioners, vertex spaces
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1. Introduction. Domain decomposition methods often provide suitable techniques for
solving large linear systems of equations arising from discretizations of partial differential
equations. In particular, these methods can be advantageous for the efficient and localized
treatment of irregular geometries, discontinuous coefficients, local grid refinement, boundary
layers, and coupling between equations of different type; see, for instance, [20], [6], [7], and
[21].

In this paper, we primarily focus on the development of efficient versions of two divide
and conquer-type domain decomposition algorithms based on nonoverlapping subregions for
solving self-adjoint elliptic problems in two dimensions. The algorithms we describe are
variants of the vertex space (VS) algorithm proposed by Smith [28] and Nepomnyaschikh
[26], and an algorithm of Bramble, Pasciak, and Schatz (BPS) [4]. In both cases, a block
Jacobi-type preconditioner is used to solve the reduced Schur complement system on the
interface. The blocks in the BPS algorithm correspond to the nodes on the edges separating
the subdomains and to the collection of vertices of the subregions, while in the VS algorithm
additional overlapping blocks, centered about each vertex consisting of nodes on the interface
close to the vertex, are included to account for coupling amongst the nonoverlapping blocks.

In order to implement the original version of the VS preconditioner [28], the subblocks
of the Schur complement, which are dense matrices, need to be computed and inverted using
direct methods. It can, however, be easily shown that if these subblocks are replaced by
spectrally equivalent approximations, then the rate of convergence of these algorithms remains
asymptotically the same. In order to reduce overhead cost, we therefore focus on constructing
approximations that are inexpensive to construct and inexpensive to invert.

Two kinds of approximations will be considered, one based on Fourier approximations of
the interface operators, and another based on sparse algebraic approximation of the interface
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operators by a probing technique. The Fourier-based approximations can be shown to be
spectrally equivalent with respect to mesh size variations. However, their performance can be
sensitive to the coefficients. On the other hand, the probing-based algorithms adapt well to
the coefficients, but can be sensitive to mesh size variations.

In 2, we describe the elliptic problem and the Schur complement system on the interface.
In 3, we describe the original versions of the BPS and VS preconditioners for the Schur
complement on the interface. In 4, we describe the two variants, one based on Fourier
approximations, and the other based on the probing technique. In 5, we present numerical
results comparing the rates of convergence of the various preconditioners.

2. An elliptic problem and its many subdomain decompositions. Here we describe
the block structure obtained when a self-adjoint elliptic problem is discretized on a domain
f2 partitioned into many nonoverlapping subdomains "i with an interface B separating the
subdomains. A reduced Schurcomplement system is derived for the unknowns on the interface.
Some properties of this Schur complement system and an iterative procedure for solving the
elliptic problem are described.

2.1. Block partition of elliptic problem. We consider the following second-order self-
adjoint elliptic problem on a polygonal domain 6 R2:

(1)
-V. (a(x,y)Vu) f in f2,

u =0 on 0,

where a(x, y) R2x2 is a symmetric, uniformly positive definite matrix function having
Lo (f2) entries, and f L2 (f2).

We assume that the domain f2 is partitioned into N nonoverlapping subdomains f2 f2U
of diameter H, which form the elements of a quasi-uniform coarse grid triangulation r r; see
Fig. 1. We also assume that the subdomains f2i are refined to produce a fine grid quasi-uniform
triangulation rh having elements of diameter h. Corresponding to the coarse grid and fine grid
triangulations, we discretize (1) either by using piecewise linear finite elements (see 14]), or
by using finite difference methods (see [30]), resulting in a symmetric positive definite linear
system

(2) AhUh fh

on the fine grid and

(3) AnUH-- fI

on the coarse grid.
Let I denote the union of the interiors of the subdomains, and let B denote the interface

separating the subdomains:

Then, grouping the unknowns in the interior of the subdomains in the vector ui and the
unknowns on the interface B in the vector us, we obtain a reordering of the fine grid problem:

All(4) A’s Ass us f

Here AI corresponds to the coupling between nodes in the interior of the subdomains. For
most lower order discretizations, including five-point discretizations, the interior nodes in
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are coupled only to the nodes on the interface B, and not to adjacent subdomains. In such
cases, AII ----- blockdiag(Al Ass) is a block diagonal matrix.

Eliminating interior unknowns ul, we obtain ui in terms of uB"

(5)

and substituting this in the second block row of (4) yields an equation for uB"

(6) SuB fB AfBA-f] fi,

where S ABB A/rBA-/1A IB is referred to as the Schur complement or interface matrix.
Some properties of the Schur complement will be discussed in 2.3. First, we will outline a
procedure for solving (4).

2.2. Iterative solution of the block partitioned system. System (4) can be solved as
follows. First, problem (6) is solved for uB and then (5) is solved for ui. If direct methods
are used to solve (6) then S needs to be computed explicitly, and this can be expensive in
general (though this is standard practice in the substructuring methods used to solve linear
elasticity problems), since it involves computing the action of A] on all the columns of AIB.
This can be implemented more efficiently through subassembly (see [28]), requiring only as
many solves on each ’i as there are unknowns on 0’i ( B. Even if the matrix S has been
assembled, it is often preferable to solve (6) by an iterative method, since direct methods to
solve (6) require significant memory storage and computational complexity.

Due to the expense of computing S and solving (6) by direct methods, we consider
solving (6) by a preconditioned iterative method such as the conjugate gradient method (see
[23]), without the explicit construction of S. In this case only matrix-vector products with
S are required, and each such matrix-vector product requires the solution of one problem
on each subdomain f2i. The Schur complement, however, is ill conditioned with to(S)
O(h -1) (see [2], [4]), and therefore requires a preconditioner M; the construction of efficient
preconditioners M for S will be the main focus of this paper.

First, we note that the procedure to solve the linear system (4) by solving the reduced
Schur complement system (6) corresponds to a block LU factorization-based solution:

(7) A LU-- AB I S

for S ABB ABA-] AIB. Thus

0 S- -AVlBA-i I

and backsolving requires solving two systems with coefficient matrices A II and one system
with coefficient matrix S, which will be done using a preconditioned conjugate gradient
method. We note heuristically that it is often possible to construct a global preconditioner A
for A by carefully replacing AII by preconditioner A ii, and by replacing S by preconditioner
M. In this case the inverse of the global preconditioner A has the form

Approximations to the submatrices A-ii can be obtained, for instance, by replacing it either
with a carefully scaled version of the Laplacian, or by other preconditioners, such as ILU (see
[9]). Some care must be exercised in the choice of Aii, as it has been shown that it can lead
to poor performance if the approximations of A-ii are not suitably scaled (see B6rgers [3]).
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2.3. Some properties of the Schur complement S. The Schur complement matrix S is
a discrete approximation to a Steklov-Poincar6 operator (see ]), which enforces transmis-
sion boundary conditions on the interface B. In the continuous problem, these transmission
boundary conditions correspond to the requirement that the solution u be continuous across
the interface and that the flux (a(x, y)Vu) also be continuous across the interface. In the
discrete case, the action of the Schur complement on a grid function un on B is the same
as the action of the discrete operator Ah on the discrete harmonic extension of un into the
subdomains; More specifically, let Ehun denote the discrete harmonic extension on B to the
interior of the subdomains:

(8) Ehun [-A-]Ainun, un] T"

then

AII

Thus, if Rn denotes the pointwise restriction of nodal values of a grid function onto the nodes
on B, then Sun RnAhE un. In addition,

(9) xTSxn (Exn)T Ah(Exn).

This property shows the positive definiteness of the Schur complement. In addition to S being
positive definite, it is an M-matrix when Ah is an M-matrix, i.e., Sij < 0 for j and
(S-1)ij >_ 0 for all i, j (see [30] and [12]).

Remark. For finite element discretizations, let Aq) denote the stiffness matrix obtained
by integrating the bilinear form on fli, i.e., the discretization of the Neumann problem on
i. For finite difference methods, let Aq) correspond to the discretization with discontinuous
coefficients, which is a(x, y) in f2i and zero outside f2i. Then, if x fi) denotes the vector x
restricted to f2i, the energy x rAx can be partitioned as

(10)
N

XTAhx E x(i)r A(i)x(i)
i=1

and correspondingly, the Schur complement S can be partitioned:

(11)
N

xSxB E (i)rS(0x)XB
i=1

where

(12) s(i) ,(i) Ai)BTA(i)-1ABB II
A(j AIBwith A (i)

A(i)IB A()B
Each S(i) is a map of the Dirichlet value un to the normal derivative on 0f2 f) B of the

discrete harmonic extension Ehun, and this is not a local operator, i.e., the matrix S<i) is dense
on Of2i N B (see [2]). In the two-subdomain case, S S<1) + S<2) is thus a map of the Dirichlet
value un to the jump in the normal derivative on B of the discrete harmonic extension Eh un,

which corresponds to a discrete approximation of the transmission boundary condition. In the
two-dimensional case, the entries of S decay as ISjI 0(1/1i jl2) (see Golub and May-
ers [22]), and preconditioners for S have been studied extensively (see [2], [8], [5], [19], and
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a vertex

a cross-p int

lbregion
an edge Eij

FiG. 1. The vertex space partitioning ofthe interface.

[10]). The important properties of the two-subdomain Schur complement is that its entries
decay away from its main diagonal, and that it is uniformly spectrally equivalent to the square
root of the Laplace operator on B, as the mesh size goes to zero. Due to this connection, it can
be shown that its condition number grows as to(S) O() (see [2]). Applications of both of
these properties will be discussed in 4.1 and 4.2.

3. The BPS and VS preconditioners for S. We will describe two preconditioners for S
in this section, one introduced by Bramble, Pasciak, and Schatz [4], and another, the VS precon-
ditioner, introduced by Smith [28] (related to a preconditioner proposed by Nepomnyaschikh
[26]). Both of these can be interpreted as generalized block Jacobi-type preconditioners for
(6) with overlapping blocks and involving residual correction on a coarse grid. Variants of
these preconditioners will be discussed in 4.

3.1. Notations for a partition of the interface B. In the case of many subdomains, the
interface B can be partitioned as a union of edges Eij and cross-points V (see Fig. 1):

B Uij Eij U V,

where Eij denotes the edge separating subdomains f2i and f2j, and V denotes the collection
of cross-points (vertices (xH, yff) of the subdomains). Note that the edges Eij are assumed
not to include their endpoints.

For each edge Eij we define RE,j as the pointwise restriction of nodal values to Elj, i.e.,
if gs is a grid function defined on B, and if Eij contains nij interior nodes, then its restriction
RE,j gB is a vector with nij components defined on Eij by

R,gB g on Eij.

Its transpose Rr extends the grid functions in Eij by zero to the rest of B:

r { E,: on Elj,Rege’ on B Eij.

Similarly, we define Rz as the pointwise restriction map onto the cross-points; if g is a
grid function on B, and if there are nv cross-points on B, then Rvg is a vector with nz
components defined by
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Rvgs--gs onV.

Its transpose R thus corresponds to extension by zero of nodal values in V to B"

gv on V,R,gv 0 on B- V.

3.2. The BPS preconditioner. In order to motivate the construction of the BPS precon-
ditioner, we first define a block Jacobi preconditioner Mj consisting of diagonal blocks of the
Schur complement S in the following block partitioning of the interface B. Let us suppose
there are n edges Eij with some ordering E1 En. If the unknowns on each edge Ei are
grouped together in uE,, and if the unknowns on the cross-points are grouped in uv, then S
has the following block partitioning corresponding to (uE ue,,, uz):

SE, Se,,vSe" Sr SvgEl V En V

Here, Se, ej =-- Re, SRj denotes the coupling in S between nodes on Ei and Ej, and SEi V
Re,,SR denotes the coupling in S between nodes on Ei and V. Note that edges Ei and
Ej will be coupled in S only if they are part of the boundary of a common subdomain f2k.
This can be seen by using the relation between Schur complement and discrete harmonic
extension, since, for instance, the discrete harmonic extension of a grid function on edge Ei
is nonzero only in the subdomains for which Ei is part of its boundary. S is thus a block
sparse matrix and corresponding to each edge Eij, the submatrix SE is identical to the two-

ij

subdomain Schur complement on interface Eij separanng "i and f2j. The submatnx Sv which
corresponds to coupling in S between cross-points is a sparse matrix in which the diagonal
entries are dominant, since the cross-points are weakly coupled in S. In the case of five-point
discretizations on rectangular subdomains, Sv is diagonal since the corner nodes (cross-points)
of rectangular domains do not influence the solution in the interior.

For this block partition of S, we define the action of the inverse of the block Jacobi
preconditioner Mj:

(13) M-l gs E
edges ij

Rr S-1Re,gB + R,S1Rvg.Eij Eij

This block Jacobi preconditioned system can be shown to have a condition number satisfying

max(M]-1 S)
< c2H_2( -I-- log2 (H/ h)),

)min(M S)

where c and 2 are independent of H and h (see [4] and [31 ]). This indicates that as H 0,
i.e., as the number of subdomains increases, the rate of convergence deteriorates. This can be
attributed to the absence of global communication of information amongst all the edges in the
preconditioning step.

The original version of the BPS algorithm [4] involves two changes to this block Jacobi
preconditioner. One is that the submatrices S, are replaced by Fourier-based approxima-
tions e,, which will be described in 4. The second change is to incorporate global coupling
in order to obtain a rate ofconvergence which does not deteriorate as the number of subdomains
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T -1is increased. In order to do this, the cross-points correction term RzSz Rv in (13) is replaced
by a coarse grid correction term RrA-I41RI4 as in two-level multigrid methods (involving
weighted restriction and interpolation maps R/-t and R/, respectively). These are defined
below. Let 4k, /-/ denote the kth coarse grid piecewise linear finite element basis function

if/= k,qk,/(x, y) 0 if/# k,

where (xfl, yfl) is the/th cross-point. Then

Rnfe (xff yff dpk, H(Xff y fe (x7 y

Its transpose R thus denotes linear interpolation ofthe nodal values on the endpoints ofedges
Eij:

y) gv(xff yff)@,,u(x, y), (x, y)(x, B.
k

With these changes, the BPS preconditioner can be defined:

Mffsfs RT -1 R,,jf + RA74’ RI4fsEij Eij
edges i,j

These changes improve the condition number over that of the block Jacobi version.
THEOREM 3.1. The BPS preconditioner satisfies

)max (Mffp1s S)
<

Zmin(Mffp1sS)
c2(1 -+- log2(H/h)),

where c2 is independent ofH and h.
Proof See [4] and [31] for the proof.
Remark. It can be easily verified that for five-point discretizations of the Laplacian, the

coarse grid Schur complement matrix SI4 =- Rt4Sh Rri4 is equal to the coarse grid discretization
Ar R/A R/-t, since piecewise linear interpolation results in grid functions that are discrete
harmonic on the subdomains. In the case of more general coefficients, it can be shown that
A/ and S/-/are spectrally equivalent with respect to coarse grid size H.

3.3. The vertex space algorithm of Smith and Nepomnyaschikh. The logarithmic
growth in the condition number of the BPS preconditioner can be attributed to the neglect of
coupling between adjacent edges of B. The VS preconditioner of Smith [28] and Nepom-
nyaschikh [26] incorporates some coupling between adjacent edges through the use of certain
overlapping blocks of S corresponding to nodes on certain vertex regions V, which will be
defined, and it leads to a condition number independent of mesh parameters.

Let V denote the portion of B within a distance of/3H from (xff, yff) for some positive
fraction 0 </3 < 1 (see Fig. 1). We refer to each V as a vertex region or vertex space. We
define the corresponding pointwise restriction map Rye. to be

Rvg g on Vk.

Its transpose R. thus corresponds to extension by zero outside Vk:

gv,. on V,R.gv. 0 on B Vk.
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Corresponding to each vertex region Vk, the submatrix Sv. is defined by Svk Rye. SR,.. The
action of the inverse of the vertex space preconditioner Mvs involves the inversion of these
new overlapping blocks in addition to the blocks used in the BPS preconditioner:

(14) M-f RTHA-H1Ri-tf +

_
Rvs e,j(S, RE,f + v,.(Sv)-Rv’,.fn.

Eij

The following result is proved in [28] and [26].
THEOREM 3.2. Suppose the overlap ofthe vertex regions Vk is tH; then

Zmax<g  s)
< C(1 + H/),

Zmin (Mv’- S)

where C is independent of H, h, and
Remark. Other bounds are available for the condition number of the vertex space precon-

ditioned system:

,max (MvQ S)
< Cl (1 + c2(1//3) log(H/h)),

,min (Mv-" S)

where Cl and c2 are independent of H, h,/3, and the coefficients a(x, y) provided the coeffi-
cients are constant in each subdomain ’2 (see [28], [32], and [17]).

4. Two variants of the vertex space method. An important consideration in the imple-
mentation of the algorithms is the expense of computing the edge and vertex matrices SEij and
Sv., respectively, and the cost of solving the subproblems using direct methods. If there are n
nodes on each 0" O B, then computing all the submatrices SE,j and Svk would require solving
r/i problems on each f2i, and this increases as the mesh size h is reduced. If nij is the number
of nodes on Eij, the cost of using direct methods to solve edge problems is O(n2ij) once the
Cholesky factorizations have been determined (see [28] and [29]), since the edge submatrices

SEi are dense, nij increases as the mesh size h is reduced.
This expense can be significantly reduced if the exact edge and vertex matrices are replaced

by approximations which can be computed at significantly less cost, and which can be inverted
at less cost. If these approximations are spectrally equivalent to the exact submatrices, then the
overall preconditioner would remain spectrally equivalent to the exact VS preconditioner, and
the number of iterations required to solve (6) would remain independent of h; see Theorem
4.3.

In this section, we describe two variants of the vertex space and BPS algorithms in which
the exact edge and vertex matrices are replaced by approximations. One variant is based
on Fourier approximations of both the edge and vertex matrices, while the other variant is
based on sparse algebraic approximation of both these matrices using a probing technique.
Combinations ofFourier and probe approximations are also possible, but will not be considered
here for simplicity (e.g., see [11 ]).

4.1. Fourier approximations. Fourier-based approximations of the edge and vertex ma-
trices are constructed based on the property that, restricted to simple curves (curves which do
not intersect themselves), the Schur complement is spectrally equivalent to the square root of
the Laplace operator on it, and this has been studied extensively (see [2], [22], [8], [5], [19],
and 10]).

4.1.1. Fourier edge approximations. First, we consider Fourier approximations of the
edge matrices SEi. Let edge Eij separate "i and f2j. Since the submatrix SE, is identical to the
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two-subdomain Schur complement on Eij, standard preconditioners for the two-subdomain
case can be applied (see [2], [22], [8], [5], [19], and [10]).

Let J denote the discrete Laplacian on a uniform grid containing nij interior nodes with
mesh size h / (n ij + 1):

2 -1
-1 2 -1

-1 2 -1
-1 2

Then, j1/2 is uniformly spectrally equivalent to SE,j as the mesh size h is varied (see [2]).
Since the discrete Laplacian is diagonalized by the sine transform, J WAW, where

Wij sin(ijzr h),

and A diag(,ki) with .i 4 sin2( irh--), it follows that j1/2 WA1/2W. By using Fast
Sine Transforms, it is possible to compute the action of the inverse of f/2 in O(nij log(nij))
flops.

The Fourier-based preconditioners M considered here are all based on the sine transform
W, but vary with the choice of eigenvalues:

M Wdiag(#/)W.

The eigenvalues /zk are chosen to better approximate the eigenvalues of the exact Schur
complement SE,j. In the model case of Laplace’s equation on ’i I..J ’j with rectangular
subdomains f2i [0, 1] x [0, li] and f2j [0, 1] x [-lj, 0], where m and mj are positive
integers with li (mi -[- 1)h and lj (mj + 1)h, the eigendecomposition of the Schur
complement is known exactly. These exact eigenvalues are given below in MChan, along with
the eigenvalues of three other preconditioners:

(15) Dryja preconditioner MD (see 16]):

Golub-Mayers preconditioner Mrvl (see [22]):

BPS preconditioner MBPS (see [4]):

Chan preconditioner Mchan (see [8]):

We have the following result.
LEMMA 4.1. Let M denote the Dryja, Golub-Mayers, BPS, or Chan preconditionersfor

Sei. Then

,.max(M- SEij
< C1,

Xmin(m- SE,)
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where C1 is independent of h. For SEj corresponding to Laplace’s equation on the model
domain f2i U 2) with rectangular subdomains f2i [0, x [0, li] andj [0, x [-lj, 0],
the condition number ofthe Dryja, Golub-Mayers, and BPS preconditioners satisfy

kmax (M-1Se,j)
< C2 + +Xmin(M-1SEij)

where C2 is independent ofh, li and lj while the condition numberofthe Chanpreconditioner
satisfies

max(MlhanSE,)
,min(ManSE,

Proof. See Bjorstad and Widlund [2] and Chan [8] for the proof. [3

The Fourier preconditioners described so far do not depend on the coefficients a (x, y) of
the elliptic problem, and thus the rate of convergence can be sensitive to the coefficients (see
[12]). In order to incorporate some information about the coefficients, we scale the Fourier
preconditioners by a scaling matrix. In the original BPS algorithm [4], a scalar coefficient

tij representing the average of the eigenvalues of a(x, y) at a point in f2i and a point in f2j
was used as scaling on each edge Eij. Here we use a diagonal matrix Dij as scaling, where
Dij denotes the diagonal of Ah restricted to Elj, and we define the diagonally scaled Fourier
preconditioners by

(16) F =_ WD]J2.D]JZWdiag(lzk)
For most applications to isotropic coefficients, these diagonally scaled Fourier preconditioners
perform well.

4.1.2. Fourier vertex space approximation. Next, we describe approximations of the
vertex space matrices Sv. based on Fourier techniques. For the case of the discrete Laplacian,
it is possible to express the eigendecomposition of Sv. for cross-shaped vertex regions in
terms of sine transforms, thereby enabling the use of fast transforms to invert Sv. (see [26]).
However, it is not easily generalized to the case ofvarying coefficients, and instead we construct
approximations to the vertex matrices by using a direct sum of smaller matrices that will be
described in the following.

We will describe the procedure for the model geometry ofFig. 2. Let uv. be a grid function
on B which is zero outside the vertex region Vk, i.e., zero on B Vk. Then, by the property
of the Schur complement (11), we obtain

(17)

where S(i) is the component ofthe Schur complement originating from ’i, as described in (12).
For 1, 2, 3, 4, let L/ denote the L-shaped segment Vk N 0f2i, and further let RL- denote

the pointwise restriction onto L/. Then, as in the case for the edges, (R.-u) Si)(RL-u)
is spectrally equivalent to (R-u)VMi(R.u) where M/ is any of the unscaled Fourier

approximations to the square root of the Laplacian on L/ (see (15)). Let D/ denote the
diagonal of Ai) restricted to L/. Then, by including the effects of coefficients, we define the
following scaled Fourier-based preconditioner for Sv"

(18)
4

Sv. =- Z R.. R.-
i=1
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E6 E8

El0

El2

E1

4

E4 Q2

E2

E3 Q3

Ell

El3

E7 E9

FIG. 2. Numbering ofedges.

For most applications we considered, it was sufficient to choose the number of nodes on the
vertex regions Vk to be small, say five or nine, and so the matrices Fr’. can be computed at
little expense, and can be inverted inexpensively by direct methods.

THEOREM 4.2. The matrices sFv. are spectrally equivalent to Svk, i.e., there exist constants
co, C independent ofh such that

co <_

Proof. The proof follows trivially by application of the standard result (see [2] and [5])
that the square root of the Laplacian on a simple edge such as L/ is spectrally equivalent to

the local Schur complement, i.e., there exist constants Coi), cli) independent of h such that

(i) < Xk S(i)x
(i)VkZk<Co xT zvlilt/fkxv. Cl

Similar bounds hold when M/ is replaced by (Di)l/2Mi(Di)l/2, with suitably modified
(i) cli>, since the entries of D/ can be bounded in terms of the upper and lowerconstants co

bounds for a (x, y) in the neighborhood of L/, independent of h. From this the result follows
immediately, since

(i)for the suitably modified coefficients Co0 and c
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4.1.3. Fourier-based preconditioner. Based on the approximations ,F and vFk weEU
define the Fourier vertex space (FVS) preconditioner by

(19) M;vs RA ,(S)R+R(Sv)-Rv.,
U k

and the Fourier BPS (FBPS) preeonditioner by (see [4])

(20) Mvaas RA1g + gr "f
e, S,)- R,

Note that the Fourier edge approximations , can be inveed in O(nij log(n/j)) flops, using

the Fast Sine Transfo. Direct methods can be used to solve the Fourier veex problems F
The coarse grid matrix problem A can be solved using either direct or iterative methods.

Remark. In the original BPS preconditioner [4], the edge approximations were chosen to
be , aijWdiag()W,

where aj is the average of the eigenvalues of a(x, y) at a point’from fl and a point from

fl, and k X(1 k/6). This differs from the version described in (20) because of the
scaling matrix D.

THEOREM 4.3. The Fourier preconditioner MFVS satisfies:

Co min C1,

where c0, c are independent of H, h, but may depend on the overlap ratio

Proof Bounds for the extreme cigenvalucs of MsS arc obtained from bounds for the
Rayleigh quotient:

min(MSS)< kx  vsx.
The fraction xSx/xMsx has an upper and lower bound independent of H and h (see
[281). It therefore suffices to obtain an upperand lowerbound for the fraction x
or equivalently for

-1xB MvsxsXmin(MFvsM) < Xmax(MFvsMvs).
XB MFvsXB

By spectral equivalence of the edge Fourier approximations, Lemma 4.1, there exist constants

c/and C/independent of H and h such that

xS-EijXBCij < < Cij.x(Se,) x,

Similarly, for the veex spaces, by Theorem 4.2, there exist constants c and C independent
ofH and h such that

< <Ck.
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Letting C max{Cij, C,} and c min{cij, c.}, we obtain

and hence our result follows. 13

4.2. Probe approximations. Next, we describe another variant of the VS and BPS pre-
conditioners in which the edge and vertex matrices are approximated by sparse matrices
obtained using an extension of the probing technique of Chan and Resasco 13], Keyes and
Gropp [24], [25], and Eisenstat [18]. Unlike Fourier-based approximations, the construction
of the probe approximations requires solving six problems on each subdomain, and thus has a
greater overhead cost than the Fourier approximations, but still considerably less than the exact
submatrices. An advantage of these approximations is that they often adapt well to coefficient
variations and aspect ratios. However a disadvantage is that they do not adapt optimally to
mesh size variations.

We will describe the construction ofthese probe approximations for the model rectangular
geometry of Fig. 1. The techniques are easily extended to more general geometries.

4.2.1. Edge probe approximations. We first describe how sparse approximations to the
edge matrices can be constructed [13]. In its basic form, the probing technique consists of
approximating each Seij by a tridiagonal matrix SE,j, which is chosen on the assumption that
each node on an edge is strongly coupled in S only to nodes adjacent to it and weakly coupled
to the other nodes. A heuristic motivation for this is that the entries of each SE, are known to
decay rapidly away from the main diagonals:

(1)I(SE,)lm[=O ii_ml2

see Golub and Mayers [22].
To obtain a tridiagonal approximation e, to SE,, we equate the matrix-vector products

Se,j pi to ,pi for the following three probe vectors pi"

Pl [1, 0, 0, 1, 0, 0 ]r P2 [0, 1, 0, 0, 1, 0 ]r P3 [0, 0, 0, 0, .]r

These matrix-vector products e,P, e,P2, ,E, P3 result in

(S/r)12
i 1 0

(SEo)22 (ei)23 0 1

(/r,])32 (E/j)33 "’"
0 0 1

(/eO) 11 (Str,j) 12 0

(Sgu)34 (SEu)32 (Sgij)33

and equating this with [Se, Pl, SE,j P2, SE,j P3] gives
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(21) := [SF.o Pl, SEo P2, SEP3],

from which the nonzero entries of Seo can be easily read off. In general, Seo will not preserve
the symmetry of Seo, and so we symmetrize it to obtain ,j using a minimum-modulus
procedure described below"

~P { (Eo)ji
(SEij)ij (Eij)ij

if I(E,j)jil I(Eo)ijl,
if I(SE,:)jI _< I(SE,:)jil.

We will denote the construction of e from Sej Pl SE,j P2 Se,j P3 by the notationEij

(22) P PROBE(Se,j pl SE,j P2, SE,j P3)Eij

The resulting approximations can be shown to preserve row-wise diagonal dominance (see
[12]). This idea is motivated by Curtis, Powell, and Reid [15]. In an analogous way, using a
symmetrized variant of 15] (see Powell and Toint [27]), it is possible to obtain a symmetric
tridiagonal approximation directly using just two probe vectors (see [24] and [25]).

Computing the three matrix-vector products Se, Pi requires three solves on each subdo-
main fli and f2j. Thus, in order to compute edge approximations .. on the edges of all
the subdomains, twelve solves on each subdomaln would be required, since the boundary of
rectangular subdomains consists of four edges.

pi, 1,2,3. P3+i, 1, 2, 3.

Pi

Pi

Pi

Pi

0 )

Pi Pi

0 )

Pi Pi

) 0
Pi Pi Pi Pi

Pi

Pi
0

Pi
0

Pi

Pi

Pi

Pi

Pi

Pi

Pi

Pi

,0

FIG. 3. Simultaneous probe vectors.

We now describe a procedure for computing all the edge approximations using only
six solves on each subdomain, by simultaneously prescribing boundary conditions on other
edges, an idea first used in Keyes and Gropp [24], [25]. To minimize the approximation errors
arising from the coupling between vertical and horizontal edges, we will specify probe vectors



VARIANTS OF THE VERTEX SPACE ALGORITHM 1363

Pi either on all horizontal edges simultaneously, or on all vertical edges simultaneously. For
1, 2, 3 (see Fig. 3), define:

Pi
Pi =- 0

on all horizontal edges,
on all vertical edges,

0 on all horizontal edges,
P3+i pi on all vertical edges.

On the horizontal edges, the probe vectors pi can be ordered from left to right, and on vertical
edges from bottom to top. For these six probe vectors, we compute he discrete harmonic
extensions Ehpi [-A-)AIBPi, pi] r, and this involves six solves on each subdomain. If
Eij is a horizontal edge, we define

’ PROBE(REijAhEhpl, RejAhEhp2, ReiAhEP3).Eij

If Eij is a vertical edge, then we define

,’ PROBE(Re,A,EhP4, Re,Ah Ehps, Re,Ah EP6).Eij

We have the following result on the nonsingularity and diagonal dominance of the resulting
probe approximations.

THEOREM 4.4. If the coefficient matrix .4h for the model rectangular geometry of
Fig. satisfies the discrete strong maximum principle (as is the case for standardfive point
discretizations), then the probe approximations ’ obtained above are strictly diagonallyEij
dominant.

Proof. We will prove the diagonal dominance of approximation ee on edge E1 in the
model geometry of Fig. 2; the proof for the other edge approximations are analogous. By
construction,

1 PROBE(ReIAhEhPl ReAEhP2 ReAhEhP3)"

Due to the effects of the boundary conditions on the adjacent edges, it is easily verified that
(see 3.2 for notation)

REAhEIlPi SElPi -] SEIE6Pi W SEE7Pi for 1, 2, 3,

and from this we obtain:

(3)
(EPI)i,i Emod(i_j,3)-.o(SEl -]- SEIE6 -- SE1E7)i,j

(EP1)/,/-1 Emod(i_j,3)_.l(SE1 "Ji- SEIE "- SEIE7)i,j,
(1)i,/+1 Emod(i_j,3)=-l(SEl f- SEIE6 t_ SE1E7)i,j.

For discretizations Ah satisfying the discrete strong maximum principle, S is a diagonally
dominant M-matrix (see 12]), and so its off-diagonal entries are nonpositive and its row sums
are nonnegative. Using this in (23) we obtain that (P)i < 0 for j and the row sum

~p ~p ~p
(SEI)i,i_ -- (SEI)i,i -- (SE1)i,i_t_ E(SE1 -Jr- SEIE6 -31- SE1E7)i,j > O,

J

which shows that diagonal dominance is preserved. Finally, the min-mod procedure preserves
diagonal dominance by definition.
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4.2.2. Probe vertex approximations. Next, we describe how sparse algebraic approx-
imations to the vertex submatrices Sv. can be constructed. Unlike the tridiagonal edge ap-
proximations e which enabled the use of fast direct solvers, the sparse approximations ofEij
the vertex matrices are usually small in general and will be solved by direct methods that do
not make use of the sparsity of the matrices. The procedure we will describe results from a
slight modification of a technique described in 11 ]. This new variant can be proven to result
in nonsingular approximations that preserve diagonal dominance.

For simplicity, we will describe this procedure for the vertex region Vk in the center of
the subdomains f21 "24 of Fig. 2. We partition Vk into five disjoint regions:

(24) Vk Vk El) Vk ("1E2) (’1 Vk t"’1E3) ("1 Vk 0 E4) i"] (XkH, ykH),

and we obtain a corresponding 5 x 5 block partition of the vertex matrix Sv."
Sll 0 S13 S14 S15
0 S22 S23 S24 S25
ST ST S33 0 S35
S3 0 $44 $45

where each Sij corresponds to the coupling between nodes in block and block j. The
submatrices S12 and S34 and their transposes are zero, since there is no coupling in S between
nodes in E1 and E2, and between nodes in E3 and E4. We will construct a vertex matrix
approximation ,ve. having the same block structure as Sv., with subblocks Sij which will be
chosen to be sparse.

To facilitate description of the sparsity pattern, we will use the following ordering of
nodes within Vk; for each of the four edge segments Ei f) Vk, the nodes will be numbered to
increase away from the cross-point (xff, yff), which is ordered last. This ordering is shown
in Fig. 4 where each segment Ei N Vk contains just two nodes.

Block partitioning of nodes Numbering of nodes

() E4

2
E1 x

E3

8

7
3

5

6

4
x E2

with N,s 2

FIG. 4. Ordering ofunknowns within each vertex subregion Vk.

Our choice of the sparsity pattern for the subblocks Sij is based on the assumption that
the elements of Sv. decay with increasing distance between nodes.
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Definition and computation of the edge blocks ii for 1, 2, 3, 4. Within each edge
segment Ei f3 Fk we assume the coupling in Sr. is strong only between adjacent nodes. Based
on this assumption, Sii will be approximated by tridiagonal matrices ii which are chosen to be
the submatrices of the tridiagonal edge matrices ee, for 1, 2, 3, 4, which were computed
in 4.2.

Definition and computation of the blocks Sis for 5. We assume the cross-
point (xff, yff) is coupled strongly in Sv. only to the nodes adjacent to it. Based on this

assumption, we choose the vectors i5 to have zero entries except in the first entry:

i5 0 for/= 5.

For five-point discretizations on the rectangular geometry of Fig. 1, it can easily be shown that
the last row and column of Svk is exactly equal to the last row and column of Rye. Ah Rv., the
matrix Ah restricted to Vk. Therefore, we define

i=1 5,
i=1 5.

To see that Ai5 Si5, first note that Sis is equal to the restriction of Sue to the ith edge of Vk,
where u corresponds to boundary data which is on the kth vertex, and zero elsewhere. Now,
recall that Su RA,E’ us. For five-point discretizations on rectangular subdomains,
the boundary conditions on the comer nodes do not influence the solution in the interior.
Consequently, the discrete harmonic extension E’u is zero in the interior of subdomains,
and A,Ehu simply gives the column of Ah corresponding to the kth vertex. Thus S5 A5.

Definition and computation of ij for 1, 2 and j 3, 4. We assume the couplings
in Svk between edge segments Ei f) Vk and Ej N V, are strong only between the nodes that
are closest (adjacent) to the cross-point (x, yi). Based on this assumption, we choose the
submatrices 13, 14, 23, and 24 and their transposes to have all zero entries except for the
(1, 1)th entry

(S) 0
for/= 1,2; j-- 3,4.

So there are only eight nonzero entries to define.
Consider, for example, the entry (14)1, which we would like to be an approximation

to (S4), the coupling in S between node (x/ h, yff) and node (xff, yff + h). Note
that (S4)1 (Sk)(x h, y) (i.e., the component of S3k corresponding to the point
(x-h, y) where 3k is the boundary data which is on (x, y+h) and zero elsewhere, and
therefore computing (S14) requires one subdomain solve. In order to reduce this overhead,
we would like to extract an approximation from the subdomain solves we already used for the
probe edge approximations. For example, one could define (4) (Sp4)(xff h, ykH).
However, it turns out that this definition can lead to a nondiagonally dominant (and possibly
singular) Sv,. This can be seen by noting that

(SP4)(xff h, ykH) (SE1E4Pl "[- SE1E,oPl "[" Se, e3P + SelF12P)(x h, Yi

The last two terms on the right correspond to extra influence from ’4 on the coupling between
nodes (xff h, yff) and (x/, yff + h) (which should only involve couplings within f2).
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These extra couplings could cause loss of diagonal dominance, since, in case the coefficients
are large in f24, the last two terms will dominate the sum on the right. In order to eliminate
the influence from f24, we now define

(14)11 (Szz4p + SzzoPl)(X h, y) (=_ (REA(1)Ehp4)I),
where we recall that A() is the local stiffness matrix on f2. The last equality comes from
the definition of the local Schur complement, and can be extracted from the subdomain solves
used to construct the edge approximations.

Analogously, we define the seven remaining nonzero entries by

(13)11 (RE A(4)Ehp4)l,
(24)11 (Re2A(2)Ehp4)I,
(23)11 (RE2A(3)Ehp4)I,

(25) (31)11 --= (Re3A(4)EhPl),
(32) 11 - (RE3A(3)Ehpl)I,
(41)11 (RE4A(1)Ehpl)I,
(42) 11 - (RE4A(E)Ehpl)I.

Symmetrization of Sz.. Finally, in order to obtain a symmetric vertex approximation. we use the minimum-modulus procedure

(26) ~P { (v.)ij(Sz)g (3z,.)g

THEOREM 4.5. The vertex matrLr approximations Pv. are nonsingular, diagonally domi-
nant M-matrices.

Proof. First, we note that since the fifth block row of . is identical to the fifth block

row of Sv., it has zero row sum. For any other row of vP centered about nodes not adjacent
to the cross-point, the nonzero entries are the nonzero entries of the diagonal blocks ii, for

1, 2, 3, 4. These diagonal blocks were chosen as submatrices of eP, , eP3, and eP4
respectively, which were shown to be diagonally dominant M-matrices in Theorem 4.4, and
therefore these rows are more diagonally dominant than the corresponding rows of S.

We now prove the diagonal dominance of the rows centered about nodes adjacent to the
cross-point (xff, yff). Consider, for instance, the row sum corresponding to node (xff- h, yff)
to the left of the cross-point (xff, yff). The nonzero entries of this row are (ll)ll, (11)12,
(13)11, (14) 11, and (15)11. By construction,

(11)11 Emod(j_l,3)=o(SE1 "q- SEIE6 + SEIET)I,j > 0,
(11)12 Emod(j_2,3)=o(SE - SE1E6 -- SEET)I,j <-- 0,
(13)11 - mod(j-l,3)=o(SEE3 -+" SEIEo)I,j <-- 0,
(S14)11 Emod(j-I,3)=o(SEE4 -t" SE1E13)I,j <-- O,
(S15)11 (SEEs)ll O.

By summing all these nonzero entries, we obtain

yj( SVI,.)Ij Zmod(j_l,3)=o(SEl -- BE, E6 -- SE, E7)I,j
"[" Emod(j-2,3)=o(SE, @ SE1E6 + SE1E7)I,j
@ mod(j-l,3)=o(SE1E3 -- SEEo)I,j

+ Emod(]-I 3)-o(SE1E4 "- SE1EI3)I,J
+(Xee)l.’
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The right-hand side is a subset of the corresponding row of S, which is strictly diagonally
dominant, which shows that this row ofk is diagonally dominant. The proof of the diagonal
dominance of the other rows centered about the nodes adjacent to (xff, yff) is analogous.
Thus zPk is strictly diagonally dominant in all rows except the one corresponding to the cross-

point. This last property, together with the fact that e has positive diagonal elements and

nonpositive off-diagonal elements, implies that is a nonsingular M-matrix.

4.2.3. Probe-based preconditioner. We now define the probe vertex space (PVS) pre-
conditioner by

(27) Ms RAh’ RI4 + Rr -P )-’
ij k

and the probe BPS (PBPS) preconditioner by:

(28) MpBes Rrl_tAl RH At" RT -P )-1
ij

5. Numerical results. We now present results of numerical tests on the rate of con-
vergence of the Fourier and probe variants of the BPS and VS algorithms. The tests were
conducted for the following elliptic problem:

-V.(a(x,y)Vu)=f inf2=[0,1]2

u =0 on 2,

for five choices of coefficients a (x, y), various subdomain sizes H, and fine grid sizes h. The
five coefficients used were:

1. a(x, y) I, the Laplacian; see Table 1.
2. a(x, y) 1-4- 10(x2 + y2)I, slowly varying smooth coefficients; see Table 2.
3. a(x, y) elxyI, highly varying smooth coefficients; see Table 3.
4. a(x, y) diag(1, ), anisotropic coefficients; see Table 4.
5. Highly discontinuous coefficients of Fig. 5; see Table 5.

h -1 Ovlp FBPS

__H-1 h/H tc ITN

32_2 1/16 14.3 11

32_8 1/4 6.4 12

64_4 1/16 14.5 14

64_16 1/4 6.5 13

128_4 1/32 19.8 16

128_16 1/8 10.4 14

256_4 1/64 25.4 16

256_16 1/16 14.7 16

256_64 1/4 6.5 13

TABLE
Laplace’s equation: a(x, y) I.

PBPS

tc ITN

9.9 9

5.4 11

11.3 12

5.6 11

18.4 15

8.3 13

33.0 19

12.4 13

5.7 11

EVS

tc ITN

3.4 7

2.5 8

3.4 9

2.6 8

4.4 10

2.8 9

5.5 10

3.5 9

2.6 8

FVS

tc ITN

5.7 11

3.5 10

5.9 13

3.6 10

7.4 13

4.6 11

9.1 13

5.9 13

3.6 10

PVS

tc ITN

3.2 8

2.4 8

3.2 9

2.5 8

4.1 10

2.7 9

7.2 13

3.3 9

2.4 8
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TABLE 2
Mildly varying coefficients: a(x, y) (1 + 10(x + y2)) I.

h’l

32_2

32_8

64_4

64_16

128_4

128_16

256_4

256_16

256_64

Ovlp FBPS

h/H r ITN

1/16 15.2 ll

1/4 6.4 12

1/16 14.9 14

1/4 6.5 13

1/32 20.0 16

1/8 10.4 14

1/64 25.8 17

1/16 14.7 16

l/4 6.5 13

PBPS

r ITN

10.6 9

5.4 11

11.6 12

5.6 11

18.4 15

8.4 13

33.2 19

12.3 13

5.7 11

FVS

r ITN

6.0 II

3.6 10

5.8 12

3.6 10

7.3 13

4.6 11

9.3 13

5.9 13

3.6 l0

PVS

r ITN

3.4 8

2.4 8

3.2 9

2.4 8

4.2 10

2.7 8

7.2 13

3.4 9

2.4 8

TABLE 3
Highly varying coefficients: a(x, y) elxyI.

h -l Ovlp FBPS

__H- h/H x ITN

32_2 1/16 22.5

32_8 1/4 7.0 12

64_4 1/16 17.6 16

64_16 1/4 6.6 12

128_4 1/32 24.4 16

128_16 l/8 10.4 14

256_4 1/64 29.3 17

256_16 1/16 15.0 15

256_64 1/4 6.5 12

PBPS

r ITN

18.4 9

6.2 11

15.5 15

5.8 11

23.3 15

8.4 ll

41.4 22

12.4 13

5.6 ll

nsFVS

r ITN

16.1 18

4.0 l0

11.3 16

3.7 l0

16.1 19

4.7 12

16.2 19

5.0 11

2.9 9

FVS

r ITN

7.5 11

3.9 10

6.5 12

3.7 10

8.4 13

4.6 11

10.1 13

6.1 13

3.6 l0

PVS

r ITN

4.4 9

2.5 8

4.0 9

2.5 8

5.1 l0

2.8 9

8.5 13

3.3 9

2.4 8

TABLE 4
Anisotropic problem: O2u/Ox + 6(O2u/Oy2) f

h-l_H’l 64_2 64_4 64_16

0.1

0.06

0.02

10-3
10-5
10-7

PVS

c ITN

7.4 10

8.9 10

13.0 10

29.3 8

41.8 6

42.1 6

FVS

x ITN

14.5 17

18.4 19

31.4 24

115.6 38

193.8 48

195.4 48

PVS

5.9

7.5

13.0

60.3

105.1

102.1

ITN

12

13

16

25

27

25

FVS

tc ITN

12.0 18

15.2 21

29.4 28

151.5 47

253.6 59

273.1 59

PVS

9.0

13.6

34.4

215.8

396.6

405.6

ITN

16

18

27

59

73

73

FVS

12.9

19.7

50.1

351.8

583.6

654.0

ITN

19

23

33

73

87

92
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a 300

a =0.05

a 106

a=l

a= 10-4

a=6

a=0.1

a 6000

a 31400

a =0.07

a 200

a=4

FIG. 5. Discontinuous coefficients a (x, y).

a=5

a 2700

a=9

a 140000

TABLE 5
Discontinuous coefficients: see a(x, y) ofFig. 5.

h -l Ovlp FBPS

__H- h /H r ITN

32_4 1/8 10.2 13

64_4 1/16 14.7 15

64_16 1/4 6.5 13

128_8 1/16 14.4 16

128_32 1/4 6.6 13

256_4 1/64 25.4 19

256_16 1/16 14.8 16

256_64 1/4 6.5 13

PBPS

tc ITN

7.5 11

11.1 11

5.6 11

12.1 14

5.7 11

33.0 17

12.3 13

5.7 11

FVS

tc ITN

6.1 12

9.3 14

6.9 12

11.5 15

6.8 12

14.9 15

12.4 16

6.0 12

PVS

r ITN

8.1 11

10.1 11

4.1 9

5.9 ll

4.1 9

7.8 13

6.9 ll

4.1 9

The elliptic problem was discretized using the standard five-point difference stencil (see [30])
on an (n + 1) x (n + 1) uniform fine grid with mesh size h 1/n. The subdomains were
chosen to be the subrectangles of an (ns + 1) x (ns + 1) uniform coarse grid with mesh size
H /n. Each subdomain, therefore, consisted of (n /ns 1) x (n /n 1) interior nodes.
The coarse grid matrix A was chosen to be the five-point difference approximation of the
elliptic problem on the coarse grid.

The entries of the exact solution were chosen randomly from the uniform distribution on
[-1, 1] and the initial guess in the conjugate gradient method was chosen to be zero. The
estimated condition number, to, of the preconditioned system, and the number of iterations,
ITN, required to reduce the initial residual by a factor of 10-5 (i.e., Ilrkll2/llroll2 < 10-5)
are listed in the tables. During each iteration, the coarse grid problem and the subdomain
problems were solved to high precision using a diagonally scaled preconditioned conjugate
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gradient method for simplicity, though this was not the most practical choice. The eigenvalues
/zk in the edge approximations F,j of (16) were chosen to be the Bramble, Pasciak, and Schatz

eigenvalues listed in (15), while the eigenvalues of the submatrices M/ of (18) were chosen to
be the Dryja eigenvalues in (15). The Fourier and probe BPS versions are denoted by FBPS
and PBPS, respectively, while the Fourier and Probe versions of the VS algorithms are denoted
FVS and PVS, respectively. Unless otherwise stated, the number of nodes of overlap, Nvs, in
the vertex regions is 1, i.e., there is one node on each vertex segment Vk fq Eij. The overlap
ratio/ h/H is listed as Ovlp.

Discussion. Tables 1-5 compare the performance of the various methods for the five
sets of coefficients listed above. Table corresponds to the Laplacian. In this case, the exact
version ofthe VS algorithm, denoted by EVS, was also tested, because the eigenvalues ofedge
matrices Se,j can be computed inexpensively using analytical formulas; see MChan in (15). In

h-I

32_2

32_8

64_4

64_16

128_2

128_8

128_32

256_4

256_16

256_64

TABLE 6
Different edge Fourierpreconditionersfor Laplace equation.

Ovlp

h/H
1/16

1/4

1/16

1/4

1/64

1/16

1/4

1/64

1/16

1/4

FBPS

x ITN

14.3 11

6.4 12

14.5 14

6.5 13

25.0 13

14.7 16

6.5 13

25.4 16

14.7 16

6.5 13

CFBPS

tc ITN

9.5 7

5.3 11

10.7 11

5.5 11

17.8 8

11.5 14

5.5 11

19.2 13

11.7 14

5.5 11

FVS

c ITN

5.7 11

3.5 10

5.9 13

3.6 10

9.0 11

5.9 13

3.6 10

9.0 14

5.9 13

3.6 10

CFVS

x ITN

4.6 8

2.9 9

4.7 10

2.9 9

7.3 8

4.7 10

2.9 9

7.3 10

4.7 10

2.9 9

PVS

tc ITN

3.2 8

2.4 8

3.2 9

2.5 8

6.5 11

3.4 9

2.5 8

7.2 13

3.3 9

2.5 8

TABLE 7
Different edge Fourierpreconditionersfor a(x, y) elxyI.

h -1 Ovlp FBPS

__H- h /H x ITN

32_2 1/16 22.5 11

32_8 1/4 7.0 12

64_4 1/16 17.6 16

64_16 l/4 6.6 12

128_2 1/64 36.3 13

128_8 1/16 15.7 14

128_32 1/4 6.5 12

256_4 1/64 29.3 17

256_16 1/16 15.0 15

256_64 l/4 6.5 12

CFBPS

x ITN

18.1 8

5.8 11

14.7 12

5.6 11

28.5 9

12.5 11

5.5 11

23.3 14

11.9 12

5.4 11

FVS

tc ITN

7.5 11

3.9 10

6.5 12

3.7 10

11.8 12

6.0 12

3.6 10

10.1 13

6.1 13

3.6 10

CFVS

x ITN

6.2 9

3.3 9

5.4 9

3.0 9

9.6 9

5.1 10

3.0 9

8.3 10

4.8 10

2.9 9

PVS

x ITN

4.4 9

2.5 8

4.0 9

2.5 8

8.6 11

3.6 10

2.4 8

8.5 13

3.3 9

2.4 8
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TABLE 8
Variation ofvertex sizesfor H 1/2, h 1/128, anda(x, y) I.

_Nvs 0 2 3 4 5 6 7

xrvs 7.45 8.97 8.07 7.66 6.85 6.98 6.71 6.53

ITN 10 11 12 12 12 13 12 12

TABLE 9
Variation ofvertex sizesfor H 1/2, h 1/128, and a(x, y) elxyI.

Nvs 0 2 3 4 5 6 7

tcFvs 9.85 11.80 10.25 10.00 9.41 9.01 8.63 8.40

ITN 11 12 12 13 12 12 12 13

TABLE 10
Variation ofvertex sizesfor H 1/2, h 1/128, a(x, y) I.

Nvs 0 2 3 4 5 6 7

xPVS 8.3 6.6 5.6 5.0 4.8 3.2 4.6 4.5

ITN 11 11 11 11 11 9 11 11

TABLE 11
Variation of vertex sizesfor H 1/2, h 1/128, and a(x, y) elXyI.

Nvs 0 2 3 4 5 6 7

xPVS 10.8 9.1 7.3 6.6 6.6 6.6 6.8 6.9

ITN 12 11 10 10 10 11 11 11

agreement with the theory, these results indicate that the Fourier variant FVS has an observed
rate of convergence independent of the mesh parameters H, h for fixed overlap ratio Ovlp.
Moreover, the actual iteration numbers are quite insensitive to the choice of parameters H, h,
and Ovlp. For the range ofsubdomain and fine grid sizes tested, the performance ofPVS is very
similar to EVS. However, as the number ofnodes per edge increases significantly, it is expected
that the PVS version would deteriorate, based on properties of the probe preconditioner for
two subdomains in 12]. The condition numbers for the variants of the BPS algorithms grow
mildly with H! h, in agreement with theory. In most cases, due to clustering of eigenvalues of
the preconditioned system, the number of iterations, ITN, was often better than that predicted
by the condition numbers.

Tables 2 and 3 correspondto smoothly varying coefficients. Here again, the results are
similar to those for the Laplacian, and are in agreement with the theory. Moreover, the rate of
convergence of most variants are quite insensitive to the variations in the coefficients a (x, y).
In order to see the importance of scalings, in Table 3 we also tested a variant nsFVS of the
FVS preconditioner, in which the edge approximations were not diagonally scaled, but were
instead scaled by a scalar Olij on each edge Eij i.e.,

FF aijWdiag(#k)W,
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where

a(xi, Yi) -Jr-a(xj, yj)
Olij

2

for some point (Xi, Yi) - ’i and (xj, yj) f2j. As the results indicate, this variant was
sensitive to the variations in the coefficients.

Table 4 concerns the case of anisotropic coefficients. Here, the results are qualitatively
different from the preceding cases. Note that the rate of convergence of all variants of the VS
and BPS algorithms deteriorates to a fixed rate as e 0. The limiting condition numbers seem
to depend on the coarse mesh size, as 1/H. A possible explanation for this deterioration is the
following. For e 0, the unknowns are essentially coupled only along the x axis and adjacent
vertical edges are coupled strongly in the Schur complement. This coupling is not represented
in the VS preconditioner, and may cause the deterioration in the convergence rate. The results
in Table 4 also indicate that the probe versions perform slightly better than the Fourier versions.
This can be explained as follows. For 0, the edge matrices S,j on the horizontal edges
become a discrete approximation of-d2/dx2, while on vertical edges Se, becomes a nearly
diagonal matrix, similar to the identity. The FVS edge matrices P= approximate the square

’ij

root of the Laplacian, and are therefore invalid in this case. By construction, the tridiagonal
probing technique approximates diagonal and tridiagonal matrices well, and consequently, they
perform better than the Fourier versions we tested. The algorithms for anisotropic problems
need further study.

Table 5 refers to the case of the highly discontinuous coefficients of Fig. 5. The perfor-
mance is similar to the case of smooth coefficients, and the results indicate that the rate of
convergence of all variants is quite insensitive to the jumps in the coefficients.

In Tables 6 and 7, we compare various preconditioners for different choices ofeigenvalues
#k in the Fourier approximations (16). Here, CFBPS denotes that the eigenvalues ofthe Fourier
edge approximations in the FBPS preconditioner were those of MChan in (15), while CFVS
denotes that the same eigenvalues were used in the FVS preconditioner. In agreement with
theory, the Fourier versions were spectrally equivalent with respect to variations in H and
h, for fixed overlap Ovlp. Amongst the various eigenvalues tested, the exact eigenvalues
of the Schur complement of the Laplacian used in CFBPS and CFVS gave the best results.
Corresponding rates for the probe version are also listed for comparison.

Finally, in Tables 8, 9, 10, and 11, we present a comparison of the FVS and PVS precon-
ditioners, as the amount of overlap Nvs in the vertex regions is increased. Here, Nvs 0
indicates that only the vertex node was used, i.e., the vertex matrices were x 1. We note that
the improvement in condition number of the VS algorithms as the overlap Ovlp is increased
is mild, as also noted in [28]. In particular, the performance is quite satisfactory even when
the vertex region consists ofjust one point (see Widlund [32]).

6. Conclusions. Both the Fourier and probe variants of the VS algorithm are designed
to be efficient alternatives to the original VS algorithm. Our experiments for a wide range of
coefficients and grid sizes show that this efficiency does not come at the price of deterioration
in performance. We hope that these variants will provide flexible and efficient methods for
solving second-order elliptic problems using the domain decomposition approach.

REFERENCES

V.I. AGOSHKOV, Poincar-Steklov operators and doJnain decomposition methods infinite dimensional spaces,
in First International Symposium on Domain Decomposition Methods for Partial Differential Equations,
R. Glowinski, G. H. Golub, G. A. Meurant, and J. P6riaux, eds., Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1988.



VARIANTS OF THE VERTEX SPACE ALGORITHM 1373

[2] P.E. BJtRSTADAND O. B. WIDLUND, Iterative methodsfor the solution ofellipticproblems on regionspartitioned
into substructures, SIAM J. Numer. Anal., 23 (1986), pp. 1093-1120.

[3] C. BORt3ERS, The Neumann-Dirichlet domain decomposition method with inexact solvers on the subdomains,
Numer. Math., 55 (1989), pp. 123-136.

[4] J.H. BRAMBLE, J. E. PASCIAK, AND A. H. SCHATZ, The construction ofpreconditionersfor elliptic problems by
substructuring, I, Math. Comp., 47 (1986), pp. 103-134.

[5] An iterative methodfor elliptic problems on regions partitioned into substructures, Math. Comp., 46
(1986), pp. 361-369.

[6] T. CHAN, R. GLOWINSKI, J. PIRIAUX, AND O. WIDLUND, LOS., Domain Decomposition Methods, Proceedings
of the Second International Symposium on Domain Decomposition Methods, Los Angeles, California,
January 14-16, 1988, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1988.

[7] LOS., Domain Decomposition Methods, Proceedings of the Third International Symposium on Do-
main Decomposition Methods, Houston, Texas, 1989, Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1989.

[8] T. F. CHAN, Analysis ofpreconditioners for domain decomposition, SIAM J. Numer. Anal., 24 (1987), pp.
382-390.

[9] T. E CHAN AND D. GOOVAERTS, A note on the efficiency of domain decomposed incomplete factorizations,
SIAM J. Sci. Stat. Comput., 11 (1990), pp. 794-803.

10] T. F. CHAN AND T. Y. HOU, Eigendecomposition of domain decomposition interface operators for constant

coefficient elliptic problems, SIAM J. Sci. Stat. Comput., 12 (1991), pp. 1471-1479.
11 T. E CHAN AND Z. P. MATHEW, An application ofthe probing technique to the vertex space method in domah

decomposition, in Domain Decomposition Methods for Partial Differential Equations, T. E Chan, R.
Glowinski, J. Periaux, and O. Widlund, eds., Society for Industrial and Applied Mathematics, Philadelphia,
PA, 1990.

[12] , The interface probing technique in domain decomposition, SIAM J. Matrix Anal. Appl., 13 (1992),
pp. 212-238.

[13] T. E CHAN AND D. C. RESASCO, A survey ofpreconditionersfor domain decomposition, Tech. Rep. DCS/RR-
414, Yale University, New Haven, CT, 1985.

[14] P.G. CIARLE’r, The Finite Element Methodfor Elliptic Problems, North-Holland, Amsterdam, 1978.
[15] A. R. CURTIS, M. J. POWELL, AND J. K. REID, On the estimation of sparse Jacobian matrices, J. Inst. Maths.

Applics., 13 (1974), pp. 117-120.
[16] M. DRVJA, A capacitance matrix methodfor Dirichlet problem on polygon region, Numer. Math., 39 (1982),

pp. 51-64.
17] M. DRYJA AND O. B. WIDLUND, Some domain decomposition algorithmsfor elliptic problems, in Proceedings

of the Conference on Iterative Methods for Large Linear Systems held in Austin, Texas, October 1988,
to celebrate the Sixty-fifth Birthday of David M. Young, Jr., Academic Press, Orlando, FL, 1989.

18] S.C. EISENSTAT, personal communication, 1985.
[19] D. FUNARO, A. QUARTERONI, AND P. ZANOLLI, An iterative procedure with interface relaxation for domain

decomposition methods, SIAM J. Numer. Anal., 25 (1988), pp. 1213-1236.
[20] R. GLOWINSKI, G. H. GOLUB, G. A. MEURANT, AND J. PIRIAUX, LOS., Domain Decomposition MethodsforPartial

Differential Equations, Proceedings of the First International Symposium on Domain Decomposition
Methods for Partial Differential Equations, Paris, France, January 1987, Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1988.

[21 R. GLOWINSKI, Y. A. KUZNETSOV, G. A. MEURANT, J. PIRIAUX, AND O. WIDLUND, EDS., Domain Decomposi-
tion Methods, Proceedings of the Fourth International Symposium on Domain Decomposition Methods,
Moscow, USSR, 1990, Society for Industrial and Applied Mathematics, Philadephia, PA, 1990.

[22] G. GOLtJB AND D. MAVERS, The use of preconditioning over irregular regions, in Computing Methods in
Applied Sciences and Engineering, VI, R. Glowinski and J. L. Lions, eds., Proceedings of a conference
held in Versailles, France, December 12-16, 1983, North-Holland, Amsterdam, 1984, pp. 3-14.

[23] G.H. GOLUB AND C. E V. LOAN, Matrix Computations, Second Ed., Johns Hopkins University Press, Baltimore,
MD, 1989.

[24] D.E. KEYES AND W. D. GROPP,A comparison ofdomain decomposition techniquesfor ellipticpartial differential
equations and their parallel implementation, SIAM J. Sci. Stat. Comput., 8 (1987), pp. 166-s202.

[25] ,Domain decomposition techniquesfor the parallel solution ofnonsymmetric systems ofelliptic bvps,
in Domain Decomposition Methods, T. Chan, R. Glowinski, J. P6riaux, and O. Widlund, eds., Society for
Industrial and Applied Mathematics, Philadelphia, PA, 1989.

[26] S. V. NEPOMNYASCHIKH, On the application of the method of bordering for elliptic mixed boundary value
problems and on the difference norms of WI2/2 (S), Tech. Rep. 106, Computing Center of the Siberian
Branch of the USSR Academy of Sciences, Novosibirsk, 1984. (In Russian.)



1374 TONY E CHAN, TAREK P. MATHEW, AND JIAN-PING SHAO

[27] M.J. POWELLAND P. L. TOINT, On the estimation ofsparse Hessian matrices, SIAM J. Numer. Anal., 16 (1979),
pp. 1060-1074.

[28] B. E SMITH, An optimal domain decomposition preconditionerfor thefinite element solution oflinear elasticity
problems, Tech. Rep. 482, Department of Computer Science, Courant Institute, New York, 1989; SIAM
J. Sci. Comput., 13 (1992), pp. 364-378. (Proceedings of Copper Mountain Conference on Iterative
Methods.)

[29] ,Domain Decomposition Algorithmsfor the Partial Differential Equations ofLinear Elasticity, Ph.D.
thesis, Courant Institute, New York, 1990.

[30] R.S. VARGA, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.
[31 O.B. WIDLUND, Iterative substructuring methods: Algorithms and theoryfor elliptic problems in the plane,

in First International Symposium on Domain Decomposition Methods for Partial Differential Equations,
R. Glowinski, G. H. Golub, G. A. Meurant, and J. P6riaux, eds., Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1988.

[32] Some Schwarz methodsfor symmetric and non-symmetric elliptic problems, Tech. Rep. 058 l, Courant
Institute, New York, 1991.



SIAM J. ScI. COMPUT.
Vol. 15, No. 6, pp. 1375-1400, November 1994

() 1994 Society for Industrial and Applied Mathematics
007

SOLUTION OF THE SYSTEMS ASSOCIATED WITH INVARIANT TORI
APPROXIMATION. II: MULTIGRID METHODS*

LUCA DIECI AND GEORG BADER

Abstract. In this paper, the authors continue (see [Solution of the Systems Associated with Invariant Tori

Approximation. I: Block Iterations and Compactifcation, manuscript, available from the first author]) the study of
solution strategies for the linear systems arising from an upwind discretization ofthe periodic PDEs with same principal
part associated with invariant toil. Here, multigrid approaches for the solution ofthese systems are considered. Several
choices of smoothers are considered, and opportune choices of prolongations and restrictions are discussed. Some
convergence results, as well as implementation details and numerical results for linear model problems are given.
A nonlinear upwind discretization is discussed, and results are presented for the tori associated with two physically
important nonlinear problems: the forced Josephson junction and a system of two coupled oscillators.

Key words, invariant tori, numerical computation, PDEs with same principal part, upwind discretization,
multigrid methods, Josephson junction, coupled oscillators

AMS subject classifications. 65L99, 65N07, 65F10

1. Introduction. This paper is the second part of our study of solution strategies for the
systems arising from a first-order discretization ofupwinding type for the systems ofhyperbolic
partial differential equations (PDEs) with same principal part associated with invariant tori of
dynamical systems. Whereas in [DB we looked at some of the standard iterative methods
and direct compactification algorithms, here we consider multigrid approaches for the solution
of the linear systems. The reason for considering multigrid approaches is simple. The basic
iterative schemes considered in [DB ], applied to the matrices arising after discretization ofthe
invariant tori PDEs, show a potentially slow speed ofconvergence ifthe tori are not sufficiently
attractive.

Multigrid theory for hyperbolic PDEs is not as well settled as it is for elliptic PDEs (see
[Hac]), and even analyzing seemingly simple model problems often requires considerable
effort. The widespread interest in multigrid techniques for hyperbolic problems is largely
motivated by the Euler equations of fluid dynamics. A quantitative analysis ofthe convergence
rates for this class of problems would be very important, but it has apparently long eluded
researchers in the field, although successful multigrid codes for the Euler equations have been
used for quite some time [HS]. The recent work [BY] (and references therein) highlights some
of the difficulties involved.

Multigrid techniques have not been used before for our class of PDEs, and we cannot
give general convergence results either. However, we will gain some insight on convergence
behavior of multigrid techniques from analyzing model problems. An upwind discretization is
chosen to exploit the fact that the PDEs have same principal part, and appropriate prolongation
operators are discussed to deal with the periodicity of the problem. We will then be able to
prove that the convergence of the two-grid method on a scalar problem is O(h). The same
result holds true for the V-cycle multigrid method for this same problem. We will also give
convergence estimates for the multigrid iteration on constant-coefficients two-dimensional
problems. To this end, we use Fourier techniques, in much the same spirit as of [Hac, 8.1.2].
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An outline of the paper is as follows. In 2 we review some background material and
look at the problem to be solved. We also present some simple results which have an impact
on the properties of the discretization. In 3 we discuss the chosen upwind discretization. For
nonlinear PDEs, we explicitly look at the structure resulting when performing the discrete
Newton method. In 4 we consider multigrid algorithms, discuss prolongation and restriction
operators, consider both point and block smoothings, and show O(h)-convergence for a scalar
variable-coefficients problem. We also give some convergence estimates for multigrid iteration
on a constant-coefficients two-dimensional problem. We illustrate the theory with numerical
results for linear problems. In 5 we present numerical results for two physically important
nonlinear problems: the forced Josephson junction and a system of two coupled oscillators.
In 6 we give conclusions.

2. Background. The problem to be solved. We consider general autonomous dynami-
cal systems, in which a subset of the system variables are angular coordinates. More precisely,
we first consider linear systems

(2.1) 0 fro), , -c(O)v + g(0),

where O(t) (Ol(t) O,(t)) r . Tp, v(t) (vi(t) Vq(t)) r . ]1q, and Tp is
the standard p-toms: Tp {0 (01 Op)’Oi

_
[0, 2zr], (mod2r)}. The functions

f(0) (]i(0) fp(O))r. Tp .--> IRp, C(O)= (cij(O)).j= Tp --> ]lq xq, and
g(0) (gl (0) gp(O)) r Tp --> ]Rq are assumed to be periodic in each angular co-
ordinate and in Cr, r > 2. We also make the following positive-definiteness assumption on
the coefficient matrix C(0) (this implies attractivity of the invariant torus):

(2.2) C(O) >_ 0I, r/> 0 (i.e., xTC(0)x > 0, ’ x y 0) ’ 0 E Tp,

and we are interested in determining a manifold .A4, diffeomorphic to TP, hence a torus, of
the form

(2.3) A4 {(0, u(0))" 0 E TP}, u" Tp ---> ][q,

invariant under the flow of (2.1). As we know [K], if u is a C-function, then .M is an invariant
toms under the flow of (2.1) if and only if u satisfies the following periodic system of PDEs"

P 0u
0 Tp(2.4) -zT-(O)f,(O) + C(O)u(O) g(O), e

Generally, we consider nonlinear systems of the following form:

(2.5) 0 fro, v), , g(0, v),

with O, v, and Tp as before, and f" Tp q --> ]Ip, g Tp ][q "-> ]q, Cr-functions,
periodic in each angular coordinate. Again, if we require a manifold A/t, as in (2.3), to be
invariant under the flow of (2.5), and if u is a C-function, it must satisfy the following periodic
nonlinear system of PDEs with same principal part:

P )u
(2.6) E -(O)f,(O, u) g(O, u), 0 Tp.

v’-I
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A formal linearization of (2.6) around fi(0) gives for the correction v(0) the linear PDE

P v [--"6 ugl 6(2.7) f(0, fi) + Vf (0, fi)v g(0, 6) E f(0, ti),
v=l v=l v=l

where Vfv (of,, oL )(0, 6) and is the Jacobian of g. In analogy with (2.2), we will0Ul 0//q
require that

(2.8) h--S-.Vf-h-=. (O, 6) > riI, 0>0, O c Tp,
v-’l

hold for 6(0) in a neighborhood of u* (0), the exact invariant torus solution of (2.6).
It is well understood [S] that if the above linearization procedure is taken as the basis for

an iterative process (continuous Newton’s method), then at each iteration there is a potential
loss of differentiability for the new iterate. To see it, it suffices to consider the one-dimensional
PDE (an ordinary differential equation (ODE) on the circle)

(2.9) uo f(O, u) g(O, u), 0 6 T, u(0) u(2zr).

The continuous Newton’s method would read: given u, find u"+, the periodic solution of

u+f(O, un) + (uL gu)(O, un)un+ g(O, un) +(ug fu g,,)(O, un)un,
(2.10)

0 6 T n 0,

Now, if f, g, and u are all Cr-functions, then we should expect the right-hand side of (2.10)
to be only a cr-l-function; hence u can only be expected to be a Cr--function, and so forth.
The trouble is given by the term

v--I

in (2.7). Clearly, if the functions f are independent of u, then the process is well defined and
no loss of differentiability is involved. From the practical viewpoint, we first discretize the
nonlinear PDE and then use a discrete Newton’s process; see 3. It is our impression that the
above-outlined difficulty is circumvented by our discretization at the discrete level, but that
the convergence properties of the discrete Newton’s process can ultimately be affected by the
form of the function f(O, u) in a similar way to what happens at the continuous level. In our
experiments, we have observed convergence to be quadratic throughout.

Condition (2.2), or (2.8), is a stringent assumption, but it is instructive to appreciate what
can go wrong when it is violated. We restrict ourselves to scalar one- and two-dimensional
problems. First, consider (2.9), and let u*(O) be a smooth isolated solution. We want the
variational equation around u*:

vo f(O, u*) + [u; fu (0, u*) g,,(O, u*)]v O, v(0) v(2zr),

to only have the trivial torus as a solution: v 0. Now, this is certainly guaranteed if the term
in brackets has a constant sign, say > 0. In fact, let O(t, 00) be the characteristics

0 a(O), a(O) := f(O, u*(O)),
0 (0) 00, 00 [0, 2zr ];
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then v(t) v0 exp(-fg c(O(t, 0o))dt), c(O) Ufu (0, u*) g,(O, u*), and this has the
unique solution v 0 when c(O) > 0. The same situation occurs for scalar two-dimensional
problems of the form uo + UOEf(O1, 02, U) g(01, 02, U), subject to the usual periodicity
conditions. These problems are important, as they arise from nonautonomous second-order
ODEs with periodic forcing term (forced oscillators). By taking the variational equation
around u* (01,02) we obtain

vo +v02 F(01, 02) G(01, 02)l),
(2.11) F f(O1,02, u*),

G’= g,,(01 02 u*)- u* f,(01 02 U*)02

We want v 0 to be the only periodic solution. This is guaranteed if G does not change
sign. To see it, we can tse the following argument Consider (2.11) subject to periodic
boundary conditions (BCs) in 02 only: v(0, 02) w(y), w(y) w(y + 2zr). Then we
integrate along characteristicsdOE/dO1 F(01, 02), 02(0) Ct E [0, 2zr], toobtain 02(01, ct);
the total derivative reads dr/dO1 G(01,02(01, ))1), SO we have v v(01, 02(01, Ct))
c. expf G(01,02(01, ))d01. To have v periodic in 01 we must have w(ct) V(Ol O)
v(O1 2zr) w(ct)exp fr G(O1,02(01, a))d01. The dependence on ct is only fictitious,
since 002/0 satisfies

d 302 302 302 (0)
dOl Fo2 0ot OR

with solution (002/00t)(01) exp fol Fo2dO1 By letting y(ot) 02(27r, ct), then ?’(ct)
exp fr Fo2dO1 > 0, 1,’ is invertible, and t ?,-1 (02(2zr)). Thus, we only have the trivial
solution when G does not change sign; otherwise we might have a nontrivial null space. To
summarize, if C(0) > 0 is not verified, we might not have an isolated solution.

Remark. A given dynamical system does not generally arise in the form (2.11), which
we have assumed. Often the problem of finding a proper parametrization for a given problem
is the hardest task. In theory, however, this is always locally possible (see [Hal]). In practice,
we will show examples in 5.

3. Discretization. For the linear system (2.4), we maintain the choice made in [DB 1].
Let hu 2rr/Nu, v p, h (hi hp), and let Thp be the discrete analog of the
torus TP. Thp is a periodic grid with N N1... Np mesh points. Let uh, Uh ThP -- Iq, be
the unknown grid function, and replace (2.4) by the periodic difference equations of upwinding,
type

E fv(Oh)DovUh ’4hvtrv(fv(Oh))D+vD-vuh + C(Oh)Uh g(Oh),
(3 1)

Oh T,

where D+vD-v -2.(Ev 21 + EI), (EvUh)(Oh) := Uh( (jr + 1)hv ), (jr + 1) E

Z mod Nv, D+v (Ev I), D-v (I- E-I), and Dov g(D+v + D-v). The
functions o(fv (0h)) are the smoothing,functions and are defined as

(3.2) trv(f(Oh)) "= (ev + f(Oh)2) 1/2 ev >_ O,

where ev are the smoothing parameters. The choice of ev 0, for all v, corresponds to what
is known as classical upwind. Obviously, rv > fl with strict inequality when ev > 0. As
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seen in [DB 1 ], this upwinding discretization leads to a block M-matrix structure, and hence
to stability and convergence results.

While the upwind discretization theory for linear problems is fairly complete, the theory
for the nonlinear case is not. We replace (2.6) by the following periodic difference equations
of upwinding type:

(3.3) p[fv(Oh, uh)D0vuh -hvav(f(Oh, uh))D+vD-vuh g(0h,
v=l

Oh T,
where the smoothing functions o’v are defined as

(3.4) >_0.

To solve the nonlinear system (3.3) we use Newton’s method. To this end, it is imperative
that the cry be differentiable functions (with respect to f,), and hence that > 0 if f change
sign. With this in mind, a formal Newton iteration on (3.3) around a guess u gives for the
correction vh, Vh Thp --+ q, the periodic linear system

(3.5)

where all quantities are evaluated at (Oh, u) 0g and Vfv are as in (2.7), and

f,(O, u)cry’ (f (0, u))
a(f (0, u))

Remark. The choice of rv as in (3.4) guarantees that

1
(3.6) la, < 1 Vfv, e,, la"l _<

vg"

and this bound is achieved when fi changes sign.
Consider the term in braces in (3.5). By ordering the unknowns reverse-lexicographically

and keeping the components at each grid point together, this is a q x q matrix block which

goes on the diagonal of the qN x qN matrix associated with (3.5). we want this q x q matrix
to be positive definite. This is actually to be expected for h, small enough, because by using
Taylor’s formula with remainder in integral form, and by letting u (0) correspond to the grid
function Uh

, we have

00------(0) Dovu(O)+ ITI _< D+vD-vu(O) <

Therefore, the term in braces can be rewritten as

v=l 0--- "U (Oh, li) + E(Oh, U),
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with

E(Oh, Uh) lh X- u(f)D+D_uu Vf (0 u)
v=l 2

v

and because of (3.6) we have IIEII _< Ihl. IlDZull IIVfll, where we have set

Vfll max max Vfv I.
l<v<p

Thus, we have that the term in braces gives a consistent approximation of the condition (2.8),
and in particular the discrete system inherits the block M-matrix structure [DB 1]. Because
of Theorem 2.6 in [DB1], this makes the Newton iterates well defined, and allows for a
Newton attraction-type result. However, this is not the full story. Some of the difficulties of
the continuous Newton’s method carry over at the discrete level as well. Since all the basic
difficulties can already arise in the one-dimensional case, we limit our discussion once again
to the PDE (2.9). In this case, the discretization (3.3) gives the (periodic) nonlinear system

F/(u)
/,/i+1 ui-1 h Ui+l 2Ui q- bli-1

2h f cri h2 gi O, 1 N,

where we have used the notation u (ui, N), ui u(Oi), Oi 2re, Ou+l
01, f f(Oi, ui), gi g(Oi, ui), and ai a(f) (e + f2)1/2, e > 0. For this discrete
nonlinear system F(u) 0, it is easy to argue that there is a u0 6 RN such that F’(u0) is

nonsingular (F’ is the Jacobian ofF), and to give bounds for F’(u0)-I and F’(uo)-I F(u0)II.
These are the first two steps in a typical Newton attraction theorem (see [OR]). To estimate the
Lipschitz constant for the Jacobian we need a bound of the type F’(u) F’(v)II < )’ ]lu vii.
To see how this bound reads we can use the mean-value theorem:

IIF’(u) F’(v)ll < sup IIF"(v + t(u v))ll. Ilu vii.
0<t<l

As is well known,

sup F’(z)II sup sup F"(z)l kll,
0<t<l 0<t<l Illll--Ilkll-1

(F"(z)lk) r (kr HI k Hul),

have (omitting the obvious Oi dependence)

Fi,i_l, Fi, i,i_
-f, (i)(1 +

2h

Fi,i,i+ Fi,i+ l, 2h

2a fu(zi) zi+l 2i-1
Fi,i,i --guu (zi) + -- fuu (Zi)

h 2h

tt 2
Z

Zi+ 2zi + zi-
-(ai f (i) -[- O’/ftu(Zi)) 2h

a (f(zi)),

7/t 0
"tt (f(zi)),

where/4/(z) is the Hessian relative to F. The concrete representation of H/(z) has at most
five nonzero entries in position (i 1, i), (i, 1), (i, i), (i, + 1), (i + 1, i), subject to the
usual periodicity structure; that is, the nonzero part of is

( 0 F/’i-l’i 0 )Hi(Z) Fi,i,i_ Fi,i, F/,i,i+ N (mod N),
0 Fi,i+l, 0

where we have set F/,,j as the second partial of F/with respect to 0 and Oj. Explicitly, we
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So, by using the above definitions and (3.6), we can obtain a bound for }, of the type

{4, < sup sup If.(’)l
0<t<l l<i<n

(1 t)(vi+l vi-) + t(Ui+l Ui-1)
+lf,,,(’)l

2h
(3.7)

---lf(’)l ++-
(1 t)(vi+l 2vi + Vi-1) + t(Ui+l 2ui + Ui--1) I

h2

where (.) (vi + (ui vi)). The first point to observe is that for fixed h and e > 0, , is a
bounded quantity. This implies that the Newton iterates must converge quadratically provided
the initial guess is sufficiently close to the discrete solution. This is why we indeed observe
quadratic convergence in practice. However, the constant in the error estimate of the Newton
iteration behaves essentially like f, II/h, and thus it gets larger for finer discretization unless
f(O, u) is independent of u. If we restrict the class of functions f(O, u) to be of the type
f(O, u) Fl (0) + F2(O, u), with a small and F2,u bounded, then in practice we are hardly
affected by this fact; otherwise it might affect the convergence of the Newton iterates. This
same difficulty shows up when trying to enforce the bounds for a Newton-Kantorovich result.
The other factor to note in (3.7) is the term; this tells us that we should not let the smoothing
parameter be too small (again, unless f is 0 or small). In our numerical implementations, we
have carefully monitored the behavior of the Newton iterates on a fixed grid, and we have not
observed any particular convergence difficulties, as we will report in 5.

4. Multigrid strategies for the linear systems. Here below, we consider applying multi-
grid techniques for our class of PDEs. We only consider V-cycle methods. We refer to [Hac]
for a foundation of this approach, and for the terminology used.

In what follows, our arguments are motivated by the understanding of what happens when
we use a classical upwind discretization for the PDEs (i.e., the smoothing parameters 6 0),
and the coefficients in front of the first derivatives do not change sign, in particular, as far
as the choice of prolongation operators is concerned. The reasoning below remains valid for
smooth upwind discretization with small smoothing parameters, but not in general. We refer
to Examples and 2, below, for typical convergence behavior on PDEs not satisfying the
restrictions we impose on the model problems.

First, consider the one-dimensional problem (the ODE on the circle)

(4.1) Uo + c(O)u g(O), c(O) > 0, u(0) u(2zr).

Discretize this problem by classical upwind, and obtain the linear system

(4.2) Ahuh (Lh yhele)u gh,

where Lh is the lower triangular matrix

--1 d2
Lh ’ .. ..

-1

and ’h , di + hc(xi), el (1, 0 0) T, ev (0, 0, 1) r. Perform the (for-
T Jward) Gauss-Seidel iteration as a smoothing iteration: Lhu+1

?’heevUh + g,
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j 0, Then the iteration for this smoother can be written as f+l Shf,
u+1 u, j 0, 1 where the iteration matrix Sh is

/ /0 0 wh

(dl di)-(4.3) Sh yhL-exerN Whe with wh

LEMMA 4.1. Let the coefficient c(O) in (4.1) be sufficiently smooth, c(O) C2[0, 27r].
Then the entries wh in (4.3), N, satisfy the asymptotic error expansion

(4.4) Wh tv(Oi+l) + hv(Oi+l) "k- O(h2),

where the O(h2) term is uniformly boundedfor h < h0, and w(O) and v(O) solve the initial
value problems (IVPs)

w’ + c(O)w 0, w(0) 1,

1Wtt
(4.5)

v’ + c(O)v v(O) O.

Proof. It suffices to realize that the w, in (4.3) are exactly the same values given by the
implicit Euler scheme with stepsize h on the IVP

w’ + c(O)w 0, w(0) 1,

that is, wi-t-1 Loi/di+l, W0 1. Hence (e.g., see [G]), there exists an h0 such that for all
stepsizes h < h0 the above expansion holds.

The iteration matrix of the two-grid scheme is given by

(4.6) M,v2 Sv’-(I_ PhA;RhAh)S,
where Pl and 132 are the numbers ofpre- and postsmoothings performed. We consider onlyM’
from now on. In (4.6), Rh and Ph are the restriction and prolongation operators, respectively.
The simplest choice of a restriction operator is the injection operator

/1Rh .. ..
0

however, taking the periodicity of (4.1) into account, a better choice for the restriction operator
from the grid-size h to the grid-size 2h is given by the linear restriction

(4.7)

2

/1 2

Rh= o o
2

Substitution of (4.7) into M2’, and use of rank-one update formulas, gives the following
explicit form:

(4.8) M’ wh-
1- o.,2h

N/2 Phw2h erN
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Using (4.4) gives

wv (2n’)+ h + O(h2).N/2 w(2n’)

Hence, as long as w(2zr) exp (-fr c(s)ds) is bounded away from unity (which is

certainly true when c(O) > 0), we can consider only the term wh Phw2h in order to obtain
bounds on the norm of (4.8), for h sufficiently small. The crucial step in bounding (4.8)
is the choice of the prolongation operator. The standard choice [Hac] corresponding to the
restriction operator (4.7) is the linear interpolant

(4.9) Ph

(2

Applying once more the asymptotic result from Lemma 4.1 shows that all but the (N, N)-
entry of M’ are O(h). This last entry, for large positive c(O), approaches instead of an
O(h) quantity. This effect is due to the periodic boundary conditions. One way around this
unpleasant effect is a modification of the prolongation operator. Consider the choice

(4.10) Ph

The prolongation operator (4.10) is based on a simple constant extrapolation. Hence, we call
it piecewise constant prolongation. The key difference in terms of convergence is that for
(4.10) the norm of M21’ is O(h), regardless of c(O), while for (4.9) this is not always the case.

To analyze the three-level scheme, we replace the exact solution on the 2h-grid by further
restriction and smoothing steps, and then solve exactly on the 4h-grid. A simple calculation
shows that the resulting iteration matrix M’ is

(4.11) M’ (I- PLRhA PP2A-R2(I- A2L)RA)S,.
Applying formulas for rank-one updates, and recalling (4.2)-(4.3), we obtain (with obvious
notation)

(4.12) .w2h )M’ Wh (1 Wff) PhW2h t0hN (1 N/2x

N/4 Ph PzhW4h erN
wah
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Now, as in the two-grid case, we can use the asymptotic expansion from Lemma 4.1. This
gives

wff w(2zr) hv(2zr) + O(h2),

wV(1 W2h’N/Z’) v(2zr) )v/4 wv + 2h
w(27r)

+ O(h2)(4.13)
1 L04h

+ W(2Zr)
w(2rr) + hv(2rr) + O(h2).

w(2zr)

It is now again imperative to use the prolongation operator (4.10) for Ph (and similarly for
Pzh) in order to obtain

Wh PhW2h O(h),

Wh Ph P2hW4h O(h).

Substituting these estimates into (4.12), from (4.13) we obtain the desired result:

,
O(h .

Extension to an arbitrary number of levels is clearly possible, the chief theoretical difficulty
being the validity of the expansion (4.4), which only holds for h small enough.

Remarks.
(1) The same results are obtained if we let u in (4.1) be in IRq, q > 1.
(2) The assumption c(O) > 0 in (4.1) is not really needed. Clearly, it suffices that

f c(O)dO # 0 (see the discussion at the end of 2).
(3) The previous result holds basically unchanged if we use the cyclic Gauss-Seidel or

the incomplete LU (ILU) iteration as a smoother (see [DB 1]). In fact, in these cases, we
would obtain ",,,i which are only O(h) perturbations of the w obtained with the forwardh
Gauss-Seidel smoother.

(4) If in (4.1) we had f(O)uo, and f(O) never vanished, the results above would still
be valid. In particular, if f(O) > 0, no modifications are needed, while if f(O) < 0 the
results apply to the choice of backward Gauss-Seidel iteration as a smoother, with the obvious
modification of the prolongation operator (4.10). As a consequence, if f(O) never vanishes,
the results are valid for the cyclic Gauss-Seidel and for ILU as smoothers.

(5) The situation is more complicated if in (4.1) we have f(O)uo, and f(O) changes sign.
In general, the zeroes of f(O) inhibit a direct comparison of discretizations on different grids.

(6) For completeness, we describe here the generalization Of the piecewise constant pro-
longation we have adopted in the general case of having f(O)uo in (4.1), and f not necessarily
positive. For points of both the coarse and fine grids, we maintain the old function values.
If x Oi < x < Oi+ is a new grid point, then we take Uh(X U2h(Oi) if both f(Oi) and
f(Oi+l) are positive, we take uh(x) U2h(Oi+l) if both f(Oi) and f(Oi+) are negative, and we
take uh(x) -(u2h(Oi) + U2h(Oi+l)) otherwise. The rationale is again based on the classical
upwind discretization, to keep the prolonged function moving along with the discrete flow.

Next, consider two-dimensional scalar PDEs of the form

Ou Ou
(4.14) f (0)1 + j(0)2 + c(O)u g(O), 0 (01,02).

Also for this case, we understand better the situation arising when a classical upwind dis-
cretization is performed and the functions f (0) do not change sign. The discussion below,
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and our implementation choices, are also motivated by the desire to improve the convergence
behavior of the simpler iterations (the smoothers) in case 0 < c(O) < 1 (in case c(O) is
reasonably large, the basic iterations converge nicely).

For restrictions, we can consider the obvious injection operator, and the generalization of
(4.7):

(4.15)

2Rh Rh Rh
1 Rh 2Rh Rh

Rh - "’. "’. "’.
Rh2 2Rh2 Rh2

where Rh2 denotes the corresponding one-dimensional operator. In our notation the blocks
are taken with respect to the 0). coordinate. As for prolongation operators, we considered
generalizations of both (4.9) and (4.10). The generalization of (4.9), which we will still call
the linear interpolant prolongation, is

2Ph
2P,.
Ph2 P/,2(4.16) Ph :--

".

with Ph,. given by (4.9). To generalize the piecewise constantprolongation (4.10), let us think
of Ji (0) and J(0) being positive. In this case, we generalize (4.10) as

(4.17) Ph :=

where again Ph is the corresponding one-dimensional prolongation. When Ji (0) and/or

(0) are not positive, the piecewise constant prolongation Ph gets modified in a similar way,
as explained in the previous Remark (6) for the one-dimensional case.

As smoothers, we either use pointwise relaxation schemes or circle block schemes. Let
us call point multigrid and block multigrid the multigrid iterations which are obtained when
using pointwise or circle block smoothings, respectively. (It is to be understood that when we
have q > radial coordinates, as for some of the examples below, the pointwise smoothing
is a (q x q) block smoothing.) As pointwise smoothers, we considered damped Jacobi with

forward and cyclic Gauss-Seidel, and ILU iterations (see [DBdamping factor equal to g,
for these schemes).

When doing a point multigrid iteration, if Ji (0) and J(0) have constant sign, then one
should choose P as in (4.17), and Ph2 as in (4.10), because we have to deal with a doubly
periodic problem and the arguments of the one-dimensional convergence analysis carry over
to the two-dimensional case. This reasoning, of course, is amply confirmed by our numerical
results.

As the convergence results for the basic iterative schemes predict a better convergence
behavior for the circle block methods, we have also considered these as smoothers in the
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multigrid context. In particular, we tested the circle block damped Jacobi, Gauss-Seidel,
and cyclic Gauss-Seidel iterations. When such methods are applied as smoothers, we have a
clear distinction in behavior with respect to the two coordinates Hence it could be opportune
to choose the prolongation operators correspondingly. Besides the above linear interpolant
and piecewise constant prolongation operators, we have also tested the "mixed" prolongation
operator (4.17) with Ph2 defined by (4.9) instead of (4.10).

As for convergence analysis of this block multigrid iteration, we again consider a model
problem:

Ou Ou
+ + c(O)u g(O)(4.18)

001 2
Classical upwind discretization with h (hi, h2) gives the N1 x N2 linear system

(4.19) AhUh gh, Ah Lh E1El,

where E (I, 0 0), ENr (0 0, I), and

A1 dil h2-I A2 di2
Ai --1"

diN2-El AN h

N, with diagonal entries dij .qt_ + (Oij). As in the one-dimensional case,
the iteration matrix for the two-level multigrid method is of the form (4.6) with the above-
defined block-matrices. Hence we find for the circle block (forward) Gauss-Seidel smoother
the iteration matrix

(4.20)

1 lSh -1L-I E1ENr, WhE,
0

with Wih h Aj
0 WhN =1

Using the Sherman-Morrison formula gives for the iteration matrix

(4.21) M’= (Wh- PhWzh(I- Wff/z)-Rh2(I- WhN1))Er,

-1

b bN b3 b2
b2 b bN b

b3 b2 b "" with b(4.22) Bh bN ... ". bN
bN bN- b b

2+hc

An asymptotic expansion result for the matrices W is now not possible, because the matrices

W are the companion matrices (or Greens functions) built from fundamental solutions of an
initial boundary value problem corresponding to nonsmooth initial functions (delta functions
as h 0), hence they fail to satisfy an asymptotic expansion. Nonetheless, something
can still be inferred by further restricting to the constant-coefficients case and using spectral
arguments. Hence, here below, we restrict ourselves to the case c(O) c > 0 in (4.18), and
(for simplicity) we let h h2 h (i.e., N1 N2 N, an even number). Also, we limit our
discussion to the case of Ph in (4.21) given by (4.17).

LEMMA 4.2. Let c(O) c > 0 in (4.18), and let Ah Ai in (4.19). Then, the matrix

Bh (hAh)-1 is circulant, and we have
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The matrix Bh can be decomposed like

(4.23) Bh XhAhX’-
with eigenvalues

Ah =diag(Xj), )j=(b-1-co-j)-, 0<_j <N,

where co cos(-) + sin(-) is the nth root ofunity, and eigenvector matrices

Xh (cotJ X;1 -\ /i,j=o N-l"\ /i,j=O N-1

Using this, we havefor the restriction operator (4.7) (Rh,. in (4.15), (4.21))

(4.24) XlRhXh D1, D2

with

Dl=diag l+cos
(4.24a) j 0 N/2 l,

1
D: diag (1 cos (2J))

while for the injection-type restriction we have D1 D: IN/:. For the prolongation
operators (4.9) and (4.10) (Ph2 in (4.17)), we have

(4.25) X-1PhX2h ( F1 )F.

wherefor (4.9) the matrices F1, F: are given by

(1+F1 diag cos (2-J)),
(4.25a) 0 < j < N/2,

((2zrj))F:=diag 1-cos -andfor (4.10) we have

1 ( )F1 diag + co--J
(4.25b) 0 < j < N/2.

diF2 = ag(1- co-J)
Proof. The proof is by direct verification. (Details can be found in [DB0].)

1,0Now, consider M2 Block-multiplying with Xh from the right and X-1 from the left
gives for the block-rows of (4.21)

(4.26) Ai-( F1 )F2 Ah(I- A2/2)-1 (D1, D2)(I- AV), 0 < < N/2,

where it is understood that ii 2i and ii 2i + for the even and odd block-rows. Given
(4.21) and (4.26), we are left to estimate the spectral radius of the N x N block

(4.27)
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Since in (4.27) we essentially have a (2 2) block structure, we are left to consider the (2 2)
matrices (with obvious notation)

given by

(4.28)

"J _(j) ..(j)
t:21 t:22

Cj
(2) N]2 (2) "(1) t(l/ N (/ N/2 (/ ^(2/

j 0 N/2 1,

where (b,, b2) (I ^v/2,_
"’2h D1, D2 (I uAh ). Estimation of the roots of these

complex quadratic equations is not trivial.
For j 0, because of (4.24)-(4.25), the product (j) (j) is equal to zero for all c > 0 (ifC12 C21

c 0, a limiting argument is needed). Hence, for j 0, we have that

[, (o) ic(O))(4.29) p(Co) <_ maxtlcl I, 221
LEMMA 4.3. Let c(O) c >_ 0 in (4.18), and let q kc. Then, we kave

(4.30) ,o(Co) < min , (1 + 2q)V/

Proof. For _(0)
c, we find

_(0)G(q) := loll

and an easy estimation gives

(1 + q)N (1 + 2q)N/2

(1 + q)V((1 + 2q)U/2- 1)’

1-- (l+q)N/2G(q) < < Vq > 0
(1 + 2q)u/2 (1 + 2q)2V/2(l+2q)V/2

(equality is actually obtained if we let c -- oo). That G(q) < 1/2 is equivalent to 3 <

2q)N/2(l\ + /))/ =" g(q). But this is immediate, since g(0) 3 and g’(q) > 0. For(1 +
0) (0) (1)N

22 we have c22 so that Ic2>1 1/2 is immediate and

(3 + q)N (1 + 2q)N/2

is clear, l-1

Now consider the general case 0 < j < N/2. The following are useful identities.
LEMMA 4.4. Let c(O) c > 0 in (4.18). With obvious notation, we have the following

identities, which are validfor all restrictions andprolongations considered:

X() X j,. 0 < j < N,

(4.31) (1) :(1) (2) )(2)N/2-j --"N/2+j, j "N/2-j, 0 <_ j < N/2,

/,(2) (1) ,4(2) ,4(2)
JN/2-j’ dj ---’N/2-j ’*N/2-j’ 0 < j < N/2.
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Notice that the indices are now up to N (or N/2); this must be understood in the sense ofthe
periodic extension (e.g., (01) .(N1), f/)2 f0(2))" Furthermore,

(4.31a) c)= (lV/Z-j) _(j) ,.(N/Z-j) 0 < j < N/2.c’22 c’12 "21

Proof The proof is by direct verification.
Write the eigenvalue relation for the Cj’s as

(4.32) (z(J))2 2fl(J)z(j) y(J) 0, 3 (j) := cll "+ c’22
2

}"
(j) (J) (J) "(J) "(j)

C12C21 --C-ll c22.

Use of (4.31a) allows us to conclude that/(J) /(U/2-j), y(j) y(N/2-j), and hence
that z(J) z(N/2-j), j 0 N/2. Thus, to bound Iz(J)l, we can restrict ourselves to
considering 0 < j <_ N/4. Based on several attempts, we are convinced that the bound (4.30)
for p(Co) is essentially also a bound for p(M’). More precisely, we make the following
claim.

CLAIM 4.5. Let c(O) c > 0 in (4.18), and let q hc. With the previous notation, we
have

(4.33) p(M2’ < min , (1 + 2q)v/2
+ O(h) 13

We know that this claim is asymptotically correct for q --. oo, but the case of finite c is
much more involved, and we do not have a complete proof that the bound (4.33) holds also for
p(M’). We have ample numerical evidence that this claim is true, as well as rigorous proofs
for some specific ranges of values of c and all choices of restrictions and prolongations, but at
some stage we do need to resort to some computer-aided verification. This is the reason for
leaving it as a claim. Still, we have several results in the direction of (4.33). For instance, a
typical result we can give is the following.

FACT 4.6. Consider the injection as a restriction and the prolongation (4.9), so that
2jd d and ’( _-!(1 4- cos v, in (4.28). Let c(O) c _> 0 in (4.18), and let

q hc. Then we have

(4.34)
1

p(M2l’) < + O(h).

Below we present a verification of Fact 4.6 according to one possible line of action. To
do this, we need the following lemma.

LEMMA 4.7. For all z e C, we have

(4.35) I- + /1 + zl _< Izl /2.

Proof Let z rei, so that (4.35) is equivalent to -4- p 2p 1/2 cos < r, where
0p (1 + r2 + 2r costp) 1/2 and tan0 rsinb Let f(qb) "= + p 2p 1/2 cos , so that f’l+r cos"vanishes only at 0 and zr, and f(0) (1 /1 + r)2, f(zr) (1 /11 rl)2. So, we need

to show that

YueA, (a) I-l-t-/l/ul_< Iv/ and (b) I-l/v/ll-ull_< I/.
These two inequalities are proven similarly. We only show the proof of (a). First, let
-1 < u. If also0 < u, then(a) isclear. If-1 < u < 0, thenletu =ot-l, ot [0,1),
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and(a) reduces to ct < V/d, which is true. Ifu < -1,1etu -1-ot, ct > 0. Then

l- 1 + /1 + ul--/1 +a. [3

Verification ofFact 4.6. For the moduli of the roots we have

IRI, () _() max(icl) _() <_ j < N/4,

where

(j) (j) )1/2C12 C21Rj:=--I+ 1+4. (j)
(Cll "22

Now use (4.35) and (4.31a) to get (for simplicity, omit the index j)

(4.36) Izl _< ICl2C21l 1/2 -I-IClll

To proceed, we need bounds on 1c12c211 and ICl I. We have explicitly formed the moduli and
maximized first in q, then in the angle (i.e., in j). Here we see in some detail what is involved
for 1c2c211.

Let N be given, and for given j, let ot aj 2zrj/N. Let f(ot, q) := Ic12c211 and write

f(ot, q) g(ot, q)g2(a, q)F(ot), where (see (4.25), (4.28)) F(ct) :-- 1/4 sin2 c,

gl :-- + AN1/2 2AIN/4cos --ql

N/2 Cos(N2) )
1/2

+ AN3 2A/:cos(Ndp3) + A 2A2
U A2N

gz
.43

and Al(Ot, q) 1 +(2+2q)2-2(2+2q)cos2ot, A2(ot, q) + (2+q)2- 2(2+q) cosot,

A3(c, q) + (2 + q)2 -t- 2(2 + q)cos c, and

(2 + 2q) sin 2or (2 + q) sin c (2 + q) sin ot
tan 4 (2 + 2q) cos 2or 1’

tan t2 (2 + q) cos ot 1’
tan 43 (2 + q) cos ot +

Now, differentiation of g and g2 with respect to q shows a monotone decrease as c > 0, so
that f(ot, q) < f(ot, 0). Differentiation with respect to the angle shows that the maximum of
f(ot, 0) is obtained for j 1, that is, for ct 2zr/N. Finally, limN__, f(ot, 0) 0.

Similarly, for Icl a double maximization argument shows that ICl (c, q)[ < ICl (c, 0)1 <
ICl(2zr/N, 0)1, and as N o, this quantity approaches 1/2. 1

Final Remarks.
(1) The bound (4.34), unlike (4.33), hides the fact that p(M21’) decays very rapidly for

large values of c, as it should, just based on the smoothing process alone. In fact, for (4.18) with
c(O) c > 0, the block multigrid iteration is not a big improvement over the performance of
the block smoothing by itself, unless c is rather small, in which case the block multigrid gives
a sizable improvement (see Table 3(a) below). It also gives a substantial improvement when
the coefficients in front of the derivatives are constant but of widely different magnitude. It is

interesting (and perhaps surprising) that the different prolongation and restriction options all
perform similarly on the model problem we analyzed.

(2) The above result is only for the constant-coefficients case. A standard perturbation
argument allows us to extrapolate the above reasoning and to obtain similar bounds for the case
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of C(O) slowly varying, and sufficiently smooth and positive. What we cannot do, however, is
to draw any conclusion in the case of nonconstant y] (0), j(0) in (4.14). It is reasonable to
expect that, for slowly varying j, j which do not vanish, the above results are qualitatively
correct. However, the case in which these coefficients change sign is much harder to analyze,
and we do not have a clear picture as yet of the convergence behavior. The numerical tests at
the end of the section provide some insight.

(3) It is very interesting that the bound of 1/2 is also observed for the two-level point
multigrid iteration on the model problem (4.18) with c(O) c > 0, no matter how small c
is (this bound deteriorates slightly for a k-level iteration). In this case, it is imperative to use
the piecewise constant prolongation. Notice that the spectral radius of the simple smoothing
iteration matrix is basically for c close to 0.

Numerical Examples. All computations below have been performed in double precision
on a SPARC-1 workstation. More examples than those below can be found in [DB0]. The
notation in the tables is as follows: "smoother" indicates which smoother has been used for
either point or block multigrid (GS, C, and ILU are the Gauss-Seidel, cyclic Gauss-Seidel, and
incomplete LU smoothers), "levels" is the number of levels, "prol" is the type of prolongation
used, "rate" indicates the observed average rate of decrease of the residual in the sup norm,
Ilresll is the sup norm of the residual vector, "pre-post" indicates the number of pre- and
postsmoothings, and NITS is the number of iterations needed to achieve a required value
for the residual. The values of prol 0, 1, 2 indicate the prolongation type: 0 is the linear
prolongation, is the piecewise constant, and 2 is the mixed one (used only for the block
multigrid). In all cases, the initial guesses have been taken as identically 1, a maximum of 25
iterations was performed, and the iteration stopped when Ilresll < 10-5. All problems have
been discretized by (3.1), with N1 N. 80. We have also tested the trivial injection as
a restriction operator, but only report on the results obtained with the linear restriction, since
they were consistently better. Likewise, the damped Jacobi iteration as a smoother always
performed worse than the other smoothers, so we do not report on it.

(i) Point Multigrid. Our experience on the one-dimensional example f(O)uo + c(O)u
g(O), for several f(O), c(O), entirely confirmed the theoretical results. In particular, when
f(O) did not vanish, we found that the number of levels had a very minor impact on the rate
of convergence, the choice of linear prolongation could severely deteriorate the convergence,
pre- and 0 postsmoothing steps was the best choice, and the magnitude of 0 in (2.2) had a

minor impact on convergence as well. The case in which f(O) has a zero is exemplified by
this case: f(O) -sin(0 + a), c(O) 0, and g(O) sin (0 + a), a .04. This has exact
solution

0 + a cos2-
u(O) -20 tan dt,

and it is not in C when 0 1, 1/3. In this case, we noticed that the cyclic Gauss-Seidel and
ILU smoothers are always good choices, and that, especially if smooth upwind is performed,
the linear interpolant prolongation is also performed well.

In Tables (a)-(b) we report on results for the following problem:

(Example 1) Yi (01,02)uo + f2(O, 02)uo: + C(O, 02)u g(O, 02),

and the usual periodic boundary conditions. Consider the following functions:
(a) j], j 4-1, C(01, 02) 0, g(01, 02) cos(01 + 02) + r/sin 01 cos 02, and

(b) Ji--sin(01+a), j= {]-cos(02+a) C=0, g=sinO(01+a)

with solution independent of 02, the same as the one-dimensional problem above.

a .04
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It is apparent that our theoretical insight is nicely confirmed, in particular as far as the
prolongation operator is concerned. Observe the often dramatic improvement with respect to
the results of [DB ].

TABLE (a)
Example l(a), El E2 0, pre-post 1-0.

jq j r/ Smoother Levels Prol NITS Ilresll Rate
GS 3, 5 4 10-6 10-2

0 20 8 10-6 .4
C, ILU 3, 5 5 10-8 10-a

0 14 8 10-6 .32
.1 GS, C, ILU 5 11 7 10-6 .3

0 18 8 10-6 .45
10-6 GS 5 0 25 8 10-3 .76

17 6 10-6 .46
C, ILU 0 19 8 10-6 .48

18 6 10-6 .47
4-1 :F1 C, ILU 5 12 8 10-6 .25

0 15 6 10-6 .3

TABLE (b)
Example (b), r/= 1, levels 5.

f2 (El, E2) Smoother Prol Pre-Post NITS Ilresll
(0,0) C, ILU 1,0 1-0 13 10.5

1,0 2-1 5 l0-5

(. 1,0) C, ILU 1-0 11 10-5

cos(02 + a) (0,0) C, ILU 11 6 10-5

0 13 2 10-5

(.1, .1) 10 4 10.5

C 0 12 10-5

ILU 13 10-5

Rate
.33
.1
.26
.28
.34
.23
.31
.33

The second model problem is (2.4) with p q 2:

(Example 2) +

and the usual periodicity requirements in u and v. We consider the following functions:

(a) fl=f2=-l, C=(tl ) (gl)=((sinOl+COSO.)g2 (cos 01 sin 02)]’
o, > O,

with exact solution u sin 01 + cos 02, v cos 191 sin 192;

(b) j= j= l,

or, fl > 0, g as in (a), with same solution as (a);

(c) Ji sin(O1 + a),

C0S(02 q" t2/) sin(O1 + 02)
cos(O1 -- 02)

2
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Cos(O1 -{- 02)l)*, sin(Ol + 02)u* with exacta .04, gl sin(O1 + a) + g2 sin2 (01 + a) +
solution independent of 02:

01 ---a
u* -2 tan In sin

01 +a v* -4 tan2
01 + a

2
In sin

01 +a
2

2 sin2
O1 + a

2

For Examples 2(a)-(b), (2.2) is verified with 0 min(ot,/3), while for Example 2(c), 0
is arbitrarily close to 0. The notation of Tables 2(a)-(c) is as before, but now ILU refers to
the implementation called ILU2 in the ILU section of [DB ]. It is interesting to observe the
improvement over the results in [DB for the case of weakly attractive tori. However (see
Tables 2(a)-(b) of [DB ]), the multigrid iteration might be marginally slower than the simple
iterations for reasonably attractive tori.

TABLE 2(a)
Example 2(a), E1 e2 0.

Smoother Levels Prol Pre-Post NITS Ilresll Rate
GS 5 1-0 25 .16 .84

C, ILU 5, 3 12 9 10-6 .3
2-1 3 9 10-8 .005

C 5 0 1-0 17 6 10-6 .45
.1 .1 GS 25 .37 .88

C 16 7 10-6 .37
ILU 14 9 10-6 .36

TABLE 2(b)
Exatnple 2(b), E1 e2 O, levels 5.

u fl Smoother Prol Pre-Post NITS Ilresll Rate
GS, C, ILU 1-0 5 10-7 .1

.01 GS, C, ILU 6 3 10-6 .07
GS, C, ILU 2-1 3 10-7 .01

C 0 1-0 15 10-6 .35

TABLE 2(C)
Example 2(c), f2 -cos(02 + a), levels 5.

(El, e2) Smoother Prol Pre-Post NITS Ilresll Rate
(.1,.1) GS 1-0 25 6 10-3 .77

0 25 8 10-3 .8
C 25 6 10-3 .77

0 13 6 10-6 .3
(0,0) C, ILU 12 6 10-6 .3

0 15 3 10-6 .37
2-1 5 9 10-6 .09

(ii) Block Multigrid. Below are some results for the block multigrid iterations. The results
of Table 3(a) agree with (4.33). Tables 3(b) and 4 show that even for functions changing sign
the techniques perform rather well. Usually, the classical upwind discretization leads to better
convergence, and the piecewise constant prolongation is to be preferred.

Final Remarks. As we hoped, the multigrid iteration gives a more homogeneous con-
vergence behavior than the simpler iterations by themselves. This is always the case even

though the simpler iterations might be occasionally faster. But for weakly attractive tori, the
multigrid schemes are superior. Our results show that it usually does not pay to perform a
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TABLE 3(a)
Example l(a), 61 62 0, levels 5.

f2 0 Smoother Prol Pre-Post NITS Ilresll Rate
.1 GS, C 1, 2 1-0 9 10-6 .2

2-1 4 10-6 .017
0 1-0 12 6 10-6 .25

10-6 GS 0 10 5 10-6 .28
GS, C 1, 2 16 5.8 10-6 .46
C 0 12 5.2 10-6 .34

TABLE 3(b)
Example l(b), f2 cos(02 + a), a .04, r/= 1, levels 5, pre-post 1-0.

(61,62) Smoother Prol NITS Ilresll Rate
(0,0) GS 0, 1, 2 25 .8

C 5 10-6 .02
0 10 10-6 .1
2 15 7 10-6 .4

(.1, .1) GS 1, 0 25 10-4 .7
C 6 6 10-6 .1

0 9 6 10-6 .16

TABLE 4
Example 2(c), levels 5, pre-post 1-0.

(61,62) Smoother Prol NITS [Iresl[ Rate
(0,0) C 3 5 10-6 .006

0 10 7 10-6 .23
-cos(02 + a) (0,0) C 5 4 10-6 .03

0 10 7 10-6 .23
(.1, .1) C 7 10-6 .1

0 10 4 10-6 .22

block multigrid iteration, as the simpler point multigrid schemes are often as effective and,
of course, less costly. In the absence of any further insight on the problem, our recommen-
dations are: classical upwind discretization, cyclic Gauss-Seidel as smoother, one pre- and
no postsmoothing steps, piecewise constant prolongation as prolongation operator, and linear
restriction as restriction operator.

5. Two nonlinear problems. Here, we consider two physically relevant nonlinear prob-
lems. We use (3.3) to discretize the problem, perform a discrete Newton’s iteration, and solve
the resulting linear systems by the multigrid techniques of 4.

Josephson Junction [L], [vV1 ]. Consider the computation of the invariant torus for the
following nonlinear forced oscillator:

(5.1) / + (1 + y cos )q + sinq p(t),

where/5, , > 0, and p(t) is any function periodic in of period 2zr. Very careful computation
of the invariant torus of (5.1) has been recently carried out by van Veldhuizen [vV1 ]. We
present results obtained with our approach, to show how efficiently this type of problem can
be solved with our method.



MULTIGRID TECHNIQUES AND INVARIANT TORI COMPUTATION 1395

First, we rewrite (5.1) as the first-order system

(5.2)
6 (u 4 ’ sin ),

J sin q + p(t),

and then ask for u to be u u(4, t), which leads to the scalar PDE

(5.3) - (u b , sin )u4, + ut sin 4 + p(t).
P

With respect to (2.6) we thus have

1
(5.4) Ji (b, t, u) --z (u b y sin b),

P
J(b, t, u) 1, g(4, t, u) sin 4 + p(t).

Observe that the problem is not periodic in q in the usual sense, but only in the mod 2zr sense.
In fact, because of the term 4 + ?’ sin 4, we can only expect u to be periodic in q mod 2zr). In
other words, both u and 4 are angular coordinates. However, in the implementation, there is
no need to explicitly enforce on u the mod2zr periodicity in q. First, observe that from (5.3),
as fl --+ 0, u becomes a function of 4 only as

(5.5) lim u if0 "= 4 + Y sin 4,
/0

from which it is clear that fr0(0) ti0(2zr) 2zr; by continuity arguments, u(q, t) u(4 +
2zr, t) 2zr (also for fl > 0). This is a linear boundary condition which we can explicitly
enforce. Thus, the boundary conditions associated with (5.3) are

(5.3a) u(0, t) u(2zr, t) 2zr, u(q, 0) u(q, 2zr).

The feasibility of the parametrization u u(q, t) and the solvability of the PDE (5.3)-
(5.3a) must still be justified. The analytical results of [L] can be used to guarantee feasibility
of the approach, because of the following theorem.

THEOREM 5.1. [L] For all p(t), 2re-periodic in t, and fl, y such that

(5.6) 0 _< ’ < 1, 0 </3 < -7(1 ,)2,

the Poincarg map for (5.2) has a globally attracting invariant circle parametrizable as u
F(c), where F(qb) is increasing in ok.

Remarks. (1) A consequence ofTheorem 5.1 is the existence of an invariant torus u (4, t)
satisfying (5.3).

(2) The fact that F(q) is increasing, hence invertible, has been used in [vV to rewrite
the invariant manifold for 4 in terms of u. However, we keep the u(4, t) parametrization.
In [vV ], the author also shows that the region of validity for Theorem 5.1 is larger than the
region characterized by (5.6).

Next, consider a formal linearization of (5.3) around the solution. Since g, 0, and
Ji,u , Ji,t J,u j,t 0, we obtain a linear system as in (2.4), with c(q, t) u.
Because of Theorem 5.1, we have uo > 0, and therefore we have c(q, t) > 0 when (5.6)
holds. Thus, the upwind discretization of (2.1) would give us a standard M-matrix. This
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is also true for the linear systems that arise when doing a (discrete) Newton iteration on the
nonlinear upwind scheme. A simple justification of this fact comes by looking at the diagonal
elements of the discretization matrix (recall (3.5)), which can be written as

tr or2 0

ciJ--hl-- -[- 2 -[- -[(U/0+I’J u’j)(1 cry) + (U,j U,_,j)(1 + or;)],

and so the claim follows at once as long as u is increasing (as a grid-function), regardless of
changes of sign for Ji, and of the values of h, h2 (recall that cr [-1, ]). We can easily
guarantee that u is increasing when we start the approximation, because we choose if0 in
(5.5) as the first guess. Afterwards, we check whether the computed approximations verify
this monotonicity property. In our calculations, with p(t) cos(t), we have fixed y 0.5
and let/3 increase up to 1, and the monotonicity was preserved, except for/3 1. Preservation
of this increasing behavior of the solution is very important if we want to approximate the
rotation number (see [vV2]).

We do not know, a priori, whether the function J changes sign, as b and vary. Hence, we
have used a smooth upwind discretization with respect to Ji (e > 0); in fact, we have found
that jq does change sign. In our implementation, we have set el 10-4. We can, instead,
safely use a classical upwind discretization with respect to J (e. 0). We have performed a
simple continuation procedure in fl, fixing y 0.5. The analytical validity of the procedure is

11.expected up to 3 , see [vV ]. However, we proceed without any apparent difficulty up to

/ 1, after 80 continuation steps and about hour ofCPU time. The automatic continuation
procedure is standard: we start with 3 10-4, with a small increment of 8/3 10-4, which is
then halved or doubled as we proceed, depending on the convergence behavior of the Newton
iterates and of the iterative solution algorithm for the linear systems. We use an equispaced
mesh of (80, 80) points and stop the Newton iterates when the sup norm of the correction is
less than 10-4, while, for safety reasons, we require the sup norm of the residual vector to be
less than 10-5 for convergence of the iterative method when solving the linear systems. The
CPU time quoted above refers to a five-level point multigrid algorithm, with one presmoothing
and no postsmoothing, piecewise constant prolongation, linear restriction, and either cyclic
Gauss-Seidel or ILU as smoothers (performance was nearly identical). The reduction in the
residuals’ norm for each step of the multigrid iteration deteriorates as approaches 1" for
example, for 3 10-4 it is about 10-3, while when 3 it is about -. For this problem,
as we progressively "weaken" the M-matrix structure as/ nears 1, the simpler iterations are
not as effective. In Figs. and 2 we show the computed invariant toil, for the parameter
values indicated (Fig. 2 is an enlargement of Fig. 1). The mod 2zr periodicity, and the lack of
monotonicity in the solution for/ are apparent.

Coupled Oscillator [ADO], [DLR]. Consider the system oftwo linearly coupled nonlinear
oscillators"

1 X1 -[- 3Y x + y21)X t(X + Yl X2 Y2),

jl -x + Yl (x21 + y21)y 3(x + y x2 Yz),
(5.7)

Yc2 x2 + flY2 (x + y)x2 + 3(Xl + y x2 Yz),
22 --flX2 "- Y2 (X22 + Y)Y2 -" (Xl -[- Y x2 Y2);

we fix/ 0.55, and the coupling parameter is positive. For ; 0, the two oscillators
both have periodic, attracting, limit cycles x/2 + y/2 l, and thus the system has an attracting
invariant torus given by the Cartesian product of these two circles. For > 0, we perform a
numerical continuation procedure in an attempt to follow the evolution of this torus.

As in [DLR], we first rewrite (xi, Yi) in the polar plane (ri,-Oi), and then let ri

+ 3ui, 1, 2. So doing, we obtain a new system for 0 (0, 02), u (Ul, u2) given as



MULTIGRID TECHNIQUES AND INVARIANT TORI COMPUTATION 1397

6.28

4.71

3.14

1.57

0.00
1.57 3.14 4.71 6.28

FIG. 1. Josephsonjunction.

(5.8)

where

(5.9)

U

1.0

0.8

0.6

0.4

0.0 0.2 0,4 0.6 0.8

Fro. 2. Josephson junction: Blow-up ofFig. 1.

/ f(O, u),

ti g(O, u),

+a" (sin(0 02) + cos(0 + 02))) \/3 + ;(cos 201
f(O, u) := )/3 + d(cos 202 (sin(02 01) + cos(O + 0)))d-tU2

g(0, u) "= (-2Ul- tU(t/,/l +3)-(1 + tUl)(1- sin20l)-a)-2u2 u(u2 + 3) (1 + u2)(1 sin 202) b
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where a (1 +tSu2)(sin(01 "-’02)--COS(01--02)) andb (1 +3Ul)(sin(01 "--02) COS(01-- 02)).
The usual invariance condition u u(0) gives the PDE system

3q (0, u)u0, + j(0, u)u02 g(0, u),
u(0, 02) u(2zr, 02), U(01, 0) U(01, 2zr).

The solution of this PDE can be found, for 3 small, by carrying out an expansion in powers of
3 (see [DB0]), but this is not needed here.

From the discretization viewpoint, since the gradients Vii and Vj are 0(32) quantities,
and the Jacobian of g is the symmetric matrix

0g (-2- 3(1 sin201 + 6ul + 33u)
0u -3(sin(01 --I-- 02) cos(01 02))

-3(sin(01 + 02) COS(01 02))

-2 3(1 sin 202 + 6u2 + 33u22)
then the matrix in (2.8) is certainly positive definite for 3 small enough, and the discrete
system inherits a block M-matrix structure. In fact, since the function f is of the nice form
contemplated in the discussion following (3.7), for the discretized problem it is possible to
show that a Newton-Kantorovich result holds for 3 > 0 small enough. In practice, we have
checked whether the (computed) discrete problem maintained a block M-matrix structure.

Clearly, for small, the functions J] and j are positive (recall that we have fixed/3
0.55). As it turns out, they remain positive as continuation in 3 is performed (for the values
of 3 considered), and we can thus safely use a classical upwind discretization with respect
to both J] and J. We have performed several computations for this problem, with different
choices for solving the linear systems and different values of the smoothing parameters. In
all cases, we have discretized on a (160, 160) grid, and performed a simple continuation in 3
in the same way as described for the Josephson junction problem. We have then repeated the
computations on a (320, 320) grid, with similar outcome (with an increase in CPU time by a
factor of 8). Newton’s method was observed to converge quadratically all the way.

The following is a description of two typical computations. In the first, we have done a
smooth upwind discretization for both j] and J with smoothing value 10-2, and carried out a
cyclic Gauss-Seidel iteration all along to solve the linear systems. In the second computation,
we have used a classical upwind discretization (el,2 0), and performed a six-level point
multigrid strategy, with one presmoothing and no postsmoothing steps, using (forward) Gauss-
Seidel as a smoother, linear restriction, and piecewise constant prolongation. For the first run,
we successfully continued up to 3 0.2609375, with 60 continuation steps, while in the
second case we were successful up to 3 0.2627734375, after 15 continuation steps; in
both cases, the continuation step decreased below 10-5 after these indicated values, and the
procedure halted. Both runs took about four hours of CPU time. In both cases, the rate of
decrease for the iterative solution ofthe linear systems deteriorates as 3 increases. For example,

when 3 0.25 and at thefor the simple cyclic Gauss-Seidel iteration it is when 3 0,
end; for the multigrid strategy, the reduction is 10-3 when 3 0, for 3 0.25, and about
at the end. (These are average rates of decrease.) The decrease in speed of convergence is due
to the apparent weakening of attractivity of the invariant tori. All runs have then been repeated
on a (320, 320) grid, obtaining similar outcome. In Figs. 3 and 4 we show the cross-sections
of the invariant tori rl and r2 obtained by holding 01 0; these figures are a plot of the data
obtained with the second computation on the (320, 320) grid, for selected values of ; up to
0.262104; the dot in the middle of the pictures is the origin. (Notice that for this problem one
actually has rl (01,02) r2(02, 01).) Plots of the data obtained with the first computation are
basically identical for the common values of 3. A noticeable cusp seems to develop. These
figures are qualitatively different from those we obtained in [DLR]; apart from a silly plotting
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mishap in [DLR] (Figs. 17-20 there have been plotted for -0 rather than 0), the pictures in
[DLR] show a bulge that is not present in the figures here. It is likely that the second-order
scheme used in [DLR] develops some numerical instability. (The first-order discretization
adopted here has very strong shape-preserving properties.) The value of 3 0.263 that
we reached here is very close to the value for which a bifurcation takes place (see [ADO],
Fig. 40).

FIG. 3. Coupled oscillator: rl (0, 02), t < 0.262104. Classic upwind, multigrid iteration, Nl N2 320.

FIG. 4. Coupled oscillator: r2(0, 02), 3 < 0.262104. Classic upwind, multigrid iteration, N1 N2 320.

6. Conclusions. In this paper, we have continued (see [DB 1]) the study of methods
of solutions’ strategies for the linear systems resulting after discretization of the periodic
hyperbolic PDEs associated with invariant tori. Whereas in [DB l] we had considered some
of the standard iterative methods, here we have considered multigrid approaches for the linear
systems. We considered some new and some old choices for the restriction and prolongation
operators, and also considered "point" and block smoothings. We proved convergence results
on some model problems. Extensive implementation and testing has been done. We have
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also given results for two important nonlinear problems: the forced Josephson junction and a
system of coupled oscillators. The resulting linear systems have been solved by the multigrid
methods, at a saving of several orders of magnitude over previously published results.

There are many aspects that still need to be addressed. It will be important to obtain more
general convergence results for multigrid schemes on hyperbolic PDEs of our type as well as
for similar hyperbolic PDEs. From the approximation viewpoint, work is needed to carry out
a complete approximation theory for systems of nonlinear PDEs of the type we considered.
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PERFORMANCE OF SEVERAL OPTIMIZATION METHODS ON ROBOT
TRAJECTORY PLANNING PROBLEMS*
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Abstract. This paper provides a comparison and analysis of the performance of a special purpose algorithm and
several specific available nonlinear programming codes applied to a robot trajectory problem.

Key words, nonlinear programming, algorithm evaluation, robot modeling
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1. Introduction. Industrial robots track computed trajectories to coordinate the robot’s
axes to perform a desired task. We consider the planning of such trajectories "off-line" in a
computer environment separate from the robot controller and actual execution of the motion,
suitable for applications in which the trajectory is to remain fixed over a large number of
cycles.

Off-line robot trajectory planning for manufacturing applications can frequently be ac-
complished by geometric path planning to satisfy spatial requirements of the task, followed by
time parameterization of the path to meet robot dynamic limitations and to optimize a given
performance objective. In this paper we focus on computational aspects of the time param-
eterization of a fixed path and use nonlinear programming algorithms to minimize the travel
time of the robot on the given path while enforcing upper bound constraints on the absolute
values of the axis velocity, acceleration, and jerk. Each axis starts and ends with zero velocity
and acceleration.

A related problem involving constraints on manipulatorjoint torques is discussed in 11 ],
where a special-purpose algorithm, CCD, based on cyclic coordinate descent, is developed.
The approach used to formulate the nonlinear programming model in 11 can be modified to
deal with the velocity, acceleration, and jerk constraints in this paper. In 2 we give a brief
formulation of the current problem and refer the reader to [3], 10], and 11 for more details
on the approach.

The main purpose of this paper is a comparison and analysis of the performance of a
special-purpose algorithm CCD and several specific available nonlinear programming codes
applied to an initial coarse-grid version of the problem.

2. Problem formulation. As discussed in detail in 11 ], the variables in the model are
the coefficients xj used in a cubic B-spline approximation of the derivative of an unknown
strictly increasing function h, where h(3) gives the time required to reach a position on the
fixed parametric path corresponding to 3[0, ]. In particular, if g(3) h’ (3) is thederivative
of h with respect to 3, then g is approximated by

(1)
N+2

j=l
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where the functions bl N+2 are the B-splines spanning the space of piecewise cubic
polynomials with N breakpoints in [0, 1]; see [2]. From

it follows that total travel time is

which we approximate as

where

h(r) g(z)dz

h(1) g(r)dr,

N+2 If01gN(r)dr Z xj
j=l

forj 1 N+2 and X (X1 XN+2) T

We consider a problem with three robot axes so the fixed path is definedby [0 (), 02 (r), 03 (r)],
where 0s (r) gives the position of the sth robot axis in terms of r. The constraints on the ve-
locity, acceleration, and jerk in each axis are bounds on the absolute values of the first three
derivatives (with respect to time t) of each 0s(r), namely,

(2) <_ Csr, s 1,2,3, andr 1,2,3.

By using r h- (t), applying the chain rule, and substituting g(r) h’(r), these constraints
can be expressed in terms of g and derivatives (with respect to r) of g and the 0’s. For
example, in the velocity constraint

d
Os(r)=

d
a-- Os(h-1 (t))

o’(r)
h’(r)

Throughout, prime denotes differentiation with respect to r. Replacing the absolute value
constraint (2) by two inequalities, the velocity constraint for the sth axis becomes

-g()Csl <_ Ots(’r) <_ g(’r)Csl.

Substituting the approximation gu of (1) for g gives

N+2 N+2

j=l j=l

Since re[0, we can discretize this constraint by selecting M distinct points rp in [0, and
requiring that the preceding pair of inequalities holds at each rp. Thus, for the sth axis the
velocity constraint IdO/dt(r)[ < CI can be approximated by 2M linear constraints in the
variables x so a total of 6M linear constraints are needed for all three axes.

Similarly, the acceleration and jerk constraints can be expressed using an additional 12M
constraints. Because the second and third derivatives of Os (r) in (2) are nonlinear functions of
the variables xj (see [11 ]), these constraints are nonlinear as shown below in (3). In addition to
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the bounds Csr, all of the remaining data necessary to precisely define the constraints are the
values of the functions G and Cj and their derivatives evaluated at the points rp. Specifically,
let the column

(")(r) ,,Ir)(r),,C,r)(r) r =0, 1,2,

where )o) i and 1) and 2) denote the first and second derivatives of i with respect
to r. Similarly, for r 1, 2, 3 let O(sr)(r) denote the rth derivative of G with respect to r.

Using this notation the resulting nonlinear programming problem is

(3)
min brx,
subject to
-G(rp)rx 0)(rp) 0,

--Cs2 [(Tp)TX] [02’(p)(p) o:l’(p)(l)(p)]Tx 0,

-Cs3 [(rp)TX]5 [O3’(p)((p)TX)2-- 302’(p)((p)TX)((I’(p)TX)

+3o(p (((rpr) + o(rp ((rpX) (((pX)] o,
s= 1,2,3, and p= M,

where the use of "4-" indicates two constraints, one including the "+" and another including
the "-".

Three coarse-grid realizations of this problem called Robot A, Robot B, and Robot C are
studied in the next section. Each of these coarse-grid problems uses N 9 equally spaced
breakpoints and M 41 equally spaced discrete values rp and thus has n N + 2 11
variables xj and rn 18M 738 constraints. Each problem has the general form

(4) minJ(x) subject toil(x)<0, i=l m,

and uses the following functions G for s 1, 2, and 3 corresponding to the shoulder, elbow,
and wrist axes, respectively.

O(r) 1.5f(r),
02(r) -0.5 sin(4.7f(r)),
03(r) -1.3f(r) + 2.6,

where f(r) z’3(6"r2 15r + 10), r [0, 1]. The derivative bounds Csr s 1, 2, 3 and
r 1, 2, 3 used for Robots A, B, and C are given in Table 1.

The bounds for Robot A were chosen to be most restrictive at the shoulder axes so that,
at optimality, constraints involving 01 will most frequently be active. Robot B has identical
bounds for each axis so that at optimality all axes will be involved in the active constraints.
Robot C differs from Robot A only in the choice of third derivative bounds. In Robot C
these are intentionally made small to insure that some of the highly nonlinear third derivative
constraints are active at optimality.

A feasible starting point x (a, a a)r is easily computed [11] for each of the
problems. For Robot A, a 1.491400623321533; for Robot B, a 4.377146244049071;
and for Robot C, a 1.920426464080810.

3. Computational experiments for coarse grid problems. In this section, we compare
the performance of the CCD algorithm with four general-purpose algorithms when used to
solve the three problems Robot A, Robot B, and Robot C.
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TABLE
Derivative bounds Cs,..

Robot A Robot B Robot C

Cll 2 2
Cl2 8 3 8
C13 250 100 25

C21 3 3
C22 18 3 18
C23 650 100 65

C31 4 4
C32 50 3 50
C33 1000 100 100

The CCD algorithm is the standard cyclic coordinate descent method modified to deal
with constraints. The algorithm starts at a feasible point x. At each iteration k the algorithm
generates the next iterate xk xk-1 +otuj, where uj is a coordinate direction and a is chosen to
minimize the objective function in the direction uj subject to the constraints. Thus, from xk-l,
CCD does a line search in the direction uj until a minimum of f0 is obtained or a boundary
of the feasible set is encountered. The search directions used are u l, u2 Un, u l, u2
where n is the number of variables. The algorithm terminates when a point xk is obtained
from which no coordinate direction is a direction of descent.

The use of a CCD algorithm is motivated by the fact that the coefficients bj of the linear
objective function in problem (3) are by construction strictly positive, so that reductions in
the objective function can be obtained by successively reducing the values xj. Because of the
algorithm’s simplicity and low computational cost per iteration, it is easy to apply to larger and
larger problems. Unfortunately: the method can converge to a point far from the constrained
optimum even if the constraint set is convex. For example, consider the problem min X / 2x2
subject to X1 - X2 >_ 1, X1 1, x2 _< 1. If x (43-, 43-)r is the starting point, the algorithm
converges to x (1/4, 1/4)r. Thus, although CCD can be expected to reduce the objective
value somewhat before it stops, it is in general useful only for finding approximate solutions,
as discussed further in 4.

The four general-purpose codes are listed below in order of increasing sophistication.
EA3: The ellipsoid algorithm as implemented by Kupferschmid and Ecker [8].
GRG2: The generalized reduced gradient algorithm as implemented by Lasdon et al., [9].
SQP: A sequential quadratic programming algorithm, as implemented in subroutine

VMCWD by Powell 12], and using the quadratic programming algorithm of Goldfarb and Id-
nani, [6], as implemented by Powell. At each major iteration ofSQP a search direction is found
by solving a quadratic programming subproblem that involves a quasi-Newton approximation
of the Hessian of the Lagrangian and linearization of all the problem constraints.

IMSL: The sequential quadratic programming algorithm of Schittkowski [13], also with
the quadratic programming algorithm of Goldfarb and Idnani [6], as implemented in the
IMSL Library [7] subroutine DN2ONG. Schittkowski’s algorithm uses an active-set strategy
to identify that subset ofconstraints believed to be active at optimality. At each major iteration,
the quadratic programming subproblem uses a linearization of only this subset of constraints
and is probably easier to solve than if all the constraints were included.

No theoretical limit is imposed on problem size by any of the algorithms, but it was
necessary to increase the computer memory allocated by GRG2, SQP, and IMSL to use them
for solving problems with 738 constraints.
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To compare the performance of the five algorithms we use error-versus-effort curves as
in [4]. The cumulative time required for the calculations of each algorithm is recorded as
PSCPU time (problem state CPU time) after each iteration along with the current xk and its
objective function value. For each problem the same feasible starting point x given above is
used for all five algorithms.

The performance evaluation technique ofplotting solution error versus PSCPUtime avoids
the issue of termination criteria (which differ from one algorithm to another) by comparing
the results of the algorithms under study over a wide range of error levels and throughout
their convergence trajectories. In running our computational experiments, we turn off all
termination testing, by setting convergence tolerances to zero, so as to permit each method to
achieve the most accurate solution of which it is capable. When this is done, the algorithms
under test typically stop either because identical iterates are eventually generated or because
some benign numerical condition occurs to prevent the calculations from continuing (such
as, for example, the ellipsoid matrix becoming computationally nonpositive-definite in the
ellipsoid algorithm, or an uphill search direction being produced in a sequential quadratic
programming algorithm). Thus, the lowest errors shown in Figs. 1-3 reflect the best accuracy
attainable by the various methods, and the convergence trajectories illustrated would stop
sooner if nonzero convergence tolerances were used.

All ofthe experiments reported here were performed on an IBM 3090S computer under the
Michigan Terminal System, and all of the programs are written in Fortran and were compiled
without optimization. The floating-point calculations were done using IBM double precision,
which provides 56 fraction bits. Recall that each of the three problems Robots A, B, and C
has the general form given in (4). Machine precision is around 10-16.

Extensive numerical experiments provided a highly precise estimate of the optimal x*
and the optimal Lagrange multipliers ;k’. This information allowed us to calculate the error
measures described below at every iteration.

As in [4], our error-versus-effort curves use a measure of solution error that is based on
function values and scaled by the Lagrange multipliers for the problems. First, we calculate
the combined error measure

m

e IJ(x) fo(x*)l + l(x)l,
i=l

which takes into account both objective function value and constraint satisfaction. The error

ek approaches 0 as x’ approaches x*. We scale this error measure by the starting value e0 to
obtain the combined measure

ek

and plot log10 E, in our error-versus-effort curves.
To guard against the possibility of assigning a low error value to a point infeasible for

constraints that are inactive at optimality, we omit from the error-versus-effort curves any
points that do not strictly satisfy all of the constraints that are slack at optimality.

The resulting graphs, given in Figs. 1-3 for the three robot problems, clearly display the
convergence behavior of all five algorithms and show how quickly and by how much each
method reduces the solution error from its initial value. Thus, these pictures make it easy to
compare the performance of the algorithms on these problems.

In the review process for this paper other error measures were suggested including



1406 J.G. ECKER, M. KUPFERSCHMID, AND S. P. MARIN

Error vs EFFort
Robot g

0.00 ]1.00 22.00 33.00 44.00 55.00 66.00
Total PSCPU T Lme (sec)

Fro. 1.

and

m

mk =max{O, fi(xk) j(x*)} + .]’ max{O, -f (x’)}.
i=l

We tried these error measures in place of ek to produce error-versus-effort curves for the three
robot problems and found that the resulting curves were very similar to those in Figs. 1-3.

On Robots A, B, and C, CCD achieves errors of about 10-2, 10-3, and 10-1, respectively,
in less than 0.3 seconds. On each of the problems SQP is the next fastest algorithm in reaching
the same error level as CCD but SQP takes 3.0 seconds, 5.7 seconds, and 0.8 seconds on
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Error vs EFfor
Robo B

4.00 8.00 12.00 16.00 20.00
Total PSCPU Time (sec)

0.00 24.00

FIG. 2.

Robots A, B, and C, respectively, to reach this error level. From Fig. 3, it is not clear whether
SQP or IMSL reaches the 10-] error first, but the data file shows that SQP is first.

As illustrated in the discussion of CCD above, the algorithm can converge to a point far
from the minimum even if the feasible region is convex, although it typically makes some
progress in the direction of the minimum. The three robot problems have nonconvex feasible
sets, so it is to be expected that CCD will probably converge to points that are better than the
starting points but not as close to the optimal point as the solutions found by more sophisticated
(and computationally expensive) algorithms.

If we were interested in finding a very accurate solution to each of these problems, say,
with an error of 10-8, then Figs. 1-3 show that SQP would be the fastest algorithm.



1408 J.G. ECKER, M. KUPFERSCHMID, AND S. E MARIN

Error vs EFFor
Robo C

0.00 12.00
TtaI PSCPU Tie (sec)

FIG. 3.

EA3 is successful in obtaining very accurate solutions to Robots A and C. Figures and
3 show EA3’s typically linear convergence. On Robot B, a quick reduction in error by EA3 is
followed by a rather erratic trajectory. The ellipsoid algorithm can converge to a nonstationary
point for a nonconvex problem (see [Problem 9.55 and pp. 315-322, 5]), and on this problem
the nonconvex constraints lead EA3 to generate successive iterates that move away from the
optimal point x*.

GRG2 and SQP are successful in solving all three problems, as is clear from their error-
versus-effort curves in Figs. 1-3. However, to reach the 10-8 error level on Robots A and B,
GRG2 takes about twice the time required by SQP. On Robot C, GRG2 takes about five times
as long as SQP in reaching the 10-8 error level.
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To gain some insight into the reasons for the significantly longer times required by GRG2
to reach low error levels, we performed timing tests to see how much of the algorithm time
is being expended in various parts of the algorithms. In Table 2, we give the results of our
timing experiments for GRG2 and SQP on Robot A.

TABLE 2
RobotA timesfor GRG2 and SQP.

GRG2

Function evaluations
Gradient evaluations
Line searching
Computing the basis inverse
Other algorithm code

SQP

Function evaluations
Gradient evaluations
QP solver
Other algorithm code

Time in seconds

13.384
5.418
.359
.109
.543

Total 19.812

.612
3.998
2.493
.197

Percent of total

67.55
27.35
1.81
.55

2.74

Total 7.299

8.39
54.77
34.15
2.69

The timing profiles for GRG2 and SQP on Robots B and C are very close to those reported
in Table 2 in terms of the percent of total time spent in their various activities. These profiles
changed very little throughout the iterations of the algorithms. For example, if we stopped
both algorithms when they reached the 10-8 error level, the percent of total time spent in the
various parts of the code was essentially the same as in Table 2.

From Table 2, we see that GRG2 spends almost 95% of its time evaluating functions and
gradients versus about 63% for SQP. The 34% of its time that SQP spends on the QP solver
to obtain a new search direction thus seems to be very well spent. Because Robot A has
738 constraints but only 12 that are active at optimality, the solution times required by both
algorithms could be significantly decreased with an appropriate active-set strategy that did not
require evaluation of all the constraints and gradients at every major iteration. SQP does not
employ an active-set strategy, and GRG2 evaluates all constraints and gradients at every call
to its function and gradient routines.

We have not included a table showing how EA3 spends its time, but on Robot A, EA3
spends about 91% of its time in function and gradient evaluations and 9% in the updates and
other algorithm time.

The main reason for including the IMSL code in this comparison was that it is a sequential
quadratic programming algorithm that uses an active-set strategy, and also uses the same QP
algorithm used in SQP. Figure shows that IMSL takes about three times as long as SQP to
reach most error levels on Robot A. Figures 2 and 3 show that IMSL fails to solve Robot B
but has slightly superior performance to SQP on Robot C.

The reason that the IMSL code takes a significantly longer time than SQP to solve Robot
A is apparent from comparing the timing profiles for IMSL in Table 3 with those for SQP in
Table 2.

In terms of percent of time spent in the various activities, the timing profiles for IMSL on
Robots B and C are about the same as the times reported in Table 3.
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TABLE 3
Robot A timesfor IMSL.

IMSL

Function evaluations
Gradient evaluations
QP solver
Other algorithm code

Time in seconds

2.554
.350

16.149
2.047

Total 21.101

Percent of total

12.11
1.66

76.53
9.70

From Table 3 it appears that the active-set strategy helps IMSL to significantly reduce the
fraction of the time that it spends in function and gradient evaluations. IMSL spends about
14% of its time evaluating functions and gradients versus 63% for SQP. The reason that the
total number of seconds required by IMSL is about three times that required by SQP is because
IMSL spends 16.1 seconds (77%) of its time in the QP solver compared to the 2.5 seconds
(34%) required by SQP.

As reported in [7], the IMSL code uses a revision of Powell’s implementation of the
Goldfarb-Idnani QP solver. Recall that Powell’s implementation is also used in SQP. Although
both codes solve exactly one QP subproblem at each major iteration, IMSL and SQP do
different numbers of major iterations to reach a given error level. For example, to get to the
10-6 error level IMSL requires 104 major iterations and takes 21.73 seconds, but SQP only
takes 21 major iterations and 6.48 seconds. Thus, the relatively better performance of SQP
may indicate that it makes more effective use of the solutions that it finds to its larger QP
subproblems.

To provide further insight into how much the active-set strategy helps IMSL, we performed
another experiment. We allowed IMSL to use its active-set strategy, but we made IMSL waste
time by evaluating all the constraints and gradients at each iteration. In this case IMSL took
about twice as long to solve the problems.

To further investigate the difference in performance between IMSL and SQP on these
problems, we studied the effectiveness of the IMSL active-set strategy in determining which
of the 738 constraints of Robot A are active at optimality. To do this, we printed out, at each
major iteration of the algorithm, the indices of the constraints thought to be active. Then we
compared the list at each major iteration to the true active set and counted the listed constraints
that are in the true active set (the number "right") and the number of constraints listed that
are not in the true active set (the number "wrong"). These counts are plotted versus iteration
number in Fig. 4.

From Fig. 4 it is clear that IMSL eventually identifies the active set, but only in its final
major iterations. After 21 iterations (the number required by SQP to obtain its best result)
IMSL’s current estimate of the active set includes only 6 of the 12 active constraints but also
includes 2 constraints that are not active. After 80 major iterations, IMSL’s current estimate
of the active set is even worse, still including only 6 of the 12 active constraints (not the same
6 as at iteration 21) but now also including 4 that are not active. Thus, for this problem, the
main reason IMSL is not as fast as SQP is that its active-set strategy incorrectly identifies the
active set and thus hurts rather than helps the overall performance of the algorithm.

4. Conclusions. Even using a coarse-grid, the robot problems of interest are fairly large.
If only a low-accuracy solution is needed, then the special-purpose algorithm is faster than any
of the general-purpose codes in solving these problems. If more accuracy is needed, then of
the two sequential quadratic programming methods, SQP clearly outperforms IMSL on these
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problems. Also, while GRG2 is successful in solving the problems, it is not competitive with
SQP. The code EA3 fails to solve one of the problems and is dramatically outperformed by
SQP (but not by GRG2) on the other two.
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AN EFFICIENT BLOCK-ORIENTED APPROACH TO PARALLEL SPARSE
CHOLESKY FACTORIZATION*

EDWARD ROTHBERG AND ANOOP GUPTA
Abstract. This paper explores the use of a subblock decomposition strategy for parallel sparse Cholesky factor-

ization in which the sparse matrix is decomposed into rectangular blocks. Such a strategy has enormous theoretical
scalability advantages over more traditional column-oriented and panel-oriented decompositions. However, little
progress has been made in producing a practical subblock method. This paper describes and evaluates an approach
that is simple to implement, provides slightly higher performance than column (and panel) methods on small parallel
machines, and has the potential to provide much higher performance on large parallel machines.

Key words, sparse Cholesky factorization, systems of linear equations, parallel computing, supernodes, scala-
bility
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1. Introduction. The Cholesky factorization of sparse symmetric positive definite sys-
tems is an extremely important computation, arising in a variety of scientific and engineering
applications. Sparse Cholesky factorization is unfortunately also extremely time-consuming,
and is frequently the computational bottleneck in these applications. Consequently, there is
significant interest in performing the computation on large parallel machines. Several different
approaches to parallel sparse Cholesky factorization have been proposed. While great success
has been achieved for small parallel machines, success has unfortunately been quite limited
for larger machines.

Virtually all parallel approaches to sparse Cholesky factorization [4], [12], [20] perform
a one-dimensional (l-D) decomposition of the sparse matrix. That is, they distribute either
rows or columns of the matrix among processors. Such a decomposition has two major
limitations. The first is that it produces enormous volumes of interprocessor communication.
Communication grows linearly in the number of processors 14], resulting in communication
volumes that are difficult to sustain on all but the smallest parallel machines. The second
limitation is that a 1-D decomposition produces extremely long critical paths. Since the critical
path represents a lower bound on parallel runtime, parallel speedups are severely limited. As
a result, few processors can be used effectively on the problem.

Both of these limitations can be overcome (in theory) by moving to a subblock or two-
dimensional (2-D) decomposition. Such a decomposition has been shown to be extremely
effective for parallel dense factorization [21 ], [27]. It is not clear, however, whether a similar
decomposition would be practical for sparse problems. A few investigations [2], [26], [28]
have been performed, but these contained little or no exploration of practical algorithms. This
paper provides a detailed analysis of a new block-oriented algorithm, including performance
results from an efficient implementation.

This paper focuses on two practical and important issues related to a 2-D decomposition
approach. The first is implementation complexity. The fact that most sparse factorization
methods use a 1-D decomposition indicates that this decomposition is more natural. A block
approach might significantly complicate the implementation. The second issue is the efficiency
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of a parallel block-oriented method for practical machine sizes. While parallel scalability
arguments can be used to show that a block approach would give better performance than
a column approach for extremely large parallel machines, these arguments have little to say
about how well a block approach performs on smaller machines.

Regarding complexity, we find that a block approach need not be much more complicated
than a column approach. We describe a simple strategy for performing a block decomposition
and a simple parallel algorithm for performing the sparse Cholesky computation in terms of
these blocks. The approach retains the theoretical scalability advantages of block methods.
We term this block algorithm the blockfan-out method, since it bears a great deal of similarity
to the parallel column fan-out method 12].

Regarding efficiency, we explore this issue in two parts. We first consider a sequential
block factorization code and compare its performance to that of a true sequential program to
determine how much efficiency is lost in moving to a block representation. The losses turn
out be quite minor with the block approach producing roughly 80% of the performance of
an efficient sequential method. We then consider parallel block factorization, looking at the
issues that.potentially limit its performance. The parallel block method is found to give high
performance on a range of parallel machine sizes. For larger machines, performance is good
but not excellent, primarily due to load balance problems. We quantify the load imbalances
and investigate the causes.

This paper is organized as follows. We begin in 2 with some background on sparse
Cholesky factorization. Section 3 then discusses our experimental environment, including a
description of the sparse matrices we use as benchmarks and the machines we use to study
the parallel block factorization approach. Section 4 describes our strategy for decomposing a
sparse matrix into rectangular blocks. Section 5 describes a parallel method that performs the
factorization in terms of. these blocks. Section 6 then evaluates the parallel method, both in
terms of communication volume and achieved parallel performance. Section 7 gives a brief
discussion, and finally conclusions are presented in 8.

2. Sparse Cholesky factorization. The goal of the sparse Cholesky computation is to
factor a sparse symmetric positive definite n-by-n matrix A into the form A LL r, where
L is lower triangular. The computation is typically performed as a series of three steps. The
first step, heuristic reordering, reorders the rows and columns of A to reducefill in the factor
matrix L. The second step, symbolicfactorization, performs the factorization symbolically to
determine the nonzero structure of L given a particular reordering. Storage is allocated for L
in this step. The third step is the numericalfactorization, where the actual nonzero values in
L are computed. This step is by far the most time-consuming, and it is the focus of this paper.
We refer the reader to 13] for more information on these steps.

The following pseudo-code performs the numerical factorization step:
i. for k to n do

2. for =k to n do
3. Lik :-- Lik/kk
4. for j k + to n do

5. for j to n do

6. Lij := Lj LLjx.

The computation is typically expressed in terms of columns of the sparse matrix. Within a
column-oriented framework, steps 2 and 3 are typically thought of as a single operation, called
a column division or cdiv(k) operation. Similarly, steps 5 and 6 form a column modification,
or cmod(j, k), operation. The computation then looks like
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I. for k to n do
2. cdiv(k)

3. for j k + to n do
4. cmod(j, k)

Only the nonzero entries in the sparse matrix are stored, and the computation performs
operations only on nonzeros.

This column-oriented formulation of the sparse factorization has formed the basis of
several parallel sparse factorization algorithms, including the fan-out method [12], the fan-
in method [4], and the distributed multifrontal method [20]. The details of these various
methods are not relevant to our discussion, so we refer the reader to the relevant papers for
more information. We simply note that for each of these methods, communication volume can
be shown to grow linearly in the number of processors 14]. Since available communication
bandwidth in a multiprocessor typically grows much more slowly, this communication growth
represents a severe scalability limitation.

Recent research in parallel sparse Cholesky factorization [3] has shown that the com-
munication needs of column-oriented sparse factorization can be greatly reduced. Through
limited replication of data and careful assignment of tasks to processors, communication can
be made to grow as the square root of the number of processors, thus improving scalability.
Communication volume is not the only thing that limits scalability in column-oriented ap-
proaches, however. A column formulation also leads to very long critical paths, thus placing a
large lower bound on parallel runtime. For a dense n-by-n matrix, the sequential computation
requires O(n3) operations while the length of the critical path and thus the best case parallel
runtime is O(n2). Similar bounds apply for sparse problems.

An alternative formulation ofthe factorization problem divides the matrix into rectangular
subblocks. The dense Cholesky computation, expressed in terms of subblocks, would look
like
i. for K to N do

2

3.

4.

5.

6.

7.

Lx := Factor(LKK)
for I K + to N do

LIK :---- LIKL-K1K
for J K + to N do

for 1= J to N do

Lj := Lj- L1KLK

In this pseudo-code, I, J, and K iterate over rows and columns of subblocks. The Factor()
routine performs dense Cholesky factorization of a diagonal subblock. This formulation
leads to greatly reduced communication volumes and exposes significantly more concurrency.
Specifically, communication volumes can be shown to grow as the square root of the number
of processors, and the critical path can be shown to grow as O(n) [27]. It is an open question
whether this formulation can be applied efficiently to parallel sparse factorization, and this is
the question we address here.

Before we begin our discussion of a block decomposition of the sparse matrix, we first
discuss two important concepts in sparse factorization that will be relevant to our presentation.
The first is the concept of a supernode [6]. A supernode is a set of adjacent columns in the
factor matrix L whose nonzero structure consists of a dense lower-triangular block on the di-
agonal and an identical set of nonzeros for each column below the diagonal. Supernodes arise
in any sparse factor, and they are typically quite large. By formulating the sparse factorization
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computation as a series of supernode-supernode modifications, rather than column-column
modifications as described before, the computation can make substantial use of dense matrix
operations. The result is substantially higher performance on vector supercomputers and on
machines with hierarchical memory systems. For more details on supernodal factorization,
see 1 ], [6], [22], [23]. The regularity in the sparse matrix captured by this supernodal structure
will prove useful in this paper for producing an effective decomposition of the sparse matrix
into rectangular blocks. We will return to this issue shortly.

One thing we should note is that it is possible to improve the performance of parallel
sparse column-oriented methods by grouping sets of adjacent columns from within the same
supernode into panels and distributing these panels among the processors [22], [23]. We use
the term column-oriented in this paper to refer to methods that treat columns as indivisible
entities. Thus, panel methods fit this description. When we compare the performance of our
parallel block-oriented method to that of a parallel column-oriented method, we will actually
compare against the higher-performance parallel panel method.

Another important notion in sparse factorization is that ofthe elimination tree ofthe sparse
matrix 19], [25]. This structure concisely captures important dependency information. Ifeach
column of the sparse matrix is thought of as a node in a graph, then the elimination tree is
defined by the following parent relationship:

parent(j) min{illij :/: O, > j}.

It can be shown that a column is modified only by descendent columns in the elimination tree,
and equivalently that a column modifies only ancestors [19]. The most important property
captured in this tree for parallel factorization is the property that disjoint subtrees are inde-
pendent, and consequently can be processed in parallel. This fact will be relevant later in this
paper.

3. Experimental environment. Since one of our interests in this paper is to consider
practical performance issues for block methods, we will present several performance numbers
for realistic sparse matrices factored on real machines. This section briefly describes both the
matrices that we use as benchmarks and the machine on which we perform the factorizations.

3.1. Benchmark matrices. The benchmark matrices we consider in this paper are drawn
from the Harwell/Boeing sparse matrix test set [7]. Since our interest is on factorization on
large machines, we have chosen some of the largest sparse matrices in the collection. Table
gives brief descriptions of the matrices. Table 2 gives information about the factors of these
matrices. The first column ofnumbers shows a count ofthe number offloating-point operations
required for the factorization. The second column gives the number of nonzeros in L. The
third gives the number of supernodes in the factor matrices. Note that all matrices except the
two grid problems are preordered using the multiple minimum degree ordering heuristic 18]
before being factored. A simple nested dissection ordering is used for the grid problems.

3.2. Target machine. Although many of the results presented in this paper will be
machine-independent, the paper will also include some performance numbers from real par-
allel machines. We now briefly describe the parallel machines that are considered.

3.2.1. Moderately parallel machines. Performance numbers for sequential and mod-
erately parallel machines are obtained from a Silicon Graphics 4D/380 multiprocessor. The
4D/380 contains eight high-performance RISC processors, each consisting of an MIPS R3000
integer unit and an R3010 floating-point coprocessor. The processors execute at 33 MHz, and
are rated at 27 MIPS and 4.9 double-precision LINPACK MFLOPS. They are connected with
a bus having a peak throughout of approximately 67 MBytes per second.
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TABLE
Benchmarks.

Name Description

1. GRID100
2. GRID200
3. BCSSTK15
4. BCSSTK16
5. BCSSTK17
6. BCSSTK18
7. BCSSTK29

Equations Nonzeros

5-point discretization of 2D region 10,000 39,600
Larger instance of 40,000 159,200
Module of an offshore platform 3,948 113,868
Corps of Engineers dam 4,884 285,494
Elevated pressure vessel 10,974 417,676
R.E. Ginna nuclear power station 11,948 137,142
Boeing 767 rear bulkhead 13,992 605,496

TABLE 2
Factor matrix statistics.

Name

1. GRID100
2. GRID200
3. BCSSTK15
4. BCSSTK16
5. BCSSTK17
6. BCSSTK18
7. BCSSTK29

FP ops Nonzeros in L Supernodes

15,707,205 250,835 6,672
137,480,183 1,280,743 26,669
165,039,042 647,274 1,295
149,105,832 736,294 691
144,280,005 994,885 2,595
140.919.771 650,777 7,438
393,059,150 1,680,804 3,231

Each processor in the 4D/380 has a 64-KByte instruction cache, a 64-KByte first-level
data cache, and a 256-KByte second-level data cache. The caches play a crucial role in
determining performance. Memory references that hit in the first-level cache are serviced in
a single cycle. References that miss in both levels of the cache require roughly 50 cycles
to service, and they bring 4 16-byte cache lines into the cache. In contrast, a floating-point
multiply requires 5 cycles and a floating-point add requires 2 cycles.

We also provide performance numbers from the Stanford DASH machine, a 48-processor
distributed-shared-memory machine [17]. The DASH machine is built out of a network of
4-processor SGI 4D/340 nodes. Each 4D/340 node contains some portion of the global shared
memory. In the DASH machine, a processor memory reference that misses in both levels of its
cache is serviced in roughly 30 cycles if the requested location is held in the memory local to
that processor. It brings a 16-byte line into the cache. A cache miss to a memory location held
in a nonlocal memory requires roughly 100 cycles and again brings in a 16-byte cache line.
Our factorization implementation for the Stanford DASH machine explicitly places matrix
data in the memory local to the processor that owns that portion of the matrix.

3.2.2. Parallel machine simulator. To provide a more detailed understanding of the
performance of parallel machines on this computation, this paper also makes use of multi-
processor simulation. To keep simulation costs manageable, we perform this simulation in
terms of high-level factorization tasks. A single task might represent a block modification
operation or the transmission of a large message from one processor to another. The costs of
the individual high-level tasks are obtained through a simple performance model. The parallel
simulation is performed as a discrete-event simulation of these tasks.

The three most important costs that are modeled in this simulation are the costs of per-
forming floating-point operations, fetching data from the local memory of a processor, and
communicating data between processors. We now describe our model for each in more detail.

An important cost in a parallel factorization will clearly be the cost of executing the
machine instructions that perform the required floating-point operations. For the sake of
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normalization, we assume that one floating-point operation requires one time unit. Note that
this machine instruction term is meant to capture not only the cost of the single instruction
that actually performs the floating-point operation, but also the costs of all instructions that
are required to support a floating-point operation (such as index computations and memory
load instructions).

Another, potentially even more important, component ofperformance is the cost ofmoving
data between a processor’s memory and its cache. Our assumption is that the cost per double-
precision word of fetching data from memory into the cache is roughly 5 times the cost of a
floating-point operation. This number is quite accurate for the SGI 4D/380 and is a reasonable
estimate for a wide range of current generation hierarchical-memory machines as well. The
cache is assumed to be large enough to hold three 32-by-32 blocks of data. To simplify our
simulation, we further assume that all reuse of cached data occurs within block operations.
That is, we assume that each block operation begins with an empty cache.

While this computational cost model may appear too simplistic to capture the intricacies
of current and future microprocessors, which might include such complex features as heavily
pipelined floating-point units and nonblocking caches, we believe this model will in fact
provide relatively accurate estimates. No matter what the internal structure of a processor, we
believe that its performance for this computation can be understood using the answers to two
questions. First, what performance is achieved when virtually no memory references miss in
cache? And second, what performance is achieved when all references miss in cache? While
heavier pipelining will allow the processor to hide some of the latencies of memory accesses,
at the same time memory latencies will continue to increase so there will be more latencies
to hide. As a result, we believe that the processor will have to pay some cost for each cache
miss.

The third cost that is modeled is the cost of interprocessor communication. Our model
assumes that all communication takes place in the form of interprocessor messages. It also
assumes that messages are handled by a message coprocessor and therefore cost the sending
and receiving processors nothing to process. The true cost of a message is the time it spends
in the interconnection network. Our model assumes that this time is determined by the length
of the message, the available communication bandwidth between the sending and receiving
processors, and the message start-up cost. Communication bandwidth is assumed to be one-
tenth ofcomputation bandwidth. That is, a processor can perform ten floating-point operations
in the time required to send one floating-point value. This number is roughly average for
today’s parallel machines. The Intel Touchstone DELTA machine, for example, has a roughly
10 to computation to communication bandwidth ratio (ignoring contention issues). The Intel
Paragon machine will have a roughly 2 to ratio. On the other hand, the Thinking Machines
CM-5 has a roughly 50 to ratio. Communication start-up is assumed to require 500 times
as long as a floating-point operation. This number is somewhat aggressive, but it is within the
range of what can be observed on current machines.

For an example of how this performance model would be applied, consider the following
three example operations: (1) send a 32-by-32 block of data from one processor to another;
(2) multiply the received block by another 32-by-32 block; (3) add the result into another 32-
by-32 block. Operation would send 1024 d0uble-precision values and thus would require
10240 time units. Operation 2 would load 3 blocks into the processor cache, requiring 15360
time units, and would perform 65536 floating-point operations, requiring 65536 time units.
Finally, operation 3 would load two blocks into the cache, requiring 10240 time units, and
would perform 1024 floating-point operations, requiring 1024 time units.

Webelieve our model captures the most important aspects ofparallel machine performance
for modern multiprocessors with one exception. Our model does not capture the effect of



EFFICIENT PARALLEL BLOCK-ORIENTED SPARSE FACTORIZATION 1419

message contention in the processor interconnection network. Since the effect of contention
is extremely difficult to model accurately, we instead discuss the issue in a qualitative way in
sections where the performance model is used.

4. Block formulation. Having described our evaluation environment, we now move on
to the question of how to structure the sparse Cholesky computation in terms of blocks. Our
first step in describing a block-oriented approach is to propose a strategy for decomposing the
sparse matrix into blocks. Our goal in this decomposition is to retain as much of the efficiency
of a sequential factorization computation as possible. Thus, we will keep a careful eye on the
amount of computational overhead that is introduced.

4.1. Block decomposition. When dividing a matrix into blocks, we believe the three
most important issues are (1) producing blocks with simple internal nonzero structures, so
that block operations can be performed efficiently; (2) producing blocks that interact with
other blocks in simple ways, so that bookkeeping overheads are minimized; and (3) producing
blocks that are as dense as possible, so that per-block computation and storage overheads
are minimized. With these goals in mind, the approach we take to decomposing the sparse
matrix into blocks is to perform a global partitioning on the matrix, guided by the supernodal
structure. More precisely, we divide the columns of the matrix (1 n) into contiguous sets
({1... P2 1}, {P2... P3 1} {pv... n}, where N is the number of partitions and Pi
is the first column in partition i). All columns within a particular partition must be members
of the same supernode (although a partition will frequently be a subset of a supernode). An
identical partitioning is performed on the rows. A simple example is shown in Fig. 1. A
block Lij (we refer to partitions using capital letters) is then the set of nonzeros that fall
simultaneously in rows {pi... PI+I and columns {pj... pj+l }.

FIG. 1. Example ofglobally partitioned matrix.

This global partitioning approach addresses the above-mentioned issues quite well. Each
block has a very simple nonzero structure. Since the block is a portion of a supernode, all
rows in the block are dense. The blocks also share common boundaries. As a result, block
interactions are extremely regular. As we will soon demonstrate, this decomposition leads to a
computation structure where a block interacts with a block above it to produce a modification
to a block to its right. Without these common boundaries, block modifications would be quite
complicated with portions of blocks modifying portions of other blocks (see Fig. 2).

One issue that this distribution scheme does not address is the block density issue. The
global nature ofthe partitions does not allow the blocks to be tailored to match the local sparsity
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Theyproduce
a modification

__L
Two source
blocks Interact

The modification affects portions
of several other blocks

FIG. 2. Example ofirregular block interaction. Dashed lines indicate boundaries ofaffected areas.

structure of the matrix. We will see in the next section that this is not actually a significant
problem. While blocks will often not be completely dense, this sparsity has little effect on the
efficiency of the overall computation.

Before proceeding, we note that Ashcraft [2] proposed a similar decomposition strategy
independently.

4.2. Structure of the block factorization computation. One important goal we had in
choosing this block decomposition was to retain as much efficiency as possible in the block
factorization computation. We now describe a sequential algorithm for performing the factor-
ization in terms of these blocks and evaluate that algorithm’s efficiency. The parallelization
of the sequential approach that we derive here will be described later.

At one level, the factorization algorithm expressed in terms ofblocks is quite obvious. The
following pseudo-code, a simple analogue of dense block Cholesky factorization, performs
the factorization. Note that I, J, and K iterate over the partitions in the sparse matrix.
i. for K to N do

2

3.

4.

5.

6.

7.

L := Factor(LK)
for I K + to N with L # 0 do

tlX LKL-KKfor J: K + to N with LjK 0 do

for I J to N with LIK 0 do

LIj :’-- LIj- LIKLraK
The above pseudo-code works with a column ofblocks at a time. Steps 2 through 4 divide

block column K by the Cholesky factor of the diagonal block. Steps 5 through 7 compute
block modifications from all pairs of blocks in column K. We store the blocks by columns,
so that all blocks in a column can be easily located. One thing to note is that step 7 modifies
some destination block L iJ whose location in memory cannot easily be determined from the
locations of the source blocks. To make this step efficient, we keep a hash table of all blocks
(hashing on I and J).

Now consider the implementation of the individual operations in the pseudo-code. The
block factorization in step 2 is quite straightforward to implement. Diagonal blocks are guar-
anteed to be dense, so this step is simply a dense Cholesky factorization. The multiplication
by the inverse of the diagonal block in step 4 is also quite straightforward. This step does
not actually compute the inverse ofL/x. Instead, it solves a series oftriangular systems. While
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the block LzK is not necessarily dense, the computation can be performed without consulting
the nonzero structure of the block.

The remaining step in the above pseudo-code, step 7, is both the most important and the
most difficult to implement. It is the most important because it sits within a doubly nested
loop and thus performs the vast majority of the actual computation. It is the most difficult
because it works with blocks with potentially different nonzero structures and it must somehow
reconcile these structures. More precisely, recall that a single block in L consists of some set
of dense rows from among the rows that the block spans (see the example in Fig. 1). When
a modification is performed in step 7 above, the structure of LIC determines the set of rows
in L,rj that are affected. Similarly, the structure of LJr determines the set of columns in L,rj
that are affected.

Block modification is most conveniently viewed as a two stage process. A set of modifica-
tion values is computed in the first stage, and these values are subtracted from the appropriate
entries in the destination block in the second, or scatter stage. The first stage can be performed
as a dense matrix-matrix multiplication. The nonzero structures of the source blocks Lzr and
LJr are ignored temporarily; the two blocks are simply multiplied to produce a modification.

During the second stage, the resulting modification must be subtracted from the desti-
nation. The most simple case occurs when the modification has the same nonzero structure
as the destination block. We have coded our dense matrix-matrix multiplication routine as a
multiply-subtract (i.e., C C ABr), rather than a multiply-add, so the destination block
can be used as the destination directly without the need for a second scatter stage.

Consider the more difficult case where the nonzero structures differ. The first step in
this case is to compute a set of relative indices [25]. These indices indicate the corresponding
position in the destination for each row in the source. Two sets ofrelative indices are necessary
to scatter a single block modification; reli, the affected set of rows and relj, the affected set
of columns. The next step is to use these relative indices to scatter the computed modification
into the destination block.

The computation of relative indices is quite expensive in general, since it requires a search
through the destination to find the row corresponding to a given source row. Fortunately, such
a search is only rarely necessary due to an important special case. When the destination block
has dense structure, the relative indices bear a trivial relationship to the source indices. Note
that the relj indices always fall into this category, since the destination block always has dense
column structure. We will be more precise shortly about exactly how often relative index
computations are necessary.

The scatter operation is also somewhat expensive, and it is much more prevalent than
relative index computation. The frequency with which relative index computations and scatters
must be performed will be considered shortly.

In summary, the efficiency of a block modification operation depends heavily on the
nonzero structures of the involved blocks.

The best case occurs when the modification has the same structure as the destination.
In this case, the C C ABr operation can use the destination block as its
destination.
The next best case occurs when the destination block is dense. The modification
must be scattered, but the relative indices can be computed inexpensively.
The worst case occurs when the modification has different structure from the desti-
nation and the destination block is sparse. The modification must be scattered, and
relative indices are relatively expensive to compute.

4.3. Performance of block factorization. We now look at the performance obtained
with a sequential program that uses a block decomposition and block implementation. Since
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our goal is to create an efficient parallel approach, performance is studied for the case where
the matrix is divided into relatively small blocks. The blocks should not be too small, however,
because of the overheads that will be associated with block operations. We consider 16-by-
16, 24-by-24, and 32-by-32 block sizes. To produce blocks of the desired size B, we form
partitions that contain as close to B rows/columns as possible. For example, with a block size
of B 16, a supernode of width 51 would be split into three partitions of size 17. Since
partitions represent subsets of supernodes, some partitions will naturally be much smaller
than B.

The performance obtained with the sequential block approach on a single processor of
the SGI 4D/380 is shown in Fig. 3. This performance is expressed as a fraction of the
performance obtained with an efficient sequential code (a supernode-supernode left-looking
method; among the most efficient sequential approaches [23]). From the figure, it is clear
that the block approach is reasonably efficient. Typical efficiencies are roughly 65% for a
block size of 16 and roughly 75% for a block size of 32. We will discuss shortly the reasons
why three of the matrices, GRID100, GRID200, and BCSSTK18, achieve significantly lower
performance.

100

._

._

GRID100, GRID200
BCSSTK15
BCSSTK16
BCSSTK17
BCSSTK18

(C) BCSSTK29

01’6 24 32

Block size

FIG. 3. Performance ofa sequential block approach, relative to a sequential left-looking supernode-supernode
approach.

Our earlier discussion indicated that the performance of the block method might suffer
because of the need for relative index calculations and scattering. To gauge the effect of these
two issues on overall performance, Table 3 relates the number of distinct scatters performed
and the .number of relative indices computed (for B 16) to the number of floating-point
operations performed in the factorization. The numbers are quite similar for the otherblock size
choices. The first column compares the number of distinct relative indices computed against
the number offloating-point operations. The second column compares distinct element scatters

against floating-point operations. The table shows that even if relative index computations
and scatters are much more expensive than floating-point operations, the related costs will still
be small. Clearly, the vast majority of block modification operations produce a modification
with the same structure as the destination block.



EFFICIENT PARALLEL BLOCK-ORIENTED SPARSE FACTORIZATION 1423

TABLE 3
Frequency ofrelative index computations andscattersforblock method, comparedwithfloating-point operations

(B- 16).

Relative indices Scatters
Problem (relative to FP ops) (relative to FP ops)

GRID100 0.37% 4.0%
GRID200 0.18% 2.4%
BCSSTK15 0.04% 1.6%
BCSSTK16 0.02% 1.4%
BCSSTKI7 0.04% 1.8%
BCSSTK18 0.11% 2.6%
BCSSTK29 0.01% 1.0%

It is also interesting to compare relative indices and scatters to those performed by a
true sequential method. Table 4 gives the relevant numbers. In this case, the comparison is
with a sequential multifrontal method, where notions of relative indices and scatters are easily
quantified. The comparison is relevant for the left-looking supernode-supernode method as
well, since the two methods perform similar computations. Note that in most cases the block
method performs fewer relative index computations and scatters.

TABLE 4
Frequency ofrelative index computations and scattersfor block method, compared with sequential multifrontal

method (B 16).

Relative indices Scatters
Problem (relative to seq MF) (relative to seq MF)

GRID100 78% 72%
GRID200 80% 69%
BCSSTK15 109% 105%
BCSSTK16 50% 88%
BCSSTK17 61% 90%
BCSSTK18 163%
BCSSTK29

91%
32% 40%

Ashcraft [2] has described methods for improving block structure and thus decreasing
the need for scattering. It is our belief that a very simple block decomposition is more than
adequate for keeping such costs in check.

4.4. Improving performance. It is clear from the previous section that the block method
is generally quite efficient. Recall, however, that the method was much less efficient than a
true sequential method for several problems. Data on relative index and scatter frequency
showed that these were not the source of the losses. The losses are actually due to overheads
in the block operations.

Consider a single block modification operation. It must find the appropriate destination
block through a hash table, determine whether the source and destination blocks have the same
structure, and then pay the loop start-up costs for the dense matrix multiplication to compute
the modification. While these costs are trivial when all involved matrices are 32-by-32, in fact
many blocks in the sparse matrix are quite small. In the case of matrix GRID100, for example,
the average block operation when B 32 performs only 96 floating-point operations, as
compared with the 65536 operations that would be performed with 32-by-32 full blocks. The
average number of floating-point operations per block operation across the whole benchmark
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set is shown in Fig. 4. Note that this figure quite accurately predicts the performance numbers
seen in the previous figure.

1o000
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100

GRID100
[] GRID200

BCSSTK15
+ BCSSTK16

BCSSTK17
BCSSTK18

(C) BCSSTK29

24 32

Block size

FIG. 4. Averagefloating-point operations per block operation.

The primary cause of small blocks in the block decomposition is the presence of small
supernodes and thus small partitions. To increase the size of these partitions, we now consider
the use of supernode amalgamation [5], [8] techniques. The basic goal of supernode amalga-
mation is to find pairs of supernodes that are nearly identical in nonzero structure. By relaxing
the restriction that the sparse matrix only store nonzeros, some zeros can be introduced into the
sparse matrix to make the sparsity structures of two supernodes the same. These supernodes
can then be merged into one larger supernode. We refer the reader to [5] for more details on
supernode amalgamation.

In Fig. 5 we show the average block operation sizes after amalgamation. It is clear that
amalgamation significantly increases the block operation grain size.

Figure 6 shows relative performance levels after amalgamation. To be fair, we have
computed these numbers relative to post-amalgamation sequential performance, since amal-
gamation improves sequential performance as well (by between 0% and 15%). The results
indicate that amalgamation is quite effective at reducing overheads. Performance roughly
doubles for GRID100, where the average task grain size for B 32 increases from 96
floating-point operations to 597. Performance increases for the other matrices as well. With
only two exceptions, block method performance for B 32 is roughly 80% of that of a true
sequential method. Performance falls off somewhat when B 24, and it decreases further
when B 16, but the resulting efficiencies are still roughly 70%.

Note that our chosen range of blocks sizes, 16 to 32, is meant to span the range of
reasonable choices. Blocks that are smaller than 16-by- 16 would be expected to lead to large
overheads. Indeed, performance was observed to fall off quite quickly for block sizes of less
than 16. The marginal benefit of increasing the block size beyond 32-by-32 would be expected
to be small. This expectation was also confirmed by the empirical results.

4.5. Block decomposition summary. This section has described a simple means of de-
composing a sparse matrix into a set ofrectangular blocks. The performance ofa method based
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FIG. 5. Averagefloating-point operations per block operation after supernode amalgamation.

on such blocks on a sequential machine is nearly equal the performance of a true sequential
method. Ofcourse, our goal here is not an efficient sequential method, but, instead, an efficient
parallel method. The next section will consider several issues related to the parallelization of
the above approach.

5. Parallel block method. The question of how to parallelize the sequential block ap-
proach described so far can be divided into two different questions. First, how will processors
cooperate to perform the work assigned to them? And second, what method will be used to
assign this work to processors? This section will address these two questions in turn.

5.1. Parallel factorization organization. We begin our description of the parallel com-
putation by assuming that each block will have some specific ownerprocessor. In our approach,
the owner of a block L Ix; performs all block modification operations with L Ix; as their des-
tination. With this choice in mind, we present the parallel block fan-out algorithm in Fig. 7.
The rest of this section will be devoted to an explanation of the algorithm.

The most important notion for the block fan-out method is that once a block Lix; is
complete, meaning that it has received all block modifications and has been multiplied by
the inverse of the diagonal block, then L/x; is sent to all processors that could own blocks
modified by it. Blocks that could be modified by L/x; fall in block-row I or block-column I
of L. When a block Lx; is received by a processor p (step 2 in Fig. 7), processor p performs
all related modifications to blocks it owns. The block L ix; only produces block modifications
when it is paired with blocks in the same column K. Thus, processor p considers all pairings
of the received block L Ix; with completed blocks it has already received in column K (these
blocks are held in set Recr,p) to determine whether the corresponding destination block is
owned by p (steps 10 and 11). If the destination Lj is owned by p (map[Lj] p), then
the corresponding modification operation is performed (steps 12 and 13). Each processor
maintains a hash table of all blocks assigned to it, and the destination block is located through
this hash table.

A count is kept with each block (nmod[LIJ]), indicating the number of block modifica-
tions that still must be done to that block. When the count reaches zero, then block LIj is
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FIG. 6. Performance ofa sequential block approach, before and after supernode amalgamation, relative to a
sequential left-looking supernode-supernode approach.

ready to be multiplied by the inverse of Ljj (step 20 if Ljj has already arrived at p; step 6
otherwise). A diagonal block L is kept in Diag.,p, and any blocks waiting to be modified
by the diagonal block are kept in Wait,p. The sets Diag, Wait, and Rec can be kept as
simple linked lists of blocks.

One issue that is not addressed in the above pseudo-code is that of block disposal. As
described above, the parallel algorithm would retain a received block for the duration of the
factorization. To determine when a block can be thrown out, we keep a count ToRecK,p of
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i. while some Lxg with map[LxJ= MylD is not complete do

3.
4.
5.

6.
7.

9.
i0.

ii.

12.
13.

14.
15.
16.
17.
18.

19.
20.
21.

receive some LK
if I=K /* diagonal block */

DiagK,MyD :: Lg
foreach LjK E WaitK.MylD do

LJK :--" LJKL-KKsend LjK to all P that could own blocks in
row J or column J

else

ReCK,MylD :-- ReCK,MylD tJ {LIK}
foreach LjK 6 ReCK,MyID do

if map[Lj]=MylD then
Find Lxj

L "= Lj- LLr
nmod[Lj] := nmod[Lrj]
i f (nmod[Llj] O) then

if [=J then /* diagonal block */
Lj :: Factor(L)
send Lj to all P that could own blocks in

column J
else if Diag,MyIm # ) then

L,j := L,jL]
send LIj to all P that could own blocks in

row 1 or column !
else

WaitJ,MylD "= WaitJ,MylD [3 {LIj}

FIG. 7. Parallel blockfan-out algorithm.

the number of blocks in a column K that will be received by a processor p. Once IRecx,pl
ToReCK,p, then the storage associated with blocks in column K is reclaimed.

We note that a small simplification has been made in steps 11 through 14 above. For all
blocks L IJ, I must be greater than J, a condition that is not necessarily true in the pseudo-
code. The reader should assume that I is actually the larger of I and J, and similarly that J
is the smaller of the two.

5.2. Block mapping for reduced communication. We now consider the issue of map-
ping blocks to processors. Our general approach is to restrict the set of processors that can
own blocks modified by a particular block L IK and thus decrease the number of processors the
block must be sent to. The actual restriction is done by performing a scatter decomposition
[9] of the blocks in the sparse matrix.

More precisely, assume that P processors are used for the factorization, and assume for
the sake of simplicity that P is a perfect square (P s x s). Furthermore, assume that the
processors are arranged in a 2-D grid configuration with the bottom left processor labeled
p0,0 and the upper right processor labeled ps-l,s-1. To limit communication, a row of blocks
is mapped to a row of processors. Similarly, a column of blocks is mapped to a column of
processors. We choose round-robin distributions for both the rows and columns, where

map[Lij] Plmod s, Jmod s.
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Other distributions could be used. By performing the block mapping in this way, a block LIr
in the sparse factorization need only be sent to the row of processors that could own blocks
in row I and the column of processors that could own blocks in column I. Every block in
the matrix would thus be sent to a total of 2s 2/ processors. Note that communication
volume is independent of the block size with this mapping; every block in the matrix is simply
sent to 2/ff processors.

The scatter decomposition is appealing not only because it reduces communication vol-
ume, but also because it produces an extremely simple and regular communication pattern.
All communication is done through multicasts along rows and columns of processors. This
pattern is simple enough that one might reasonably expect parallel machines with 2-D grid
interconnection networks to provide hardware multicast support for it eventually. In the ab-
sence of hardware support, an efficient software multicast scheme can be used. We will return
to this issue later in this paper.

5.3. Enhancement: Domains. Before presenting performance results for the block fan-
out approach, we first note that the method as described above produces more interprocessor
communication than competing column approaches for small parallel machines. To under-
stand the reason, consider a simple 2-D k-by-k grid problem. The corresponding factor matrix
contains O(k2 log k) nonzeros, and the parallel factorization of this matrix using a column ap-
proach generates O(k2 P) communication volume 14]. In the block approach, every nonzero
in the matrix is sent to O(Vrff) processors, so the total communication volume grows as
O(V/-ffk2 log k). The communication in the block approach grows less quickly in P, but it
grows more quickly in k. The k term is more important for small P.

An important technique for reducing communication in column methods involves the use
of domains [2], [4]. Domains are large sets of columns in the sparse matrix that are assigned
en masse to a single processor. They are perhaps most easily understood in terms of the
elimination tree of L. Recall that disjoint subtrees in the elimination tree are computationally
independent, and consequently can be processed concurrently. By assigning the columns of
an entire subtree (a domain) to a single processor, the communication that would have resulted
had these columns been distributed among processors is avoided.

More precisely, by localizing all columns in a domain to a single processor, all modifica-
tions to these columns can be performed without the need for interprocessor communication.
Furthermore, the modifications from all columns within a domain to all other entries in the
matrix can be computed and aggregated within the owner processor, again with no communica-
tion. That processor can then send the aggregate modifications to the appropriate destinations.
In a column approach, the aggregate modification is sent out on a columnwise basis. We refer
the reader to [4] for more details.

Ashcraft suggested [2] that domains can be incorporated into a block approach as well.
The basic approach is as follows. The nonzeros within a domain are stored as they wouldbe in a
column-oriented method. The domain factorization is then performed using a column method.
The aggregate domain modification is computed columnwise as well. We use an extremely
efficient left-looking supernode-supernode method for both. Once the aggregate modification
has been computed, it is sent out in a blockwise fashion to the appropriate destination blocks.

Of course, the domains must be carefully assigned to processors so that processors do not
sit idle, waiting for other processors to complete local domain computations. Geist and Ng
[10] described an algorithm for assigning a small set of domains to each processor so that the
amount of domain work assigned to each processor is evenly balanced. All results from this
point on use the algorithm of Geist and Ng to produce domains.

With the introduction of domains, the parallel computation thus becomes a three-phase
process. In the first phase, the processors factor the domains assigned to them and compute
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the modifications from these domains to blocks outside the domains. In the second phase, the
modifications are sent to the processors that own the corresponding destination blocks and are
added into their destinations. Finally, the third phase performs the block factorization, where
blocks are exchanged between processors. Note that these are only logical phases; no global
synchronizations is necessary between the phases.

Consider the effect of domains on communication volume in a block method for a 2-D
grid problem. We first note that the number of nonzeros not belonging to domains in the
sparse matrix can be shown to grow as O(k2 log P) [16]. Total communication volume for
these nonzeros using a block approach is thus O(/-ffk2 log P). The other component of
communication volume when using domains is the cost of sending domain modifications to
their destinations. The total size of all such modifications is O(k2), independent of P, so
domain modification communication represents a lower-order term. Total communication for
a 2-D grid problem is thus O(/-ffk: log P).

Note that domains produce the added benefit of reducing the number of small blocks in
the matrix, and thus reducing related overheads. Recall that small supernodes are the main
source of small blocks. In a sparse problem, most small supernodes lie toward the leaves of
the elimination tree, where they are likely to be contained within domains.

6. Evaluation. This section evaluates the parallel block fan-out approach proposed in
the previous section. The approach is evaluated in three different contexts. First, we look at

performance on a small-scale multiprocessor. Then, we consider performance on moderately
parallel machines (up to 64 processors), using our multiprocessor simulation model and using
the DASH machine. Finally, we consider issues for more massively parallel machines.

6.1. Small parallel machines. The first performance numbers we present come from
the Silicon Graphics SGI 4D/380 multiprocessor. Parallel speedups are shown in Fig. 8 for
1 through 8 processors. All speedups are computed relative to a left-looking supernode-
supernode sequential code. The figure shows that the block fan-out method is indeed quite
efficient for small machines. In fact, performance is slightly higher than that of our highly
efficient panel-based parallel code [24]. Speedups on 8 processors are roughly 5.5-fold,
corresponding to absolute performance levels of40 to 50 double-precision MFLOPS. Speedups
are less than linear in the number of processors for two simple reasons. First, the block method
is slightly less efficient than a column method. We believe this accounts for a roughly 15%
performance reduction. Second, the load is unevenly distributed among the processors. A
simple calculation reveals that processors spend roughly 15% of the computation on average
sitting idle. These two factors combine to give a relatively accurate performance prediction.

6.2. Moderately parallel machines. We now perform an evaluation of parallel per-
formance of the block fan-out approach on machines with up to 64 processors, using the
multiprocessor simulation model described earlier. We also discuss issues of communication
volume.

6.2.1. Simulated performance. Figure 9 shows simulated processor utilization levels
for between 4 and 64 simulated processors, using a block size of 24. It is clear from the figure
that the block approach exhibits less than ideal behavior as the machine size is increased.
On 64 processors, for example, utilization levels drop to roughly 40%. Further investigation
reveals that the primary cause of the drop in performance is a progressive decline in the quality
of the load balance. Figure 10 compares simulated performance for matrix BCSSTK15 with
the best performance that could possibly be obtained with the same block distribution. The
load balance performance bound is obtained by computing the time that would be required if
there were no dependencies between blocks and if interprocessor communication were free.
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The quality of the load distribution clearly depends on the method used to map blocks
to processors. Recall that we use a very rigid mapping strategy, where block LiJ is assigned
to processor Plmod s, Jmod s. One possible explanation for the poor behavior of this strategy
is that it does not adapt to the structure of the-sparse matrix; it tries to impose a very regular
structure on a matrix that is potentially comprised of a very irregular arrangement of nonzero
blocks.

While the mismatch between the regular mapping and the irregular matrix structure cer-
tainly contributes to the poor load balance, it is our belief that a more important factor is the
wide variability in task sizes. In particular, since a block is modified by some set of blocks
to its left, blocks to the far right in the matrix generally require much more work than blocks
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FIG. 10. Simulatedparallel performancefor BCSSTK15, compared with load balance upper bound (B 24).

to the left (more accurately, blocks near the top of the elimination tree require more work
than blocks near the leaves). Furthermore, since the matrix is lower-triangular, the number of
blocks in a column decreases toward the right. The result is a small number of very important
blocks in the bottom-right corner of the matrix.

To support our contention that the sparse structure of the matrix is less important than
the more general task distribution problem, Fig. 11 compares the quality of the load balance
obtained for matrix BCSSTK15 to the load balance obtained using the same mapping strategy
for a dense matrix. The curves show the maximum obtainable processor utilization levels
given the block mapping. The dense problem is chosen so as to perform roughly the same
number of floating-point operations as the sparse problem.

Note that the load balance can be improved by moving to a smaller block size, thus
creating more distributable blocks and making the block distribution problem easier. However,
as discussed earlier, smaller blocks also increase block overheads. For the larger benchmark
sparse matrices, decreasing the block size from B 24 to B 16 increases simulated parallel
efficiencies for P 64 from 40%-45% for B 24 to 50%-55% for B 16. A block size
of less than 16 further improves the load balance, but achieves lower performance due to
overhead issues.

The general conclusion to be drawn from these simulation results is simply that large
machines require relatively large problems to achieve high processor utilization levels. In
particular, the sparse matrices that we study here are too small to make good use of a 64
processor machine. Ofcourse, it may be possible to significantly improve parallel load balance
with a better mapping strategy. A more general function could be used to map columns of
blocks to columns of processors, and to map rows ofblocks to rows of processors. This matter
will require further investigation.

6.2.2. Communication volume. So far, our analysis has assumed that parallel perfor-
mance is governed by two costs: the costs of executing block operations on individual pro-
cessors and the latencies of communicating blocks between processors. Another important,
although less easily modeled, component of parallel performance is the total interprocessor
communication volume. Communication volume will determine the amount of contention
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FIG. 11. Parallel utilization upper bounds due to load balance for BCSSTK15, compared with load balance
upper bounds for a dense problem (B 24). Both problems perform roughly the same number offloating-point
operations.

that is seen on the interconnection network. Such contention can have severe performance
consequences, and can in many cases govern the performance of the entire computation (see
[26], for example).

Rather than trying to integrate these costs into our simple performance model, we instead
look at interprocessor communication in a more qualitative way. To obtain a general idea of
how much communication is performed, Fig. 12 compares total interprocessor communication
volume with total floating-point operation counts for a variety of sparse matrices and machine
sizes. This figure shows the average number of floating-point operations performed by a
processor per floating-point value sent by that processor. Sustainable values will depend on
the relative computation and communication bandwidths of the processor and the processor
interconnect in the parallel machine. Current machines would most likely not have trouble
supporting the roughly 40 to ratio (corresponding to a 0.025 communication to computation
ratio in the figure) seen for 16 processors on these matrices. The roughly 20 to ratio (0.05
in the figure) on 64 processors, however, could prove troublesome.

To put these communication figures into better perspective, we now compare them to
the communication volumes that would be seen with a column-oriented factorization method.
Figure 13 shows relative communication volume, compared with a parallel column multifrontal
method. Interestingly, the block approach does not always produce less communication than
the column approach on 64 or fewer processors. While the growth rates, O(P) for columns and
O(/ff log P) for blocks, favor the block approach, constants make these rates less relevant
for small P. However, the trends clearly favor the block approach.

An interesting thing to note here is that relative communication is quite a bit higher for
the two grid problems than for the other matrices. The reason is that the column multifrontal
approach does very well communicationwise for sparse matrices whose elimination trees have
few nodes toward the root and instead quickly branch out into several independent subtrees.
The two grid problems have this property. The block approach derives no benefit from this
property.
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FIG. 13. Communication volume ofblock approach, relative to a column-orientedparallel multifrontal approach.

6.2.3. DASH performance. We now provide performance numbers from a block fan-out
implementation on the Stanford DASH machine. Figure 14 shows achieved parallel speedups
on to 40 processors, again compared with a sequential left-looking supernode-supernode
method. The sequential method obtains between 7 and 8 MFLOPS on these problems. The
figure shows that speedups are relatively low, ranging from 12 to 18 on 40 processors. While
these speedups are low, we should note two important items about the results. First, the
absolute parallel performance levels of the DASH machine are still quite respectable. The
40 processor machine achieves roughly 100-double-precision MFLOPS. Second, we note that
these performance numbers are roughly 10% to 40% higher than corresponding numbers from
our panel-oriented parallel multifrontal implementation.
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FIG. 14. Parallel speedupsfor blockfan-out method on the Stanford DASH machine, B 24.

One other thing to note about the speedups achieved on the DASH machine is that they
are somewhat lower than those predicted by our simulation. We believe the main cause of this
difference is our assumption in the simulation that communication latencies can be hidden
from the processor. The DASH machine has limited ability to hide such latencies. Fortunately,
current trends in parallel machines are toward machines that can hide latencies. We expect
that these trends will lead to speedups on future parallel machines that are much closer to those
predicted by our simulation.

6.2.4. Summary. To summarize this subsection, we note that our block fan-out approach
provides good performance for moderately parallel machines, although parallel speedups are
well below linear in the number of processors for the matrices we have considered. An
important limiting factor is the relatively small size of the matrices and the relatively poor
load balance that results from our rigid block distribution scheme. Regarding communication
volumes, we find that the block approach produces comparable amounts of traffic to a column
approach on 64 or fewer processors. Even so, we found that the block approach produces
higher performance that a competing panel-oriented approach on the 8 processor SGI 4D/380
and the 40 processor Stanford DASH machine.

6.3. Massively parallel machines. Having concentrated on issues ofefficiency on smaller
machines in the first part of this section, we now turn our attention to three issues that will
be important for very large parallel machines. First, we look at available concurrency in the
problem. In other words, we look at how many processors can be productively used for a
particular problem. Next we turn to the issue of per-processor storage requirements, and we
consider how they grow as the number of processors and the problem size is increased. A
common assumption for large parallel machines is that each processor will contain some con-
stant amount of memory. Thus, it would be desirable for the amount of storage required per
processor to remain constant. Finally, we consider interprocessor communication issues. Our
discussions will use 2-D grid problems as examples. We should note that a similar analysis,
using a different algorithm and different assumptions, appears in 15].
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Before further discussing these issues, we should first explain our goals. The primary
advantage of a block approach over a column approach for a massively parallel machine is
that it allows more processors to cooperate for the same sparse problem. For a k-by-k 2-D
grid problem, for example, the column approach allows O(k) processors to participate (due
to critical path constraints discussed earlier). By some measures, a block approach can use
O(k2). Our goal is to determine whether the use of O(k2) processors is a realistic goal and to
understand the difficulties that might be encountered in trying to reach this goal.

6.3.1. Concurrency. One important bound on the parallel performance of a computation
is the length of the critical path. The length of this path for block-oriented sparse Cholesky
factorization is proportional to the height of the elimination tree, assuming some constant
block size. For a 2-D grid problem, the elimination tree has height 3k. Thus, in the best case
the O(k3) work of the entire factorization can be performed in O(k) time. Consequently, at
most O(k2) processors can be productively applied to this problem. This figure is consistent
with our goals for the block approach.

6.3.2. Storage. We now look at the issue of how per-processor storage requirements
grow as the size of the machine and the size of the problem is increased. We first note the
obvious fact that the processor must store the portion of the matrix assigned to it. If the
factorization is performed on P processors, and the problem being factored is a k-by-k grid
problem, then each processor must store O(k:z log k/P) nonzeros. Keeping per-processor
storage requirements constant would thus require that the number of processors grow slightly
faster than k2. Since the critical path analysis showed that only O(k:) processors can be used
productively for this problem, we must resign ourselves to a slow growth rate in per-processor
storage.

Now consider the storage requirements of the auxiliary data structures that a processor
must maintain. One important set ofauxiliary data is the per-block information. An example is
the count of how many times a block is modified. Another is the particular row and column of
processors to which a particular block is sent when complete. This data adds a small constant
to the size of each block, and consequently it represents a small constant factor increase in
overall storage.

Another important set of auxiliary data is the columnwise data. One example is the arrival
count information, which keeps track of how many blocks will arrive in a particular column.
Since the number of columns in the matrix is k, this data structure would occupy O(k:z) space
per processor if every entry were kept. Fortunately, only O(k3/p) of these entries must be
stored. The reason is as follows. If the factorization work is distributed evenly among the
processors, then the work performed per processor is O(k3/p). Since a received block is
only retained in a processor if it participates in some useful work, clearly the number of such
retained blocks and thus the number of arrival counts that must be stored is also O(k3/P). We
can keep a hash table, indexed by column number, of all nonzero arrival counts. When a block
arrives, the corresponding arrival count is located and decremented. Note that not all blocks
that arrive at a processor participate in a modification on that processor. If no arrival count
is found for the block column of an arriving block, then the block is immediately discarded.
Similar hash structures can be used for the other columnwise data structures.

Regarding per-processor storage growth rates, note that if P grows as k, then the per-
processor matrix storage costs grow as O(log k) while the arrival count storage costs grows as
O(k3/P) O(k). Fortunately, the O(k) term has a very small constant in front of it, so this
term will not be particularly constraining for practical P. However, asymptotic per-processor
storage requirements will grow with P.
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6.3.3. Communication. A crucial determinant ofperformance on massively parallel ma-
chines is the bandwidth of the processor interconnection network. To obtain a rough feel for
whether the bandwidth demands of the block fan-out method are sustainable as the machine
size increases, we look at these demands in relation to two common upper bounds on available
communication bandwidth, in a manner similar to that used by Schreiber in [26]. The two
upper bounds are based on bisection bandwidth and total available point-to-point bandwidth
in the multiprocessor. We consider a 2-D mesh machine organization, which is in some sense
a worst case since it offers lower connectivity than most alternative organizations.

A bisection bandwidth bound is obtained by breaking some set of point-to-point intercon-
nection links in the parallel machine to divide it into two halves. Clearly, all communication
between processors in different halves must travel on one of the links that is split. The bisec-
tion bandwidth bound simply states that the parallel runtime is at least as large as the time that
would be required for these bisection links to transmit all messages that cross the bisector.

In the case of the block fan-out method applied to a 2-D grid problem, recall that
O(k2 log P) messages are sent, and each is multicast to O(/) processors (a row and column
of processors). Figure 15 shows an example mesh of processors, an example bisector, and
the communication pattern that can be used to multicast a message. For any simple bisector,
a multicast to a row and column of processors crosses that bisector twice. Thus, total traffic
across the bisector is O(k2 log P). This traffic must travel on one of O(/-ff) communica-
tion links in the bisector, and this communication occurs in the O(k3/p) time required for
the factorization. If we assume that communication is evenly distributed among the bisec-
tor links, then communication per bisector link per unit time is O(k2 log P//-ff(k3/p))
O(q/-ff log P/k). If P grows as k2, communication per link per unit time is thus O(log P).
Since the amount of data that can travel on a single link per unit time is constant, this growth
rate represents a small problem. The number of processors P must grow slightly slower than
k2 to keep message volume per link constant.

Source

Bisector

FIG. 15. Communication patternforrow multicast.

Anothercommoncommunication-basedbound on parallel performance is the total amount
of traffic that. appears on any link in the machine, expressed as a fraction of the total num-
ber of links in the machine. For our example, there are O(k2 log P) multicasts, each of
which traverses O(/ff) links. The number of links in the machine is O(P), and again
this communication occurs in O(k3/p) time. Thus, global traffic per link per time unit is
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O(/-ffk2 log P/(k3/p)(P)) or O(/fflog P/k). If P is O(k2), we obtain O(log P) traffic
per link, which is identical to the bisector traffic.

We should note that the preceding arguments have said nothing about achieved perfor-
mance. Demonstrating that certain performance levels can actually be achieved would require
a detailed analysis of the structure ofthe sparse matrix, the way in which the factorization tasks
are mapped to processors, and the order in which these tasks are handled by their owners. This
would certainly be a daunting task. This discussion has simply shown that the approach is not
constrained away from achieving high performance by any of the most common performance
bounds.

6.4. Summary. To summarize our evaluation, we have found that the block fan-out
method is quite appealing across a range of parallel machines. Overheads are low enough that
the method is quite effective for small parallel machines. It is also effective for moderately
parallel machines, although performance is somewhat limited by the quality of the compu-
tational load balance. For massively parallel machines, we found that the approach is not
perfect. Per-processor storage requirements grow with the number of processors. Bisection
bandwidth considerations also limit the number of processors to below ideal. However, these
constraints are mild enough that the block fan-out approach appears to be quite practical even
for very large P.

7. Future work. While this paper has explored several practical issues related to parallel
block-oriented factorization, it also has brought up a number of questions that will require
further investigation. Foremost among these is the question of whether the load balance
could be significantly improved. We are currently investigating more flexible block mapping
strategies.

Another interesting question concerns the choice of partitions for the 2-D decomposition.
Recall that our partitions are chosen to contain sets of contiguous columns from within the
same supernode. Ashcraft has shown [2] that by choosing columns that are not necessarily
contiguous, it is often possible to divide the sparse matrix into fewer, denser blocks. While
our results indicate that the simpler approach is quite adequate, we are currently looking into
the question of how large the benefit of a more sophisticated approach may be.

We also hope to compare the block fan-out approach we have proposed here with the
block multifrontal approach proposed by Ashcraft [2]. One thing we are certain of is that the
block fan-out method is much less complex. So far, we have not discovered any significant
advantages to a multifrontal approach, but the issue requires further study. We also hope to

investigate a block analogue of the fan-in method.
Once a matrix ,4 has been factored into the form ,4 LL T, the next step is typically

the solution of several triangular systems Ly b, where b is given. An issue that we have
left unaddressed in this paper is the efficiency of this triangular solve computation when L is
represented as a set of blocks. Our belief is that this computation will be more efficient than
the corresponding computation for a column representation, but further investigation will be
required to fully answer this question.

$. Conclusions. It is becoming increasingly clear that column approaches are inappro-
priate for sparse Cholesky factorization on large parallel machines. One thing that has been
much less clear is whether the alternative, a 2-D matrix decomposition, is truly practical.
This paper has proposed and evaluated a parallel block algorithm that is quite practical. The
primary virtues of our approach are: (1) it uses an extremely simple decomposition strategy in
which the matrix is divided using global horizontal and vertical partitions; (2) it is straightfor-
ward to implement; (3) it provides good per-processor performance, since it performs the vast
majority of its work within dense matrix-matrix multiplication operations; (4) it is efficient on
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moderately parallel machines, providing performance that is comparable to that of efficient
column (and panel) methods; and (5) it shows good promise for large parallel machines.
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discussions on block-oriented factorization.
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A TWO-PHASE ALGORITHM FOR THE CHEBYSHEV SOLUTION OF
COMPLEX LINEAR EQUATIONS*
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Abstract. An overdetermined system ofcomplex linear equations is solved in the maximum norm by an iterative
algorithm in which each iteration has two phases. Phase concentrates on the combinatorial problem of identifying
the active set of equations where the residual magnitude attains the maximum, and Phase 2 concentrates on the
numerical problem of accurately solving the equations on the active set. Phase is aimed at building up the set of
active equations by means of an interior point method applied to the equivalent real semi-infinite linear program.
Phase 2 uses the quadratically convergent Newton method to find the solution to the equality constrained problem
on the current active set. A theoretical convergence proof has not been found, but numerical examples show rapid
convergence.

Key words, complex linear equations, Chebyshev solution, complex approximation, semi-infinite linear pro-
gramming
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1. Introduction. Let q(A, b) denote the Chebyshev distance between a complex
m-vector b and the column space of a complex m x n matrix A, i.e.,

(1) q(A, b) min lib Azll,
zeC

where the Chebyshev norm of a complex n-vector z is defined as

(2) Ilzlloo- max Izjl,
j=l n

A vector z for which the minimum in (1) is attained is called a Chebyshev solution to the
overdetermined system Az b.

An excellent survey of various approaches to the problem of finding the Chebyshev
solution appears in Watson [7]. We will therefore refer only to those ideas that are relevant to
the present paper.

It is standard practice to rewrite the problem as a convex program

(3) mine subject to Irkl 2 < e2,
zeC

k=l m, wherer=b-Az

in the 2n + real variables e, Re zj, Im zj, j 1 n. Watson’s approach is to approximate
the convex program by a sequence of quadratic programs. The objective function appearing
in each quadratic program depends on the current approximation to the solution, an estimate
of the optimal e, and a plausible active set I. Watson’s algorithm is quadratically convergent
once I has been identified.

The convex programming approach leads to the following characterization theorem given
by Watson [7].

THEOREM 1.1. Let z e Cn and e Ilrlloo, where r b Az. Then z is a Chebyshev
solution to the overdetermined system Az b, and e q(A, b), ifand only if there exists a
set I containing p indices where p < 2n + 1, and a real m-vector w such that:
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(a) Irl e, k 6 I,
(b) wk > Ofor k I while Wk Ofor k I, and
(c) A*Wr 0 with W diag(w). (We use A* to denote the Hermitian transpose ofA.)

The set I is called an active set and the vector w a dual solution. In addition, if all n n
submatrices of A are nonsingular (the discrete Haar condition), the Chebyshev solution z
(but not necessarily the active set I or the dual solution w) is unique. In that case, p > n
In this article we assume that the discrete Haar condition holds.

The problem may also be written as a semi-infinite linear program (SILP)

(4) mine subject to Re(e-ikrk)<e, 0<0k<2zr, k=l m.
zC

The problem can be approximated by a linear program (LP) [8] after discretizing the continuous
variables 0k. Streit [6] has shown that the special structure ofthe problem can be exploited when
solving the sequence ofLPs that arises when the discretization interval is progressively halved.
He also shows that the solution obtained in this way produces a value of e that underestimates
q(A, b) by a factor not exceeding sec -, where p is the number of equispaced points used
in the discretization. Thus his algorithn is only linearly convergent as p is increased (the
error in e is reduced by a factor of 4 at each halving), but it is nevertheless very efficient when
moderate accuracy (two to three digits) is required.

In his concluding remarks, Watson [7] observes, "An alternative would be to work with
a guessed active set (an approximation to I) at each step, and solve an equality constrained
problem; however, this would require the incorporation of a satisfactory active set strategy, and
so far this has not been tried." The algorithm to be described here is based on this approach.

At the start of each iteration, we assume only that a current approximate solution z is
known. Each iteration consist of two phases.

Phase 1. Obtain a plausible active set (or working set) with the aid of an interior point
search method applied to the SILP starting from the current approximate solution z. In the
process, the approximate solution is continually improved. The algorithm in Phase 1 is related
to a/steepest-descent method and therefore converges at best linearly.

.// Phase 2. Attempt to solve the equality constrained problem on the current working set;
if successful, try to modify the working set to find a solution that satisfies the conditions of
the characterization theorem. If an optimal solution is not obtained, return to Phase 1. The
algorithm used to solve the equations is Newton’s method using the current z as starting point,
which converges quadratically (or not at all.)

Our algorithm at certain points makes use of line searches, i.e., given a point z and a
direction s, the best point on the line z + ors where c is a nonnegative real number, is defined
as the point where f(c) lib A(z / s)II 2 is a minimum. The graph of f is a piecewise
parabolic convex curve, and an exact line search is therefore easy to implement by moving
from one intersection to the next.

The paper is organized as follows. We start with two sections giving the motivation and
mathematical derivation of the two phases of the algorithm. Additional computational details
of interest to the implementation of the algorithm are given in 4, and numerical examples are
given in 6. We do not have a convergence proof; in 5 we discuss the gaps in the theoretical
analysis of the algorithm. The algorithm nevertheless performs well in practice; the numerical
examples include cases where Watson’s implementation of his algorithm failed, as well as
accurate solutions to large practical problems that were solved to three significant digits by
Sherrill and Streit [3].

2. Finding a plausible working set. In Phase of the algorithm we think of the problem
as an SILP. Each constraint ofthe SILP (4) can be "numbered" by a pair (k, d) where k identifies
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a row of the matrix and d ei is a number on the unit circle/C C C. When the constraint
is active, d sign rk. The component of a vector q e Cm in the direction of the constraint
(k, d) is defined as the number Re (dq/c).

We use a modified form of an interior point search method for LPs developed by Sny-
man [4]. Starting from the current point z having residual r b Az and discrepancy
e Ilrllo, we set y0 z and perform an inner iteration during which new points yl, y2 yp
with p < 2n are generated. At the same time, constraints (ij, dj), j 0 p of the SILP
are identified. The indices io, ip will later define the working set to be used by Phase
2 of the algorithm. The first constraint (i0, do) is chosen among the maximal components of
the residual at the start of Phase 1. We define the jth inner residual by qJ b Ayj and the
jth discrepancy by Ej IlqJ oo.

The crucial idea (adapted from Snyman) is that at each stage the inner residual qt should
have the same component t in the direction of each previously identified constraint, i.e.,

(5) Re (-djqj) gj, j 0 l.

Initially g0 e0.
The inner iteration may stop for one of three reasons:
1. p 2n has been reached. Note that the indices io, ip need not all be different.
2. The inner iteration starts to diverge, i.e., e,+l > ep. In this case we replace yP by the

best value along the line yP + a(yp+l yp).
3. A zero division is encountered while trying to calculate yp+l.

At termination, following Snyman [4], we replace z by the best value along the line y0 +
c(yP y0). Whatever the reason for termination, we say that Phase has been successful if
at least n + distinct indices have been identified. If Phase is unsuccessful repeat Phase 1,
otherwise proceed to Phase 2.

In the inner iteration, each new point is formed by the formula

(6) yt -1 +crtst,

where in the words of Snyman the search direction s "points away equally" from each con-
straint already identified as potentially active, and rt is a suitably chosen step size. More
precisely, we require that

(7) RedjA[ij]s 1, j 0 1,

where A[i] denotes the ith row of A. The system of equations (7) contains real equations in
the 2n real variables Re si, Im si, n. The overdetermination is resolved by using the
pseudoinverse of the coefficient matrix, which gives the solution of minimal norm. In other
words, s is the vector of steepest descent among all vectors that "point away equally" from
each identified constraint.

Before choosing the step size at, we determine the first constraint encountered in the
direction st. It is convenient to work with the "residual direction" u Ast, in terms of which
the residual q(a) at the point yt-1 + cs can be written as

q(c) qt-1 otu,

where qt b Ayt. For k rn we find the smallest positive value/ for which

(8) Iq(/k)l-- El-1.

The next identified constraint (it, dr) is formed such that/3it is smallest, and dt sign (q[t).
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We now choose the new point yt so that (5) is satisfied. Substituting qt q/-1 trlU
and using (7), we find that cases j 0 of the equations (5) are satisfied when

(9) t t-1 crt.

The case j of (5) can then be solved to give

l-1 Re (qt)
(10) o"

Re (dtu,)

The cost of one complete Phase 1 iteration, when the direction s is computed as described
in 4.2, is O(n3).

3. Modifying the current working set. Ifthe active set I is known, the problem becomes
much simpler, since the characterization theorem tells us that indices outside I may be ignored.
The problem can then be formulated as an equality constrained problem

(11) min e subject to A[I]z + ed b[I].
zC,deKS’

Conditions (a) and (c) of the characterization theorem, together with a suitable normalization
of the vector w, yield the equations

(12) ew 1,

(13) A[I]z + ed b[I],

(14) A[I]*Wd 0,

where W diag(w) and e is a vector of ones. Condition (b) of the characterization theorem
is used to check whether a solution to (12)-(14) is indeed optimal.

On the assumption that a solution z to (12)-(14) with its accompanying dual solution
w can be computed relatively easily (for instance, by Newton’s method), one can devise an
exchange algorithm along the following lines.

1. Given a current working set Ik with p indices where n + 1 < p < 2n + 1, obtain primal
and dual solutions zk and wi with discrepancy e to the equations (12)-(14) with I I. Let
r b- Az.

2. Any residual rj with j ’ Ik whose modulus exceeds e provides an index j that is a
candidate for inclusion in the next working set I+ Any negative element of the dual solution
w provides an index that is a candidate for exclusion from the working set. If there are no
candidates for inclusion or exclusion, the current solution is optimal. If not, the working set is
modified by including or excluding indices (or doing both), and the computation is repeated
using the next working set.

There are several reasons why this scenario might fail.
1. The set I might be such that equations (12)-(14) have no solution.
2. The initial values for the iterative solution might not be good enough for the numerical

method to converge.
3. The solution to equations (12)-(14) may have a larger residual than the vector used as

starting value.
4. The inclusion or exclusion of indices might lead to a working set with too few or too

many elements.
5. The index set may cycle.
We have therefore not attempted to implement a strategy based only on exchanging indices

in the working set. Instead, we make a small number of explorations around the working set
supplied by Phase 1, and if an optimal solution is not found, we return to Phase 1.
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The logic runs as follows. If the solution to equations (12)-(14) produces a zk with lower
discrepancy than that of the previous value, but that is not optimal, we first try to augment the
working set by including one index (the index corresponding to the largest residual). If there
are no candidates for inclusion, we reduce the working set by removing all the candidates
for exclusion. If the modified working set still has between n + and 2n + 1 elements, we
compute a new solution to equations (12)-(14) and repeat the process. The number of retries
is limited. (In our numerical examples, we only allow three retries.)

If the solution to equations (12)-(14) produces a zk with higher discrepancy than that of
the previous value zg- 1, we replace zk by the best point on the line zk- + ct (z z-) before
returning to Phase 1.

4. Computational considerations. Most of the computations involve standard algo-
rithms of linear algebra, e.g., solution of least-squares systems. In this section we point out a
number of simplifications that reduce the amount of work considerably.

We found that the least-squares solution to the original problem provides a suitable initial
value for z.

We sometimes need a real vector x of length 2n formed from the real and imaginary parts
of a complex vector w of length n. In some computer implementations, the formation of x
involves only a pointer conversion with no actual movement of data. We use the notation
x w for the real vector formed in this way. Note that Re (v’w) v-rw.

4.1. Repeated index. It may happen during Phase that a certain constraint is encoun-
tered twice in the inner iteration, say at indices i and it with k < 1. In this case, the numbers
dk and dl may be nearly equal, which causes computational problems when calculating the
new search direction s. We therefore replace the lth equation in the system (7) by

(15) Im (-- + //)A[il]s 0,

which is equivalent to subtracting the lth equation from the kth equation in the system (7);
since Idol Idtl the vectors d dt and dg + dl in the complex plane are orthogonal, and
hence

Re (- + )A[it]s 0 := Im (-g + )A[il]s 0.

It may even happen that the constraint is encountered a third time. In that case, the new
constraint is linearly dependent on the two previously found constraints and the inner iteration
must be aborted.

4.2. Updating the search direction. Denote the system of (real) equations describing _s
during stage j (i.e., equation (7)) by

(16) Psj t.

Since we require the minimum norm solution, _Sj is given by _s P+t, where P+ is the
pseudoinverse of P.

It is more economical, however, to update _s with the aid of an orthogonal factorization of
P. The next system (stage j + 1) is of the form

Since the column space of P+ is the row space of P, _s- is a linear combination of the
rows of P, and sn- is a linear combination of the rows of P and p. If we set-Oj+l

Sj+l sJ + h,
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then h is also a linear combination of the rows of P and p. Substituting into equation (17), we
find that

(18) P_sj + Ph t,

(19) pT_sJ + pTh z’.

From equations (16) and (18) it follows that Ph 0, which implies that h e Te,.(P+/-). Since h
is at the same time a linear combination of the rows of P and p, this means that h must be a
multiple of the projection q of p on 7(P+/-).

To find q, we assume that P LQ with L lower-triangular and Q orthogonal. We then
find the LQ factorization L’Q’ of P’ from the LQ factorization of P with one step of the
modified Gram-Schmidt algorithm (see, e.g., [2], p. 151): qT is simply the last row of Q’.
Finally, from equation (19) we have that

z" pT_j
pT

As a final simplification, we note that pTq ejj, the last element on the diagonal of L’.

4.3. The Phase 2 iteration. The straightforward approach is to consider (12)-(14) as
2p + 2n + 1 equations in the 2p + 2n + 1 real variables s, w, 0, Re z, and Im z. It is possible
to reduce the number of equations substantially by a suitable substitution, however. Define
the vector q by

qk tOkdk,

and let U be a basis for the left nullspace .A/’(A[I]*) of A[I]. By (14), q e .A/’(A[I]*), and
therefore there exists v e Cp-n such that q Uv. We can write w in terms of v and d by
putting

(20) w D*Qv,

where D diag(dl). Since w is real, the additional equation

(21) ImD*Qv 0

must be satisfied. On the other hand, one can eliminate z entirely by multiplying (13) by U*
to obtain

(22) sQ*d c 0,

where

C Q*b.

We end up with 2(p n) + p + real equations in the 2(p n) + p + real unknowns
0, Re s, Im s, namely

(23)
(24)
(25)

0 j (e, 0, v) "= Re (d*Qv) 1,

0 f2(t, 0, v) "= ImD*Qv,
0 f3(e, 0, v) "= sQ*d c,

where (23) is obtained by substituting (20) and (22) into (12).
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It is tempting to eliminate 0 also, since wk exp(i0k) is simply the polar form of q. This
procedure is inadvisable since it is necessary to know whether w is positive or negative, and
that information is lost when we only know the product q w exp(i0k). We actually tried
this approach, and it is unreliable in practice as well as in theory.

To solve equations (23)-(25) by Newton’s method, we need the Jacobian

0[Ji, f2, Re f3, Im f3]
O[e, 0, Re v, Im v]

The required derivatives are easy to find when one remembers that

D*Qv diag(Qv)d,

[d]
-iD.

[0]

We obtain

0 0 Re (d’Q) -Im (d’Q) q
0 -diag(Re (D*Qv)) Im (D’Q) Re (D’Q)

Re (Q’d) eRe (iQ*D) 0 0
Im (Q’d) elm (iQ*D) 0 0

We can approximate Q*d by , since the approximation becomes exact at the solution.
Normally in Newton’s method one would solve for the increments 3e, 30, and 3v, but in

this case the right-hand side becomes simpler if we solve for v + 3v instead of 3v. The
system of equations is

(26)
0 0
0 -W
c -eE

ET 30
o -_f3

where

(27) W diag(Re (D*Qu)),

Im (Q’D)
(28) E -Re(Q’D)

It is possible to scale rows and columns so that the matrix becomes symmetric, in which
case one may use a method designed for indefinite symmetric systems [2], but the present
matrix can be handled more simply. Exchange the first row with the row containing the largest
element of c and perform one step of Gaussian elimination. Discard the first row and column
and we are left with a system of the form

(29) F
ET

where M has only one nonzero row. Putting G W-1ET, a simple scaling of the rows of E,
we obtain

(30) _._# (M- FG)-I,
(31) 30 -G_#.
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Instead of using the previously discarded equation to obtain de, we prefer to compute
the new value directly from (22). There are several ways to do so, all equivalent when
equations (23)-(25) are satisfied, but they show quite different behaviour when the current
approximate solution is still inaccurate. For example, the obvious equation e Ilell/llU*dll
gives misleadingly small values for e even when the solution is quite bad. We have obtained
the best results with the formula

c*c
(32) e Re c*U*d’
obtained by premultiplying (22) by c*.

When Phase 2 is complete, we find the corresponding z by solving (13) for z and e,
taking d as known. The least-squares solution is used when p > n -t- 1, even though the
overdetermined system is compatible when Phase 2 is successful.

The cost of one Phase 2 iteration is O((p n)3) + O(pn). Since n + < p < 2n + 1,
the cost is no worse than O(n3).

4.4. Easy special cases ofPhase 2. The two extreme cases p n + and p 2n + 1 can
be handled easily under the assumption that all elements ofw are positive. When p n + 1,
A/’(A[I]*) is one-dimensional. Therefore q is a multiple of the single column of U, and we
can read off w and d directly from the polar form of U, normalizing w afterwards.

When p 2n + 1, (13) may be considered as 4n + 2 equations in the 4n + 2 unknowns
e, Re z, Im z, 0. The system is not underdetermined and there is no need to bring in w at all.
Multiply the system by D* and extract the real part to obtain

(33) Re (D* (A[I]z b[I])) + ee 0.

Newton’s method for (13) reduces to the alternation of two steps:
1. Given d, solve the square linear system (33) for e, Re z, Im z.
2. Compute the new d from

(34) d sign (b[I] A[I]z).

4.5. Starting values for Phase 2. At the end of Phase 1, we have available a working
set I and a current solution z. From the current residual r[I] b[I] A[I]z one can obtain
starting values for e and d by

(35)

(36)

P
e Iris. 1,

P k=l

d sign r[I].

Alternatively, one could use r Uc (the least-squares residual) in (35)-(36). This choice
has the desirable property that Uc is known to be inN’(A[/]*), which is normally not the case
for the residual at the end of Phase 1. On the other hand, no advantage is taken of the fact
that the Phase residual is likely to be closer to the optimal residual. Our numerical results
indicate no clear preference for either choice of r.

For the Phase 2 iteration, we need starting values for ,, and these are most easily obtained
by using (12) and (14) to compute starting values for w. We obtain the 2n + 1 equations

(37) Im (A[I]*D) w
e-r

in the p unknowns w. Since p < 2n + 1, these equations should be solved in the least-squares
sense.
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5. Theoretical discussion. The algorithm described above contains several heuristics
aimed at efficiency. The price paid is that a convergence proof cannot be obtained. In this
section we discuss the theoretically inadequate aspects of the algorithm and indicate how they
could be met at the cost of greatly increased computation time.

The convergence of the algorithm depends only on the convergence of Phase 1. If Phase
does not converge, there is no reason to suppose that the initial values supplied to Phase 2

will be good enough for convergence even if Phase 1 happens to provide the correct active set.
Phase 2 is provided only to obtain rapid convergence when possible; the explorations around
the current working set are not intended to exhaust the possibilities.

There are several reasons why Phase may not converge. It may abort each time with
too few indices in the working set, or it may repeatedly come up with the. same working
set. These reasons can be traced back to the decision to retain identified SILP constraints
as long as possible. By the time that the pth index is added to the working set, the signs of
the previously identified residuals may have changed to such an extent that equation (7) no
longer guarantees that the direction st is a descent direction. This problem could be corrected
by using the current signs in (7), but then the efficient computation of st as indicated in 4.2
would no longer be possible; a new system would need to be solved from scratch, thereby
increasing the computing time for Phase from (.9(n 3) to (.Q(n4). We have tried this approach
in practice (in fact, the Matlab coding is much shorter than that for the updating of st) without
observing any great benefit in terms of a reduction of the total number of Phase 1 iterations.

In view of our claim that our algorithm is an efficient way of calculating the Chebyshev
solution to an overdetermined complex system to high accuracy, we are unwilling to incur a
severe speed penalty for the sake of being able to provide a theoretical proof.

6. Numerical results. The algorithm was programmed in Matlab 3.5 on an IBM-compati-
ble microcomputer, which uses a 54-bit mantissa (approximately 16 decimal digits). We
present three sets of examples. First a tiny problem, small enough to be worked by hand, is
shown in detail so that the workings ofthe algorithm may be understood. Then the performance
of the algorithm on two examples given by Watson [7] is shown. Finally we demonstrate the
effectiveness ofthe algorithm on two large examples from a practical problem given by Sherrill
and Streit [3]. In each case, our algorithm terminated with primal and dual solutions z and w
that satisfy the optimality conditions of the characterization theorem. The optimal values of
e quoted are believed to be correct to the number of digits given.

Example 6.1. Approximate w2 by z, to-z2 in the three points 1, -2 + -2 i’ and i. This

gives

A= 1 + b=
-1

The least-squares solution is z (-0.8918i, 1.0765 + 1.0765i). We choose this as an initial
value for z and calculate

-0.0765 0.1847i 1r b- Az 0.3694i
0.0765 0.1847i

The maximum value for Iril is e 0.3694, which occurs at r2, and hence we set I {2}. We
are now ready to start the inner iteration of Phase 1.

Solving for s from the equation Re (30uk0) 1, we find that sq- [0.5i; 0.3536 +
0.3536i]. This enables us to calculate/ 0.1834 from equation (8); the next active index is
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identified as e 1. From r we find that dl sign r -0.3827 0.9239i. The final step
is to calculate o 0.0881 from equation (10) and to update z, r, and to

z 1.1077+ 1.1077i r
-0.1077 0.2599i -I

0.2813i J,0.1077 0.2599i
0.2813.

This completes one inner iteration of Phase 1.
The next iteration identifies the third row of A as active, and Phase terminates with

I {1, 2, 3}, zq- [-0.8478i; 1.1077 + 1.1077i], and e 0.2813. Phase 2 computes the
correct solution in one step since I contains n + indices.

At the start of Phase 2, we update e to the current discrepancy; the updated value is
e 0.2813. The solution to equations (23)-(25) is

0.4027 0.4512i,
-0.2192E- 15 ]-0.1190E- 15
-0.2084E 15

Notice that Phase 2 did not change the value of e or even that of z significantly. However, we
can now calculate w- [0.2599; 0.4802; 0.2599], which shows that the solution is optimal
by the characterisation theorem.

Example 6.2. Approximate the function f(w) l/v/1 + (w + 1)2) by "’--1 zj(1 +
w) l-j, using 25 points on {w w iy, --20 < y < 20}.

This example was considered by Ellacott and Williams in [1]. For n 7, it proved
troublesome to the algorithm of Watson [7], who reports that the library subroutine he uses to
solve the quadratic programming subproblems failed in that case. Our algorithm experienced
no great difficulty; the results up to n 14 are given in Table 1.

Example6.3. Approximate thefunction f(w) l/v/1 + (w + 1)2) by ’=1Zj/(to .qt_ j),
using 25 points on {w to iy, -20 < y < 20}.

This is the same as Example 6.2, with a different approximating function. The problem
rapidly becomes ill conditioned for large values of n, but this did not influence the performance
of the algorithm. The results are given in Table 1.

TABLE
Optimal discrepancy and nuJnber ofouter iterationsfor Examples 6.2 and 6.3.

n

Example 6.2

3 0.01627327178246
4 0.00955282778207
5 0.00041701172641
6 0.00033491131379
7 0.00000602297966
8 0.00000590606483
9 0.00000006261614
10 0.00000006017302
11 0.00000000049419
12 0.00000000038075
13 0.00000000000283
14 0.00000000000176

Phase
2

4 4
3

2 4
2

3 8
2
3
2

2 4

Example 6.3

Phase
2

0.01738515249031
0.00633755462554
0.00198911364538 2 3
0.00058661398810 2 5
0.00037706725013
0.00036767407418 3 5
0.00029829945416 2 3
0.00026372633210
0.00015470487937
0.00013213127646
0.00007103828118 2 3
0.00005726328318
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Example 6.4. Let x be a given vector of length n + 1, and 0 be m equally spaced real
numbers with O1 Ko and On 4zr Ko. The vector b is defined by bp f(Op, Xn+l) and
the matrix A by ap,q bp f(Op, Xq) where f(O, x) exp(-iOx).

This example, together with its relevance to real-life applications, is given by Sherrill and
Streit [3]. The number K0 is given by the formula

2 2
Ko - cos-1

(r s) + (r + s)-i-

where r dB (where as usual dB 10t/2), s v/(r2 1), and t, D, and N are design
parameters. Three different cases are reported there. In each case x D, 2D, 3D ND}
with some elements removed. The problems are solved in [3] by Streit’s algorithm [5] de-
scribed in with 32 equispaced values in the discretization of the SILP (4). Actually, they
also employ a strategy (thoroughly explained in [3]) that reduces computing time substantially
at the cost of increasing the factor in the error bound to sec2 - which for p 32 has thep
value 1.00484.

1. 30, N 25, D 0.5, m 128; x has elements 2 and 4 removed, i.e.,
n 22. The optimal value given in [3] is -26.86dB 0.0454, which implies that the
correct optimal value does not exceed 0.04561. Our algorithm found the optimal solution
with e 0.04552462718747 using 8 Phase iterations and 14 Phase 2 iterations. Four of the
Phase 2 iterations were unsuccessful.

2. 30, N 50, D 0.5, m 128; x has elements 7, 22, 40, 43, and 50 removed,
i.e., n 44. The solution in [3] is -25.51 dB 0.0530, yielding e < 0.0533; we obtained
e 0.05315420963977 in 4 Phase and 11 Phase 2 iterations. All Phase 2 iterations were
successful.

3. 30, N 25, D 0.5, m 128; x has elements 11 and 14 removed, i.e., n 22.
The numerical value of the solution is not quoted in [3], but a graph given there suggests
e near -19 dB. Our algorithm required 8 Phase and 14 Phase 2 iterations and obtained
e 0.11449564056985. Three of the Phase 2 iterations were unsuccessful.

7. Conclusion. The algorithm presented here is fast and accurate. In numerical examples
with up to 128 equations in up to 44 unknowns, it never failed to produce an accurate solution
in a reasonably small number of iterations. Its main drawback is that it is theoretically possible
that the algorithm may fail to converge. The most obvious method of addressing this objection
will increase the cost of the algorithm from O(n3) to O(n4).

Acknowledgment. This paper owes a great deal to the comments of two anonymous
referees. The authors felt at the time that the points raised would cause much extra work
(which was true), but the increase in the readability of the paper and the efficiency of the
algorithm made the effort well worthwhile.
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THROUGH FUNCTION APPROXIMATION*
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Abstract. A new approach was presented in [M. Mu, SlAM J. Sci. Comput., 16 (1995), to appear] for construct-
ing preconditioners through a function approximation for the domain decomposition-based preconditioned conjugate
gradient method. This work extends the approach to more general cases where grids may be nonuniform, elliptic
operators may have variable coefficients (but are separable and self-adjoint), and geometric domains may be nonrect-
angular. The theory of expressing the Schur complement as a function of a simple interface matrix is established. The
approximation to this complicated function by a simple function is discussed and the corresponding error bound is
given. Preconditioning a nonrectangular domain problem is done by first reducing it to a rectangular domain problem,
and then applying the theory developed here for the rectangular domain case. Accurate error bounds are given by
using the results in [SLAM J. Numer. Anal., 28 (1991), pp. 378-391 for typical domains, such as L-, T-, and C-
shaped ones. Numerical results are also reported to illustrate the efficiency of this approach.

Keywords, domain decomposition, preconditioners, preconditioned conjugate gradient methods, iterative meth-
ods, partial differential equations, parallel computation
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1. Introduction. A new approach to constructing preconditioners for the domain
decomposition-based preconditioned conjugate gradient (PCG) method through a function
approximation is proposed in I11 by making the observation that the interface capacitance
matrix S, or the Schur complement, can be viewed as a matrix function

(1.1) S f(T),

where f(t) is a complicated function and T is a simple interface matrix. The approach is to
find a simple approximation r(t) to f(t), such that, with q(t) =-- f(t)/r(t),

(1.2)

(a) R =- r(T) is easily invertible;

max/Iq(ti)[ or {q (ti)} are clustered,(b) min; Iq(ti)l

where {ti tr (T) is the spectrum of T. The convergence rate of the PCG method is governed
by the quantity

max(R-1 S) max/Iq(ti)l
(1.3) I(R-1 S)

,min(R-1 S) mini Iq(ti)l’

where/.max is the maximum eigenvalue and ,min is the minimum eigenvalue, or by the spectrum
distribution of the preconditioned matrix R-1S given by

(1.4) a(R-1S) {q(ti)}.
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It is easily seen that the conditions (1.2) imply that R is a good preconditioner for the PCG
method.

We begin with a review of previous work and relate it to this approach. Relation (1.1) is
essential to this approach. This relation is established in [2] for the standard model problem
of a Poisson equation on a rectangle with Dirichlet condition discretized by thefive-point-star
stencil with a uniform square grid, where f(t) is shown to be a rational function in terms
of the Chebyshev polynomials and T 21 / K where K is the discrete one-dimensional
Laplacian on the interface. An equivalent expression in terms of the eigendecomposition of K
is obtained in [5]. An extension to the variable coefficient case .in which the elliptic operator
is separable and self-adjoint is implied in [1], where f(t) is still a rational function but in
terms of other orthogonal polynomials that play a role analogous to that of the Chebyshev
polynomials in the constant coefficient case. These orthogonal polynomials are defined by
the three-term recurrence relation in terms of the discrete one-dimensional operator in the
direction perpendicular to the interface. The roots of such a polynomial are the eigenvalues of
the corresponding tridiagonal matrix from the theory oforthogonal polynomials. An equivalent
expression is also used in [14] for the reciprocal 1 If(t) and is expanded into a sum of partial
fractions to approximate the inverse of the Schur complement for a nonrectangular domain,
which is referred to as the rational approximation to the Schurcomplement ofa nonrectangular
domain because of the rational function f(t). The rational expressions in terms of these
orthogonal polynomials developed in [1] and [2] are also used in [9], by being expanded into
a sum of partial fractions, to devise a fast direct solver in a parallel setting for the original
two-dimensional discrete operator. All the above assume a uniform square grid.

The rational expression theory for the Schur complement is extended in 11 to the nonuni-
form grid case in which the grid is nonuniform on the interface and uniform in the other
direction, and the elliptic operator has constant coefficients. In this case, (1.1) is modified to
the form

(1.5) S (l/2f(O-1/2Tl-l/2)O1/2,

where tO is a diagonal scaling operator corresponding to the spacings of the nonuniform grid
on the interface, f(t) is, within a constant factor, the same rational function as in the uniform
case, and T corresponds to a certain discrete one-dimensional operator on the interface.

For a nonrectangular domain 2 and mixed boundary value conditions, [14] shows a
spectral equivalence in the sense that there exist constants c and 2, such that, for any vector
v of a proper dimension,

(1.6) c(S0v, v) <_ (Sv, v) <_ c2(S0v ),

where So is the Schur complement on the same interface F but corresponds to the Dirichlet
condition for the rectangular region embedded in the original domain f2 by shifts of F up to
02. Here (., .) is the inner.product and 0 is the boundary symbol. Similar results for Dirichlet
boundary conditions are also obtained in [3], [4], and [6]. The relation (1.6) implies that So
can be taken as a preconditioner for S. This reduces, in principle, a non-Dirichlet problem
on a nonrectangular region to a Dirichlet problem on a rectangular region. The efficiency of
using So depends on the constants Cl and ce being close to 1.

For a rectangular region and the case of a constant coefficient and separable elliptic
operator and a uniform grid on the interface, the Schur complement can be efficiently inverted
using (1.1) and the fast Fourier transform (FFT) applied to the eigendecomposition of T. This
makes the PCG method a direct solver in this case. Other well-known preconditioners can be
related to (1.1) by being viewed as approximating f(t) with square-root-like functions because
f(t) behaves like l/e near the smallest eigenvalues of T. The matrix T is usually called K in
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this literature and they define the K1/2 family ofpreconditioners; see, for example, [3], [5], [8],
and [10]. However, these preconditioners depend either on using the FFT for T or on using
two-dimensional subdomain solvers, which makes their extension to general cases inefficient
and ineffective. The approach proposed in 11 provides a general framework for constructing
preconditions for S using (1.1) and a function approximation to f(t). Various approximations
yield different preconditioners. The K/2 family of preconditioners can, of course, fall into
this category. But they are not generally efficient because of the appearance of a square root
in the corresponding approximations. One of the basic principles in our approach is to have a
simple form for the r(t) such that the generated matrix R is easily invertible in terms of T. In
11 we illustrate how to construct such simple functions, such as a product of two first-degree

interpolating rational functions, or a linear interpolation. By utilizing the special properties of
f(t) we can satisfy the conditions (1.2). Examples are given in [11 and [12] showing that this
approach is very simple, effective, and efficient. Independently, a similar idea is used in 14]
by constructing another m-term sum of partial fractions as an approximation to the n-term sum
expression for 1/f(t). A theoretical analysis is given showing that under certain conditions
on the eigenvalues of two one-dimensional discrete operators in the x and y directions, the
approximation error is of the order of O(1 /n), for any r > 0, if rn O(log n). However, for
a real application it is not clear when those conditions can be satisfied, what number needs to
be used for m, and so on. No numerical experiments are reported on the actual performance
of the approach in 14].

The purpose of this paper is to extend our approach to general cases. Section 2 is devoted
to establishing the relation (1.5) for a very general case on a rectangular region where the
elliptic operator is separable and self-adjoint with variable coefficients, and the grid may be
nonuniform in both directions. An expression for efficiently evaluating f(t) is presented and
we note in our approach that f(t) only needs to be evaluated at a few interpolating points.
The function approximation and preconditioner construction are discussed in 3 with numer-
ical results showing the efficiency and effectiveness of the approach. Section 4 considers
the extension to a nonrectangular domain. An accurate estimate for the convergence rate of
the PCG method is given with the help of the results in [6] from the relationship between
overlapping and nonoverlapping for domain decomposition and from the dependence of the
convergence rate on geometry for the Schwarz overlapping method. Finally, we give conclu-
sions in 5.

A typical application of this work is for solving an elliptic boundary value problem on a
concave domain, such as L-shaped or T-shaped, where certain geometry-related singularities
are usually present in the solution. A common practice in discretization to efficiently handle
this type of singularity is to use a nonuniform grid, for instance, generated from an adaptive
procedure, so that the grid is much finer near reentrant corners where the singularities are
located and coarser for other parts of the region where the solution is smooth. As an example,
Fig. 1.1 shows a T-shaped domain with two reentrant corners located at (-1, 0) and (1, 0).

2The solution of a boundary value problem with smooth data behaves like p2/3 sin 30 around
each of these corners, where (p, 0) are local polar coordinates. Also seen from the figure is a
nonuniform grid adapted to singularities at the two corners.

2. Expression ofthe Schur complement as a matrix function. We consider the elliptic
Dirichlet boundary value problem on a rectangular domain f2 with a separable and self-adjoint
operator of the form L Lx + Ly,

(2.1)

-9 (a(x)) + c(x),L -ff-

Ly---ff-fy
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FIG. 1.1. T-shaped domain with an adaptive nonuniform grid suitable for singularities in the solution at the
reentrant comers (-1, O) and (1, 0).

Assume that f2 is discretized by a nonuniform tensor product grid with {h/x}i=l nx+l and

{h)}i=l ,,,+1 being the spacings for the x and y directions. Using the standard finite differ-
ences, Lx is discretized by a tridiagonal matrix A9"

[ 2a (X’-’+x’ ) 2 (hixa x’+x/’ hix+la +xi
2 )+ (x,_, ))2 -’1" C(Xi) 2

hix+12h/x+l i+l i+1hix (hi + ) hxhx (hix + hx ) h/x+1 (h/x + )
and, similarly, Ly is discretized by Az. The discrete analog of L can be expressed as

(2.:2) AFD AXFD Ine "+" In.,. AYFD
where (R) denotes the Kronecker product and I is the identity matrix of order k. The matrix
AFD is nonsymmetric when the grid is nonuniform. To preserve the symmetric positive definite
(SPD) property for obvious reasons, AFD is usually scaled to become a SPD matrix A by

(2.3)

where

(R)x diag (h + h/x+l)2

(R)y diag
2
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and Ax Ox AXFD Ay (yAYFD aretridiagonalSPDmatrices. Whenc(x) _= 0andd(y) 0,
the five-point-star finite difference stencil (2.3) is identical to the linear finite element stiffness
matrix.

Suppose f2 is decomposed into two subdomains 2 and f22 by an interface F which is
a horizontal grid line, and there are m and m2 interior horizontal grid lines in f21 and f22,
respectively. It is easy to see that m + m2 + ny. Assume that the horizontal grid lines
are ordered from the boundary towards F for each subdomain; then we can correspondingly
write Ay and (R)y as

(2.4) Ay

and

(2.5) (R)y

100 fly em,Ay
2 200 Ay fly em2

BIO..T B2Oer 0
ry I’m ry m2 Oly

0 0(y
2 00 {y

00 0 Oy

andwhere Ay )y are the corresponding tridiagonal and diagonal matrices for ’i with the
proper ordering, and ek is the unit vector of order k. The matrix A also has the block form

(2.6) A

A1 0 B1
0 A2 B2

D

where

(2.7)

i=12,Ai Ax (R) Oy -+- (x (R) Ay,
oD OyAx + OlyOx,

Be- l)x (R) tm,, i-- 1,2.

The interface matrix

(2.8)
2

-1BiS D-ZBiTAi
i=1

which is called the Schur complement of diag(Ai) in A and denoted by (A/diag(Ai)) [7],
plays a key role in domain decomposition-based methods. Theorem 2.1 states that S can be
expressed as a matrix function.

THEOREM 2.1. Let

(2.9)
Tx o-l/2Ax(-1/2,

i=1 2;Tiy(t) =-- toy + Ay,
then the Schur complement can be expressed as

(2.10) S (lx/2f(T tl/2
X l,_X
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where

(2.11) f Oy / Ory)- i l-i---"= mimi

and lmim, is the last diagonal element ofthe Choleskyfactor of Tj (t).
Proof. From (2.7) and (2.8) we have

(2.12)
2

0 (y Ox ( emi)m (fly COx emi).S (OyAx "3
t- OlycoX) iO T -1 iO

i=1

To express S as a matrix function we want to change COx to In in the right-hand side of (2.12)
in order to use the Kronecker product properties. Multiplying (2.12) by CO-1/2 symmetrically,
we have

(2.13)
2

CO;1/23CO;1/2 (OOyTx + Oly nx)- Z(/o)2(Inx ( eT )zt l(Inx (emi)mi
i=1

where

(2.14)

Using the properties of the Kronecker product, we can express the right-hand side of (2.13) as
a function of Tx by formally substituting Tx by t, In by 1, and (R) by a normal product, which
leads to

(2.15) CO-1/2S()-1/2 f Tx

with f(t) defined by

(2.16)
2

f(t) (OOyt -OlOy)- (fl0)2 T
emi.em, [Ty(t)] -1

i=l

It is easy to verify by forward and backward substitutions that

(2.17) er [T (t)] -1 -2
m, em, (lm,m,) 1, 2.

Combining (2.15) through (2.17) we thus complete the proof.
We make several remarks about Theorem 2.1.
Remark 2.1. The function f(t) only depends on the operators Ay, COy, and the location

of 1-’, namely m and m2. It is independent of any information in the x-direction.
Remark 2.2. To evaluate f(t) at a given point using (2.11) one only needs to factor

two tridiagonal matrices. From the proof of Theorem 2.1, it is seen that actual forward and
backward substitutions in (2.17) can also be avoided by the special ordering of horizontal grid
lines for each subdomain. In addition, no storage is required in the Cholesky factorization
since only the last diagonal element lm,m, is used in (2.11) for each i.
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Remark 2.3. Instead of using the Cholesky factorization, one can use the eigendecompo-
sition for [(R)]-1/2 Ay [O%] -1/2 to get

(2.18) T(,) [0%] 1/2
Wi(tlm,-I- Ai)W? [0,] 1/2

where Ai diag(Li(j)) and Wi are eigenvalues and eigenvectors for [(R)]-1/2 Ay
Letzi W/r [O]-1/) em, then we have, from (2.16),

(2.19)
2 mi (zi(j))2

f(t) (OOyt "+" olOy) Z(/0)2Z -I-i=1 j=l

where zi (j) is the jth element of Z

We can obtain another expression of f(t) by introducing two sets of orthogonal polyno-
mials {Pj (t)} and {O}(t)} defined in terms of the three-term recurrence relation, for/-- 1, 2,

(2.20)

pi (t) 0;-1

P(t) 1;

fl Pj (t) (O(j)t + @)Pj_l(t)- fl_lPj_2(t),
Qil (t) =0;

Q(t) 1;

im_jQj(t) (Oiy(mi j + 1)t +Otm_j+l)Q._l(t flim_j+lQ_2(t),

j= 1 mi;

j= 1,2 mi;

[--1’ aj /31 and Oy(j) is the jth diagonal element ofwhere Ay Then, as in (2.12)
in [1] (note Q} here is R} in [1 ]), we have

(2.21) {[T(t)l-lIqs

Pis_l(t)Qim,_q(t)
m,Pm,(t)

_l(t)Qm,_s(t)
im, Pm,(t)

q>_s,

s>q.

Therefore, (2.16) can be written in terms of these polynomials as

(2.22)
2

f(t) (Oyt + u) (flo)2 Pim,-___[(_t)
i=1 flm, P]m (t)

By setting 3/m, 3, in (2.20), (2.22) becomes

(2.23)
(Oyt + ot)P1m (t)p1 (t) fllyp1m -1 (t) o

f(t) m2 fly Pm2-1 (t)

Plml(t)P2m(t)
As in (2.20), ifwe define another set of orthogonal polynomials Pj(t) according to the global
tridiagonal matrix for the operator toy + Ay with the natural bottom-to-top ordering for all
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interior horizontal grid lines in r, then by denoting toy -t- Ay [flj-1, Ojt + cj, flj] with

/3ny 1, it can be verified that (2.23) can be written as

(2.24) f(t)
Pny(t)

Pm(t)P2m:(t)
Therefore, Pj(t)}, pjl (t)}, and pj2 (t) play a role analogous to the Chebyshev polynomials
as in the constant coefficient and uniform grid case. The expressions (2.19) and (2.24) for
f(t), or similarly for 1/f(t), can be viewed as an extension of the work in [1] and [14] to the
nonuniform grid case. They are all equivalently related to each other through the theory of
orthogonal polynomials.

Remark 2.4. There are two reasons to favor the use of (2.11) to evaluate f(t) in our
approach. First, as shown in [1 l] and [12], f(t) needs to be evaluated at only a few points for
the interpolation. However, those approaches [14] using (2.19), where f(t) or its reciprocal
is expanded into a sum of partial fractions, require the computation of all the eigenvalues
and some of the eigenvectors of matrices that are related to Ay. Using (2.22) with the three-
term recurrence requires about the same work as using (2.11). Expression (2.24) has a better
mathematical form than (2.22), but it requires about twice as much work as that of (2.22)
because of computing Pn. (t). The second reason is the numerical stability problem, which is
even more important. Numerical instability occurs especially when grids are very nonuniform.
Numerical experiments show that the eigenvalue problem is often very ill conditioned and that
the three-term recurrence computation is also very unstable. This can be easily seen from
(2.20) because usually 0(j)t -t- ct > >/, namely, a wrong pivot is used in the computation.
Fortunately, the matrices T) (t), 1, 2, are SPD, and therefore the Cholesky factorization is
numerically stable.

Remark 2.5. Finally, it is easy to see that all the theory developed in [1 can be similarly
extended to the nonuniform grid case along the line of the argument in Remark 2.3. Therefore,
the marching algorithms in [1] and the parallel direct solvers in [9] can be correspondingly
extended in a trivial way.

3. Function approximation and preconditioners. This section discusses finding a sim-
ple function r(t) that approximates f(t) in (2.11) such that conditions (1.2) are satisfied.
Therefore, the matrix

(3.1) M =_ Olx/2r(Tx)Olx/2
is a good preconditioner for S in (2.10) when the PCG method is applied because

x(M- S) l (()-l/2q Tx)(lx/2)

(3.2) max Iq(ti)l
ti6(T)

min Iq(ti)l"
ti6 T

As discussed in [11], a natural candidate for r(t) is a rational function of low degree. If
r(t) FIk(t ak)/(t bk), then M-1S can be computed by a sequence of solves and
multiplies with tridiagonal matrices since Tx is tridiagonal. We first describe a general approach
to construct such a rational approximation by the weighted rational Chebyshev approximation

(3.3) min max
r(t)eRtm te[a,b]

g(t) r(t)
w(t)
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where g(t) is a target function to be approximated, w(t) is a weight function, and Rtm is the
approximation function space

Rtm= {r(t) pt(t)
r(t)

qm(t)

q,n (t)are polynomials of degree and m, respectivelypl(t) and

THEOREM 3.1. Assume that r(t) is the optimal solution of (3.3) with g(t) f(t),
w(t) f(t), a .min(Tx), b Xmax(Tx). Let

(3.4) e max
t.[a,b]

f(t) r(t)
f(t)

and assume e < 1; then we have

(3.5) tc(M-1 S) <

Proof. From (3.4), we have

l+e

(3.6)
r(t)

l-f <_ e Yt a [a, b].

This can be written as

(3.7)
r(t)

1-e<<l+e
f(t)-

Yt [a, b].

It follows that

(3.8)

max Iq(ti)[ _<
titr(Tx) e

min Iq(ti)l >
titr(Tx) + s

Notice that

(3.9)

x(M-1 S) =- .max(M- S)
,min(M- S)

)max (O-1/2q Tx)Ox1/2)
Xmin l- /2q Tx ( lx/2
max Iq(ti)l

min Iq(ti)l
tir T.

Then (3.5) is obtained from (3.8) and (3.9). This completes the proof.
There are many efficient algorithms devised for the weighted rational Chebyshev approx-

imation; see, for example, [13]. The error e in (3.4) depends on Rtm, i.e., the degrees and
m, and for fast convergence of the PCG method one wishes e to be as small as possible,
which requires increasing and m. On the other hand, using large and m implies high
expense in solving the preconditioning system and also, of less importance, in solving the
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weighted rational Chebyshev approximation problem. So there is a trade-off in choosing
and rn properly.

Another approach, as proposed in [11 ], is the more intuitive strategy of observing that
f(t) has a two-part property. That is, f(t) looks mostly like a linear function; this part is
called the easy part. At the left-end region of tr(Tx) the few smallest eigenvalues make f(t)
behave like tl/2; this part is called the hardpart. Furthermore, for a uniform y-direction grid,
[11] shows that f(t) does not depend very much on the location of 1-’, i.e., on ml and m2; the
difference can only be seen in the hard part. If we use a simple rational function

at+b
(3.10) z(t) =_

ct+d

to construct r(t) in two phases, then z(t) can be easily determined by three interpolating points
using divided differences. The corresponding preconditioning problem, after a scaling, reads

(3.11) (Tx + ellnx)u (Tx + e:Inx)v,

where el b/a and e2 d/c. The linear system (3.11) can be solved by

(3.12) u v + (e2 el)(Tx + ellnx)-lv

using a SPD tridiagonal solver. We constcuct r(t) as follows: First use rl (t) of the form (3.10)
to remove the hard part from f(t)by

(3.13) Ji (t) f(t) / rl (t),

where rl (t) approximates well the hard part of f(t). It is natural to compute rl (t) by in-
terpolating the first three smallest eigenvalues of Tx. Observe that for small eigenvalues we
can use Tx* instead of Tx to get fairly good estimates, where Tx* is the analog of Tx when the
x-direction grid is made uniform. For a constant coefficient operator Lx, there exists an
analytic expression for the eigenvalues of T* so that one can avoid completely computing
eigenvalues for Tx. Now Ji (t) is almost a linear function, so we can find a good approxima-
tion r2(t) to it of the form (3.10). We choose the first interpolating point the same as for rl (t),
the other two are chosen as the two largest eigenvalues of Tx; only rough estimates of them
are required. Thus, we define r(t) as

(3.14) r(t) r (t)r2(t).

Examples in 11 show that this two-phase strategy is very effective for the case ofconstant
coefficient operators and uniform y-direction grids. In general, the behavior of f(t) depends
on the y-direction information, including the grid nonuniformity, the location of F, and the
operator coefficients. A detailed experimental study about this dependence is found in 12].
In any case, a particular f(t) has the so-called two-part property; therefore, the two-phase
approximation strategy can also be applied. We give one example to illustrate the effectiveness
of this approach and refer to 12] for more extensive experimental results. In this experiment,
we solve a model problem of Poisson equation with Dirichlet condition on a unit square
domain using a nonuniform grid as shown in Fig. 3.1. The effects of variable coefficients of
the operator are similar to those of the grid nonuniformity. The grid size is 61 x 33. The
spacings in each direction are of an exponential distribution to account for an exponential type
of singularity in the solution of (2.1). More specifically, for the x direction the distribution
used is

hix min{x, 0.1 },
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where c 1.5 and we start from x towards x 0 until the specified number of grid
points is reached, which is denoted as an x-distribution. Similarly for the y-direction, we
take c 1.2 and maxi{h/y} 0.05. The interface 1-’ is chosen such that rn m2 15,
namely, the work is equipartitioned for two subdomains.

Hi
HI
Ii
HI:
l!
HI,
HI
HI
II

0
0

FIG. 3.1. The nonuniform grid used in the experiment is refined along the axes using the distributions of yl.2
(vertical) and x 1"5 (horizontal).

The two-phase approximation strategy is used to construct the rational approximation
for the preconditioner in this example. The corresponding function curves involved in the
rational approximation are shown in Figs. 3.2-3.4. They illustrate the two-part behavior of
f(t), its domain and range used in the approximation, and the behavior of q (t) that determines
the convergence behavior of the PCG method. The condition number of the preconditioned
system is 1.106.

With this preconditioner, the PCG method converges in only four steps. The least squares
error for the last two iterates is 2.9 x 10-6 (single precision 32 bits is used in the compu-
tation). In contrast, the ordinary CG method does not converge after 100 steps and its error
is 4.2 x 10-3 at this point. It is also important to notice that the matrix Tx, or similarly Ty,
is too ill-conditioned for the eigendecomposition approach, so that no useful information is
generated by standard IMSL eigenvalue subroutines. Therefore, any approach that requires
eigendecomposition cannot be applied for this case.

4. Preconditioning for nonrectangular domains. To precondition the PCG method for
a nonrectangular domain, it is natural to use an embedded rectangular domain to reduce the
nonrectangular problem to a rectangular one because the remote parts of the domain have a
less significant effect on the interface Schur complement. More specifically, let S be the Schur
complement for the nonrectangular domain [2, f20 be the embedded rectangle by shifting F up
to 0 in both directions, and So be the corresponding Schur complement for f2o. Further, let
M be a preconditioner for f20 (one of those discussed earlier). The combined effect of these
two preconditioners is given by Theorem 4.1.
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FUNCTION CURVES IN THE TWO-PHASE RATIONAL APPROXIMATION

1.0e+08.-

8.0e+07.

6.0e+07-

4.0e+07

2.0e+07

O.Oe+O0
O.Oe+O0

overview

rl (t)
fl(t) f(t)/rl(t)
r2(t)
q(t) f(t)/(rl(t)*r2(t))

5.0e+08 1.0e+09 1.5e+09 2.0e+09

SPECTRUM OF Tx

FIG. 3.2. Thefitnction f(t), its approximations, and resulting q(t). On this scale one only sees the linear part

of f(t)" the curve q(t) is superimposed on the x-axis.

FUNCTION CURVES IN THE TWO-PHASE RATIONAL APPROXIMATION

1.6-

1,4,

1.00

0.8-

0.6-

enlarged view of the lower part of Fig. 3.2

f(O
rl(t)
fl(t) f(t)/rl(t)
r2Ct)
q(t) f(t)/(rl(t)*r2(t))

0.4
O,Oe+O0 5,0e-t-08 1.0e+09 1.5e+09 2.0e+09

SPECTRUM OF lx

FIG. 3.3. An enlarged view ofthe lower part ofFig. 3.2 shows that q(t) is nearly 1.0 everywhere and the other

functions rise along the y-axis and immediately go offthe plot.
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FUNCTION CURVES IN THE TWO-PHASE RATIONAL APPROXIMATION

30.0

20.0-.

10.0,

enlarged view of the lower-left part of Fig.3.2

f(t)
rl (t)
fl(t) f(t)/rl(t)
r2(t)
q(t) f(t)/(rl(t)*r2(t))

/

0.0
5,0 55.0 105.0 155.0

SPECTRUM OF Tx

FIG. 3.4. An enlarged view ofthe lower left part ofFig. 3.2 showing the hard part off(t). The approximation
rl (t) fits f(t) well for the small eigenvalues; fl (t) is nearly linear and rises much more slowly than f(t). The
approximation rE(t) fits fl (t) well and the resulting q(t) is very close to 1.0.

THEOREM 4.1.

(4.1) I(M-1 S) <_ K(S S)x(M-1 So).

Proof. From the definition, we have

(4.2) to(M-1 S)
max(M-1 S)

,.min(M- S)

Notice that M, So, and S are all SPD. First, we have the estimate

,max(M-1 S) Xmax(S/2M-1SS1/2)

<_ IIS/2M-1SS1/2112

(4.3)
< ilSlol2M_l .ql/2 1/2 1/2

’o 112118- SS 112

,.max(Slo/2M-1S/2),max(SI/2ss’1/2)

,max(M-1So),max(S-1S).
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Similarly, we have

1/,min(M-1 S) ,max(S-1 M)

(4.4) Xmax(S-1S0)Xmax(S-1 M)

Xmin (S- S),min(M-1 So

Therefore, we obtain

(4.5)
/(M_IS _< ,,max(S-1S),max(M-1 So)

)min(S-1S)Xmin(M-1 So)

x(Sff1S)x(M- So).

The proof is complete. [3

The bounds (1.6) imply that there is a generic constant upper bound for the factor x (Sff S)
in (4.1). More accurate bounds are derived in [6] for some particular domains. From those
results, we have the following corollary.

COROLLARY 4.2. Assume that the operator is a Laplacian. Forall L-shapedand T-shaped
domains, we have

(4.6) x(M- S) < 2x(M- So),

andfor all C-shaped domains, we have

(4.7) K(M-1 S) < (2 / qc)x(M-1 So).

For other operators, similar techniques in [6] can be applied to derive corresponding upper
bounds.

5. Conclusions. This paper extends the approach ofconstructing preconditioners through
a function approximation, presented in 11 ], to more general cases where grids can be nonuni-
form, operators can have variable coefficients but are separable and self-adjoint, and domains
can be nonrectangular. Theoretical and experimental results show that this new approach is
very simple, effective, and efficient. The extended theory ofexpressing the Schur complement,
or the original matrix, as a function of a simple matrix can be applied for other purposes, such
as fast direct solvers and in parallel computations.

Acknowledgment. We would like to thank Professor E. Gallopoulos for pointing us to
the recent work 14] and his own work [9], which are related to our approach to some extent.
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USING KRYLOV METHODS IN THE SOLUTION OF LARGE-SCALE
DIFFERENTIAL-ALGEBRAIC SYSTEMS*
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Abstract. In this paper, a new algorithm for the solution of large-scale systems ofdifferential-algebraic equations
is described. It is based on the integration methods in the solverDASSL, but instead ofa direct method for the associated
linear systems which arise at each time step, we apply the preconditioned GMRES iteration in combination with an
Inexact Newton Method. The algorithm, along with those in DASSL, is implemented in a new solver called DASPK.
We outline the algorithms and strategies used, and discuss the use of the solver. We develop and analyze some
preconditioners for a certain class of DAE stems, and finally demonstrate the application of DASPK on two example
problems.
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1. Introduction. This paper is concerned with the solution oflarge systems ofdifferential-
algebraic equations (DAEs). We write the system in the general form

(1.1) F(t,y,y’) =0,

where F, y, and y’ are N-dimensional vectors, and a consistent set of initial conditions
y(to) yo, y’(to) y is given. The starting point for this work is the solver DASSL [20],
[3]. In that code, the linear systems which arise at each time step are solved with dense or
banded direct linear system solvers. For large problems, this is highly restrictive. Instead we
consider the preconditioned GMRES (Generalized Minimal Residual) iterative method [21 ].
For large-scale systems, including method of lines solution of partial differential equations
in two and three dimensions, this method can be quite effective, combined with a suitable
preconditioner.

A number ofprevious papers 17], 11 ], 18], [7] have dealt with the solution oflarge-scale
systems of ordinary differential equations (ODEs), y’ f(t, y), via backward differentiation
formulas for time-stepping in combination with preconditioned Krylov methods for solving
the linear systems at each time step. A solver called LSODPK that is based on these methods
was developed by Brown and Hindmarsh, and is described in [7]. A similar solver called
VODPK, developed by Brown, Byrne, and Hindmarsh, is described in [9]. Chronopoulos and
Pedro 12] have also developed a version ofDASSL that includes iterative methods. However,
their code uses completely different strategies for tests such as Newton convergence and linear
iteration convergence, and their work does not address the issues that are specific to differential
algebraic equations (DAEs) (as opposed to ODEs) that we focus on here.

*Received by the editors April 14, 1993; accepted for publication (in revised form) October 29, 1993. This
research was supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research,
U.S. Department of Energy, and by Lawrence Livermore National Laboratory contract W-7405-ENG-48.
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C-0038 with the University of Minnesota Army High Performance Computing Research Center, Army Research
Office contract DAAL03-92-G-0247, Department of Energy contract DE-FG02-92ER25130, and the Minnesota
Supercomputer Institute.

1By a consistent set of initial conditions, for the systems under consideration we mean that (1.1) should be
satisfied at the initial time. For a more complete description of what it means for an initial condition to be consistent,
see [3].
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In this paper we extend the work on preconditioned Krylov methods for ODEs to DAEs.
While many of the considerations remain the same, the solution of DAEs by this approach
introduces some additional questions and difficulties. In particular, a preconditioner is always
needed for DAEs (i.e., DAEs that are not ODEs). Preconditioners can be developed for
classes of DAE systems arising with a particular structure. Here we develop and analyze
preconditioners for a certain class of stiff DAE systems.

A new code, DASPK, has been developed based on this approach. We begin in 2 by
describing the code in some detail, outlining especially those strategies and considerations
that differ from the ODE case. In 3 we describe the use of this code. In 4 we develop and
analyze a class of preconditioners for DAEs arising from reaction-diffusion systems. Finally,
in 5 we present some numerical experiments applying the new code and preconditioners to
the solution of several large-scale problems.

2. OverviewoftheDASPKalgorithm. In DASPK, we have combined the time-stepping
methods ofDASSL with the preconditioned iterative method GMRES, for solving large-scale
systems of DAEs of the form (1.1). Here we describe the algorithm.

2.1. Time-stepping. The underlying idea for solving DAE systems is due to Gear 16]
and consists of replacing the solution and derivative in (1.1) by difference approximation, and
solving the resulting equation for the solution at the current time tn using Newton’s method. For
example, replacing the derivative by the backward difference in (1.1), we obtain the first-order
formula

(2.1) F (tn Yn
Yn _Yn

n
=0,

where hn tn tn-1. This equation is then solved at each time step using a modified Newton
method,

( )(2.2) Y+ -n ff- + F n Yn n --Yn-1
h.

where rn is the iteration index. As in DASSL, DASPK uses the backward differentiation
formulas (BDFs) of orders through 5 to approximate the derivative in (1.1). On every step, it
chooses the order and step size based on the behavior of the solution. The integration methods
and strategies for time-stepping are virtually identical to those in DASSL, and are described
in detail in [3]. The equation to be solved on each time step is

where ,Oyn Y--0 Y,- and c, 0, k are the coefficients of the BDF method.

2.2. Nnler syse slfi. It is important to solve the nonlinear equation (2.3)
efficiently. To simplify notation, we can rewrite this equation as

(2.4) F(t, y, oty +/3) 0,

where ot c0/h,, is a constant which changes whenever the step size or order changes,/ is a
vector which depends on the solution at past times, and t, y, or, and/3 are evaluated at tn. To
simplify the discussion, we will sometimes refer to the above function simply as F(y). Both
DASPK and DASSL solve this equation by a modified version of Newton’s method,

- + +
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Both solvers must therefore deal in some way with the iteration matrix

(2.6) A
Oy’ Oy

The direct methods within DASPK are virtually identical to those in DASSL for the
treatment of (2.4). In that case, the iteration matrix (2.6) is computed and factored, and is
then used for as many time steps as possible. By contrast, in the iterative methods option of
DASPK, a preconditioner matrix P, which is an approximation to A that leads to a cheap linear
system solution, is computed and preprocessed and used for as many time steps as possible.
As we will see in the examples below, it is often possible to use a preconditioner over more
steps than it would be possible to keep an iteration matrix in the direct option, because the
iterative methods do the rest of the work in solving the system. One of the powerful features
of the iterative approach is that it does not need to compute and store the iteration matrix A
explicitly. This is because the GMRES method, as we will see below, never actually needs
this matrix explicitly. Instead, it requires only the action of A times a vector v. In DASPK,
this matrix-vector product is approximated via a difference quotient on the function F in (2.4),

(2.7) A v F’(y)v , F(t, y + cry, (y + rv) + ) F(t, y, y + )

The GMRES algorithm requires products A v in which v is a vector of unit length (the norm is
a weighted norm based on the user-defined error tolerances as described in 2.3.3) and y is the
current iterate. In DASPK, cr is taken to be 1, as explained in 2.3.3. We note that, because
y is current in (2.7), this amounts to taking a full Newton iteration in the iterative option of
DASPK (rather than modified Newton, as in DASSL and the direct option of DASPK). In fact,
for some highly nonlinear problems we have seen the iterative option in DASPK outperform
the direct option in terms of time steps, corrector failures, etc., apparently for this reason.

In general, the value of a when A (or P) was last computed is different from the current
value of a. We will denote the "old" value of oe by c. If ot is too different from in the
direct method, then (2.5) may not converge. The constant c in (2.5) is chosen to speed up the
convergence in the direct method when : c, and is given by

(2.8) c

See [3] for a derivation. For the iterative method, while the preconditioner may be based on
an old c, the linear system to be solved is based on the current or, so in this case c _= 1.

The rate of convergence p of (2.5) is estimated, whenever two or more iterations have
been taken, by

(2.9)
m+ ymll)

l/m

p
ily y011

It is important to note at this point that all norms here are weighted norms, in which the weights
depend on the error tolerances specified by the user, so as to account for the scaling of the
problem; the details are given in the next subsection. The iteration is taken to .have converged
when

(2.10) llym+l ymll < 0.33.

2Depending on the preconditioner, it may need to compute and store a preconditioner matrix explicitly. However,
this matrix is hopefully much cheaper to generate and to store than the actual iteration matrix.
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The basis for this test is that if the iteration is converging linearly at a rate p to y*, then

P Ilym/ ymll IlY/ Y*It.(2.11)
--p

If p > 0.9 or m > 4, and the iteration has not yet converged, then the stepsize is reduced,
and/or an iteration matrix based on current approximations to y, y’; and u is formed, and
the step is attempted again. If the difference between the predictor and the first correction is
very small (for the direct solver, this is relative to roundoff error in y; for the iterative solver,
it is relative to the accuracy requested in solving the linear system), the iteration is taken to
have converged (because the initial correction is so close that it is impossible to get a good
rate estimate). The heuristic constants .33, .9, and 4 here have been taken from the DASSL
algorithm without change and are discussed in [3].

For the iterative methods, convergence tests such as (2.10) need to be justified, because
the Newton iterates are not computed exactly but instead with a relatively large error which
is due to solving the linear system inexactly. The test (2.10) can be justified, at least to some
extent, by considering the Newton/GMRES method in the framework of the theory of Inexact
Newton Methods 14]. In this framework, the Newton iteration for F(y) 0, including errors
rm due to solving the linear system inexactly, is written as

(2.12a) F’(ym)6ym -F(ym) + rm,
(2.12b) y.,+ ym + aye.

Theorem 2.2 in Brown and Hindmarsh [6] justifies a convergence test based on rate of conver-
gence for the inexact Newton iteration, provided the residuals rm satisfy rm II <_ 011F(Ym)ll,
for r/ < 1. However, as in the case of ODEs, we prefer to terminate the linear iteration based
on a condition like ]]rm II _< . In this case, it can be argued heuristically, as in [6], that the
test is still justified, provided that < < e/), where e is the tolerance for the final computed
Newton iterate, lym/l y*ll _< , and . II (F’)- (y*)ll. Now, this is almost what we
need, except that for most DAEs (and stiff ODEs), ) is likely to be quite large, which would
seem to mandate a quite conservative test for the linear iteration. To see how the theory can
be used to justify a less conservative test, multiply F(y) 0, and hence (2.12a), by
where P is the preconditioner matrix described below. This changes nothing in terms of the
Newton iterates or the final solution for y*. Now, assuming that the preconditioner is a good
approximation to F’, in the sense that P-1F’II O (1), the theory and heuristic arguments
in [6], applied to p-1F instead of F, justify a termination criterion for the Newton iteration
based on the rate of convergence, provided the preconditioned residuals for the linear iteration
satisfy Ilp-lrmll < 8, where 6 < < e. In DASPK, we take e .33, and take 6 .05e as the
default tolerance for solving the linear iteration (the constant 6/e can be adjusted optionally
by the user, as described in 3). The norms used are weighted norms based on the user-defined
error tolerances and are described in 2.3.2. We note that another desirable property of these
tests is that they are invariant under scalings of the DAE (i.e., multiplying F on the left by
some arbitrary matrix), provided the preconditioner has also been scaled accordingly.

In contrast to the ODE solvers LSODPK [7] and VODPK [9], which use preconditioned
Krylov methods with left and/or right preconditioning, the DASPK solver allows only left
preconditioning. The reason has to do with a basic difference between ODEs and DAEs. For
a DAE system defined by F(t, y, y’) 0, the components of the vector F need not have any
relation to those of y. For example, the two vectors need not have the same physical units
in corresponding components. If a left preconditioner P1 and a right preconditioner P2 are
allowed in the solution of the linear system Ax b, where A F’ and b is a value of -F,
then the Krylov method in effect deals with the matrix P-IApl and with residual vectors
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p{- r (r b Ax), and performs a convergence test on weighted norms of those vectors. But
consistent choices of P1 and P2 are possible, with P1 P2 A, for which P{-lr does not have
the same units as y. Then norms of the preconditioned residuals plr are meaningless as a
measure of the quality of the current approximate solution vector x. In contrast, if P I and
P is a consistent approximation to A, then plr has the same units as y in each component,
and the convergence test in the Krylov algorithm, with the same weighted norm as used in the
local error test, is completely consistent. Moreover, that convergence test is invariant under
a change of scale in either the function F or the vector y (provided the absolute tolerances
are rescaled consistently if y is). This consistency and scale invariance are not possible with
preconditioning either on the right only or on both sides.

In DASPK, the iterative option requires the user to provide a preconditioner P. This
is in part because the Newton iteration test, and hence ultimately the code reliability, is not
justified without a halfway-reasonable preconditioner. It is also because any nontrivial DAE
needs a preconditioner. Even a "nonstiff" DAE needs a preconditioner, to approximate the
Jacobian of the constraint matrix. Also, it is known that the iteration matrix for any nontrivial
DAE becomes more and more ill-conditioned as the step size is reduced [3]. Therefore, the
preconditioner may need to rescale; scalings for some common classes of DAEs are discussed
in [3]. When the DAE is really an ODE, with F(t, y, y’) y’- f(t, y), the preconditioner
could be taken as P c I, although even for ODEs it is often better to provide a nontrivial
preconditioner [7].

2.3. Linear system solution. Solving (2.5) requires the solution of a linear system

(2.13) Ax b

at each Newton iteration, where A is the N x N iteration matrix in (2.6), x ym+l ym is
an N-vector, and b -cF(t, ym, otym + ) is an N-vector.

In the direct option, this linear system is solved by either dense direct or banded direct
Gaussian elimination with partial pivoting via LINPACK 15]. The iteration matrix is either
provided by the user, or computed via finite difference quotients, as described in [3].

2.3.1. Description ofthe GMRES algorithm. In the case of iterative methods, the linear
system (2.13) is solved by the preconditioned GMRES iterative method [21]. Depending on
the options chosen, the method may be either the complete or the incomplete GMRES method,
and it may or may not include restarting.

GMRES is one of a class of Krylov subspace projection methods [22]. The basic idea of
these methods is as follows. If x0 is an initial guess for the solution, then letting x x0 + z,
we get the equivalent system Az ro, where ro b Axo is the initial residual. We choose
z zt in the Krylov subspace Kt span{r0, Aro At-lro}. For the GMRES algorithm,
zt, hence xt x0 + zt, is specified uniquely by the condition

lib- Axtl[2 min lib- Axllz (-- min Ilr0 Azllz).
xxo+Kt zKt

Here, I1" 112 denotes the Euclidean norm.
GMRES uses the Arnoldi process [1 to construct an orthonormal basis of the Krylov

subspace Kt. This results in an N x matrix Vt [v vt] and an x upper Hessenberg
matrix/-h such that

Ht VtrA Vt and Vtr Vt It (= x identity matrix).

If the vectors ro, Aro Afro are linearly independent, so that the dimension of Kt+
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is + 1, then the matrices Vl+ [Vl Vl+l] and/-1 E R(t+l)xt defined by

where r (0 0, hl+l,l) T

satisfy

A VI gl+l Hl.

Furthermore, letting z Vty, we find that lit0 Azll2 II/e -/YlI2, where/ lit0112
and el is the first standard unit vector in Rt+l. The vector y yt minimizing this residual is
computed by performing a QR factorization of t using Givens rotations. Then the GMRES
solution is xt x0 + Vt yr. As noted by Saad and Schultz [21 ], this QR factorization can be
done progressively as each column appears, and one can compute the residual norm lib- Ax I1=
without computing xt at each step. If the sin 0 elements of the Givens rotations are denoted
by sj (j l), then one obtains

(2.14) lib- Axtll2 "-/lSl""" stl.

Combining these various parts gives the following algorithm for the basic (complete)
GMRES method. Here/max and are given parameters.

ALGORITHM 2.1 (GMRES).
1. Compute ro b Axo and set vl ro/llroll2
2. For /max do:

(a) Form Avt and orthogonalize it against Vl vt via

Art- hilvi, hit (AI)I, 1)i),tOl+l
i=1

hl+l,l Ilw/+ 112,

Vt+l wt+/ ht+l,l.

(b) Update the QR factorization of t.
(c) Use (2.14) to compute pt lit0112" Is sl lib Axtll2.
(d) If Pt < 8, go to Step 3. Otherwise, go to (a).

3. Compute Xl xo + Vtyl, and stop.

In the above algorithm, ifthe test on Pl fails, and ifl --/max iterations have been performed,
then one has the option of either accepting the final approximation xt or setting x0 xt and
then going back to step 1 of the algorithm. This last procedure has the effect of "restarting"
the algorithm. When used with the default input options, DASPK does such restarts when
necessary to achieve convergence.

As gets large, much work is required to make Vl+l orthogonal to all the previous vectors

Vl yr. This has motivated the development of an incomplete version ofGMRES (denoted
by IGMRES), which differs from Algorithm 2.1 only in that the sum in step 2(a) begins at

i0 max(l, l p + 1) instead of at 1. An inexpensive evaluation of the residual
norm is still possible, with the insertion of another factor in (2.14). Details are given in [7].
In many cases, the incomplete algorithm can give significant savings over the complete one.
For example, when .4 is symmetric (or nearly so), Ht is tridiagonal (or nearly so), and one
can take p 2. In DASPK, the default iterative method is (complete) GMRES, but IGMRES
is available with the use of optional input parameters.
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When/max N, Saad and Schultz [21 have given a convergence analysis ofAlgorithm 2.1
that shows the GMRES iterates converge to the true solution of (2.10) in at most N iterations.
While GMRES is guaranteed to converge, it can exhibit poor performance, especially when
used without preconditioning. This is commonly referred to as stagnation. In such cases, there
is little or no reduction in the residual norm Pt for several iterates. In [7], a dramatic example
of stagnation is given wherein p! Po for all < N, and PN 0. When/max < N and A is
positive definite, the restarted version of GMRES is always guaranteed to converge, although
it also can stagnate. For indefinite matrices, the restarted GMRES method can sometimes fail
to converge. For more details, see [5], [7], and [21 ].

2.3.2. Scaling and preconditioning. Realistic DAE problems require the inclusion of
scale factors, so that all vector norms become weighted norms in the problem variables.
However, even the scaled iterative methods seem to be competitive only for a fairly narrow
class of problems, namely ODEs characterized mainly by tight clustering in the spectrum of
the system Jacobian. Thus, for robustness, it is essential to enhance the methods further. As
in other contexts involving linear systems, preconditioning of the linear iteration is a natural
choice. In what follows, the use of scaling and preconditioning is reviewed.

Scaling. The user of DASPK must provide parameters that define error tolerances to
be imposed on the computed solution. These are relative and absolute tolerances RTOL and
ATOL such that the combination

wi RTOLi Y;-I +ATOLi

is applied as a scale factor for component yi during the time step from tn- to tn. Specifically,
a weighted root-mean-square norm

N 11/2IIXIIwRMS N-1 (Xi/wi)2

is used on all error-like vectors. Thus if we define a diagonal matrix

D /-diag(w WN),

we can relate this to an 62 norm:

IIxlIwRMS IID-lxlI2.
Because D contains the tolerances, the local error test on a vector e of estimated local errors
is simply IlellwMS _< 1.

The linear system in (2.13) can be restated in scaled form in terms of D-ix " and
D-lb /. Likewise, the nonlinear system F(y) 0 can be restated in a scaled form
P()) 0.

We note that, while DASSL allows the user to replace the norm subroutine, DASPK does
not allow this. This is because a scaled L2 norm is needed in the implementation of the
GMRES algorithm. However, DASPK does allow a user-replaceable subroutine to define the
weights in the norm. (The default is to set the weights according to the tolerances RTOL and
ATOL via EWT(I) RTOL(I)*ABS(Y(I)) + ATOL(I).) We recommend that this be attempted
only after careful thought and consideration.

Preconditioning. When a basic iteration fails to show acceptable convergence on a given
problem, preconditioning is often beneficial, especially when the cause ofthe slow convergence
can be identified with one or more parts of the problem which are (individually) easier to deal
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with than the whole problem. Generally, preconditioning in an iterative method for solving
Ax b means applying the method instead to the equivalent system

(2.15) (p-1A)x=P-b or x=,
where P is chosen in advance. The preconditioned problem is easier to solve than the original
problem provided that (1) linear systems Px c can be solved economically, and (2) P is in
some way close to A. Condition (1) is essential because carrying out the method on x
clearly requires evaluating vectors of the form P-1 c, at the beginning of the iteration, during
each iteration, and at the end. Condition (2) is less well defined, but means simply that the
convergence of the method for A-x should be much better than for Ax b, because A- is
somehow close to the identity matrix (for which convergence is immediate).

It is essential that the scaling of the linear system (discussed above) be retained in the
preconditioned methods. Since the scaling matrix D is based on the tolerance inputs to the
ODE solver, D- can be thought of as removing the physical units from the components of x
so that the components of D-ix can be considered dimensionless and mutually comparable.
On the other hand, the matrix A c0 F/Oy’ -t- 0 F/Oy is not similarly scaled, and so, because
P is based on approximating A, the matrix

P-A

is also not similarly (dimensionally) scaled. More precisely, it is easy to show that if the (i, j)
elements of P each have the same physical dimension as that of A, i.e. the dimension of

Fi/yj,_then the (i, j) element of , has the dimension of yi/yj. Similarly, for the vectors
x and b, the ith component of each has the same physical dimension as that of Yi. It follows
that the diagonal scaling D-1 should be applied to x and D in the same way that it was applied
to x and b without preconditioning. Thus we change the system (2.15) again to the equivalent
scaled preconditioned system

(2.16) (D-I4D)(D-x) (D-1D) or

Combining the two transformations, we have

(2.17) D-p-1AD, . D-x, [ D-1p-lb.

2.3.3. Implementation details. In implementing the GMRES method in DASPK, many
of the algorithmic issues that arise are the same as for the ODE case. We have carried over
the treatment of these matters from LSODPK [7]. Below is a summary of those details.

DASPK takes x0 0, having no choice readily available that is clearly better.
The scaling is incorporated in an explicit sense, storing vectors i that arise in the
method as it stands, rather than unscaled vectors O)i vi.
DASPK uses a difference quotient representation

Jv , [F(t, y + cry, ot(y + av) + ) F(t, y, oty +/5)]/or.

DASPK takes r because IIvIIwRMS 1. Thus the perturbation vector v can be
regarded as a small correction to y, since its WRMS norm (= 1) is a value that is
accepted for local errors in y in the local error test. It is possible that other choices
for cr might improve the truncation error in this difference quotient, but we have not
studied this issue.
The modified Gram-Schmidt procedure is used for orthogonalizing basis vectors.
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Failures to pass the convergence test in GMRES are handled in the context of the
integration algorithm. IfGMRES failed to converge but did reduce the residual norm,
then it is restarted. On a convergence failure that did not reduce the residual norm,
the time step is retried with the Jacobian routine (JAC) called to update matrix data
used (if any) if that data is not current, or else the step size is first reduced (by a factor
of .25) before the step retried. The user’s PSOL routine can also return a failure flag
that signals either an immediate halt or a retry of the step.
The convergence test constant 8 used as a bound on the residuals lib Axt IIwMS is
taken to be .05, where .33 is the tolerance on the nonlinear iteration in
(2.10).

We can now state our algorithm for scaled preconditioned versions ofthe GMRES method.
This isgiven for arbitrary x0, for the sake of generality, and is denoted SPIGMR.

SCALED PRECONDITIONED INCOMPLETE GMRES (SPIGMR).
1. (a) ro b Axo; stop if IIrollWRMS .

(b) o D-1P-ro, compute 11oll2 IIP-rollWRMS, 1 o/lloll2.
2. For l, 2 /max, do:

(a) Compute l D-1 p-1ADl.
(b) il (/, i), Ol-bl )l- Eli--ioil)i, where io max(l, p + 1).
(C) hl+l,l ]]tl+lll2, /+1 l+l/hl+l,l.
(d) Update the QR factorization of Ht (hij) Qt Rt (an (l + 1) x matrix).
(e) Compute the residual norm p! indirectly.
(f) If Pt < 8, go to step 3; otherwise go to (a).

3. Compute llollzQfe (o, g)r, ft-i- ot, xt xo + D.
3. Using DASPK. We have attempted to make DASPK as easy to use as possible, and

also upward compatible with DASSL. However, the use of iterative rather than direct methods
requires more information from the user and a deeper understanding of both the application
and the solution process, particularly in the choice and implementation of an effective precon-
ditioner. The direct methods of DASSL are available as an option of DASPK, and the user
may find them useful for the purposes of getting started or debugging by way of smaller test
problems.

The actual names of the single- and double-precision Fortran versions of DASPK are
SDASPK and DDASPK, respectively. The call sequence is described in detail in the initial
source file prologue, but we summarize the main points below.

3.1. Getting started. To get started, DASPK needs a consistent set of initial values T, Y,
and YPRIME. This means that we must have F(T,Y,YPRIME) 0 at the initial time. Finding
a consistent set of initial conditions for a given problem may not be trivial. There is an option
in DASPK to compute the initial value of YPRIME, if the initial values of Y are known. For
some problems, this method may require a good initial guess for YPRIME. In cases where not
all the components of the initial vector Y are known, a nonlinear equation solver for large-scale
systems such as NKSOL [8] can be very effective. It is important that the error tolerances for
such a solver be set to be quite stringent, especially in comparison to the tolerances specified in
DASPK. Otherwise, DASPK may not be able to get past the initial step because of a difficulty
in satisfying its error tolerances. We note that there has been some recent work addressing the
specification of consistent initial conditions for general DAE problems [19]; however, at the
time of this writing we are aware of no corresponding general-purpose software.

3We note here that F is referred to as G in the actual code documentation.
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3.2. Specifying the DAE. As in DASSL, the information about the function F in (1.1)
is provided via a subroutine RES, which takes as input the time T and the vectors Y and
YPRIME, and produces as output the vector DELTA, where DELTA F(T,Y,YPRIME) is the
amount by which the function F fails to be zero for the input values of T, Y, and YPRIME.
The call sequence of RES in the use of DASPK differs from that in using DASSL, in that it
includes CJ, which is the scalar a of (2.4), for possible use in scaling.

3.3. Solution by direct methods. The solution of the linear system at each time step
can be done with either the direct methods of DASSL or the preconditioned GMRES method.
For direct methods, specify INFO(12) 0; the possiblities are the same as in DASSL. The
user can provide a subroutine JAC to evaluate the iteration matrix (or Jacobian matrix), or
else select an option for DASPK to approximate the matrix via finite differences. The matrix
needed is (CJ)0 F/Oy’ + F/Oy, where CJ is a scalar (-- or) which is proportional to / h and
is provided as input to JAC. In the direct case, the JAC routine must have the following form.

SUBROUTINE JAC (T, Y, YPRIME, PD, CJ, RPAR, IPAR)

The linear system is solved by either dense or banded Gaussian elimination by routines from
LINPACK 15].

3.4. Solution by iterative methods. For the preconditioned GMRES method, specify
INFO(12) 1. The user can specify some of the details in the linear system solution, namely
MAXL (the number of iterations allowed before restarting), KMP (the number of vectors
on which orthogonalization is done), NRMAX (the maximum number of restarts), and EPLI
(the convergence tolerance for the linear iteration). Defaults for these constants are: MAXL
MIN(5,NEQ), KMP MAXL (this corresponds to complete GMRES iteration, rather than the
incomplete form), NRMAX 2, and EPLI 0.05. These defaults can be overridden by setting
INFO(13) and following the instructions in the code documentation. Changing MAXL or
KMP affects the amount of work storage required, as described in the code documentation.

With the GMRES method, the user must supply a subroutine PSOL which solves linear
systems of the form Px b, where P is the left preconditioner matrix. The subroutine PSOL
has the following form.

SUBROUTINE PSOL (NEQ, T, Y, YPRIME, SAVR, WK, CJ,

WGHT, WP, IWP, B, EPLIN, IER, RPAR, IPAR)

The right-hand side vector b is in the B array on input, and PSOL must return the solution
vectorx in B. The Y, YPRIME, and SAVR arrays contain the current values of Y, YPRIME, and
the residual F, respectively. The preconditioner matrix P is an approximation to the iteration
matrix (CJ)OF/Oy’ + OF/Oy, where CJ is a scalar (= or) which is proportional to 1/h and is
provided as input to PSOL and to JAC.

For the purposes ofDASPK there are two types of preconditioners, depending on whether
information about the iteration matrix is saved from one iteration or time step to the next.
For example, in implementing an ILU preconditioner one would want to save factorization
information from one iteration/time step to the next. To specify this type of preconditioner,
set INFO(15) 1; the user will then need to supply a subroutine JAC. There, an approximate
iteration matrix would be formed, and then the ILU decomposition would be performed and
stored. This work would all be done in the subroutine JAC. For the iterative methods option,
the subroutine JAC has the following form.

SUBROUTINE JAC (RES, IRES, NEQ, T, Y, YPRIME, REWT,
SAVR, WK, H, CJ, WE IWP, IER, RPAR, IPAR)
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The arrays WP and IWP are real and integer work arrays which can be used for communication
between the JAC routine and the PSOL routine. For example, one might store the ILU
factorization in WP. For this preconditioner, the subroutine PSOL solves the linear system
by back-substitution using the saved matrix data. For the ILU example, since this type of
preconditioner is relatively expensive, one would like to save it and use it over many iterations
and even many time steps. The strategy that DASPK uses to decide when to re-evaluate the
preconditioner matrix is the same as the strategy DASSL uses [3] to decide when to re-evaluate
its Jacobian, except that in addition a new preconditioner matrix is generated whenever there
is a failure of the linear iteration.

The simpler type of preconditioner is one which does not make use of saved information.
In this case, set INFO(15) 0; then there is no need to supply a JAC routine. Examples
of these types of preconditioners are diagonal scaling or matrix-free symmetric successive
over-relaxation (SSOR), as described in [10].

One can get some idea about how well a given preconditioner is working by monitoring
the following information: IWORK(16) contains the number of convergence test failures for
the linear iteration, IWORK(20) contains the total number of linear iterations, IWORK(19)
contains the total number of nonlinear iterations. One can compute the average dimension
of the Krylov subspace by taking the ratio IWORK(20)/IWORK(19) of linear to nonlinear
iterations. This gives an indication of how hard the iterative method is having to work to solve
the part of the problem which is not being approximated well by the preconditioner. (Actually,
this ratio can exceed the maximum dimension MAXL because of restarts; in fact, with up to
2 restarts, up to 3*MAXL linear iterations are allowed per nonlinear iteration.)

3.5. l-ligher-index DAEs. As in DASSL, there is always the possibility in DASPK that
the problem specified does not have a well-defined solution, or has index higher than 1.

The index is a measure of the degree of singularity of the system; see [3]. Standard-form
ODEs,

y’= f(t, y),

are index-0; ODEs with constraints

y’ f(x, y),

0 g(x, y),

are index-1 if Og/Ox is nonsingular. Problems of index higher than can cause difficulties
for numerical methods, and in particular for the step size and order selection mechanisms
in DASSL. A higher-index problem in DASSL will usually cause failures of the error tests
and Newton convergence test (this information is available in IWORK(14) and IWORK(15)),
and we recommend printing it out routinely on any successful or unsuccessful termination
from DASSL for diagnostic purposes). A surprising number of problems are higher-index;
for example, incompressible Navier-Stokes equations are index-2. It is possible to modify
DASSL/DASPK to deal with higher-index systems, especially in the case of index-2. It is also
possible to rewrite higher-index systems in lower-index forms which have the same analytical
solution. For more information on this, see [3]. Either of these alternatives must be undertaken
very carefully, because such modifications can sometimes affect the stability properties of the
system or of the numerical method [2].

It is also possible to write problems in the form (1.1) for which there is no solution or no

unique solution. If this is the case, what will probably happen is a termination with IDID
-8 (the matrix of partial derivatives is singular). In our experience, for large problems arising
from the method of lines discretization of partial differential equations, this is usually due to

an error in formulating the boundary conditions. In any case, a user who gets this message
should either rethink the equations or else look for a bug.
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4. Preconditioners for DAE systems. The choice of preconditioner can be critical in
the performance of DASPK, as in other settings. We discuss here an approach to forming pre-
conditioners for problems that arise from the semi-discretization of certain partial differential
equations, following work that was done in [7] for the ODE context. Specifically, consider
a mixed system of reaction-diffusion equations in some spatial region, in which some of the
species (some PDE variables) obey time-dependent (evolution) equations, while the rest obey
time-independent (quasi-steady) equations. We assume that some finite difference spatial dis-
cretization has been performed on all the equations, and that the resulting DAE system has
index 1.

Let M denote the number of spatial mesh points, p the number of evolutionary species,
and q the number of quasi-steady species. For practical purposes, it is usually best to order
the variables by mesh point and then by species index, i.e., p + q variables at mesh point 1,
followed by p+q variables at mesh point 2, etc. However, for ease ofpresentation, consider the
"transpose" orderingmby species and then by mesh point. Thus if ui (ui. Ui,M) T is the
vector of species variables at all mesh points, we take y (u up, up+ Up+q) r
as the DASPK vector. Each of the vectors u up satisfies an ODE system in time,
u f(t, y), while each of Up+ Up+q satisfies an algebraic system 0 f(t, y). We
assume that each f consists of a reaction term Ri that contains no spatial derivatives, and a
diffusion (or more general transport) term Si that involves no interaction among the species.
Thus the system has the form

u f Ri(t, y) + Si(t, ui) (i < p),

0 f Ri(t, y) + Si(t, ui) (i > p),

in which Ri (Ri,m) with Ri,m depending only on the variables Uj,m at mesh point m, and Si
depends on u but no other uj. We can also write the DAE system as

(4.1) 0 F(t, y, y’) (u! f Up- fp,--fp+l _fp+q)r.

Ifwe let Ii denote the identity matrix of order pM, and denote f (f fp-t-q) R + S,
then the system Jacobian is

(4.2) J ot Fy, + Fy ot ( I10 o)0 Of/Oy all OR/Oy- OS/Oy,

where/1 ( I 0)0 0
For a preconditioner approximating J, there are two choices immediately available from

this representation. First, if the reaction terms dominate the problem, then

(4.3) PR O[1 OR/Oy

should be an effective choice. Here when the variables are ordered by mesh point and then
species, as suggested initially, PR is a block-diagonal matrix with M blocks each of size
p + q, and so is very economical to deal with. But if the transport terms dominate the
problem, consider instead

(4.4) Ps =-- otl OS/Oy.

In this case, with the present ordering, Ps is block-diagonal with p + q blocks of size
M. Depending on the particular geometry, discretization, and mesh point ordering, each
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M M block of Ps should be amenable to standard solution methods for discrete elliptic PDE
problems.

Following [7], preconditioners based on the idea of operator splitting can be formed that
combine both of the above simpler choices. They are

(4.5) PSR
(4.6) PRS

=-- (I--loS/Oy)(otl R/Oy),
=_ (I---lOR/Oy)(otl OS/Oy).

and

The preconditioner PSR represents the application of the reaction operator alone, followed by
a correction involving the transport operator alone, and vice versa for PRs. Each factor is
much more efficiently treated than J itself, and so the same is true for PsR and PRs.

It is possible to do some analysis of the quality of these preconditioners, at least in the
limit of small step size h, which corresponds to large a. Denoting

A=OS/Oy=(All 0 )0 A22

(Bll B12)B 0R/0y B21 922

and 6. Ot -1 we have

J 6"-1i A B,
PR 6.-1 (1
Ps 6.-1 (1

PSR 6.-1(I 6.A)(l -6.B),
PRS 6.-1(I 6.B)(1

and

We begin with a lemma.
LEMMA 4.1. Assume B22 is nonsingular. Define the matrix C by

BI2 )(4.7) C -B1B21Bll -B1B21B12
Thenfor 6. C < 1, we have

(4.8) (1 6.B) -1 6.-1X_1 -I-- X0 + 6.X1 ---...
where

(o o )X-1 0 -B

I1X0 B1B21
-B12Bl )B1B21B12B

and Xk CkXofor k >_ 1.
Proof We first note that

iT1 _eB ( I10 0 0 Bll B12

=( Zl o
-6.B21 -6.B22 ) (I
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with C as given in (4.7). Thus, for e IICII < 1, we have

Hence,

(, eB)-’ e-D + (CD + E) + ekck(CD + E).
k=l

A quick calculation gives X_ D and X0 CD + E, and this proves the lemma, fq

We first consider the asymptotic behavior of the preconditioners PR and PSR. As will be
seen below, the leading order term in the error for both preconditioners is the same. Hence,
the order-e terms for both preconditioners are needed to compare their overall effectiveness.

THEOREM 4.2. Assume that B.2 is nonsingular. Thenfor C < 1, we have

’B12BlA22 ) + O(52)-B’921B12B A22
0

(4.9) PIJ-I= 0
o )B1A22 + BBzlAll

Proof First note that J PR -A. Hence,

PI j I -PA
+ +

--X-1A 6XoA -Ji- O(62).

A simple calculation for X_I A and XoA now gives the result. [3

This result means that, for small h at least, to the extent that B A22 is small in norm,
then so is the error matrix P{ j I, and Pg is a good approximation to J for the purposes of
preconditioning. Here B22 represents the Jacobian of the reaction of the quasi-steady species
relative to themselves, while A22 represents the transport operator for those species.

THEOREM 4.3. Assume that B22 is nonsingular. Thenfor e min{llCII, IIAII} < 1, we have

o)0 B A22

(4.10) 0+ B1A22 B21
BzB2A22 ) + O(62).

B A22 (A22 + B22) B1B21B2B2 A22

Proof From the definition of PSR, a simple calculation gives

PsR=j+( O O)0 A22 + eAB.

Hence,

P-R J I --P-R (,22 + AB),
letting ]z2 diag(0, A22). From the definition of PSR, it is apparent that PSR (I- eA)PR.
Hence, for min{llCII, IIA[I} < 1 and B22 nonsingular, we have
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P-A (X-1 + eXo + O(e2)) (I + eA + O(e2)).
Therefore,

P- J I (X_, + eXo + O(e2)) (I + eA + O(e2)) (-22 +eAB),
+ X_l + +

By an easy calculation, we find that -X-122 diag(0, B A22) and

+

(0 B12BlA22
BlA22B21 BIA22 (A22 + B22) BB2IBBIA2

and this completes the proof.
Comparing the upper left blocks in these two results, note that A 1 is present in the order-

term in (4.9), and is not in (4.10). Another difference is that all the blocks in the order- te
of (4.10) have a factor ofB A22, while the lower left block in (4.9) does not. Thus, while the
leading expression in the eor for both preconditioners is the same, we can expect PSR to be
a better preconditioner than PR when either A is large or B1A2 is small, in some relative
sense. The apparent effects of these differences will be seen in the next section.

A result similar to (4.10) can be obtained for the preconditioner in which the two factors
of PRS are multiplied in the opposite order. The leading term in the eor equation is the same,
but the O() term is not.

If instead we expect A to dominate B, we can consider the remaining two preconditioners
Ps and PRS in (4.4) and (4.6), respectively. The following theorem follows trivially along the
same lines as above.

THEOREM 4.4. Assume that A22 is nonsingulan Thenfor A < 1, e have

(4.1 1) elj I 221 222 + O().

In addition, if min{ll A 11 H, B Ill < 1, then

(4.12) PJ I 0 A2B + O(e).

This result indicates that both Ps and Ps are likely to be effective preconditioners when
A dominates 21 and B. However, the fewer potential nonzeros in the leading order eor
term for Ps suggests using it over Ps, all other things being equal. Moreover, if the two
factors in Ps are taken in the opposite order, one gets the same (larger) leading eor term as
for Ps, suggesting that the order of the factors in Pes is to be prefeed.

By depaing from the operator splitting approach, it is possible to devise preconditioners
P such that p-1 j I O(e). However, the cost of applying P- is likely to be higher, and
may be prohibitive on some problems. Along these lines, one can show the following result.
TOM 4.5. Define P1 (-] )Q, where

( Bll B12
B21k I2 ) and Q( I1 0

(4.13) 0 A22 + B22 /"

Then

(4.14) p{-1j I 0().
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Next, define P2 TP1, where T diag(I1- eAl, 12). Then

(4.15) plj_ I 0().

In the first case, the error in the preconditioner itself is

pl j ( All B12 B12(A22 + B22) )0 0

In the second case, the factor T is designed to remove a block in the error matrix, so that

p2_j__ ( 0 B12-B12(A22+B22) )0 0 + O().

Thus one would expect P2 to perform better than P when A is large. The dominant cost of
inverting P1 and P2 above is most likely to be in solving linear systems involving A22 + B22.
Note that this matrix will be nonsingular for index-1 systems.

Often the numerical behavior of DASSL and its variants on constrained systems of this
type is improved if the constraint equations in the DAE system are scaled. For index-m
DAEs, the condition number of the iteration matrix is O(um) [3, p. 144]. Scaling is a way
to reduce the dependence of the conditioning of a DAE system on the step size. In the case
of the reaction-diffusion system, this would mean applying a scale factor r to the lower qM
equations in the system (4.1). For semi-explicit index-1 problems, the scale factor cr u is
suggested [3, p. 145]. If we define a scaling matrix

(4.16) S=(I1 0 )0 O"12

then the scaled problem is / SF 0. The choice of preconditioner for this problem
corresponding to P for the unscaled problem is/ SP. It is easy to see that the Jacobian of
ff is a SJ, and so/-1 a P- J. Thus scaling does not affect the analytical properties
of the method, but it does have the potential to improve its numerical properties by way of
improved conditioning (roundoff error growth) of J and P.

If scaling is applied to the preconditioner Psl of (4.5), we can rewrite/s as

)SR S(I ot -1 A)(Otl B)
S(I ot- A)S- S(o/] B)
(I- ot-1 SAS-1)(otSI SB).

But SAS-1 A because A is block-diagonal, and Sl [. Thus we have

(4.17) /Sse (I- c-lA)(ot/7t SB).

This means that the addition of scaling to this preconditioner can be implemented simply by
scaling the lower blocks of the B terms in the second factor of PSR.

The result is not as simple if scaling is applied to the preconditioner Pes of (4.6). Since
SBS-1 =/= B, we obtain only

(4.18) RS (I Ot- SBS-1)(ot SA).

Thus, in addition to scaling the lower blocks of the A in the second factor, we must scale the
off-diagonal blocks of B to o" B21 and o- B12 in the first factor.. Examples. In this section we will present several examples which illustrate how the
method is applied and how well it works on various types of problems.



KRYLOV METHODS FOR LARGE DAE SYSTEMS 1483

5.1. Two-dimensional heat equation. The first test problem is a two-dimensional heat
equation given by

Ou 02u 02u
(5.1) 0--- OX2 - Oy2

on a square 0 < x, y < 1, with homogeneous boundary conditions (u 0 on the boundary)
and initial condition profile u(x, y, 0) 16x(1 x)y(1 y). We used a uniform Cartesian
product mesh with L internal points in each direction, with spacings Ax Ay 1/(L + 1).
For

Yjk u (jAx kay) (O<_j,k<_L+l),

the discrete problem is

(5.2) "k (AX 2 yJ+ k + Yj k + Yj,k+ -4r- Yj,k-1 --4yjk), _< j, k _< L,
yjk otherwise.

Thus the total size of the system is NEQ (L + 2)2.
The DASPK vector y consists of the yj ordered first by j, then by k. The DAE system

has the form

0 F(t, y, y’) Ey’- By,

where E is the identity matrix with 0 in place of for boundary indices, and B has the usual
five-stripe structure.

The inclusion of the boundary conditions as additional algebraic equations makes this a

DAE system and not an ODE system. For this problem, that is certainly not necessary, and
perhaps less natural than forming ODEs at the L2 internal mesh points. However, we choose
this formulation here for the sake of illustration, and note that for some more compliciated
boundary value problems there is a definite advantage to that choice.

The iteration matrix required in DASPK is

A (CJ)Fy, + Fy (CJ)E- B.

The preconditioner P is a tridiagonal difference-quotient approximation to A, obtained by the
method of Curtis, Powell, and Reid [13], as used in DASSL. Columns whose indices differ

by 3 are differenced simultaneously, producing a tridiagonal approximation at a cost of four
F evaluations. However, it is not the tridiagonal part of the original matrix. Instead, the
elements of the original matrix which do not lie in the tridiagonal band have been lumped, via

the differencing, into the tridiagonal band. The preconditioner was computed and factorized
in a subroutine JAC as described in 3.4, and the back-substitution was done in subroutine
PSOL.

We solved the problem with the error tolerances RTOL 0, ATOL 10-3, for three cases:
L 5, L 10, L 20, with both the direct and iterative options of DASPK. For the direct
option, the iteration matrix was approximated by the tridiagonal matrix described above; hence
it is a relatively poor but cheap approximation to the actual iteration matrix. Solution errors
in all cases were comparable. The results are given in Table 5.1, where F denotes the number
of function evaluations, PE is the number of preconditioner evaluations (in the direct method,
this is the number of evaluations of the approximate iteration matrix), PS is the number of
preconditioner solves (back-substitutions), NLI is the number of nonlinear (modified Newton)
iterations, LI is the total number of linear iterations, AVL is the average number of Krylov
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iterations per Newton iteration (NLI/LI), and NCF is the number of nonlinear convergence
test failures. (There were no convergence test failures for the linear iteration.)

TABLE 5.1
Test resultsfor the heat equation.

Method L Steps F PE PS
Iterative 5 ’45’ 220 17 169
Direct 5 98 513 102 0

Iterative 10 47 280 18 226
Direct 10 671 4443 985 0

Iterative 20 51 449 17 398
Direct’ 20 1779 12111 2651 0

NLI LI AVL NcF
87 82 0.94 0
207 0 0.00 28
91 135 1.48 0
1488 0 0.00 324
100 298 2.98 0
4158 0 0.00 878

The results indicate that the direct method (which gives identical results to DASSL),
is having some trouble with convergence of the Newton iteration. This is not unexpected,
considering that the approximation we are using to the iteration matrix is not very good. The
iterative method, using (as a preconditioner) the same matrix approximation as the direct
method, but in addition using GMRES to give a more accurate solution to the linear system,
has no trouble achieving convergence in either the linear or nonlinear iterations, and gives a
solution much more efficiently.

5.2. Multispecies food web problem. The next problem is a model of a multispecies
food web [4], in which mutual competition and/or predator-prey relationships in a spatial
domain are simulated. Here we consider a model with s species, where species s/2 + s

(the predators) have infinitely fast reaction rates:

Oc f(x, y, t, c) + di(cixx + Ciyy)(5.3)
0 (x, y, t, c) + di (Cixx + Cy)

with

(5.4)

(i 1, 2 s/2),

(i s/2 + s),

The interaction and diffusion coefficients (aij, bi, di) could be functions of (x, y, t) in general.
The choices made for this test problem are for a simple model of p prey and p predator species
(s 2p), arranged in that order in the vector c. Wetake the various coefficients to be as follows:

(5.5)

(all other aij 0),

aii --1

aij --0.5 10-6

aij 104

(all i),
(i<p,j>p),
(i>p,j<p)

(5.6) I bi (1 + axy + fl sin(4zrx) sin(4zry)) (i < p),
/ bi -(1 + axy + sin(4zrx) sin(4rry)) (i > p)

and

I di (i < p),
(5.7) / di :.05 (i > p).

The domain is the unit square 0 < x, y < 1, and 0 < < 10. The boundary conditions
are of Neumann type (zero normal derivatives) everywhere. The coefficients are such that



KRYLOV METHODS FOR LARGE DAE SYSTEMS 1485

a unique stable equilibrium is guaranteed to exist when t and fl are both zero, and time
derivatives appear in the equations for species s/2 / s [4]. Empirically, for (5.3) a
stable equilibrium appears to exist when c and fl are positive, although it may not be unique.
In this problem we take ct 50 and various values of ft. The steady-state solution for the
prey with p 1 and fl 300 is represented in Fig. 5.1. The plot for the predator is identical
except for a different scale on the vertical axis.

Prey

250
200

150

100

50

0.0

1.0

FIG. 5.1. Food web problem. Plot ofprey species at steady state (/ 300).

The initial conditions used for this problem are taken to be simple peaked functions that
satisfy the boundary conditions and very nearly satisfy the constraints, given by

C 10 + [16x(1 x)y(1 y)]2 (i s/2),

C bi -[- aijc
j /aii (i s/2 + s).

j=l

The partial differential equation (PDE) system (5.3) (plus boundary conditions) was dis-
cretized with central differencing on an L x L mesh, much the same as for the first example.
The resulting DAE system has size NEQ sL2.

This problem is of the form treated in 4, with q p. Based on the ideas there, three
different preconditioners were constructed. First, because the interaction terms f contain very
large coefficients, we expect that PR, given by (4.3), may be effective. Second, we consider
the product PsR, given by (4.5), and the same product taken in the opposite order, which we
denote P. The inverse of the factor (I ot- OS/Oy) representing the spatial part of the
Jacobian is not computed exactly, but only approximated by a fixed number (namely five) of
Gauss-Seidel iterations on the corresponding linear system.

To begin with, we compare the direct and Krylov solution modes for the case /3
100, p 1, and L 20. In the direct case, the Jacobian is treated as a banded matrix with
half-bandwidths equal to sL 40. In the Krylov case, we use the preconditioner PSR. In order
to measure global errors, a run in the direct mode was first made with tolerances RTOL ATOL
equal to 10-9, and for each subsequent run with looser tolerances, the differences AY between
the current and accurate solutions were taken at times 10-7, 10-4, 10-, 3, 6, 9, 10. A
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weighted global error measure was computed as WGE max[lAY/I/(I Y,’ + 1)], the maximum
being over and t. For the direct solution mode with RTOL ATOL 10-5, the value of
WGE is 2.5 10-5. For the Krylov solution mode, values of RTOL ATOL of 10-5, 10-6,
and 10-7 gives WGE values of 1.4- 10-4, 4.3 10-5, and 4.9.10-6, respectively. Thus the
Krylov run with 10-6 tolerances produces nearly the same accuracy as the direct run with
10-5 tolerances. Running on a Cray Y/MP computer, the cost of the two runs is nearly the
same: 23.8 CPU sec in the direct case, and 23.3 CPU sec in the Krylov case. However, the
storage requirements are far lower in the Krylov case, because of the use of a banded Jacobian
in the direct case and a block-diagonal matrix in the Krylov case. For this pair of runs, the
total number of real and integer words of work space is 104,910 in the direct case, and 16,931
in the Krylov case, a factor of 6.2 lower. For a finer mesh or larger number of species, the
relative savings in storage would be even greater, and the cost advantage for the Krylov mode
would also be greater.

Next, we show the results of DASPK runs in the Krylov mode for various values of/3 and
L, still with p 1, s 2, and with tolerances of 10-5. The runs were made on a Cray Y/ME
Table 5.2 gives, for each choice of/3, L, and preconditioner, the total number of steps, the
average number of Krylov iterations per Newton iteration AVL, and the CPU run time RT in
sec. For/3 100 or 300, it is clear that PR is inferior to the product preconditioners, whereas
for/3 1000 it is superior. As expected, the less expensive preconditioner PR always results
in a higher average number of linear iterations per nonlinear iteration. The product order Psg
proved to perform better than Pg in all cases for which it was run.

TABLE 5.2
Test resultsforfood web problem.

/3 L Prec.
100 20 PR
00 0 es
100 40 PsR
100 60 PSR
300 20 PR
300 20 Psg
300 20 R
300 40 Ps
300 40 P
300 60 Ps
1000 20 PR
1000 20 Ps
i000 40 P
1000 40 Ps
i000 60 P
1000 60 PsR

Steps
874
198
314
320

989
192
213
200
226
237

188
219
189
220
205
198

AVLI RT
5.07 82.0
1.32 14.9
2.76 154
2.69 350

4.88 90.2
1.46 15.3
2.02 22.2
1.15 54.6
1.56 75.2
2.01 205

1.94 8.9
1.49 17.7
2.20 38.8
1.32 64.2
2.86 113
1.61 147

One disturbing pattern in Table 5.2 is the unexpected growth of total cost as a function
of L for fixed choice Ps of preconditioner. We expect costs to grow as L2, but for/3 100
the jump in run time as L is changed from 20 to 40 is anomalous, as is that for/3 300 and
L 40 and 60. While we have no complete explanation for this, we note that the higher costs
are accompanied by a higher frequency of preconditioner evaluation, and suspect that they are

related to errors in the value of B 0 R/Oy incurred by evaluating this part of the Jacobian as

infrequently as possible. Furthermore, by an analysis extending that in 4, it can be shown that
relative errors in B are magnified in the error matrices P- J I and P- J I, by roughly
104, the coefficient in the lower left block of the array (aij).
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The question of whether or not to apply scaling to the constraint equations arose in some
ofthe tests on this problem, when the performance ofthe solver seemed to degrade at late times
t. In some (but not all) such cases, scaling the constraints by or, as described in 4, improved
the performance, by as much as 20% in run time. But for some cases the run time with scaling
was larger than without it, with no apparent pattern for the cases in the two categories. For
example, for the case/ 100, L 20 with preconditioner PsR, the run time is 14.9 sec
without the rescaling and 12.2 sec with it. But the run with PR on the same problem (the first
case in Table 5.2) ran even slower with rescaling (92 sec vs 82 sec).

Finally, we present the results for one other case, the largest one in this test set: /
1000, L 60, p 7, for which the problem size is NEQ 50, 400. The run with precondi-
tioner P and tolerances of 10-5 (as before) ran to completion in 471 sec on the Cray Y/MP,
in 215 steps, with AVL 2.75.

Acknowledgment. Most of the programming and debugging work in generating the
DASPK solver from DASSL was done by Clement Ulrich. We are very grateful for his
efforts.
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EFFICIENT SPECTRAL-GALERKIN METHOD I.
DIRECT SOLVERS OF SECOND- AND FOURTH-ORDER EQUATIONS USING

LEGENDRE POLYNOMIALS*

JIE SHEN

Abstract. This paper presents some efficient algorithms based on the Legendre-Galerkin approximations for
the direct solution of the second- and fourth-order elliptic equations. The key to the efficiency of these algorithms
is to construct appropriate base functions, which lead to systems with sparse matrices for the discrete variational
formulations. The complexities of the algorithms are a small multiple of Nd+l operations for a d-dimensional
domain with (N 1)d unknowns, while the convergence rates of the algorithms are exponential for problems with
smooth solutions. In addition, the algorithms can be effectively parallelized since the bottlenecks of the algorithms
are matrix-matrix multiplications.

Key words, spectral-Galerkin method, Legendre polynomial, Helmholtz equation, biharmonic equation, direct
solver

AMS subject classifications. 65N35, 65N22, 65F05, 35J05

1. Introduction. This article is the first in a series for developing efficient spectral-
Galerkin algorithms for elliptic problems. The spectral method employs global polynomials
as the trial functions for the discretization of partial differential equations. It provides very
accurate approximations with a relatively small number of unknowns. Consequently it has
gained increasing popularity in the last two decades, especially in the field of computational
fluid dynamics (see [11 ], [8], and the references therein).

The use of different test functions in a variational formulation leads to the three most
commonly used spectral schemes, namely, the Galerkin, tau, and collocation versions. In
the collocation method work is done in the physical space--a set of collocation points, while
in the Galerkin and tau methods work is done in the spectral space--the coefficients of the
polynomial series. The Galerkin and collocation methods usually lead to optimal error es-
timates, while the tau method, which is a modification of the Galerkin method, leads to
nonsymmetric variational formulations and only suboptimal error estimates (see for instance
[19] and [21]). In their pioneering book, Gottlieb and Orszag [11] presented an efficient
Chebyshev-tau method. They also presented a basis for the Galerkin method that leads to full
matrices; its application in practice is prohibited. It is surprising that virtually no effort has
been made to construct appropriate bases (other than the Lagrangian interpolant basis) for the
spectral-Galerkin method. The tau and collocation methods (the later being more natural for
problems with variable coefficients) have been the focus of a great number of research papers
(see [8] and the references therein), while the Galerkin method, which is more authentic and
more accurate than the tau method, has drawn less attention. We should point out that the
spectral element method, developed by Patera and his group, is in fact a spectral-Galerkin
method (see the survey paper [13]). However, the spectral element method, in the case of
a single domain, differs from the spectral-Galerkin method to be presented in this work in
two aspects: (i) a Gaussian quadrature formula is used instead of exact integration, and (ii) a
Lagrangian interpolant basis is used instead of the basis by simple combinations of Legendre
polynomials.

This article presents appropriate bases for the Legendre-Galerkin method applied to
second-order and fourth-order elliptic equations with various boundary conditions. The re-

*Received by the editors January 20, 1993; accepted for publication (in revised form) September 29, 1993. This
work was supported in part by National Science Foundation grant DMS-9205300.

Department of Mathematics, Penn State University, University Park, Pennsylvania 16802 (shen_j@
math.psu, edu).
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suiting discrete systems have sparse matrices similar to the ones obtained by finite difference
discretizations. We shall develop efficient direct solution techniques for solving these discrete
systems.

For second-order equations, the Complexity of our algorithm is a small multiple of Nd+l

operations for a d-dimensional domain with (N 1)d unknowns. Since its preprocessing time
is negligible, it is definitely the method of choice among the existing spectral algorithms for
solving one particular equation. For solving equations with multiple right-hand sides, it is as
efficient as and more accurate than the Legendre-tau method; it is also very competitive with
the Chebyshev-tau and Chebyshev-collocation methods. Furthermore, the roundoff errors in
the Legendre-Galerkin approximation are considerably less appreciable than those in other
spectral approximations.

Although the solution techniques for fourth-order equations obtained by finite difference
methods are well developed (see [5] for a direct solver and [3] for a more efficient iterative
solver), there are not many results available for the fourth-order equations obtained by spectral
methods, which are more difficult to analyze and solve numerically. See the theoretical work
in [10] and [2] for one-dimensional fourth-order equations and for two-dimensional fourth-
order equations. However, how to efficiently solve the resulting discrete systems is not clear,
and only suboptimal error estimates are available for the collocation methods presented in ].

We shall develop an efficient direct solver for the fourth-order equations based on the
Legendre-Galerkin method. In the two-dimensional case, it has the complexity of a small
multiple of O(N3) operations. In other words, we can solve fourth-order equations with an
amount ofwork comparable to that involved when solving second-order equations. Hence, our
algorithm should be clearly more efficient than the existing spectral methods for fourth-order
equations (see for instance [24], [1]). Furthermore, it is clear that the Legendre-Galerkin
approximation to the fourth-order equations leads to optimal error estimates. One of the
applications of this algorithm is for solving the two-dimensional Stokes equations, since the
stream function formulation of the two-dimensional Stokes equations is the two-dimensional
biharmonic equation with Dirichlet boundary conditions. The bases developed here are also
suitable for decomposing the solution into a high frequency part and a low frequency part, as
is required in the implementation of the nonlinear Galerkin method [22].

A drawback of using Legendre polynomials is the lack of a fast transform between the
physical space and the spectral space. Hence, in the second part of the series [20], we shall
study the spectral-Galerkin method using the Chebyshev polynomials, for which the fast
Fourier transform (FFT) is applicable. We hope that an efficient transform method for the
Legendre polynomials can be eventually developed, at least for N sufficiently large, by using
the ideas presented in [17] and [4].

The algorithms presented here are mostly appropriate for simple geometries and constant
coefficient problems. We shall briefly address how to treat the variable coefficient case and
leave the extension to more complex geometries for a later investigation. We should mention
that the complexities ofour algorithms are not optimal with respect to the number ofunknowns.
However, thanks to the spectral accuracy and the very small constants in front of the O(Nd+1)
operation counts, our algorithms should be very competitive, at least for smooth functions or
N not too large, with the high-precision algorithms with optimal or near-optimal complexity
(cf. [18], [15], [16]).

The remainder of the article is organized as follows. In the next section we consider the
second-order equations. In 3 we study the fourth-order equations. In 4 we point out some
immediate extensions. Finally in 5 we present and compare some numerical results.

2. Second-order equations. In this section, we are interested in solving the Helmholtz
equation
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(2.1) cru-Au=f infa=Ia, ula=0,

where I (- 1, 1) and d 1, 2, or 3, by using the Legendre-Galerkin method. The extension
to more general problems will be discussed in 4.

Let us first introduce some basic notation that will be used in the upcoming sections. We
denote by L,,(x) the nth degree Legendre polynomial, and we set

SN span{L0(x), L(x) LN(X)}, VN {v SN v(-t-1) 0}.

Then the standard Legendre-Galerkin approximation to (2.1) is, find uN 6 VNa such that

(2.2)

where (u, v) f uvdx is the scalar product in L2(ff2); its norm will be denoted by II. The
approximation property of (2.2) is best described by using the Sobolev spaces. Let us denote
H (fig) to be the usual Sobolev spaces with the norm Ilpll. It is well known (cf. [8]) that for
c > 0, s > 1, and u 6 H (), the following optimal error estimate holds"

(2.3) Ilu uull + Nllu ull C(s)N-llulls,

Although approximation (2.2) is highly accurate, its practical value depends on the choice
of a basis for VNa.

2.1. One-dimensional case. The crucial task is to choose an appropriate basis for VN
such that the linear system resulting from (2.2) is as simple as possible. The Lagrangian
interpolant (or nodal) basis used in the collocation and spectral element formulations, and the
basis

VN span{q2(x), 3(X) N(X)}

with

] L,(x) Lo(x), k even,
(x) I L,(x) L (x), k odd,

all lead to linear systems with full matrices even in the simplest case ot 0. However, a clever
choice of the basis would lead to a linear system with a sparse matrix.

We recall that the Ln (x) satisfy the orthogonality relation

2
(2.4) (L,(x), Lj(x))

2k + ’ij Yk, j > O,

and the recurrence relation

(2.5) (2k + 1)L,(x) L’+(x) Lr_l (x).

We recall also that Ln(x) is a polynomial of degree n and therefore L",,(x) Sn-2, or more
precisely,

(2.6)
n-2

ttLn(x) (k + )[n(n + 1) k(k + 1)ILk(x).
k=0

k+n
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The following lemma is the key to the efficiency of our algorithms.
LEMMA 2.1. Let us denote

(2.7)
c,

/4k + 6’ ,(x) ck(L,(x) Lk+2(x)),

aj (O’(x, 4,’.(x)), b (,bx), 4,j(x)),

then

(2.8)

2ckcj(2-+ + 2-73)’ k j,
1, k j

bjk bkj --CkCj
2 k j + 2,2k+laft,

O, k j,
0 otherwise,

and

VN span{bo(X), 4 (x),..., N-2(X)}.

Proof Since Lk(+l) (+1)k, it follows that qk(x) 6 VN for k 0, 1 N 2.
On the other hand, it is clear that {4,(x)} are linear independent and that dim(VN) N 1.
Hence,

VN span{4o(X), 4 (x) t#N_2(X)}.

Notice that

Using (2.4)-(2.5), one can easily derive (2.8). [3

Remark 2.1. It is transparent that base functions similar to that in (2.7) can be constructed
using Chebyshev or other Jacobi polynomials. However, whether they would also lead to
efficient algorithms warrants further investigation because of the nonuniform weight in their
orthogonal relations (see [20]).

In the following sections, we shall use capital letters to denote matrices or two-dimensional
arrays, and boldface letters to denote column vectors.

It is now clear that (2.2) (with d 1) is equivalent to

(2.9) ot(u2v, c,(x)) + (u’u k(x)) (f, ,(x)), k O, 1,..., N 2.

Let us denote

(f, 4,(x)), f (fo, fl fN-2)r;

(2.10)
N-2

u v.,/,.(x),
n--0

I (V0, Ol I)N-2) T and B (bkj)o<_k.j<_zV_2.

Then (2.9) is equivalent to the following matrix equation:

(2.11) (cB + I)v =f.

Since bkj 0 for k -76 j and k -# j 4- 2, we observe that B (respectively, the system (2.11)
with c -76 0) can be decoupled into two tridiagonal submatrices (respectively, two tridiagonal
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subsystems for the odd and even components of v). Notice also that the system (2.11) reduces
to a diagonal system for c 0.

Remark 2.2. The equation

(2.12) otu + Ux Uxx f, u(+l) 0

can be easily handled as well. In fact let cjk (Dxk(x), 4j(x)) and C (ckj). A simple
computation leads to

2ckcj, k=j+l,
(2.13) cj -cj

0 otherwise.

Hence, the discrete system corresponding to (2.12) is

(orB + C + I)v =f,

which is simply a pentadiagonal system.

2.2. Two-dimensional ease. It is clear that

V span{i(x)j(y) i, j O, N 2}.

Let us denote

and

N-2

u ujdp(x)dpj(y),
k,j=O

fj (f, k(x)dpj(y)),

U (Ukj)k,j=O,1 N-2, F (Aj)k,j=O, N-2.

Taking v ckt(X)m (y) in (2.2) for l, m 0, N 2, we find that (2.2) is equivalent to
the following matrix equation:

(2.14) otBUB + UB + BU F,

where B are the matrices defined in (2.10).
This equation can be solved in particular by the matrix decomposition method described

in [7], which is better known in the field of spectral methods as the matrix diagonalization
method [12]. To this end, let A be the diagonal matrix whose diagonal entries {.p} are the
eigenvalues of B, and let E be the orthonormal matrix formed by the eigenvectors of B (since
B is symmetric), i.e., ErBE A. Now setting U EV, equation (2.14) becomes

otEAVB + EVB + EAV F.

Multiplying Er to the above equation gives

otAVB + VB + AV ErF G.

The transpose of the above equation reads

(2.15) BVrA + BVr + VrA Gr.
Let vp (vpo, v Vpu_2) r andg (gpo, gpl gpN_2) T for p 0, N 2.
Then the pth column of equation (2.15) can be written as

(2.16) ((ot.p + 1)B + .pI) vp ge, p 0, N 2,

which is equivalent to N 1 one-dimensional equations of the form (2.11).
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In summary, the solution of (2.14) consists of the following steps:
(1) Preprocessing: compute the eigenvalues and eigenvectors of B;
(2) Compute G Er F;
(3) Obtain V by solving (2.16);
(4) Set U EV.
Since B can be split into two symmetric tridiagonal submatrices, the eigenvalues and

eigenvectors of B can be easily computed in O(N2) operations. Step 3 consists of solving
N 1 tridiagonal systems of order N 1. From the structure of B, we realize that ekj 0 for
k+ j odd. Hence the amount of work for the matrix multiplications can be reduced by a factor
of 2. Consequently steps 2 and 4 take a total of 2(N 1)3 arithmetic operations. Therefore,
for each right-hand side, the system (2.14) can be solved in about 2N3 operations.

We remark that for each particular solution of (2.1), the Legendre-Galerkin method de-
scribed above takes at most the same amount of operations as the Legendre-tau method.
However, thanks to the symmetry of the Galerkin procedure, the complexity of the prepro-
cessing stage in the Galerkin case is an order of magnitude less (in terms of N) than in the tau
(and the collocation) case. Furthermore, the error estimate of the Galerkin approximation is
optimal (see (2.3)), while that of the tau approximation is not (see for instance [21 and 19]).

Remark 2.3. As in Remark 2.2, equation (2.1) with a first-order termUy can be efficiently
treated. In this case, the discrete equation (2.14) should be replaced by

otBUB + flBUC + UB + BU F,

which can still be solved by the matrix diagonalization method. By the same token, we can
treat equation (2.1) with a first-order term Ux.

Remark 2.4. We note that the bottleneck of the algorithm is the two matrix-matrix multi-
plications in steps 2 and 4, which can be effectively parallelized and their complexity improved
to O(Nd+/p) with p parallel processors. The same remark holds for other algorithms to be
presented later in this paper.

2.3. Three-dimensional case. The three-dimensional Helmholtz equation can also be
efficiently solved by the above matrix diagonalization method. However, the formulation of
the algorithm requires a little extra care. Let us denote

N-2

UN E Unmln (X)l#m (Y)I (Z),
n,m,/=0

fijk (f, (i(X)j(Y)k(Z)).

Since

V span{i(x)$j(y)$k(z) i, j, k O, N 2},

taking v qbi(x)cbj(y)(z) in (2.2) for i, j, k 0, N 2, we find that (2.2) with
d 3 is equivalent to the following equation:

(2.17)
olbintlnmlbjmbkl + tlimlbjmbkl "+" binunjtbkt + binUnmkbjm fijk,

i,j,k=O, 1,...,N-2,

where we have used the conventional notation such that a pair of repeated index implies a
summation of the index from 0 to N 2. Hence, by the definition of E and A in 2.2, we
have

bin enq .q eiq, eiq eip 3qp.
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Setting Unm enq Vqml and using the above relation, we can rewrite equation (2.17) as

ot).qeiq Vqmlbjmbkl "+" eiq Vqmlbjmbkl + )qeiq Vqjlbkl + qeiq Vnmkbjm fijk,
i,j,k=O, N-2.

Multiplying eip to the above equation, we obtain

(Otp -or- 1)Vpmlbjmbkl -Jr p(l)pjlbkl.-st- Vpmkbjm) eipfjk gpjk, P, j, k 0, N 2.

Now set Vp (l)pml)O<m,l<N-2 and Gp (gpml)O<m,l<_N-2. We can rewrite the above
equation as

(2.18) (c,kp + 1)BVPB + .p(VPB -b BVp) Gp, p O, 1 N 2.

For each p, the above equation corresponds to a two-dimensional equation of the form (2.14).
In summary, the solution of (2.17) consists of the following steps:
(1) Preprocessing: compute the eigenvalues and eigenvectors of B;
(2) Compute gpjk eipfijk for p, j, k 0, N 2;
(3) Obtain Vp by solving (2.18) for p 0, N 2;
(4) Set U,,mt enq Vqml for n, m, 0, N 2.
Step 3 consists of solving N two-dimensional equations of the form (2.14). Hence, it

takes about 2N4 operations. Steps 2 and 4 take 2N4 operations. Therefore, the system (2.17)
can be solved in about 4N4 operations.

3. Fourth-order equations, in this section, we consider the fourth-order equation

Ou
(3.1) cu--flAu+AZu=f inf2=Ia, ul0=nnl0=0,
where n is the normal vector to 0f2.

Let

WN {V E SN V(q"l) Vx("["l) 0}.

Then the Legendre-Galerkin approximation of (3.1)consists of finding uN E WNa such that

(3.2) c(uu, v) + fl(Vuu, Vv) + (Auu, Av) (f, v) Yv 6 WN.
It can be shown that for c,/3 > 0 and u 6 H (f2) 3 H() for s > 2, then the following
optimal error estimate holds:

(3.3) Ilu uull + Nllu uulll + NZl[u U112 "< C(s)N-llull.

3.1. One-dimensional case. Equation (3.1) in the one-dimensional case can serve as a
model for the clamped rod problem. It can also serve as a model for the two-dimensional
Stokes equations in the primitive variable formulation or in the stream function formulation,
subject to the periodic boundary condition in the y direction and Dirichlet boundary condition
in the x direction. A semi-implicit time discretization ofthe important Kuramoto-Sivashinsky
equation modeling a flame propagation [23] is also of the form (3.1) with d 1.

LEMMA 3.1. Let

2(2k + 3)2(2k + 5)
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and

2(2k + 5) 2k + 3
(3.4) ap,(x) dk(Lk(x)

2k + 7
Lk+2(x) + 2C / 7

Lk+4(x))’ k 0, N-4.

Then

WN span{o(X), ’lpl (x) I/N_4(X)}.

Furthermore, we have

,7,(x))=
0, j,

(3.5) akj (apj’ (x) "
1,

and the only nonzero elements ofbkj (apj(x), 7tk(x)), ckj (j(x), ap’(x)) are

(3.6)

2bla d(ek + hkek+2 + gek+4),
bkk+2 bk+2 dkdk+2(hke+2 + ghk+2ek+4),

bkk+4 bk+ak dkdk+ngkek+4,

ckk -2(2k + 3)dhk,
ckk+2 Ck+2k -2(2k + 3)dkdt,+2,

where

2 2k+3
hk -(1 + g,).ek gk

2k + 2k + 7’

1)k-1Proof. Since Lk(-+-l) (+1)’ and Lk(+/-l) (4- k(k + 1), we can readily check
that (x) 6 WN. On the other hand, it is clear that {i(x)} are linear independent and the
dimension of WN is N 3. Hence

mN span{Po(x), l(X) 1/J’N-4(X)}.

(3.5) and (3.6) can be derived by direct computations using (2.4)-(2.6) and integration by
parts. 71

To simplify the notation, we denote hereafter q N 4. Let us denote now

B (bkj)o<_k,j<_q
A (f, (x)),

qu Z.=o

c
f= (j, j fq)T,

1 (VO, Vl Vq) r

We find that (3.2) with d is equivalent to the following matrix equation:

(3.7) (cB +/C + I)v =f.

It is obvious that B and C are symmetric positive definite matrices. Furthermore, B can be
split into two pentadiagonal submatrices and C can be split into two tridiagonal submatrices.
Hence, the system can be efficiently solved.



EFFICIENT SPECTRAL-GALERKIN METHOD 1497

3.2. Two-dimensional case. Equation (3.1) in the two-dimensional case with ct fl 0
is the well-known biharmonic equation. It has many important applications. In particular, it
is known as a model for the plate problem; the steam-function of a flow governed by two-
dimensional Stokes equations is also a solution of equation (3.1). The case with o 0 is also
important for time-dependent problems.

It is obvious that

W span{i (x) Oj (y)" i, j O, q }.

Using the same notations as in 2.2 (with 4k (x) replaced by k(x), and N 2 replaced by q),
taking v l(X)m(y) in (3.2) for l, rn 0, q, we find that (3.2) is equivalent to the
following matrix equation:

(3.8) BUB + ,8(CUB + BUC) + BU + 2CUC + UB F.

We can also rewrite the above equation in the following form using the tensor product notation"

(3.9) Du =_ (otB (R) B + (C (R) B + B (R) C) + B (R) I + 2C (R) C + I (R) B)u f,

wherefand u are F and U written in the form of a column vector, i.e.,

(3.10) f (j0, fl0 fq0; Jl fql; ;Jq Lq) T

and (R) denotes the tensor product of matrices, i.e., A (R) B (,4bij)i.j--o. q.

Let us first remark that if BC CB, then equation (3.8) can be efficiently solved using the
matrix diagonalization method (see below). But unfortunately, due to the fact that equation
(3.1) is not separable, we have BC CB. However, BC CB only has eight nonzero
entries at positions (0, 2), (1, 3), (q 3, q 1), (q 2, q), and their symmetric counterpart
(2, 0), (3, 1), (q 1, q 3), (q, q 2). These nonzero entries can be eliminated by modifying
the following four entries of the matrix B:

boo ----’+ /00 (coob02 -t c02b22 b02c22 b04c42)/c02,

bll ll (Cllbl3 d- c13b33 b13c33 b15c53)/c13,

bq-lq-1 q-lq-1 (q-lq-lbq-lq-3 -at- q-lq-3bq-3q-3

-bq-lq-3q-aq-3 bq-lN-9CN-9q-a)/Cq-lq-3,

bqq bqq (qqbqq-2 d Cqq-Ebq-2q-2 bqq-2Cq-Eq-2 bqq-4Cq-4q-E)/Cqq-2.

Setting/) (ffgij) with ij bij for (i, j) (0, 0), (1, 1), (q 1, q 1), (q, q), we have

c =c.
Now let us explain how to efficiently solve the equation

(3.11) ot[UB + 3(CUB + [UC) + [U + 2CUC + UB F.

Since/) and C are symmetric and/)C C/), it is well known that there exists an orthonormal
matrix E such that

(3.12) /}E EA, CE EE,
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and A and E are real diagonal matrices. The matrix E is the set of eigenvectors of/ and
C, the diagonal entries {.t,} and {at,} of A and I2 are, respectively, eigenvalues of/ and C.
Hence, setting U El: in (3.8) and using (3.12), we obtain

uEAVB + 3E(EVB + AVC) + EAV + 2E12VC + EVB F.

Multiplying Er to the above equation, we get

(3.13) otAVB + fl(12VB + AVC) + AV + 2EVC + VB ErF G.

As in 2.2, let Vp (Vpo, Vp Vpq) r and gp (gpo, gp gpq)r for p 0, q.
Then the pth row of equation (3.13) is

(3.14) {(ot.p + flap + 1)B + (fl.p + 2rp)C + .pI] Vp gp, p O, q.

For each p, the above equation is simply a one-dimensional equation of the form (3.7).
In summary, the solution of (3.11) consists of the following steps"
(1) Preprocessing" compute the eigenvalues and eigenvectors A, 12, E of/ and C;
(2) Compute G Er F;
(3) Obtain Vp by solving (3.14);
(4) Set U EV.
Using a classical result on tridiagonal matrices (see 3.7 of 14]), we derive that the eigen-

values of C are all distinct. Consequently an eigenvector of C is automatically an eigenvector
of B. Therefore for the preprocessing stage, we only have to compute the eigenvalues and
the eigenvectors 12 and E of C; A can then be determined by the relation/E EA. Since
C can be split into two tridiagonal submatrices, the preprocessing stage only takes O(N2)
operations. As before, steps 2 through 4 take about 2N3 operations.

Now let us describe how to use the fast solver for (3.11) to solve the original system (3.8)
or equivalently (3.9). To this end, we rewrite (3.11) by using the tensor product notation

bu= (ot/(R)B+fl(C(R)B+/(R)C)+/(R)I+2C(R)C+I(R)B)u =y.(3.15)

It is easy to see that D and D differ at only 4(q + 1) rows; more precisely, they differ at the
rows (i 1) q + 1, (i 1) q + 2, q ,:t" q for 1, 2 q. Following the idea in
[6], we can use the fast solver for (3.15) to solve equation (3.9) by the method of capacitance
matrix. We briefly describe the method of capacitance matrix below.

Without loss of generality, we assume that the first p rows of D are changed to obtain
D. Although this is not the case here, the same result can be achieved by using an implicit
indexing scheme. Partition D, D, andf in the form

D= D= f=
D2 D2 f2

where D1 and/)1 are p x r matrices, with r (q + 1)2 the order of the matrix D, andfl a
vector of length p. Then equation (3.9) can be solved as follows:

(1) Preprocessing: compute the p x p capacitance matrix

(3.16) P=DI)-I(I)’0
where I is the p x p identity matrix; factor P into a LU form;
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(2) Compute vl D1/-lf;
(3) Solve Pw1 fl Vl;

(4) Solve bu f+ (’).
One can check that u is in fact the solution of the equation Du f.
It is clear that steps 2 through 4 can be performed in 4N3 4- O(N2) operations. The

preprocessing stage, i.e., the computation of the capacitance matrix, is a little tricky, however.
IAs explained in [5], one should take advantage of the sparseness of D1 and (0) in the

construction of P so that the preprocessing stage can be done in O(pr / p3) O(N3)
operations. Refer to [5] for more details of this aspect. However, unlike in the finite difference
case [5], the capacitance matrix is no longer symmetric positive definite. We can write
D =/) + A with

E, 0,...,0

0, E, ,0

0, ,0, E

where E is a diagonal matrix of order q with four nonzero entries at positions (1, 1), (2, 2),
(q 1, q 1), and (q, q). Hence,/)-1D I +/)-1A and

(3.17) P I + AD,

where / is the diagonal matrix with the nonzero entries of A and /3 is the part of/)-1
corresponding to the entries in positions: (i, j) j 0, q; 0, 1, q 1, q./) is
symmetric positive definite and so is/3. In fact, all the nonzero entries in A are positive. Hence
P is not symmetric but it is similar to the symmetric positive definite matrix z-1/2 4- z// :.
Furthermore, we note that D and D have alternating zero and nonzero elements, hence the
system (3.9) (respectively, the capacitance matrix P) can be decoupled into four subsystems
(respectively, four submatrices oforderq or q 4-1). This would reduce the cost ofpreprocessing
by a factor of 16.

Three-dimensional fourth-order equations can also be treated by the above procedure.

4. Miscellaneous extensions. The Legendre-Galerkin method described here can be ap-
plied to more general problems. In this section, we describe several immediate extensions.

4.1. Robin-type boundary conditions. When other boundary conditions are prescribed,
it is necessary to construct a basis incorporating the boundary conditions. For the sake of
simplicity, we only consider the one-dimensional equation

otU Uxx f in/

with the Robin-type boundary condition

a+u(+l) + b+ux(+l) O.

Let WN {v SN a+v(+l) + b+vx(+l) 0}. Then the standard Legendre-Galerkin
approximation to the above equation is, find uu WN such that

(4.1) ot(uv, v) + (Dxuu, Dxv) (f, v) Yv mN.

As before, we can find an appropriate basis for WN by setting
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qbk(x) L,(x) 4" akLk+l(X) 4" bkLl,+2(x),

where ak and bk are the unique constants such that qk(x) Wv. Therefore

Wv span{qo(x), ql (x) #N-2(x)}.

Taking v tpk(x) in (4.1) for k 0, N 2, we can readily check that the matrix
corresponding to the discrete system (4.1) is a symmetric pentadiagonal matrix.

In the special case where a+ 0 and b+ (i.e., the homogeneous Neumann boundary
condition), we have in particular ak 0 and bk -(k(k + 1)/(k + 2)(k + 3)). In this
particular case the matrix can be decoupled into two tridiagonal submatrices.

Let us mention that we can also construct a special basis for the fourth-order problems
with the condition ula Aula 0.

4.2. Nonhomogeneous boundary conditions. We can always modify the right-,hand
side to take care of the nonhomogeneous boundary conditions. Let us consider for instance
the two-dimensional Helmholtz equation (2.1). Nonhomogeneous boundary conditions for
fourth-order equations can be treated similarly.

If the solution u of (2.1) is subject to the nonhomogeneous Dirichlet boundary condition

u(+l, y) a+(y), u(x, 4-1) b+(x),

we proceed as follows.
Set

b+(x) b_(x) b+(x) 4" b_(x)ul(x, y) y +2 2
+(y) a+(y) u (-t-1, y).

By construction, we have i+(4-1) 0.
Then set

U2 (X, y) aT+ (y) i_ (y) i+ (y) + i_ (y)
x4"

2 2

One can readily check that

U U U2.

t7(4-1, y) (x, 4-1) 0.

Hence it suffices to solve the following modified Helmholtz equation:

at7 At7 f- c(u + u2) 4" A(u 4" U2) in f2 I x I, lan =0.

We note that the extra term A(u 4" u2) on the right-hand side can be obtained in only O(N)
operations by using the recursive relation (2.5).

4.3. Nonseparable elliptic equations. For nonseparable equations of the form

(4.2)
Lu =- -V. [a(x, y)Vu] + b(x, y)u f(x, y)

ulo g(x, y),

inf=I x I,
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or more generally for problems with variable coefficients, the Legendre-Galerkin methods
lead to systems with dense matrices and cannot be efficiently solved by a direct method.
However, the fast direct methods for constant coefficient problems developed in the previous
sections can be used to efficiently solve equation (4.2) using an iterative procedure proposed
in [9]. The heart of this iterative procedure is the utilization ofthe fast solver for the Helmholtz
equation, regardless of the type of discretization employed. It is shown in [9] that the rate of
convergence of the iterative procedure is independent of the number of modes used in each
direction. Therefore an equation of the form (4.2) can be solved in O(N3) operations.

5. Numerical results. In this section we give several numerical examples obtained using
the algorithms presented in the previous sections.

The pure spectral-Galerkin method is rarely used in practice, since for a general right-hand
side function f we are unable to compute exactly its representation by Legendre polynomials.
Instead, the so-called pseudo-spectral method is used to treat the right-hand side (or the product
oftwo functions), i.e., we replace f by Ivf in the computation, where Ivf is the interpolation
of f over the set of Gauss-Lobatto points. This would introduce an extra error term of order
C(tr)N- ilfll for f H (f2) (see [8]) in the estimates (2.3) and (3.3). Hence, the spectral
accuracy is still retained.

Unfortunately, in the Legendre case, we cannot use FFT to transform from the physical
space to the spectral space and vice versa. Instead we shall use direct matrix multiplication,
which takes 2dNd+ operations for each transformation in a d-dimensional domain. Hence
for each particular solution of the Helmholtz equation and the biharmonic equation, 2dNd+

additional operations are needed to transform INf to the spectral space and to transform
the solution uv to the physical space. However, these additional operations can be eventually
reduced, at least for N sufficiently large, to O(Nd(log2 N)2) operations using the fast transform
developed by Orszag [17], or to O(Nd log2 N) operations using the fast multipole method
presented in [4]. Note that this additional work is not needed if one is content with the
solution in spectral space with the right-hand side given in spectral space.

We consider first the two examples given in [12].
Example 1. Consider the Poisson equation

-Au 32sin(4zrx) sin(4zry) in f2 I x I, ul0 0,

with a smooth exact solution u(x, y) sin(4zrx) sin(4zry).
Example 2. Consider the Poisson equation

-Au=l inf2=IxI, ulof=O,

with an exact solution

u(x, y)
64 cos(’xa cos(m--)n+m

Yt"4
(__ 1) --$-- 2 2

nm(n2 + m2)
odd

which has singularities at the four comers.
We shall compare the Legendre-Galerkin method (LGM) with the Chebyshev-tau (CTM)

and Chebyshev-collocation (CCM) methods.
Table 1 lists the maximum pointwise error of u uN using the LGM, CTM, CCM, and

the second- and fourth-order finite difference (FD2 and FD4) methods.
For the first example, all three spectral methods converge exponentially but the LGM

is considerably more accurate than the CTM and CCM. For the second example, which has
corner singularities, the LGM is as accurate as the CCM and is still clearly more accurate than
the CTM. The main source of roundoff errors comes from the matrix decomposition. Since
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TABLE
Maximum pointwise error of u uN for Examples and 2.

Example

2

2

N LGM CTM CCM FD4 FD2

16 2.93E-3 3.33E-2 5.25E-3 2.81E-2 2.34E-i
32 3.44E-13 4.77E-11 2.12E-12 1.62E-3 5.30E-2

64 5.55E-15 8.67E-13 1.55E-13 9.97E-5 1.30E-2

128 6.88E-15 2.00E-12 1.56E-13 6.21E-6 3.22E-3

16 1.42E-6 3.52E-5 7.47E-7 7.17E-6 9,02E-4

32 7.48E-8 2.23E-6 5.51E-8 1.79E-6 2.26E-4

decomposing a symmetric tridiagonal matrix in LGM is much less affected by roundoff errors
than decomposing a full matrix in CTM and CCM, the roundoff errors in LGM are much
less pronounced than those in CTM and CCM. This is confirmed by the numerical results in
Table 1.

Table 2 lists the execution time in seconds on Sun-Sparc2 for the first example using the
three spectral methods. The approximate preprocessing times are given in parentheses. The
programs were written in Fortran and compiled with the option -O. LAPACK routines were
used for matrix-matrix multiplications and for solving the eigenvalue problems.

TABLE 2

Execution time andpreprocessing timefor Example 1.

Example N LGM CTM CCM

32 0.10 (0.03) 0.09 (0.13) 0.05 (0.27)

64 0.64 (0.12) 0.44 (0.54) 0.43 (2.44)

128 6.96 (1.01) 3.36 (5.20) 4.66 (19.58)

For a particular solution of the Helmholtz equation, LGM is clearly the method of choice
since its preprocessing time is negligible. For multiple solutions, the LGM is still competitive
with CTM and CCM for N up to the range of48 to 64.1 It is not very appropriate to compare the
execution time of the collocation method, which provides only the physical representation,
with that of the Galerkin and tau methods, which provide both the physical and spectral
representations, since derivatives of functions, which are often needed for nonlinear problems,
can be efficiently evaluated in spectral representations. Most of the computing time in LGM is
used for transforming from physical representation to spectral representation and vice versa.
Hence the CPU in LGM can be greatly reduced if one only needs the spectral representation.

Example 3. Consider the two-dimensional biharmonic equation in f2 I x I

A2U 128zr4(cos(4zrx) cos(4zry) cos(4zrx) sin(27ry)2 cos(4zry) sin(2zrx)2),
0u

ul 1o 0,

with a smooth exact solution u(x, y) (sin(2rrx) sin(2zry))2.
The second row of Table 3 lists the maximum pointwise error of u uN; the third row

lists the execution time for Example 3 with approximate preprocessing time in parentheses.
The last row lists the condition number of the capacitance matrix P.

This range may be increased for highly parallel computers or when a fast transform method is employed.
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TABLE 3

Resultsfor Example 3.

N 16 32 64 128

L eor 1.48E-2 7.45E- 12 2.04E- 14 2.81E-14

CPu (Pre-P) 0.02 (0’08) 0.12 (0.60) 0.82 (5.15) 8.28 (45.03)
Cond. no. of P 115.524 1608.96 24772.8 393214

It is obvious that the approximate solutions converge exponentially to the exact solution.
We note that the condition numbers of P grow like O(N4). Hence the inversion of P is
probably the main source of roundoff errors observed for N large. It is worth noting that the
execution time for solving a two-dimensional biharmonic equation is only about 20% more
than that for solving a two-dimensional Poisson equation.

The last example we consider is the nonseparable equation (4.2) with

a (x, y) + ((x + 1)4 ..[_ (y ..[_ )4) ]2, u(x, y) sin(zrx)sin(zry).

For the details of the iterative scheme, we refer to [9]. Note however that we used the shifting
factor

4a(x,

which seemed to give a slightly better convergence rate, instead of

( A/a(x, y)
K- min

/a(x,y)
A/a(x, y) ’]+ max --d )-j ]’

which was suggested in [9]. Note also that the preconditioned conjugate gradient method,
as opposed to the simple Richardson iteration proposed in [9], can be used to accelerate the
convergence rate. Various iterative methods along with treatments for more general variable
coefficient problems will be investigated in a future work.

TABLE 4
Resultsfor the nonseparable equation.

N 16 32 64 128

max(u-u6u) 2.93E-7 4.87E-7 6.15E-7 6;83E-.7.,
max(uTu-u) 2.47E-8 4.65E-8 6.16E-8 6.98E-8,

CPU 0.09 0.62 4.51 45.06

Table 4 summarizes the results after seven Richardson iterations with the initial guess
0 0. The results clearly demonstrate that the convergence rate ofthe scheme is independentU
N

of N. Note, however, that due to the expensive transformations required by the Galerkin
method, a collocation method is probably preferable for this problem, especially when N
is large.

6. Concluding remarks. We have presented a systematic way to construct appropriate
bases for the Legendre-Galerkin method applied to constant coefficient elliptic problems. We
have also developed efficient direct solvers whose complexities are a small multiple of Nd/l

operations in a d-dimensional domain with (N 1)d unknowns. Furthermore, the algorithms
can be effectively parallelized. Taking into account the fact that the convergence rate of the
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Legendre-Galerkin method is exponential, we conclude that our algorithms are very valuable
for the specific problems considered in this article. To the best ofour knowledge, this algorithm
for the fourth-order equations is the first fast direct solver with spectral discretization. Our
direct solver for one particular second-order equation is probably the most efficient among the
existing spectral methods. Our direct solver for the second-order equations with multiple right-
hand sides is also very competitive with the direct solvers by the Chebyshev-tau, Chebyshev-
collocation, and spectral element methods (see [12], [8], [18]).

We note that similar techniques can be applied to the Galerkin method using Chebyshev
polynomials (cf. [20]) or other Jacobi polynomials.
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